
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Generalizing ISP Model by Unsupervised Raw-to-raw Mapping
Anonymous Authors

ABSTRACT
ISP (Image Signal Processor) serves as a pipeline converting un-
processed raw images to sRGB images, positioned before nearly all
visual tasks. Due to the varying spectral sensitivities of cameras, raw
images captured by different cameras exist in different color spaces,
making it challenging to deploy ISP across cameras with consistent
performance. To address this challenge, it is intuitively to incorpo-
rate a raw-to-raw mapping (mapping raw images across camera
color spaces) module into the ISP. However, the lack of paired data
(i.e., images of the same scene captured by different cameras) makes
it difficult to train a raw-to-raw model using supervised learning
methods. In this paper, we aim to achieve ISP generalization by
proposing the first unsupervised raw-to-raw model. To be specific,
we propose a CSTPP (Color Space Transformation Parameters Pre-
dictor) module to predict the space transformation parameters in
a patch-wise manner, which can accurately perform color space
transformation and flexibly manage complex lighting conditions.
Additionally, we design a CycleGAN-style training framework to
realize unsupervised learning, overcoming the deficiency of paired
data. Our proposed unsupervised model achieved performance com-
parable to that of the state-of-the-art semi-supervised method in
raw-to-raw task. Furthermore, to assess its ability to generalize the
ISPmodel across different cameras, we for the first formulated cross-
camera ISP task and demonstrated the performance of our method
through extensive experiments. Codes will be publicly available.

CCS CONCEPTS
• Computing methodologies→ Computational photography;
Image processing; Computer vision problems;

KEYWORDS
Image Signal Processor, Unsupervised Raw-to-raw Mapping, Pa-
rameterized Model

1 INTRODUCTION
ISP refers to an image processing system aiming to transform the
unprocessed raw images captured by camera into visually pleas-
ing sRGB images for human perception, while serving for various
downstream visual tasks [24, 26, 27, 32, 33, 35, 37, 39], such as ob-
ject detection, semantic segmentation, and instance segmentation.
The system of a traditional ISP includes white balance module, de-
noising module, demosaicing module etc. Since the features are
manually designed, traditional ISP suffers from problems such as

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(c).Data Augmentation by Raw-to-raw Mapping

(b).Domain Adaptation by Raw-to-raw Mapping

ISPraw-to-raw

(a).W/o Raw-to-raw Mapping

ISP

Figure 1: Generalizing ISP model by raw-to-raw mapping.
Top shows the challenge of ISP’s cross-camera deployment,
middle shows the application of raw-to-raw in the test phase
(i.e., domain adaptation), bottom shows the application of
raw-to-raw in the train phase (i.e., data augmentation).

tedious parameter tuning, low flexibility and limited adaptability
[12, 18]. In recent years, with the rapid advancement of deep learn-
ing technology, AI-ISP has emerged as a more effective approach
for raw image processing. Current AI-ISP methods either replace
sub-modules in the traditional ISP system [1, 3, 5, 6, 11] or the entire
ISP[15–18] with an end-to-end deep neural network. By training on
raw images that are paired with expert fine-tuned or professional
camera rendered sRGB images, AI-ISP achieves much higher image
quality than a traditional ISP.

However, owing to the varying spectral sensitivities of cameras,
raw images captured by different cameras exist in different color
spaces, caused AI-ISP exhibit poor performance when deployed
across different cameras. Fig. 1: (a) presents an example to illustrate
it, when deployed on a blue camera, the yellow ISP fails to render
the sRGB image accurately. While some cross-camera methods
and multi-camera datasets have been developed for tasks such as
white balance [1, 3, 4, 7] and denoising [8, 14, 38], research on the
cross-camera deployment of entire ISP models remains limited.

Intuitively, a raw-to-raw mapping module, designed to convert
raw images across camera color spaces, can be placed before the
ISP to ensure consistency in the raw data from different cameras,
as illustrated in Fig. 1: (b) (c). Previous raw-to-raw methods [2,
28] require physical access to cameras and generate pixel-level-
paired images from different cameras for training, which is a tedious
and difficult process. In addition to this, their methods assume
uniform illumination condition, which may not suitable in scenes
with complex lighting.

Unpaired image translation provides an alternative solution to
the raw-to-raw task. However, the inherent domain gaps present
in unpaired images taken by different cameras, stemming from

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Multiple domain gap issues in the raw-to-raw task.

variations in noise, blur, and camera physical characteristics, pose
a significant challenge for raw-to-raw tasks under unsupervised
settings as illustrated in Fig. 2. Traditional unsupervised image
translation methods may struggle when faced with uncertain do-
main gaps, potentially resulting in erroneous mappings.

To address the above-mentioned challenges, we propose a novel
unsupervised raw-to-raw model which is trained based on the Cy-
cleGAN framework [41]. A key component of our model named
CSTPP (Color Space Transformation Parameters Predictor) predicts
the color space transformation parameters and applies them in a
patch-wise manner, rather than performing per-pixel image trans-
lation. This parameterized method allows our model to focus on the
domain gap of the color space while ignoring others it cannot map,
thereby enabling correct color space transformation. Our proposed
model serves dual purposes: it can function as a domain adapta-
tion module during the testing phase of the ISP model, and it can
also be used as a data augmentation method during the training
phase as illustrated in Fig. 1: (b) (c), respectively. In summary, the
contributions of this paper are as follows:

• We propose an unsupervised raw-to-raw model for the first
time. In the raw-to-raw task, our unsupervised method per-
forms equally well as Afifi et al.’s semi-supervised method
[2], surpassing significantly the results of other traditional
unsupervised methods.

• We have extended the raw-to-raw task to multi-illumination
scenes and achieved the best results in corresponding quan-
titative evaluation.

• In the proposed cross-camera ISP task, we conducted exten-
sive quantitative and qualitative evaluations. Despite the ab-
sence of paired training data from target camera, our method
still enables the ISP model to produce visually pleasing re-
sults.

2 RELATEDWORK
2.1 ISP
Traditional ISP typically consists of modules for denoising, demo-
saicing, white balancing, color toning etc. Experts need to spend
considerable time carefully tuning parameters for each module.
With the development of deep learning, end-to-end networks have
been introduced to directly reconstruct sRGB images from raw
images. Ignatov et al. [18] first proposed a high-quality raw-rgb
dataset, consisting of pairs of raw images captured by a mobile
phone camera and sRGB images rendered by a professional camera.
They accomplished this challenging reconstruction task using a

pyramid model that trained hierarchically. With the demand for
deploying AI-ISP into mobile devices, current state-of-the-art AI-
ISP models, such as syenet[15] and microISP[17], not only achieve
high-quality results but also have few parameters.

In addition to serving human vision, some researchers focus
on the impact of ISP on downstream vision tasks [24, 26, 27, 32,
33, 35, 37, 39] such as object detection, semantic segmentation,
and instance segmentation. Mosleh et al. [27] differentiated the
ISP modules and deployed them in a series of downstream tasks.
They optimized the parameters of the ISP module end-to-end by
incorporating the loss from downstream tasks. Sun et al. [35] in-
troduced reinforcement learning into ISP task, they dynamically
adjust the parameters of the ISP module based on the performance
of downstream tasks. Compared to traditional ISP designed for
human vision, their ISP for machine perception can achieve better
performance on a variety of visual tasks.

While ISP has found success in various imaging systems, the
majority of current ISP algorithms are customized for specific cam-
eras. Significant domain gaps between raw images captured by
different cameras pose challenges for deploying ISP across various
cameras [10]. In general, each camera requires a separate dataset
for ISP model training (learning-based ISP) or extensive parame-
ter tuning (traditional ISP). Additionally, training ISP using joint
multi-camera raw data is challenging due to the lack of paired data
and the difficulty for models to simultaneously map from multiple
camera-specific color spaces to sRGB.

2.2 Raw-to-raw
The objective of the raw-to-raw task is to establish a mapping func-
tion 𝑓 capable of accurately transforming raw images from Camera
A’s color space to Camera B’s color space, accommodating diverse
scenes and lighting conditions. In brief, the mapping function can
be expressed as:

𝐼𝐵 = 𝑓 (𝐼𝐴), (1)
where 𝐼𝐴 and 𝐼𝐵 denote the raw images captured by camera A and
camera B, respectively, under identical lighting and scene condi-
tions.

From [20, 28], the raw-to-raw mapping can be approximated as
a channel-wise color transformation 𝑇 (𝐿) ∈ R3×3. Under illumi-
nation condition 𝐿, the packed raw image 𝐼𝐴 = [𝑟, 𝑔, 𝑏] captured
by camera A can be transformed to the color space of camera B
approximately as follows:

𝐼𝐵 = 𝑓 (𝐼𝐴, 𝐿) ≈ 𝐼𝐴𝑇 (𝐿). (2)

Nguyen et al. [28] proposed that by employing irreversible qua-
dratic transformation, equation 2 can be further approximated by
Eq. 3:

𝑓 (𝐼𝐴, 𝐿) ≈ 𝐼𝐴𝑞𝑡𝑇𝑞𝑡 (𝐿), (3)

here, 𝐼𝐴𝑞𝑡 = [𝑟2, 𝑔2, 𝑏2, 𝑟 × 𝑔,𝑔 × 𝑏, 𝑟 × 𝑏, 𝑟, 𝑔, 𝑏], 𝑇𝑞𝑡 ∈ R9×3. Corre-
spondingly, for raw images with four channels [𝑟, 𝑔𝑟 , 𝑔𝑏 , 𝑔] rather
than three, it can simply generalize that 𝐼𝐴𝑞𝑡 = [𝑟2, 𝑔2𝑟 , · · · , 𝑔𝑏 , 𝑏] and
𝑇𝑞𝑡 ∈ R14×4.

Koskinen et al. [22] and C5 [3] attempted to enhance the cross-
camera generalization of the white balance module using raw-to-
raw mapping. However, their methods require ground truth illu-
mination and extensive meta data. Afifi et al. [2] were the first to
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introduce neural networks into the raw-to-raw task, they placed a
standard color chart in the scene and captured raw images using
two cameras. Subsequently, they estimated the parameters of the
quadratic transformation 𝑇𝑞𝑡 by minimizing the color differences
between the two color charts. They applied this transformation to
the raw images and obtaining pixel-level-paried data. They then
utilized a Unet-like [34] model for semi-supervised training. Al-
though their trained model can accomplish raw-to-raw mapping
for other scenes without having to again capture paired images,
access to actual devices to create paired dataset before training is
still inevitable. Moreover, this approach is only suitable for ideal
scenes with uniform lighting. In general scenes with non-uniform
lighting, the transformation parameters vary significantly across
different regions of the image, making it impossible to produce
high-quality supervised data and conduct supervised training.

2.3 Unpaired Image Translation
The goal of the UNIT (Unpaired Image Translation) task is to map
images from domain 𝜒𝐴 to domain 𝜒𝐵 without ground truth, such
as from sunny to rainy or from male to female. Zhu et al. [41] pro-
posed CycleGAN for the UNIT task, utilizing cycle-consistency loss
and identity loss to bridge domain gaps. Cut [29] introduced a con-
trastive learning approach to image translation task and achieved
good results in cases where only one-way mappings exist. UVC-
GAN [36] introduced a pixel-wise transformer into the CycleGAN
framework, while Swin-UNIT [23] addressed performance issues
caused by high-resolution images by introducing swin-transformer
block which has a linear complexity.

Unlike the per-pixel translation methods mentioned above, Chai
et al [9]. proposed a parameterized network for predicting color
enhancement parameters. Their method achieved excellent visual
results on the MIT-5K color enhancement dataset. However, their
method applies a uniform transformation across the entire image,
resulting in limited flexibility in tasks calling for local transforma-
tion.

3 METHOD
3.1 Patch-wise Color Space Transformation
In this section, we discuss patch-wise color space transformation.
It is worth noting that the color space transformation mentioned
here refers to the direct conversion from the color space of one
camera to the color space of another camera. The pixel values of
raw images can be directly modeled as follows [28]:

𝐼𝑐𝑎𝑚 =

∫ 𝑏

𝑎

𝑅(𝜆)𝐿(𝜆)𝐶𝑐𝑎𝑚 (𝜆)𝑑𝜆, 𝑐𝑎𝑚 ∈ {𝐴, 𝐵}, (4)

here, [𝑎, 𝑏] represents the visible light wavelength range 380nm-
720nm, 𝑅(𝜆) represents the spectral reflectance property at wave-
length 𝜆, 𝐿(𝜆) denotes the spectral intensity at wavelength 𝜆, and
𝐶𝑐𝑎𝑚 (𝜆) denotes the camera sensor sensitivity at wavelength 𝜆.

By discretizing the integral form of Eq. 4, an equivalent matrix
representation can be obtained, as shown in Eq. 5:

𝐼𝑐𝑎𝑚1×3 = 𝑅1×𝑛𝐿𝑛×𝑛𝐶𝑐𝑎𝑚𝑛×3 , 𝑐𝑎𝑚 ∈ {𝐴, 𝐵}, (5)

here, 𝑛 represents the discretized resolution. 𝑅 is a vector composed
of the reflectance at various wavelengths. 𝐿 is a diagonal matrix

where the elements on its diagonal represent the spectral power
of the scene illumination at each wavelengths. Each columns of
𝐶𝑐𝑎𝑚 represents the sensitivity curve of the red, green, and blue
filters respectively (we approximate filters within a Bayer unit to
be located at the same position). For a raw image with m pixels,
when applying a single transformation, the raw-to-raw task can
be seen as solving the following matrix equation for the unknown
matrix 𝑇3×3: 

𝑅1𝐿1𝐶𝐴𝑇 = 𝑅1𝐿1𝐶𝐵

𝑅2𝐿2𝐶𝐴𝑇 = 𝑅2𝐿2𝐶𝐵

.

.

.

𝑅𝑚𝐿𝑚𝐶𝐴𝑇 = 𝑅𝑚𝐿𝑚𝐶𝐵 .

(6)

Since both 𝐶𝐴 and 𝐶𝐵 are not invertible square matrices, there
is no exact solution 𝑇 that holds for any 𝑅 and 𝐿 [20]. The method
proposed by Nguyen et al. [28] essentially involves finding an ap-
proximate solution 𝑇 (𝐿) for each lighting condition 𝐿, assuming
𝑅1, 𝑅2, · · · , 𝑅𝑚 are standard color chart reflectances. While this ap-
proach has achieved extremely low color chart errors, it still faces
the following problems: Firstly, attempting to approximate multiple
color mappings with single 𝑇 (𝐿) may lead to significant discrep-
ancies in the elements of 𝑇 (𝐿), making it more likely to become
an ill-conditioned matrix. This, in turn, can result in certain parts
of the image being mapped outside the color gamut [2]. Secondly,
applying the same transformation𝑇 (𝐿) (i.e., Global calibration men-
tioned in Table 1) to multiple raw images captured under different
lighting conditions yields poor results. From this, we can infer that
globally applying the same transformation 𝑇 (𝐿) in a non-uniform
lighting scene could degrade performance. Additionally, for neural
networks, learning the mapping from images to ill-conditioned ma-
trices is much more challenging compared to learning the mapping
from images to regular matrices.

To address these issues, we propose predicting transformation pa-
rameters in a patch-wise manner. Within a small patch, reflectance
and lighting condition are roughly consistent, implying that Eq. 6
only involves a single row. Patch-wise color space transformation
can be seen as solving multiple independent single-row equations
as illustrated in Eq. 7:

𝑅1𝐿1𝐶𝐴𝑇 1 = 𝑅1𝐿1𝐶𝐵

𝑅2𝐿2𝐶𝐴𝑇 2 = 𝑅2𝐿2𝐶𝐵

.

.

.

𝑅𝑚𝐿𝑚𝐶𝐴𝑇𝑚 = 𝑅𝑚𝐿𝑚𝐶𝐵 .

(7)

Solving these equations for an approximate solution is much
easier for neural networks, and it is also less likely to result in
mapping outside the color gamut.

3.2 Overall Framework
Our proposedmodel is training based on the CycleGAN architecture
[41]. CycleGAN is a general unsupervised image-to-image trans-
lation framework that learns mutual mappings between domain
𝜒𝐴 and domain 𝜒𝐵 by jointly training two pairs of generators and
discriminators. The overall framework is illustrated in Fig. 3. In the
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Figure 3: Our proposed method. Left is the architecture of CycleGAN. Right is the specific structure of proposed generator. The
shape of each element in the figure corresponds to the situation that the input raw image has four channels (packed rggb) and
the quadratic transformation is applied.

raw-to-raw task, 𝜒𝐴 represents the color space of camera A, while
𝜒𝐵 represents the color space of camera B. Generators are trained
to map raw images between color spaces A and B while preserving
other information such as texture, scene and lighting information.
Discriminators play a role in discerning between generated im-
ages and real ones, guiding generators to produce more authentic
outputs. For the discriminator, we employ the same structure as
the discriminator in [41]. For the generator, we propose a novel
structure based on the CSTPP module, which will be discussed in
Sec. 3.3.

During training, the total loss function for the two generators
𝐿𝑜𝑠𝑠𝑔𝑒𝑛 consists of three components. The cycle consistency loss,
as shown in Eq. 8, is employed to maintain the structural integrity
of the raw image during the raw-to-raw mapping:

𝐿𝑜𝑠𝑠𝑐𝑦𝑐𝑙𝑒 = ∥𝐼𝐴 − 𝐼𝐴𝐵𝐴∥1 + ∥𝐼𝐵 − 𝐼𝐵𝐴𝐵 ∥1, (8)

here, 𝐼𝐴 represents the raw image captured by camera A, 𝐼𝐴𝐵 de-
notes the output when 𝐼𝐴 is attempted to be transformed to the
color space of camera B by the generator, and 𝐼𝐴𝐵𝐴 represents the
result when this output is fed into another generator, attempting
to transform it back to the color space of camera A.

Since raw images are always in a specific camera color space, we
apply the identity loss as shown in Eq. 9, to encourage the generator
to discern the color space of the raw images and to perform an
identity mapping on raw images that belong to the same color
space:

𝐿𝑜𝑠𝑠𝑖𝑑𝑒𝑛 = ∥𝐼𝐴 − 𝐼𝐴𝐴∥1 + ∥𝐼𝐵 − 𝐼𝐵𝐵 ∥1, (9)

The adversarial loss, as shown in Eq. 10, is employed to optimize
the generators under the guidance of discriminators. It’s worth
noting that we utilize the lsgan loss [25] instead of the cross-entropy
adversarial loss, which facilitates more stable training:

𝐿𝑜𝑠𝑠𝑔𝑎𝑛 = (1 − 𝐷𝑖𝑠𝐴 (𝐼𝐴𝐵))2 + (1 − 𝐷𝑖𝑠𝐵 (𝐼𝐵𝐴))2, (10)

here, 𝐷𝑖𝑠 (∗) represents the probability output by the discriminator.
The total loss function for the generator is depicted in Eq. 11:

𝐿𝑜𝑠𝑠𝑔𝑒𝑛 = 𝛼𝐿𝑜𝑠𝑠𝑐𝑦𝑐𝑙𝑒 + 𝛽𝐿𝑜𝑠𝑠𝑖𝑑𝑒𝑛 + 𝐿𝑜𝑠𝑠𝑔𝑎𝑛, (11)

here, 𝛼 and 𝛽 represent hyperparameters, which are set to 10 and 5
in the following experiments, respectively. The total loss function
for the discriminator is given by Eq. 12:

𝐿𝑜𝑠𝑠𝑑𝑖𝑠 = (𝐷𝑖𝑠𝐴 (𝐼𝐴𝐵))2 + (𝐷𝑖𝑠𝐵 (𝐼𝐵𝐴))2

+ (1 − 𝐷𝑖𝑠𝐴 (𝐼𝐵))2 + (1 − 𝐷𝑖𝑠𝐵 (𝐼𝐴))2 .
(12)

3.3 Raw-to-raw Mapping Network
In recent years, models based on ViT [13] have seen widespread
adoption in the field of computer vision. Benefiting from their
powerful capability to extract global information, ViT-based models
have achieved remarkable success in many visual tasks. As a variant
of ViT, Conformer [31] includes both transformer and convolution
branch. While the transformer branch extracts global features, the
convolution branch effectively captures local features. Moreover,
the two branches exchange information at various levels through
upsampling and downsampling mechanisms.

As described in Sec. 3.1, our proposed model needs to predict
the color space transformation parameters for each patch based
on both reflectance and lighting information. Since RGB values
are determined by both lighting and object reflectance, the same
RGB value may correspond to multiple combinations of lighting
and reflectance. Therefore, relying solely on information within the
patch cannot separate the two, transformation parameters heavily
reliant on global information. Based on this, we use a conformer as
the backbone of our generator to extract local and global features
corresponding to each patch, which are then mapped to polynomial
transformation parameters by the CSTPP module.

In the situation that the input raw image has four channels
(packed rggb) and applying quadratic transformation, raw image
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𝐼𝐴 captured by camera A undergoes downsampling by a factor of𝑀 .
Subsequently, 𝐼𝐴 will be input into the convolution branch, at the
same time, 𝐼𝐴 will be splited into several patches 𝐼𝐴 (𝑖) of size 𝑃𝑠×𝑃𝑠 ,
and soon be fed into the transformer branch. Conformer acting
as a feature extractor, processes each 𝐼𝐴 (𝑖) into feature vectors
𝑉𝐴 (𝑖) ∈ R𝑑𝑖𝑚 containing both local and global information, where
𝐷𝑖𝑚 is the embedding dimension of transformer branch. After that,
the CSTPP module processes the image as follows:

𝐼𝐴𝑞𝑡 = 𝑃𝑇 (𝐼𝐴),

𝑇𝑞𝑡 (𝑖) = 𝑅𝑒𝑆ℎ𝑎𝑝𝑒 (𝑀𝐿𝑃 (𝑉𝐴 (𝑖))), 𝑖 ∈ {0, 1, · · · , 𝐻 ·𝑊
(𝑃𝑠 ·𝑀)2

},

𝑇𝑞𝑡 = 𝑈𝑝 (𝑇𝑞𝑡 (𝑖)),

𝐼𝐴𝐵 = 𝐼𝐴𝑞𝑡𝑇𝑞𝑡 ,

(13)

here, 𝑃𝑇 refers to Polynomial Transform, and𝑈𝑝 denotes upsam-
pling with bilinear interpolation applied to each parameter matrix
𝑇𝑞𝑡 (𝑖). The interpolation occurs between adjacent patch to prevent
block boundary effects. Subsequently, 𝐼𝐴 will undergo pixel-wise
matrix product with the upsampled parameter matrix, and the re-
sulting raw image 𝐼𝐴𝐵 in camera B’s color space will be the output.

The CSTPP module limits the operations that the model can per-
form on raw image to channel-level polynomial combination, which
typically only adjust the color of the image. This transformation
ignores domain gaps caused by factors such as scenes, noise, blur,
and physical properties of the camera, while effectively addressing
what caused by the camera’s spectral sensitivity(i.e. color space) as
illustated in Fig. 2. Additionally, since we apply patch-wise trans-
formation rather than global transformation, our model retains
considerable flexibility. Even for scenes with complex lighting, our
model can effectively perform raw-to-raw task.

4 EXPERIMENT
In subsequent experiments, we use the same model architecture.
For the transformer branch, we set the embedding dimension to
256, patch size to 16, head to 4, and depth to 6. For the convolution
branch, we set the base channels to 32 and gradually increase to
256 with the increase of depth. At the same time, we apply the
same parameter sharing mechanism as Chai et al. [9] to stabilize
the training process, this means that our generator A and generator
B will share all parameters in the conformer module except for
batch normalization layer.

We will conduct experiments on the raw-to-raw task under both
single illumination and multi illumination conditions, respectively,
to demonstrate the effectiveness of our parameterized method and
the patch-wise strategy. We will also conduct experiments on the
proposed cross camera ISP task to demonstrate the benefits of our
method for ISP generalization.

4.1 Single Illumination Raw-to-raw Mapping
Dataset. For the evaluation of single illumination raw-to-raw task,
we use the dataset proposed by Afifi et al. [2]. This dataset consists
of 392 unpaired images captured by Samsung-s9 and iPhone-x,
along with 137 pairs of pixel-level paired images created using the
method described in Sec. 2.2. The paired images are further divided
into an anchor set of 22 pairs used for training Afifi et al.’s model

and a test set of 115 pairs. Each raw image has a corresponding
rendered sRGB image.

Experiment Settings. For this part of the experiment, the batch
size of our model is set to 4. We use Adam optimizer [21] with betas
set to 0.5 and 0.999. The learning rate for the generators are set
to 1e-5, and for the discriminators are set to 2e-5. Other methods
are trained using the same settings as described in their respective
papers or codes. The dataset is split into 256 × 256 patches as
mentioned in [2]. Random flipping and rotation are applied for data
augmentation during training for 50 epochs. Except for the Afifi et
al.’s model, which uses an additional 22 pixel-level paired images
for training, all other models only use the 392 unpaired images
for training. All models are tested on 115 pairs of full solution
pixel-level paired images.

Testing Results. The quantitative results in terms of PSNR,
SSIM, and MAE (Mean Absolute Error) metrics are shown in Table
1. Our unsupervised model achieves performance that comparable
to Afifi et al.’s semi-supervised model across all metrics. By apply-
ing Chai et al.’s method, which is a parameterized model for color
enhancement tasks, to the raw-to-raw task, it outperforms several
other non-parameterized unsupervised models in SSIM metric, in-
dicating that parameterized models can work better in preserving
structural information in images. Raw-to-raw tasks precede ISP
or other raw-inputting tasks, so introducing noise, deformation,
or artifacts that may harm these tasks is detrimental. Our parame-
terized model effectively ensures that these issues will not occur,
this can be reaffirmed by the qualitative results depicted in Fig.
4, where we achieved results closest to the ground truth, while
non-parameterized unsupervised methods like Swin-UNIT (second
column) and UVCGAN (fourth column) show varying degrees of
degradation in the information present in the input raw images.

4.2 Multi Illumination Raw-to-raw Mapping
Dataset. We utilize the LSMI (Large Scale Multi Illumination)
dataset [19] to assess the model’s raw-to-raw mapping capability
under non-uniform lighting conditions. The LSMI dataset comprises
over 7486 raw images captured in more than 2700 scenes with mul-
tiple illuminations by three different cameras: Sony, Galaxy, and
Nikon. Each image contains three standard color charts placed at
different positions. Because there are overlapping scenes captured
by both Sony and Galaxy, we utilized a total of 232 pairs of such
scene-level paired images for testing, the remaining 3416 unpaired
images are employed for training.

Experiment Settings. In this part of the experiment, the images
are preprocessed following [19], other training settings are identical
to those in Sec. 4.1.

Since the test set matches at the scene level rather than the pixel
level, we use the KL Divergence Distance of the image pixel value
distribution as the metric following [28]. This metric is used to
evaluate the consistency of the overall color distribution of the
image as illustrated in Eq. 14:

𝐾𝐿(𝐼 , 𝐼 ) =
∑︁

𝑖∈𝑏𝑖𝑛𝑠
𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖)𝑙𝑛(𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖) + 𝑒𝑝𝑠

𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖) + 𝑒𝑝𝑠
)

+
∑︁

𝑖∈𝑏𝑖𝑛𝑠
𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖)𝑙𝑛(𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖) + 𝑒𝑝𝑠

𝐶𝑜𝑢𝑛𝑡 (𝐼 , 𝑖) + 𝑒𝑝𝑠 ),
(14)
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Table 1: Quantitative results of single illumination raw-to-raw mapping task. Bold indicates the best result. * indicates data
sourced from [2].

Training Method Model Samsung-s9→iPhone-x iPhone-x→Samsung-s9
PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓

Non-learning
*Global calibration(3 × 3) [28] 24.52 0.71 0.049 17.03 0.51 0.16
*Global calibration(poly) [28] 24.88 0.72 0.048 16.88 0.50 0.16
*FDA [40] 20.95 0.48 0.06 19.18 0.47 0.090

Unsupervised

Cyclegan [41] 24.55 0.76 0.046 25.21 0.76 0.042
Cut [29] 23.51 0.71 0.050 22.44 0.71 0.053
Swin-UNIT [23] 23.92 0.72 0.057 23.77 0.75 0.051
Chai et al.’s [9] 29.35 0.86 0.028 27.78 0.86 0.037
UVCGAN [36] 27.22 0.82 0.031 26.10 0.79 0.037
Ours 29.73 0.90 0.025 28.09 0.89 0.033

Semi-supervised Afifi et al.’s [2] 29.65 0.89 0.027 28.58 0.90 0.033

Figure 4: Qualitative results of the single illumination raw-to-raw task. Each block, from left to right, represents the source
camera, Swin-UNIT [23], Chai et al.’s [9], UVCGAN [36], Afifi et al.’s [2], our method, and ground truth, respectively. Odd rows
show raw images with a 1/1.6 gamma correction, while even rows display the absolute errors between predicted images and
ground truth.

here, 𝑏𝑖𝑛𝑠 = {0, 1, · · · , 255} represents the set of pixel values, and
𝑒𝑝𝑠 denotes a very small value to prevent division by zero or 𝑙𝑛(0),
which we set as 1e-7. It should be noted that we calculate the
KL Divergence Distance by counting the pixel value distribution
channel by channel. Additionally, we also compare the differences
between the three standard color charts in each image pair and use
MAE for measurement.

Testing Results. The quantitative results are presented in Table
2. Chai et al.’s uniform transformation-based method has shown
poor performance in terms of the KL metric, thus affirming the
advantages of our patch-wise method for scenes with multiple
illumination conditions. Fig. 5 shows the visualization results of
Chai et al.’s and ours.

4.3 Cross Camera ISP
Experiment Design. To evaluate the ability of the raw-to-raw
model to generalize the ISP model across different cameras, we
design the following experiment which treat raw-to-raw model as

Table 2: Quantitative results of multi illumination raw-to-
raw mapping task. Bold indicates the best result.

Model Sony→Galaxy Galaxy→Sony
MAE↓ KL↓ MAE↓ KL↓

Cyclegan [41] 0.055 1.06 0.029 0.78
Cut [29] 0.040 0.86 0.028 0.79
Swin-UNIT [23] 0.045 1.37 0.046 1.06
Chai et al.’s [9] 0.038 1.59 0.031 1.62
UVCGAN [36] 0.048 1.03 0.037 0.87
Ours 0.037 0.74 0.028 0.59

domain adaptation module or data augmentation step as illustrated
in Fig. 1: (b) (c).

In this experiment, we apply raw-to-raw models trained in Sec.
4.1, including UVCGAN, Afifi et al.’s, and our model, before various
Deep ISP models[15–18] in their training or testing phase. We
denote the raw images captured by iPhone-x and their rendered
sRGB images as image pair 𝐴 → 𝐴, and similarly, those captured
and rendered by Samsung-s9 as 𝐵 → 𝐵.
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KL:0.83
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KL:0.76
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Figure 5: Qualitative results of multi-illumination raw-to-raw task. Each block, from left to right, represents the source camera,
Chai et al.’s [9], our method, and ground truth, respectively. The 1/1.6 gamma correction is also applied for visualization.

Specifically, for the evaluation of the data augmentation step, we
use the raw-to-raw model to convert the raw images captured by
iPhone-x to the color space of Samsung-s9, while keeping the sRGB
images unchanged, resulting in a new image pair𝐴𝐵 → 𝐴. We train
the Deep ISP model using this image pair and test it on 𝐵 → 𝐴. It’s
worth noting that we don’t test on 𝐵 → 𝐵 because sRGB images
rendered by different ISP also exhibit significant differences. For
the evaluation of the adaptation module, we first train the Deep
ISP model using image pair 𝐴 → 𝐴 and then testing by 𝐵𝐴 → 𝐴.
We then swap two cameras and repeat the experiments. In this
experiment, there is no overlap between the training set of the
raw-to-raw model and the test set of the ISP task.

Due to the fact that 𝐴 → 𝐵 and 𝐵 → 𝐴 are scene-level paired
rather than pixel-level paired, the KL Divergence Distance (see
Eq. 14) is also used as a metric. Additionally, we employ the FID
[30] (Fréchet Inception Distance) metric which commonly used in
generative adversarial networks evaluation, to measure the consis-
tency between the generated image set and the ground truth set in
high-dimensional space.

Testing Results. Cross Camera ISP is a highly challenging task,
even minor differences in the raw domain can become noticeable
due to the non-linear operations of the ISP. The quantitative results
presented in Table 5 demonstrate that our proposed model can
effectively enhance the performance of Deep ISP, whether when
it be deployed in training or testing phase. Compared with the
Afifi et al.’s semi-supervised method, our unsupervised method
performs better in FID metric and comparable in KL metric. As
shown in in Fig. 6, our visualization result surpass the other meth-
ods significantly. Overall, our results exhibit closer proximity to
the ground truth and exhibit fewer instances of local color loss, this
further underscores the effectiveness of our parameterired model
and patch-wise transform strategy.

5 ABLATION STUDY
We demonstrate the effectiveness of the CSTPP module in raw-to-
raw task through following ablation experiment. Since the back-
bone of our proposed model is not a generative model, we use
the UVCGAN [36] for this experiment. Specifically, we replace the
decoder part of UVCGAN with the CSTPP module. Subsequently,
we conduct the same experiment as mentioned in Sec. 4.1, and
the quantitative results are shown in Table 3. The inclusion of the

CSTPP module significantly improves the performance of uvcgan,
especially a notable increase in the SSIM metric. This indicates that
the channel-level combination performed by the CSTPP module
can effectively preserve the structural information of the image,
without causing local deformation or introducing artifacts.

Table 3: Result of ablation study for the CSTPP module.

Method Samsung-s9→iPhone-x iPhone-x→Samsung-s9
PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓

W/o CSTPP 27.22 0.82 0.031 26.10 0.79 0.037
W/ CSTPP 28.84 0.89 0.027 26.49 0.85 0.037

Additionally, since our proposed model is parameterized, we can
significantly reduce computational complexity by downsampling
input images multiple times. We conducted downsampling from 2
to 16 times during the testing phase, and the quantified results are
shown inTable 4. Even after reducing the pixel count of input image
by hurdreds times (16× downsample), our model still maintains
good performance.

Table 4: Result of ablation study for downsample times.

Downsample Samsung-s9→iPhone-x iPhone-x→Samsung-s9
Times PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓
16× 29.00 0.88 0.028 27.97 0.89 0.033
8× 29.04 0.89 0.028 27.95 0.88 0.034
4× 29.02 0.89 0.027 27.79 0.88 0.034
2× 29.20 0.89 0.027 27.89 0.88 0.034
1× 29.73 0.90 0.025 28.09 0.89 0.033

6 CONCLUSION
In this paper, we propose an unsupervised raw-to-raw model for
the first time and introduce it to address the generalization issue of
ISP. Our parameterized model directly predicts color space trans-
formation parameters in a patch-wise manner, enabling accurate
and flexible handling of the raw-to-raw task in general scenes. Ex-
tensive experimental results demonstrate that our model excels
not only in the raw-to-raw task but also in achieving cross-camera
deployment for ISP. Considering the simplicity and effectiveness of
our proposed method, it has great potential to be directly deployed
into exisintg AI-ISP platforms, which is one of our ongoing work.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Quantitative results of the cross-camera ISP task. Results were obtained by training and testing four Deep ISP models:
PyNET[18], microISP[17], PyNET-v2[16], and syenet[15]. The mean performances of the four ISPmodels are presented, detailed
results are provided in the supplementary material. Bold indicates the best result.

ISP Model R2r Model Deploy iPhone-x ISP After Samsung-s9 Sensor Deploy Samsung-s9 ISP After iPhone-x Sensor
Train Set Test Set KL↓ FID↓ Train Set Test Set KL↓ FID↓

Average

W/o R2r 𝐴 → 𝐴 𝐵 → 𝐴 1.43 80.93 𝐵 → 𝐵 𝐴 → 𝐵 2.19 83.04

UVCGAN [36] 𝐴𝐵 → 𝐴 𝐵 → 𝐴 1.18 93.68 𝐵𝐴 → 𝐵 𝐴 → 𝐵 0.98 86.66
𝐴 → 𝐴 𝐵𝐴 → 𝐴 1.00 116.96 𝐵 → 𝐵 𝐴𝐵 → 𝐵 0.89 99.11

Afifi et al.’s [2] 𝐴𝐵 → 𝐴 𝐵 → 𝐴 1.06 67.01 𝐵𝐴 → 𝐵 𝐴 → 𝐵 0.73 77.94
𝐴 → 𝐴 𝐵𝐴 → 𝐴 1.08 74.68 𝐵 → 𝐵 𝐴𝐵 → 𝐵 0.77 79.14

Ours 𝐴𝐵 → 𝐴 𝐵 → 𝐴 1.03 61.29 𝐵𝐴 → 𝐵 𝐴 → 𝐵 0.80 69.51
𝐴 → 𝐴 𝐵𝐴 → 𝐴 0.97 62.53 𝐵 → 𝐵 𝐴𝐵 → 𝐵 0.82 74.00

Figure 6: Qualitative results of cross-camera ISP task. Each block, from left to right, represents the W/o r2r, UVCGAN [36], Afifi
et al.’s [2], our method, and ground truth, respectively.
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