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ABSTRACT

We introduce a novel dataset designed to benchmark the physical and spatial reason-
ing capabilities of Large Language Models (LLM) based on topology optimization,
a method for computing optimal material distributions within a design space under
prescribed loads and supports. In this dataset, LLMs are provided with conditions
such as 2D boundary, applied forces and supports, and must reason about the result-
ing optimal material distribution. The dataset includes a variety of tasks, ranging
from filling in masked regions within partial structures to predicting complete
material distributions. Solving these tasks requires understanding the flow of forces
and the required material distribution under given constraints, without access to
simulation tools or explicit physical models, challenging models to reason about
structural stability and spatial organization. Our dataset targets the evaluation of
spatial and physical reasoning abilities in 2D settings, offering a complementary
perspective to traditional language and logic benchmarks [H
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Figure 1: Topology Optimization is used to calculate material distribution. Masking individual cells,
rows, columns or the complete distribution space offer challenging spatial physical reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) have achieved strong performance on linguistic and logical tasks, but
their ability to reason about physical systems and spatial structures remains underexplored Zhang et al.
(2025)). Existing benchmarks primarily probe either visual perception or text-based commonsense
knowledge, but few explicitly test reasoning grounded in physical constraints.

For example, visual question-answering benchmarks such as CLEVR focus on object attributes
and spatial relations in synthetic scenesJohnson et al.|(2016), while intuitive physics datasets like
IntPhys and Physion evaluate models’ ability to predict or assess the plausibility of physical events in
videos [Riochet et al.|(2020); Bear et al.|(2022). Interactive environments such as PHYRE Bakhtin
et al.| (2019) and stability-focused datasets like ShapeStacks|Groth et al.[(2018)) further probe causal
reasoning and contact mechanics, whereas text-based datasets such as PIQA Bisk et al.| (2019) and
PhysReason |[Zhang et al.[(2025) target physical commonsense and multi-step problem solving in
language form.

Existing benchmarks have advanced our understanding of physical reasoning in LLMs, but they
largely focus on object dynamics, intuitive physics, or qualitative predictions. They do not evaluate
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whether models can reason about how forces should be supported and transmitted through a structure,
a capability fundamental to engineering and design. This gap leaves untested a crucial class of
reasoning that requires integrating spatial layout with structural principles such as load paths, stiffness,
and stability. Beyond physical reasoning, recent work like ARC-AGI-2 |Chollet et al|(2025) has
introduced grid-based tasks for testing abstract reasoning and generalization. While unrelated to
physics, this work highlights the value of structured 2D representations for isolating reasoning
capabilities. We build on this intuition but shift the focus from symbolic transformations to spatially
grounded physical reasoning.

To address this gap, we introduce SPhyR, a new benchmark for evaluating spatial and physical
reasoning in LLMs. SPhyR formulates topology optimization-inspired tasks in a grid-based format,
where models must infer how to distribute material to support specified forces and constraints.
By testing whether models can reason about load paths, stability, and structural connectivity from
descriptions alone, SPhyR bridges the gap between language-based reasoning and physically grounded
design tasks. We benchmark state-of-the-art LLMs on SPhyR and reveal fundamental limitations in
their ability to integrate spatial and physical reasoning.

2 RELATED WORK

Benchmarks for Physical and Spatial Reasoning A wide range of benchmarks probe models’
understanding of physical and spatial reasoning (Table[I). CLEVR [Johnson et al| (2016) evaluates
visual reasoning about objects and spatial relations in synthetic scenes, while CLEVRER Y1 et al.
(2020) extends this to temporal and causal reasoning in videos. IntPhys|Riochet et al.[(2020) and
Physion Bear et al.| (2022)) test whether models can predict or assess the plausibility of physical
events, while ShapeStacks|Groth et al.|(2018)) targets block stability prediction. In interactive settings,
PHYRE Bakhtin et al.| (2019) challenges agents to solve 2D physics puzzles by reasoning about
actions and causal effects. Language-based datasets such as PIQA Bisk et al.|(2019) and PhysReason
Zhang et al.| (2025)) shift the focus from perception to textual physical reasoning, evaluating knowledge
of everyday object interactions and multi-step physics problem solving, respectively.

While these benchmarks advance physical reasoning evaluation, they largely focus on event prediction
or commonsense reasoning. None require models to determine optimal material arrangements under
explicit load and support constraints - a capability crucial for real-world engineering reasoning.

Benchmark Format Physical Spatial Notes

Reasoning | Reasoning
CLEVR (2017) Visual QA X v Scene reasoning
CLEVRER (2020) Video QA v v Causal events
IntPhys (2018) Video plausibility v v Violation detection
Physion (2021) Video prediction v v Object behavior prediction
ShapeStacks (2016) | Image classification v v Block stability
PHYRE (2019) 2D physics puzzles v v Action planning
PIQA (2020) Text QA v X Physical commonsense
PhysReason (2023) | Text QA v X Multi-step physics
SPhyR (ours) Structured prediction v v Material distribution

Table 1: Comparison of existing benchmarks evaluating physical and spatial reasoning. Our proposed
dataset (SPhyR) focuses specifically on material distribution reasoning under boundary conditions,
combining spatial and physical understanding in structured tasks.

Topology Optimization as a Benchmark Topology optimization (TO)Bendsge & Sigmund|(2004)
is a well-established method for computing optimal material layouts in a domain under specified
forces and supports. Prior work on Machine Learning (ML) in this space has focused on accelerating
solvers or generating high-quality designs |Banga et al.| (2018)); Rawat & Shen| (2019). Our work
repurposes topology optimization as a reasoning benchmark rather than a design tool. By framing it
as a grid-based prediction problem, SPhyR tests whether LLMs can infer material distributions solely
from boundary conditions and physical constraints - without access to solvers or simulation engines.
This setup complements existing physical reasoning benchmarks by embedding spatial and physical
structure into tasks that require more than pattern recognition.
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Machine Learning for Topology Optimization Prior machine learning work for Topology Op-
timization (TO) has focused on developing fast, high-fidelity solvers that can predict optimized
material layouts with orders-of-magnitude speedup over conventional methods |Banga et al.| (2018);
Rawat & Shen|(2019); [Zhang et al.|(2020). These domain-specific approaches rely on embedding
explicit structural knowledge, such as physics-informed loss functions or compliance constraints, into
the model architecture and training process. In contrast, SPhyR evaluates general-purpose LLMs in
a zero-shot setting, probing whether emergent, implicit physical knowledge acquired during broad
training can substitute for explicitly learned physics.

Structured Reasoning Beyond Physics Finally, our work connects to broader research on struc-
tured reasoning in grid-based environments. ARC-AGI-2 |Chollet et al.|(2025)) tests abstract reasoning
and generalization in symbolic, non-physical tasks. While ARC-AGI-2 and SPhyR share a structured
representation, SPhyR introduces grounded physical constraints, bridging the gap between abstract
symbolic reasoning and the physically grounded reasoning required for real-world design.

3 PROBLEM SETUP

Topology Optimization Task Topology optimization determines an optimal material distribution
within a domain under prescribed forces and supports. All dataset samples are generated using
Millipede’s density-based SIMP formulation, solving a minimum-compliance problem with a fixed
volume fraction (Appendix [B] for solver parameters). This yields well-defined, single-objective
solutions that capture characteristic load paths and material connectivity.

In this work, we repurpose these topology optimization instances as reasoning tasks for LLMs.
Instead of performing numerical optimization, models must predict plausible material distributions
from forces, supports, and boundaries alone, requiring them to infer principles of load transfer,
stability, and efficient material use, approximating the behavior of minimum-compliance topology
optimization without access to simulation tools.

Input and Output Specification Each task instance in our benchmark is defined by a set of
boundary conditions and a corresponding material distribution. The inputs provided to the model are:
2D boundaries: A discretized 2D grid representing the spatial extent of the structure, fixed supports:
Locations within the boundaries that act as load bearing supports and applied forces: Locations
within the boundaries specifying external loads. The output expected from the model is a partial or
complete material distribution over the domain grid, indicating where material should be placed to
form a material optimized, that is minimum material distributed, but stable structure under the given
boundary conditions. All inputs and outputs are represented in structured formats suitable for LLMs,
through textual descriptions and serialized grids. No direct access to simulation results or numerical
solvers is provided.

Reasoning Challenges The tasks in our benchmark require a combination of physical and spatial
reasoning that poses significant challenges for current large language models. First, models must infer
how forces propagate through the structure, deciding where material is necessary to maintain stability
and support loads. This involves understanding force paths, support connectivity, and load transfer-
concepts that are rarely encountered in typical LLM training data. Second, models must reason
spatially about the layout of material across a 2D grid. Predicting plausible completions requires
local coherence (e.g., avoiding isolated material islands) as well as global structural organization
(e.g., maintaining continuous load paths from forces to supports). Moreover, models must solve these
tasks without explicit simulation tools or numerical methods. Instead, they must generalize from the
provided boundary conditions and partial observations, synthesizing structures that satisfy implicit
physical constraints. These reasoning demands span from local (individual cells or lines) to global
(complete structures), creating a rich and graded challenge space for evaluating LLM capabilities
beyond language-based tasks.

Task Variations We define several task variations according to the nature and extent of the masked
regions in the material distribution, and categorize them into two difficulty levels: easy and hard.
Easy is distribution based on binary values such as material or no material, while hard is based on a
continuous value range, 0 to 1. N-Random Cell(s): Predict the material state of N randomly masked
cell(s), where N is one of 1, 5 or 10. N-Random Row(s): Predict the material state of N randomly
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Prompt Template: Difficulty: Easy Difficulty: Hard
K(v.‘)u are given a structural material distribution represented as a grid. Each cell can have one of the following slales.\ [ {FILL_INSTRUCTION} \ [ {FILL_INSTRUCTION} \
- L indicates applied load.
- \s/ ::g:z:::: ;‘:‘d ot V' cells with either “1° V" cells with a floating point number between 0 and
PP (solid) or ‘0’ (empty) 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0)

The goal is to predict the correct material distribution by filling in all {FILL_INSTRUCTION}, based on the surround-
ing structure and implicit physical reasoning (such as load paths, supports, and forces). {GRID} {GRID}

Important: The completed structure should use as little material as possible while remaining stable and plausible for
carrying the applied forces. Minimize material usage unless necessary for structural support.

Below is the input grid with masked regions:

{GRID}

Please output the completed grid by replacing all {FILL_INSTRUCTION}.

Maintain the same format as the input: one row per line, cells separated by spaces, and the total number of rows

and columns unchanged.
\ Return only the completed grid without any additional explanation JAN )
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Figure 2: Prompt template used across all tasks and difficulty levels, showing instructions and grid
format as served to models for evaluation.

masked row(s), where N is one of 1 or 3. N-Random Columns(s): Predict the material state of N
randomly masked columns(s), where N is one of 1 or 3. Full Structure Prediction: Predict the
complete material distribution based only on boundary conditions. These variations allow us to
systematically probe local and global reasoning abilities, from single-cell predictions to complex
structural synthesis (Appendix [C] for samples).

4 DATASET DESCRIPTION

The SPhyR dataset was generated by solving 2D topology optimization problems, creating material
distributions under various boundary conditions using the density-based solver Millipede Michalatos
& Kaijima) (2024). We constructed a set of 2D samples by systematically varying the positions
of applied forces and supports, focusing on load-support scenarios typical of structural building
design (load from the top, support on the bottom, ranging from 3 to 6 cells in width). Each material
distribution was optimized for stiffness and efficiency using 10 solver iteration steps. The inherent
variability in these boundary conditions ensures that tasks require generalization beyond memorization
of fixed patterns (Appendix [B] for detailed solver parameters).

Dataset Statistics The dataset consists of 10 x 10 structural optimization grids, balancing compu-
tational tractability with sufficient spatial complexity. In total, the dataset contains 1296 samples for
all task variations and difficulties. These samples are organized into task-specific subsets, including
cell completion, row/column completion, and full structure prediction, across both easy and hard
difficulty levels. The full list of eight subject types (e.g., 1 Random Cell, 3 Random Row) and their
descriptions is provided in Table[C] Each sample includes structured representations of the boundary
conditions and the corresponding ground truth material distribution.

Input and Output Formats Each sample in the dataset is represented as a structured input-output
pair designed for compatibility with large language models. Samples are grouped into task-specific
subjects, enabling targeted evaluation of different reasoning challenges.

The input consists of a natural language prompt that describes the task and defines the structural
grid format. Within this grid, different symbols indicate key physical roles: L marks an applied
load, S a support, and V (void) a masked cell whose material state must be predicted. Regions with
known material values, whether binary or continuous, depending on the task difficulty (easy/hard),
are explicitly included in the grid. The prompt provides clear instructions emphasizing structural
plausibility and material efficiency, along with a grid where each row appears on a separate line and
cell values are space-separated.

The expected output is a completed version of the same grid, where all V cells are replaced by
predicted values (1 or 0) while preserving the original structure and formatting. No explanation or
commentary is included in the output-only the raw grid content.

Each subject is labeled with a difficulty level. In easy variants, the ground truth material distribution is
binary, focusing on high-level structural placement and discrete spatial reasoning. In hard variants, the
underlying distributions are continuous or involve more complex structural dependencies, requiring
finer-grained predictions and deeper reasoning about stress propagation and global support (Figure 2}
for prompt template and Appendix for detailed model prompt and completion samples).
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5 EVALUATION SETUP

5.1 EVALUATION METRICS

We evaluate model performance using three complementary families of metrics for a holistic as-
sessment of both symbolic accuracy and structural realism: (1) Reconstruction Accuracy Metrics,
quantifying cell-wise agreement with the ground truth, including measures of fidelity, penalization,
and difficulty weighting; (2) Topological Validity Metrics, assessing global structural soundness
through load-support connectivity and grid validity; and (3) Physics-Approximating Metrics, es-
timating the structural efficiency via gravity-aligned load-transfer paths. This comprehensive suite
ensures robustness against simple pattern-matching success.

Reconstruction Accuracy Metrics We assess reconstruction fidelity using several grid-level

measures based on cellwise agreement between the predicted grid G and the ground-truth grid G*
(Appendix ??, for prompt, completion and calculation scenarios).

* Exact Match 1T (EM): Binary indicator of perfect reconstruction:

EM — 1, 1fG:.G ,
0, otherwise.

* Difference Ratio (DiffRatio): Fraction of incorrect cells normalized by total ground-truth
mass:

D(G,G*)
295
where D(A, B) counts cellwise mismatches. Higher is better (1 indicates perfect match).
* Relative Difference Ratio (RelDiffRatio): A softer variant that measures numeric deviation:

Drel(Ga G*)
D
i.j 9ij
where D, accumulates |a;; — b;;| for numeric cells and counts categorical mismatches
(L,S,V) as 1. Higher is better.

* Penalized Difference Ratio (PenDiffRatio): Penalty-weighted version increasing the cost
of modifying or introducing new load, support, or void cells:

Dyen(G, G¥)
209
where D, multiplies L, S, or V' cell errors by a penalty (typically 3x). Higher is better.
* Difficulty-Weighted Difference Ratios: Optional variants that multiply each cell’s contribu-

tion by its local difficulty weight (see DWCS below). These versions emphasize correctness
in structurally ambiguous or high-difficulty regions. Higher is better.

DiffRatio = 1 —

RelDiffRatio =1 —

PenDiffRatio = 1 —

Topological Validity Metrics Beyond pixelwise accuracy, we evaluate the structural and connectiv-
ity properties of the reconstructed topology (Appendix for prompt, completion and calculation
scenarios):

* Grid Validity (ValidGrid): Boolean check ensuring G matches G* in shape and uses only
admissible values (L, S, or [0, 1]). True is desired.

* Load-Support Connectivity (LSConn): True if any load cell (L) connects to any support
(S) through contiguous solid cells (> 0, L, or S):

1, dload—support path through solids,

LSConn =
onn {O, otherwise.

True is desired.

* Directional Load-Support Connectivity (DirLSConn): Same as LSConn, but restricted
to force paths aligned with the gravity vector g inferred from dataset rotation metadata. True
is desired.
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* Isolated Cluster Count (Vigangs): Number of solid-cell clusters disconnected from any
load or support, found via 4-connectivity. Lower is better:
* Difficulty Score (DWCS): Average difficulty weight for originally masked cells:

1
DWCS = —

|V| Z Wiz, W5 € {1,2,3}.

(1,7)€V

Higher DWCS implies the reconstruction region is more complex or ambiguous; it reflects
task difficulty rather than model quality. Higher indicates harder samples.

Physics-Approximating Metrics To estimate the physical plausibility of predicted topologies,
we approximate directional load-support efficiency using a force-path traversal cost. We calculate
the average minimum directional cost for each load to reach a support, computed via a gravity-
aligned Dijkstra traversal with angular and depth penalties. Unsupported loads receive a large but
finite penalty (Appendix for EPCEf calculation details, and for prompt, completion and
calculation scenarios).

* Force Path Cost Average Efficiency Ratio (FPCEff): Relative efficiency of predicted vs.
ground-truth structures:

. Cave
FPCEff = clipg y z |

avg

where Cy,,, and C,yq are average load-support path costs in G* and G respectively. Higher
is better.
Category Metric Name Type / Range Desired Trend
Exact Match (EM) Boolean {0,1} True
Difference Ratio (DiffRatio) Float [0,1] Higher is better
Reconstruction Penalized Difference Ratio (PenDiffRatio) Float [0,1] Higher is better
Relative Difference Ratio (RelDiffRatio) Float [0,1] Higher is better
Difficulty-Weighted Diff. Ratio Float [0,1] Higher is better
Difficulty-Weighted Rel. Diff. Ratio Float [0,1] Higher is better
Valid Grid (ValidGrid) Boolean {0,1} True
Load—Support Connectivity (LSConn) Boolean {0,1} True
Topology Directional L-S Connectivity (DirLSConn) | Boolean {0,1} True
Isolated Clusters (/Visiands) Integer > 0 Lower is better
Difficulty Score (DWCS) Float [1,3] avg. | Higher is harder
Physics-Approx. | Force Path Cost Efficiency (FPCEff) Float [0,1] Higher is better

Table 2: Summary of all evaluation metrics by category, with their types, typical ranges, and
optimization direction.

5.2 EXPERIMENTS

To establish baseline performance, we evaluate a broad set of contemporary language models in a
zero-shot setting. From OpenAl, we include GPT-3.5 Brown et al.| (2020), GPT-4.1 |OpenAl et al.
(2024a)), and GPT-40 |OpenAl et al. (2024b)), representing successive generations with improved
reasoning and multimodal capabilities. From Anthropic, we test Claude 3.7 Sonnet anthropic| (2025a)
and Claude Opus 4 |anthropic|(2025b), the strongest in the Claude family. From Google DeepMind,
we include Gemini 1.5 Pro[Team et al.|(2024) and Gemini 2.5 Pro|Comanici et al.[(2025)), designed
for complex multimodal reasoning. We also assess DeepSeek-R1 |DeepSeek-Al et al.| (2025)), an
open-source model for scientific and engineering tasks, and Perplexity Sonar [Team| (2025a)) and
Sonar Reasoning [Team| (2025b)), tuned for information-seeking and multi-step reasoning. Models are
prompted (Appendix [J)) with structured descriptions of boundary conditions, forces, and supports,
without simulation tools or external knowledge. A random subset of 100 examples spanning all task
variations, difficulties and all models are evaluated under identical conditions via publicly available
APIs (Table[3). Performance is measured using the metrics defined in Section
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6 RESULTS AND ANALYSIS

We present quantitative results in Table [3|and analyze failure modes qualitatively. Detailed results on
few-shot prompting, rotation, and physics-enhanced and -neutral prompt design are discussed in the
subsequent sections and further expanded in the Appendix.

Table 3: Zero-Shot Performance on SPhyR 2D Tasks (Easy vs. Hard). Top-performing LLMs
(Claude, Gemini) maintain high Load-Support Connectivity, demonstrating core topological under-
standing. However, performance degrades sharply on Hard tasks, with negative Difference Ratios
(red) confirming inefficient material hallucination and structural over-designing across all models. (1
indicates better, | indicates worse).

Easy
Task Metric GPT4.1  Claude Opus4  Gemini 2.5Pro  DeepSeek-R1  Perplexity Sonar | GPT 4.1 Claude Opus4  Gemini 2.5 Pro  DeepSeek-R1  Perplexity Sonar
1 Random Cell Exact Maich 1 26 81 58 52 13 77 76 37 13
Difference Ratio (%) 95.47 99.03 9737 93.28 8814 9545 96.70 9144 80.07
Relative Difference Ratio (%) 95.47 X 99.03 9737 9328 9605 9672 97.88 9651 88.98
Penalized Difference Ratio (%) T 9482 9840 9837 96.71 92.03 9244 9311 9431 9290
Average Difficulty Score 1.99 1.99 1.99 1.99 1.96 1.96 1.86 196
Difficulty Weighted Difference Ratio (%) 6551 65.47 6454 6192 5805 6097 5887 59.41
Difficulty Weighted Relative Difference Ratio (%) 64.54 61.92 6249 6225 60.01 62.63
Valid Output Grid 1 100.00 96.00 100.00 100.00 100.00
Load-Support Connectivity (%) 100.00 95.00 99.00 100.00 99.00
Load-Support Directional Connectivity (%) T 100.00 95.00 99.00 100.00 99.00
Average Isolated Clusters Count | 0.15 0.16 044 001 026
Force Path Cost Average Efficiency Ratio (%) 99.86 94.84 98.93 99.92 98.93
5 Random Cells Exact Match 1 15 10 0 37 15
Difference Ratio (%) 88.16 75.79 3523 83.19 65.68
Relative Difference Ratio (%) 88.16 75.79 75.68 89.98 86.53
Penalized Difference Ratio (%) 81.66 68.84 6172 75.62 7173
Average Difficulty Score 1.89 1.89 197 k 197
Difficulty Weighted Difference Ratio (%) 55.56 4157 2341 52.60 4152
Difficulty Weighted Relative Difference Ratio (%) 55.56 4157 4957 57.87 56.19
Valid Output Grid 100.00 87.00 99.00 100.00
Load-Support Connectivity (%) 99.00 80.00 98.00 99.00
Load-Support Directional Connectivity (%) T 99.00 80.00 98.00 99.00
Average Isolated Clusters Cou 044 037 003 056
Force Path Cost Average Efficiency Ratio (%) 9750 7842 97.84 98.25
10 Random Cells  Exact Match 7 0 2 1 14 3
Difference Ratio (%) 59.82 78.78 7268 67.83 36.60 1.98
Relative Difference Ratio (%) 59.82 78.78 7268 82.80 74.22 4243
Penalized Difference Ratio (%) 47.02 6595 59.85 5750 4359 2337
Average Difficulty Score 197 197 197 1.94 201 201
Difficulty Weighted Difference Ratio (%) 4024 5172 47.81 41.99 2.14 -0.67
Difficulty Weighted Relative Difference Ratio (%) T 40.24 5172 47381 52.66 48.86 29.03
Valid Output Grid 99.00 100.00 92.00 100.00 99.00 64.00
Load-Support Connectivity (%) T 99.00 90.00 76.00 100.00 85.00 58.00
Load-Support Directional Connectivity (%) 1 99.00 90.00 76.00 100.00 85.00 58.00
Average Isolated Clusters Count | 227 046 040 0.02 069 120
Force Path Cost Average Efficiency Ratio (%) 98.28 88.72 73.62 99.34 83.93 56.25
1 Random Row Exact Match 20 21 46 34 7
Difference Ratio (%) 1 84.50 73.09 7187 7169 73.13 27.07
Relative Difference Ratio (%) T 8450 73.09 7187 93.86 94.13 7482
Penalized Difference Ratio (%) T 84.50 73.09 7165 93.86 94.13 74.82
Average Difficulty Score 194 194 194 1.99 1.92 1.92
Difficulty Weighted Difference Ratio (%) 7 47.90 50.65 45.14 4537 17.05
Difficulty Weighted Relative Difference Ratio (%) 7 54.72 4790 50.65 6191 59.94 47.99
Valid Output Grid 1 97.00 100.00 91.00 100.00 100.00 91.00
Load-Support Connectivity (%) T 97.00 97.00 73.00 100.00 86.00 85.00
Load-Support Directional Connectivity (%) T 97.00 97.00 73.00 100.00 86.00 85.00
Average Isolated Clusters Count | 0.02 0.00 0.07 0.00 0.00 0.05
Force Path Cost Average Efficiency Ratio (%) 96.95 97.03 7293 99.99 86.07 84.94
3Random Rows  Exact Match 6 20 24 12 17 1
Difference Ratio (%) 5931 6264 74.23 18.75 16.98 -106.35
Relative Difference Ratio (%) T 5931 6264 7423 7742 76.37
Penalized Difference Ratio (%) 5931 6204 73.99 7742 76.37
Average Difficulty Score 189 1.89 189 1.95 199
Difficulty Weighted Difference Ratio (%) 3791 39.27 4697 9.64 849
Difficulty Weighted Relative Difference Ratio (%) 37.91 39.27 4697 49.98 49.88
Valid Output Grid 99.00 100.00 100.00 100.00 96.00
Load-Support Connectivity (%) T 95.00 69.00 74.00 100.00 61.00
Load-Support Directional Connectivity (%) 95.00 69.00 74.00 100.00 61.00
Average Isolated Clusters Count | 001 027 028 000 038
Force Path Cost Average Efficiency Ratio (%) 94.09 69.22 7347 99.87 6131
1 Random Column  Exact Match 7 0 8 12 26 15
Difference Ratio (%) 5192 6338 6771 4493 2907
Relative Difference Ratio (%) T 5192 6338 6171 7253 60.88
Penalized Difference Ratio (%) T 2.23 53.69 46.17 27.89
Average Difficulty Score 1.90 1.90 1.87 213
Difficulty Weighted Difference Ratio (%) 1 36.02 4090 1591 10.73
Difficulty Weighted Relative Difference Ratio (%) 1 36.02 4090 4027 38.36
Valid Output Grid 1 100.00 100.00 97.00 100.00 97.00
Load-Support Connectivity (%) T 100.00 98.00 88.00 100.00 97.00
Load-Support Directional Connectivity (%) T 100.00 98.00 88.00 100.00 97.00
Average Isolated Clusters Count | 013 0.06 0.00 001
Force Path Cost Average Efficiency Ratio (%) 1 99.55 7345 99.48 93.47
3 Random Columns  Exact Match 1 1 3 5 1
Difference Ratio (%) 1 2.46 24.01 56.28 -22.76 14217
Relative Difference Ratio (%) 246 2401 2055 2287 18.10
Penalized Difference Ratio (%) T 2847 -9.25 60.21 -49.47 109.09
Average Difficulty Score 188 1.88 1.90
Difficulty Weighted Difference Ratio (%) 169 1559 50.66 24.21 -94.09
Difficulty Weighted Relative Difference Ratio (%) 1 1.69 1559 772 10.10 1275
Valid Output Grid 1 99.00 93.00 100.00 88.00 80.00
Load-Support Connectivity (%) 97.00 70.00 96.00 7100 61.00
Load-Support Directional Connectivity (%) T 97.00 70.00 96.00 7100 61.00
Average Isolated Clusters Count | 032 024 002 001 032
Force Path Cost Average Efficiency Ratio (%) 9443 54.44 94.28 5447 58.37
Full Exact Match 7 0 0 0 0 0 ) 0 0
Difference Ratio (%) -62.06 -126.02 -49.16 81691 -466.42 -548.98 -585.87 -537.83
Relative Difference Ratio (%) 6206 12602 -49.16 25175 -177.48 316,57 -162.59 -144.70
Penalized Difference Ratio (%) 1 -62.06 -49.86 -318.95 -178.14 -151.62
Average Difficulty Score 1.93 1.93 195 195 195
Difficulty Weighted Difference Ratio (%) 37.69 29.78 -360.89 -382.38 34811
Difficulty Weighted Relative Difference Ratio (%) T -37.69 2 -29.78 117 105.80 92.41
Valid Output Grid 100.00 100.00 81.00 100.00 100.00 76.00
Load-Support Connectivity (%) 94.00 48.00 88.00 68.00 49.00
Load-Support Directional Connectivity (%) 94.00 48.00 88.00 68.00 49.00
Average Isolated Clusters Cou 01 006 0.0 0.06 0.08
Force Path Cost Average Efficiency Ratio (%) 88.87 4831 87.83 68.32 48.89
Average Exact Match 7 6.75 14.88 1 2825 1575 3.50
Difference Ratio (%) 4591 4447 -142.16  -10.20 -36.97 83.63
Relative Difference Ratio (%) T 4591 4447 7 4553 4361 24.53
Penalized Difference Ratio (%) T 3834 3473 1144 2627 2238 374
Average Difficulty Score 192 192 1.98 1.98 1.98
Difficulty Weighted Difference Ratio (%) 3062 29.12 9246 -1L10 2737 -54.63
Difficulty Weighted Relative Difference Ratio (%) T 30.62 2.12 575 2817 27.52 16.67
Valid Output Grid 99.25 100.00 9838 99.62 97.50 84.88
Load-Support Connectivity (%) 97.75 86.75 9812 9562 83.25 7650
Load-Support Directional Connectivity (%) 9775 86.75 9812 9562 83.25 7650
Average Isolated Clusters Count | 0.59 020 0.69 000 025 041
Force Path Cost Average Efficiency Ratio (%) 96.48 85.59 9771 9179 80.59 75.64
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6.1 QUANTITATIVE RESULTS

General Performance Trends Table [3| presents model performance across all task variations
using the metrics defined in Section[5.1] As expected, performance degrades as task complexity
increases; "Easy" (binary) tasks consistently yield higher accuracy than "Hard" (continuous) variants.
Top-performing models like Claude Opus 4 and Gemini 2.5 Pro achieve near-perfect Load-Support
Connectivity (>98%) and Valid Grid scores on easy tasks, suggesting that while they fail to replicate
the exact ground-truth geometry (low Exact Match), they successfully reason about global structural
integrity and force propagation (Appendix [F] for additional plots).

The Hard Task Anomaly and Material Hallucination A critical observation in the hard (con-
tinuous) tasks is the prevalence of negative Difference Ratios across almost all models. Physically,
this result implies significant over-designing: rather than converging on efficient load paths, models
tend to "smear" material across the void, producing dense, non-optimal clusters. This hallucination
of mass suggests that while models grasp the concept of filling space, they lack the physical intuition
to minimize volume while maintaining stability, a core tenet of topology optimization.

DeepSeek-R1 and the Limits of Chain-of-Thought Notably, DeepSeek-R1, a model optimized
for reasoning, exhibits a strong performance drop between easy and hard tasks. While it maintains
reasonable connectivity on binary tasks, its performance collapses on continuous distributions (Table
[3). We hypothesize that the model’s Chain-of-Thought (CoT) process struggles to ground floating-
point grid representations into spatial intuition. Instead of visualizing the physical load path, the
model likely attempts arithmetic or symbolic manipulation of the density values. This symbolic
approach fails to capture the global topological constraints required for stability, resulting in outputs
that are computationally "reasoned" but structurally incoherent.

Rotation Experiments and Gravity Bias Among localized tasks, row completions consistently
outperform column completions. Our rotation experiments (k = 3, 270°) reveal that this is not merely
a formatting artifact but a "gravity bias." When loads are applied horizontally (simulating a cantilever
or rotated structure), models frequently fail to reorient their structural intuition, attempting to build
"downward" relative to the grid rather than in the direction of the force vector L. This indicates that
models rely heavily on memorized visual patterns of vertical buildings rather than reasoning about
the directed vector of applied forces (Appendix |G} for additional rotation experiment results).

Few-Shot Experiments To investigate the in-context learning capabilities of the models, we
performed few-shot experiments complementary to the zero-shot baseline. In this setting, we
prepended £ = 1 and k = 3 randomly selected input-output pairs from the dataset to the prompt
before presenting the target test instance. The examples were drawn from the same task variation (e.g.,
3 Random Row) and difficulty level (easy or hard) as the query. This approach evaluates whether
models can improve their spatial reasoning and output formatting by observing valid load-path
distributions, thereby allowing us to quantify the extent to which physical constraints can be inferred
from examples versus explicit instructions (Appendix [H] for additional few-shot experiment results).

Physics-Enhanced vs. Physics-Neutral Prompts Counter-intuitively, our prompt ablation studies
reveal that physics-enhanced prompts, those augmented with terminology like "stress," "load path,"
and "equilibrium", actually degraded performance on harder tasks compared to the base prompt.
While the Physics-Neutral setting suffered in connectivity metrics, the failure of the Enhanced
prompt suggests that models do not ground physical jargon to the visual grid. Instead, terms like
"stress" likely act as semantic distractors, shifting the model’s focus away from the necessary spatial
pattern-matching and leading to worse topological validity (Appendix|[I] for details).

6.2 QUALITATIVE ANALYSIS OF FAILURE MODES

To complement the quantitative metrics, we visually inspected model predictions to identify recurring
patterns of reasoning failure. We observed three distinct failure modes that explain the performance
gaps reported in Table
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The "Smearing'' Effect in Continuous Tasks In hard (continuous) tasks, models frequently fail
to commit to a defined structure. Instead of placing high-density material in critical load paths, they
distribute low-density values (0.1 — 0.3) broadly across the void (Appendix [J.I5). This "smearing"
behavior results in the negative Difference Ratios observed quantitatively; the models appear to be
minimizing risk by filling space rather than optimizing for stiffness, effectively hallucinating material
where none is needed.

Disconnected Islands and Local Bias A common error in lower-performing models (e.g., Perplex-
ity Sonar, DeepSeek-R1 on hard tasks) is the generation of "floating islands", clusters of material
completely disconnected from supports. This confirms: these models are operating primarily on local
pattern consistency (placing a 1 next to another 1) rather than global constraint satisfaction. They fail
to trace the load path L — S back to a fixed point, violating fundamental equilibrium principles.

Gravity Bias in Rotated Scenarios Qualitative inspection of the rotated experiments (270°) reveals
a strong directional bias. Even when the load L is applied horizontally from the left, models often
attempt to build "downward" relative to the grid layout, ignoring the rotated force vector. This results
in structures that "hang" into empty space or connect to non-existent supports at the bottom of the grid,
providing strong evidence that the models are relying on visual memorization of vertical architectural
forms rather than physical reasoning.

Over-Constrained ""Safety'' Conversely, top-performing models like Gemini 2.5 Pro often "over-
build," creating blocky, wall-like structures rather than truss-like efficient designs. While this strategy
achieves high Load-Support Connectivity (resulting in high success rates), it fails the efficiency
objective of topology optimization, treating the task as a "fill-the-gap" segmentation problem rather
than a minimum-compliance optimization problem.

7 DISCUSSION

The quantitative and qualitative results highlight fundamental gaps between linguistic reasoning and
physical-spatial understanding in Large Language Models.

Lack of Grounded Physical Understanding The failure of physics-enhanced prompts and the
struggle with hard tasks suggest that current LLMs do not possess a grounded model of physics.
When a model reads "load path", it does not translate this into a constraint satisfaction problem on
the grid; it treats it as a textual token associated with general engineering contexts. Consequently,
models perform best when the task is framed as a visual pattern completion (base prompt) rather than
a physics simulation problem.

Visual Memorization vs. Force Reasoning The "gravity bias" observed in our rotation experiments
confirms that models are solving SPhyR tasks primarily through visual memorization of architectural
forms (e.g., columns support beams from below) rather than first-principles reasoning about force
vectors. When the "floor" is moved to the "wall" (rotated setup), the model’s heuristic fails, proving
that it is not tracing the force L to the support S, but rather completing a learned image schema.

The Challenge of Continuous Optimization The "smearing" effect and negative Difference Ratios
in continuous tasks highlight a specific deficiency in LLM spatial reasoning: the inability to perform
gradient-like optimization. While models can predict discrete binary occupancy (material vs. void)
based on connectivity rules, they cannot intuitively minimize compliance or volume in a continuous
space. This remains a significant barrier for using LLMs in generative design and engineering
applications where efficiency is paramount.

8 CONCLUSION

SPhyR reveals that while LLMs exhibit strong general reasoning, they fail to integrate spatial layout
with grounded physical constraints. Observed failure modes (e.g., gravity bias, material smearing)
confirm reliance on visual pattern matching over global force-directed reasoning, necessitating future
work on geometric constraint satisfaction.
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A APPENDIX

B ToOPOLOGY OPTIMIZATION SOLVER PARAMETERS: GRASSHOPPER
MILLIPEDE

Solver parameters are:

target density = 0.1
self-weight = 0

iterations = 10

smoothing = 0.1

penalization = 3.0

minimum density = 0.001
delete threshold = 0.5
compliant mechanism disabled
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C VISUAL TASK VARIATIONS OVERVIEW
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D ADDITIONAL EVALUATION METRICS COMPUTATION AND PROMPT AND
COMPLETION EXAMPLES

D.1 FORCE-PATH COST COMPUTATION

To approximate the physical efficiency of load transmission through the predicted topology, we define
a gravity-aligned cost metric that measures the minimum traversal effort for any load cell to reach a
support cell through contiguous solid material.

Each grid cell g;; can take values in {L, S} U [0, 1], where L and S denote applied load and support,
respectively, and real-valued entries represent material density. We assume a fixed gravity direction

g = (d,,d.) € {(1,0),(0,1),(-1,0), (0, —1)}.
Directional neighborhood. We consider all 8-connected neighbors of (4, j),
N(Z’j) = {(i/7j/) | (i/ - ivj/ _.]) € {(:l:l,O), (O’ :tl)v (:I:L:tl)}}?

with direction vector d = (i’ — ¢, j' — j). Each neighbor is assigned a traversal cost wq based on its
angular deviation from gravity:

1.0, Z(g,d)<15°,

1.2, 15° < /Z < 45°,
wq =

1.5, 45° < / < 100°,

3.0, otherwise.

Upward (against-gravity) moves are disallowed whenever d-g < —0.5, ensuring that load flow occurs
only downward or laterally.

Shortest-path computation. For each load cell £ = (iy, j;), we compute the minimal cost to any
support s € S using Dijkstra’s algorithm over the graph of solid nodes {(7,7) | gi; > 0}. The
cumulative path cost is defined as

= i . L . il g
C(0) = M B Z Wi —g),(jr—j) (14 0.05]i" —igl),
((2,3),(",3")) €p

where the multiplicative term 1 + 0.05 |i’ — i,| imposes a mild depth penalty to discourage long
vertical travel from the load origin. If no valid support is reachable, a finite penalty C\,,x is assigned.

The mean force-path cost for a grid G is

C(G) = € Z c(0), C(f) = Chax if unsupported.

N
Lt

Force-Path Cost Average Efficiency Ratio. We define the final metric as

where G* and G denote the ground-truth and predicted grids, respectively. Higher values indicate

that the predicted structure achieves comparable or better load—support transmission efficiency than
the reference.
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D.2 RECONSTRUCTION METRIC TESTS

D.2.1 EXACT MATCH EXAMPLES
Exact Match Examples
This test validates the get_exact_match function, which returns True
if the predicted grid G exactly matches the ground truth G*

cell-by-cell.
1. Perfect match (True)

Ground truth: [ g b g 1,
[ 14 1 14 j| 14
[ ;S ]

Prediction: [ p g P
[ 14 l 4 :| 14
[ ; S ]

Expected output: True
2. Slight difference (False)

Ground truth: [ PRI 1,
[ ,1’ ]I
[ ;7 S ]
Prediction: [1, L, 1,
r1, 1, 1,
[ ;S ]

Expected output: False

D.2.2 DIFFERENCE RATIO EXAMPLES

Difference Ratio Examples

This test validates get_difference_ratio, which measures similarity
between G and G*.

A value of 1.0 means perfect reconstruction, while lower values
indicate greater deviation.

1. Perfect match (1.000)

Ground truth: [ ; o, 1,
[ 14 1 14 J’
[ 14 s’ J
Prediction: [ p b g 1
[ 4 1 4 J’
[ ;S ]

Expected output:
2. One altered column (0.000)
Ground truth: , 1,

’ J 14

=
o
(@]
(@]

Prediction: 1,

1,

~

(
[
l ’
[
[
[

nrH®RRH

Expected output: 0.000
3. Half correct (0.500)

Ground truth: [ g b g 1,
[ 1 14 1 14 j| ’
[ ;S ]

Prediction: [ p g P
[ 14 1 4 :| 14
[ ; S ]

Expected output: 0.50

o
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D.2.3 RELATIVE AND PENALIZED DIFFERENCE RATIO EXAMPLES

Relative and Penalized Difference Ratio Examples

These tests validate get_relative_difference_ratio and
get_penalized_difference_ratio, which account for numeric

cell differences and penalize fixed-cell deviations respectively.
1. Perfect alignment (1.000)

Ground truth: [ , , 1,

4

Prediction:

I4

nreHnekH

4

Expected output: 1.000
2. Gradual deviation (0.333)

Ground truth: [ p b g 1
i, 1, 1],

[ ;S ]
Prediction: [ p b g 1,
[ ’ 1 ’ ] 14

[ ;S ]

Expected output: 0.333
3. Continuous values (0.500)

Ground truth: [ p b g 1,
108, 1,081,
[ ;S ]
Prediction: [ R 1,
104, 05, 047,
[ r S ]

Expected output: 0.500
4. Over—extrapolation (0.308)

Ground truth: [ g g 1,
108, 1,087,

[ ;S ]

Prediction: [ ; b g 1,
104,20, 041,

]

[ 4 S 14
Expected output: 0.308
5. Negative ratio (-1.000 or -2.000)

Ground truth: [ ; o, 1,
4 1 4 J 14

[ ’ s 4 J
Prediction: [ , 1, iy

[ 1 ’ 1 4 1 J 14

[ ;S ]
Expected output: -1.000 (unpenalized), -2.000 (penalized)
Interpretation:

The ratios decrease as predictions deviate numerically from the ground
truth,

and penalized variants further reduce the score when fixed regions
(load or support)

are incorrectly modified. Scores near or below 0 reflect large or
structurally

meaningful errors.
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D.3 TOPOLOGY METRIC
D.3.1 GRID VALIDITY EXAMPLES

Grid Validity Examples

This test validates the get_grid_shape_and_value_validity function,
which ensures that a generated grid has valid symbols and a consistent
rectangular shape.
A valid grid:

* Uses only the symbols {0, 1, L, S};

e Contains values within allowed numeric bounds;

* Has equal row lengths (rectangular shape).
1. Valid grid

Completion: [ , L , 1,

[ 14 1 ’ JI

[ ;S ]
Expected: True
(All symbols valid, shape consistent.)
2. Invalid character (X)
Completion: [ P P 1,

[ r 1 ’ ]I

[ ;S 1

Expected: False

(Unrecognized symbol X.)

3. Invalid character (P)

Completion: [ , L , 1,
[ 4 1 ’ J ’
[ 4 14 J

Expected: False

(Unrecognized symbol P.)

4. Out-of-range value (-1)

Completion: [ ; L, i
[ 0, , 01,
[ ;S ]

Expected: False
(Negative numeric value not allowed.)
5. Out-of-range value (2)

Completion: [ R 1,
[ 0, , 01,
[ ;7 S ]

Expected: False
(Value exceeds permitted range.)
6. Non-rectangular grid

Completion: [ PR 1,
o, 117,
[ ;S ]

Expected: False

(Inconsistent row lengths.)

Interpretation:

This check ensures that downstream metrics operate on well-formed
grids only.

Any invalid symbol, numeric range violation, or non-rectangular
structure

results in a False validity flag.

32



Under review as a conference paper at ICLR 2026

D.3.2 LOAD-SUPPORT CONNECTIVITY EXAMPLES

Load-Support Connectivity Examples

These tests validate is_load_supported and
is_load_supported_force_directional, which determine whether
loads (L) are connected to supports (S) through solid

cells (1, L, S). The directional variant allows

only gravity-aligned or lateral connections.

1. Perfect vertical connection

Completion: [ R 1,
[ 4 1 r :| 14
[ ;7 S 1

Expected: True (both directional & non-directional)
2. Diagonal bridge

Completion: [ , L , 1,

[1111 ]I

[ + S, S ]
Expected: True (connected diagonally)
3. Horizontal load alignment
Completion: [ , L , L ],

[ 111 }I

[ r S ]

Expected: True (non-directional)
4. Incomplete bridge

Completion: [ , L, L ],
[ 1 r’ ’ J ’
[ ;7 S ]

Expected: True (non-directional), False (directional)
5. Disconnected load
Completion: [ , , L 1,
[11 4 ]I
o, s, 1
Expected: False (no path)
6. Complex multi-load structure

Completion: r1, 1,1, , 1, L 1,
[1 ’ 4 1 4 14 1 I JI
[1 4 14 1 ’ 1 14 1 r JI
[1 ’ 4 4 14 ’ JI
[SI 4 4 4 r J
Expected: True (non-directional), False (directional)

Interpretation:

The directional test approximates gravity-aligned force flow,

the
non-directional variant checks only geometric reachability.
Disconnected or upward-only paths yield False.
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D.3.3 ISOLATED CLUSTER COUNT EXAMPLES

Isolated Cluster Count Examples

This test validates get_isolated_clusters_count, which counts
solid regions (1) disconnected from any load (L) or

support (S). A higher count indicates fragmented or non-functional
material regions.

1. Single isolated column (1)

Completion: [

~

~

~

~

—————
RN e
~
~
[y
~
~
~
~

Expected: 1
2. Slightly connected cluster (1)

Completion: [ ’ ’ ’ ’ ’

~

I4 ’ ’ ’ 4
4 4 1 4 1 4 4

r ’

~

~

4 4 ’ 4 4

~

—————
RN e
~
o
~
~
~

’ ’ 14 r ’
Expected: 1

3. Two isolated clusters (2)
Completion:

~ 0~

~

~

U2 bt ot ek e
~
~
[
~
—
~
~
[

— —
~
~
~
~
~
~

Expected: 2
4. Multiple detached clusters (3)
Completion: [

~ ~

~

~

— —— e
~
~
~
[
~
~
[,
~

Expected: 3

Interpretation:

Isolated clusters represent solid “islands” that do not participate in
load-support transfer. Lower counts indicate more integrated and
structurally valid predictions.
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D.3.4 DIFFICULTY SCORE (DWCS) EXAMPLES

Difficulty Score (DWCS) Examples

This test validates get_difficulty_score, which computes the

average difficulty of masked (V) cells in the input grid

based on their ground-truth neighborhood configuration in the GT grid.
The completion grid is used to confirm the reconstruction context.
Higher scores correspond to more complex masked regions.

1. Simple vertical case (2.0)

Input: [ , L, 1,

’

Ground truth:

~

Completion:

~

~

N=pPFn=HNncJ

Expected output: 2.000
2. Mixed neighborhood (3.0)

Input: [ r L, 1,
[VI 1 4 J’
[ ’ s’ J
Ground truth: [ IR 1,
[ ’ 1 4 J,
[ ;S ]
Completion: [ ; L, 1,
[1 4 1 14 j|’
[ S 1

Expected output: 3.000
3. Large structure (1.0)
Input: [ ,

Ground truth:

Completion:

A e e T
~

Expected output: 1.0
4. Dense structure with boundary void (3.0)
Input: [ ’

’ ’
’
’
’

Ground truth:

~

— D - -
el e Y e

~

= w

Completion:

~
— D

~

~

~ 0~ S

~

U0 bk ek e PO ek e ek PO e e e ; 8 N m H Q=== DR RRH

A e
~
~
~
~
~ 0~

~
U -
~
9,
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Expected output: 3.000
Interpretation:

The score increases when masked cells (V) occur in ambiguous or mixed
regions, particularly around structural boundaries. Uniform
neighborhoods yield

lower scores, reflecting easier reconstruction.
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D.4 PHYSICS APPROXIMATION METRIC
D.4.1 FORCE PATH COST EXAMPLES

Force Path Cost Examples

This test validates the

get_total_ force_path_cost_average_efficiency_ratio function, which
computes the Force Path Cost Average Efficiency Ratio (FPCEff).
Higher ratios indicate more efficient and physically plausible
load-support paths aligned with gravity.

Gravity direction: (1, 0) downward

Test cases:

1. Perfect vertical alignment

Ground truth: [ , , 1,

’ J ’

Prediction:

~ S
nwrH®RRHE
~ S

Expected output: 1.000
2. Slightly wider vertical column (still efficient)
Ground truth: [ , L, i

’ ’ ] ’

Prediction:

~

~
nhrHEnePR
~

Expected output: 1.000
3. Offset load-support connection (less efficient)
Ground truth: [ R 1,

[ r’ 1 ’ J ’
[ s, 7 ]
Prediction: [ , L, 1,
[ 1 14 1 4 J 14
[ s, ’ ]

Expected output: 0.8037
4. Broken vertical link (similar inefficiency)

Ground truth: [ L 1,
[ 4 1 4 J’
[ 8, ’ ]
Prediction: [ , L, 1,
[1 14 4 J’
[Sl r J

Expected output: 0.8037
5. Horizontally displaced load (least efficient)

Ground truth: [ 7 , L 1,
[ 4 1 4 J 4
[ s, ’ ]
Prediction: [ , 1, L1,
[ 1 ’ ’ J 14
[ s, ’ ]
Expected output: 0.7724
Interpretation:

As load-support paths deviate from the gravity direction or become
discontinuous,

FPCEff decreases from 1.0 toward 0, reflecting reduced

physical plausibility of the structure.
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2D SAMPLES

Material Distribution Density

Figure 4: Example 2D topology optimization samples from the SPhyR dataset.
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E.2 3D SAMPLES

1.0 ' 0.0

Material Distribution Density

Figure 5: Example 3D topology optimization samples included for future benchmark extensions.
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F ADDITIONAL MAIN RUN RESULTS

F.1 RESULTS FOR ALL MODELS AND TASKS

Main Evaluation Results
Reconstruction Accuracy Metrics 1/2
Exact Match Easy

0 Exact Match Across Tasks (Easy Difficulty)

Exact Match

=/
A
)
=]
o
®
A
1y
=
5

Easy

Difference Ratio (%)

& & o &
o & N
R S0

Task

Relative Difference Ratio Easy

. Relative Difference Ratio (%) Across Tasks (Easy Difficulty)

Relative Difference Ratio (%)

5 5
& &
& &

&

Penalized Difference Ratio Easy

. Penalized Difference Ratio (%) Across Tasks (Easy Difficulty)

Penalized Difference Ratio (%)

- GPT35 Turbo
- GpTa1
- GiTo
= Claude 3.7 Sonnat

= perplexity Sonar Reasoning

=GPT35 o

—GPT35 Tubo

- GpTdo
= Claude 3.7 Sonnet

= perpiesity Sonar Reasoning

Per
Perplexity Sonar Reasoning

= Perplexity Sonar Reasoning

Hard
Exact Motch Acros Tasks (Hord Diffcuty)

- GPT35 Turbo
- GpTa1
- GiTio
50 = Claude 3.7 Sonnat

= perplexity Sonar Reasoning

Exact Match

Tk

Hard

Difference Ratio (%) Across Tasks (Easy Difficulty)

= Perpiesity Soar Reasoning

Difference Ratio (%)

t & & o
o o < N
B & R
e

Hard

. Relative Difference Ratio (%) Across Tasks (Hard Difficuty)

=GPT35 o
- GrTa1

= Perplexity Soar Reasoning

Relative Difference Ratio (%)

Tk

Hard
100 Penalized Difference Ratio (%) Across Tasks (Hard Difficulty)
e s

- GpTdo
a0 = Claude 3.7 Sonnet

= Perplexity Sonar Reasoning

Penalized Difference Ratio (%)

Figure 6: Main evaluation run results: Exact Match, Difference Ratio, Relative Difference Ratio and
Penalized Difference Ratio for all models, across all tasks and difficulties.
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Main Evaluation Results
Reconstruction Accuracy Metrics 2/2
Average Difficulty Score Easy

Average Difficulty Score Across Tasks (Easy Difficulty)

=GPT35 Tubo
-

= perplexity Sonar Reasoning

Task

Difficulty Wighted Difference Ratio

. Difficulty Weighted Difference Ratio (%) Across Tasks (Easy Difficulty)

Diffcuty Weighted Difference Ratio (%)

T

Difficulty Wighted Relative Difference Ratio

Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Easy Difficulty)

=GPT35 o
- GPTa1

100

- Claude 3.7 Sonnet

= perplexity Sonar

Diffcuty Weighted Relative Difference Ratio (%)

Toplogy Validity Metrics 1/2
Grid Validity

Easy

Valid Output Grid (%) Across Tasks (Easy Difficulty)

Sonar

Vaiid Output Grid (%)

Sonar
= perplexty Sonar Reason

= perplexity Sonar Reasoning

= perplexity Sonar Reasoning

Hard

Average Difficulty Score Across Tasks (Hard Difficulty)
=GPT35 Tubo
-

[ perplexity Sonar Reasoning

Task

Hard

Difficulty Weighted Difference Ratio (%) Across Tasks (Hard Difficulty)

Sonar
= perplexty Sonar Reasoni

Diffcuty Weighted Difference Ratio (%)

Hard

Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Hard Difficulty)

- GPT35 o
- GPTa1

- Claude 3.7 Sonnet

= perplexity Sonar
= perplexity Soar Reasoning

Diffcuty Weighted Relatve Difference Ratio (%)

Hard

Valid Output Grid (%) Across Tasks (Hard Difficulty)

Sonar
= perplesity Sonar Reasoning

Valid Output Grid (%)

Figure 7: Main evaluation run results: Average Difficulty Score, Difficulty Weighted Difference
Ratio, Difficulty Weighted Relative Difference Ratio and Grid Validity for all models, across all tasks

and difficulties.
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Main Evaluation Results
Topology Validity Metrics 2/2
Load-Support Connectivity Easy Hard

Load-Support Connectivity (%) Across Tasks (Easy Difficulty) Load-Support Connectivity (%) Across Tasks (Hard Difficulty)

=GPT35 Tubo =GPT35 Tubo
- = GpTa1

e Perpicsity Soner Reasoning s _Perplexity Sonar Reasoning

LoadSupport Connectivity (%)
LoadSupport Connectiviy (%)

Tk

Directional Load-Support Connectivity Hard

Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty) Load-Support Directional Connectivity (%) Across Tasks (Hard Difficulty)

100

Load:Support Directional Connectivty (%)

Load:Support Directional Connectivty ()

T T

Average Isolated Cluster Count Hard

Average Isolated Clusters Count Across Tasks (Easy Difficulty) Average Isolated Clusters Count Across Tasks (Hard Difficulty)

- GPT35 Turbo
-GPTa1

- GPT35 Trbo
- GPTa1

- Claude 3.7 Sonnet - Claude 3.7 Sonnet

= perplexity Sonar
= perplexity Sonar Reasoning

= perplexity Sonar
= perplexity Soar Reasoning

Average tsolated Clusters Count

Average tsolated Clusters Count

o oo
> - o s > o 5 - . 5 -~ r
& i @f"f ae«’“‘k o & & i be’f ae«’“‘k o &
B & & K4 & S & K K & Ka & R4 &
s s

Physics-Approximating Metrics 1/1

Force Path Cost Average Efficiency Ratio
Easy Hard

Force Path Cost Average Efficiency Ratio (%) Across Tasks (Easy Difficulty) Force Path Cost Average Efficiency Ratio (%) Across Tasks (Hard Difficulty)

GhTo
Claude 3.7 Somnet

Perplexity Sonar Reasoning. Perplexity Sonar Reasoning

Force Path Cost Average Effciency Ratio (%)
Force Path Cost Average Effciency Ratio (%)

Figure 8: Main evaluation run results: Load-Support Connectivity, Directional Load-Support Connec-
tivity, Average Isolated Cluster Count and Force Path Cost Average Efficiency Ratio for all models,
across all tasks and difficulties.
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G ADDITIONAL ROTATION EXPERIMENT RESULTS

G.1 PROMPT AND COMPLETION - 1 RANDOM CELL EASY: ROTATED X 3

Prompt and Completion - 1 Random Cell Easy: Rotated x 3

Prompt :

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

— 'L’ indicates applied load.

— 'V’ indicates void.

- 'S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either ’1’ (solid) or ’'0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage

unless necessary for structural support.

Below is the input grid with masked regions:

= [ [
[
=
=
[
I
e
I
nunnunnnnnn

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L11111

= e
= e
e

nnnnunnnnnn

Ground Truth:

Ll11111

I
N
I
nununnnnnnn
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G.2 RESULTS FOR MODEL SUB-SET AND TASK SUB-SET

Grid Rotation on All Models and Selected Tasks Evaluation Results: Easy
Reconstruction Accuracy Metrics 1/1
Exact Match Easy Difference Ratio Easy

Exact Match Across Tasks (Easy Difficulty) Difference Ratio (%) Across Tasks (Easy Difficulty)

H Perplexity Sonar (3 Rotations)

Difference Ratio (%)

& = o o
s”f #"&f -:‘g
Relative Difference Ratio Easy Penalized Difference Ratio Easy

. Relative Difference Ratio (%) Across Tasks (Easy Difficulty) 10 Penalized Difference Ratio (%) Across Tasks (Easy Difficulty)

Peralized Difference Ratio (%)

& & & &
& & &

s o B

Reconstruction Accuracy Metrics 1/2
Average Difficulty Score Easy Difficulty Wighted Difference Ratio

Average Difficulty Score Across Tasks (Easy Difficulty) 0 Difficulty Weighted Difference Ratio (%) Across Tasks (Easy Difficulty)

Diffculy Weighted Diference Ratio (%)

Tk

Difficulty Wighted Relative Difference Ratio Grid Validity Easy

0 Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Easy Difficulty) Valid Output Grid (%) Across Tasks (Easy Difficulty)

ghted Relative Difference Ratio (%)

Figure 9: Grid rotation evaluation results: Exact Match, Difference Ratio, Relative Difference Ratio,
Penalized Difference Ratio, Average Difficulty Score, Difficulty Weighted Difference Ratio, Difficulty
Weighted Relative Difference Ratio and Grid Validity for GPT-4.1, Claude Opus 4, Gemini 2.5 Pro,
DeepSeek-R1 and Perplexity, for 10 Random Cells, 3 Random Rows, 3 Random Cells and Full tasks
and easy difficulty.
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Grid Rotation on All Models and Selected Tasks Evaluation Results: Easy
Topology Validity Metrics 2/2
Load-Support Connectivity Easy Directional Load-Support Connectivity

Load-Support Connectivity (%) Across Tasks (Easy Difficulty)

Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty)

100

Load:Support Directional Connectivity (%)

Tk Tk

Average Isolated Cluster Count

Average Isolated Clusters Count Across Tasks (Easy Dificulty)

Average lsoated Clusters Count

Physics-Approximating Metrics 1/1

Force Path Cost Average Efficiency Ratio

. Force Path Cost Average Efficiency Ratio (%) Across Tasks (Easy Difficulty)

Force Path Cost Average Effciency Ratio (%)

Figure 10: Grid rotation evaluation results: Load-Support Connectivity, Directional Load-Support
Connectivity, Average Isolated Cluster Count and Force Path Cost Average Efficiency Ratio for
GPT-4.1, Claude Opus 4, Gemini 2.5 Pro, DeepSeek-R1 and Perplexity, for 10 Random Cells, 3
Random Rows, 3 Random Cells and Full tasks and easy difficulty.
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Table 4: Grid rotation evaluation results for all metrics, for GPT-4.1, Claude Opus 4, Gemini 2.5 Pro,
DeepSeek-R1 and Perplexity, for 10 Random Cells, 3 Random Rows, 3 Random Cells and Full tasks
and easy difficulty.

Task Metric GPT4.1_ GPT 4.1 (3 Rotations) _Claude Opus 4 Claude Opus 4 (3 Roations) _Gemini 2.5 Pro__ Genini 2.5 Pro (3 Rotations) _DeepSeck R DeepSeck RI (3 Rotations) _Perplexity Sonar_Perplexity Sonar (3 Rotations)
Difficult
10 Random Cells Exact Match | 0 15 2 3 10 2 5 1
Dilference Ratio (%) 5982 89.08 9102 8858 7826 756 7268 50.19
Relative Difference Ratio (%) 1 5982 89.08 9102 8888 7826 75.62 7268 5019
nalized Difference Raio () 1 4702 641 8078 7621 6698 6427 5985 aLis
Avcmgc Difficulty Score 197 1.94 197 194 194 197 1
Diifalty Weighied Diffeence Ratio (%) 1 4024 852 5806 5094 48.69 4781 3174
Diffuly Weghid Relaive Differoce R (1)1 4024 5852 5806 5094 48.69 4781 3174
Valid Output Grid 1 99.00 100.00 100.00 9200 96.00 9200 6400
Load-Support Connectivity (%) 1 99.00 100.00 100.00 92,00 9. 0 4700
Load Support Ditecional Connectiiy (%) 99.00 86.00 100.00 7800 90.00 7200 76.00 3200
Average Isolated Clusters Count 227 000 0.00 07 046 043 040 029
Forc Path Cost Aveage Eifciency R ()1 98.28 9441 931 85.60 872 877 7362 4718
3Random Rows  Exact Mate 6 2 2 0
Bierone R () )t 5931 8219 8409 6264 4038 2611
Relative Difference Ratio (%) 1 5931 8219 8409 6261 4038 2611
Penalized Difference Ratio (%) 5931 8219 8284 6204 4021 1933
Average Difficulty Score 189 189 192 89 18 189
Diffculty Weighted Difference Ratio (%) T 3791 51.60 5352 3927 2605 1717
Difficulty Weighted Relative Difference Ratio (%) 1 37.91 5160 5352 3927 2605 17.17
Valid Output Grid 9900 100.00 99.00 100.00 96.00 8300
Load-Support Connecivity (%) 9500 9400 98.00 69.00 6200 3400
Loud-Support Dircciionl ommmny %) 1 95.00 200 00 69.00 5800 2800
« 0.01 003 0.01 7 008 030
ney Raiio ()1 9409 96.39 9754 6922 8137 5416
3 Random Columns 1 3 2 3 2 1 1
246 5664 60.16 2674 2401 3205
Relative Difference Ratio (%) 1 246 5664 60.16 274 2401 3205
Penalized Difference Ratio (%) T 2847 2576 3059 47 925 1525
e Diffculty Score 188 L8 196 1 188 196
ity Weighted Difference Ratio (%) L 3276 3729 17.90 1559 1899
Difcly Weighid Relave Diftrence Ruio (01 169 3276 3729 1790 1559 1899
Valid Output Grid 99.00 0 9300 60.00
LoudSuppot Comectiiy ()1 97.00 88.00 7000 3600
Directional Connectivity (%) 1 97.00 69.00 2000 3100
,mm Isolated Clusters Count 032 010 024 013
Force Path Cost Average Eficiency Ratio (%) 1 9443 8260 5444 4629
Full Exact Match | 0 0 0
Difference Ratio (%) 1 6206 8498 “49.16 484
Relative Difference Ratio (%) 1 6206 8498 49,16 3484
Penalzed Diference Rt (%) 6206 10495 4936 45.60
Average Difficul 1.93 195 195 93
Diffeuly Weighied Diference Ratio (%) 1 3769 8 “19.98 142 2978 2120
fculty Weighted Relative Difference Ratio (%) 1 37.60 20,14 2008 1998 54.42 2078 2120
Vi Output Grd 1 10000 59.00 100.00 8100 100.00 8100 8400
LoSupportComectiiy ()1 9400 49.00 9400 7800 7800 4200 2600
Lowt Suppon Dictional Conectiviy (%) 9400 4600 7200 7200 7600 4200 2000
Average Iolated Clasters Count | 0.01 000 0.00 01 013 0.09
Foree Path Cost Average Effcioncy Rato () 1 8887 5553 8169 70.68 79.00 37.61 4655
Average Exact Match 1 [ 13 10 1 6
Difference Ratio %6 1 1488 2595 50.16 50.13 4999 1444 3044
Relative Difference Ratio (%) 1 1488 2595 50.16 5013 4999 1444 30.44
Penalizd Diffree Ratio (%) 395 1526 3931 4015 3754 -131 1868
ige Difficulty Scorc 192 193 1.92 193 1.92 193 192
Diffeuly Weighed Difference Rtio (%) 1054 1668 3169 3183 3203 603 055 2015
Difficulty Weighted Relative Difference Ratio (%) 1 1054 1668 3169 3183 3203 603 955 2015
Valid Output Grid 1 925 9375 100.00 100.00 99.00 100.00 9775 9150
LowdSupport Connctiviy %) 1 9625 T1.00 97.00 93.00 98.00 75.00 8000 6550
Directional (om\zc\ml) @)t 9625 6500 97.00 77.00 98.00 75.00 6875 6550
Au:mp: Tsolated Clusters Count 065 061 0.00 001 001 023 018 25
Force Path Cost Average Efficiency Ratio (%) 1 9392 759 9434 8928 9650 7319 8143 59.79
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G.3 RESULTS FOR CLAUDE OPUS 4 ON ALL TASKS

Grid Rotation on Claude Opus 4 Evaluation Results
Reconstruction Accuracy Metrics 1/2
Exact Match Easy Hard

Exact Match Across Tasks (Easy Difficulty) Exact Match Across Tasks (Hard Difficulty)

= Claude Opus & = Claude Opus &
= Claude Opus 4 (3 Rotations) = Claude Opus 4 (3 Rotations)

Exact Match

Difference Ratio Easy

. Difference Ratio (%) Across Tasks (Easy Difficulty) Difference Ratio (%) Across Tasks (Hard Difficulty)

- Claude Opus 4
= Claude Opus 4 (3 Rotations)

s
5.4 (3 Rotations)

Difference Ratio (%)
Difference Ratio (%)

sk sk
Relative Difference Ratio Easy Hard
Relative Difference Ratio (%) Across Tasks (Easy Difficulty) Relative Difference Ratio (%) Across Tasks (Hard Difficulty)

100

s 4 s 4
fe Opus 4 (3 Rotations) fe Opus 4 (3 Rotations)

Relative Diference Ratio (%)

Relative Diference Ratio (%)

Tk

Penalized Difference Ratio Easy

Penalized Difference Ratio (%) Across Tasks (Easy Difficulty) Penalized Difference Ratio (%) Actoss Tasks (Hard Difficulty)

pus 4 pus 4
fe Opus 4 (3 Rotations) fe Opus 4 (3 Rotations)

Penalized Difference Ratio (%)
Penalized Difference Ratio (%)

Figure 11: Grid rotation evaluation results: Exact Match, Difference Ratio, Relative Difference Ratio
and Penalized Difference Ratio for Claude Opus 4, for all tasks, easy and hard difficulty.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Grid Rotation on Claude Opus 4 Evaluation Results

Reconstruction Accuracy Metrics 2/2

Average Difficulty Score Easy Hard

Average Difficulty Score Across Tasks (Easy Difficulty) Average Difficulty Score Across Tasks (Hard Difficulty)

Difficulty Wighted Difference Ratio

Difficulty Weighted Difference Ratio (%) Across Tasks (Easy Difficulty) Difficulty Weighted Difference Ratio (%) Across Tasks (Hard Difficulty)

= Claude Opus - Claude Opus 4
= Claude Opus 4 (3 Rotations)

4
= Claude Opus 4 (3 Rotations)

Diffcuty Weighted Difference Ratio (%)

sk sk
Difficulty Wighted Relative Difference Ratio Hard
100 Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Easy Difficulty) 100 Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Hard Difficulty)
 iouie s =l opus 4

= Claude Opus 4 (3 Rotations) = Claude Opus 4 (3 Rotations)

nce Ratio (%)

Diffculty Weighted Relative Differer

Toplogy Validity Metrics 1/2
Grid Validity Easy Hard

Valid Output Grid (%) Across Tasks (Easy Difficulty)

Valid Output Grid (%) Across Tasks (Hard Difficulty)

Valid Output Grid (%)

Figure 12: Grid rotation evaluation results: Average Difficulty Score, Difficulty Weighted Difference
Ratio, Difficulty Weighted Relative Difference Ratio and Grid Validity for Claude Opus 4, for all
tasks, easy and hard difficulty.
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Grid Rotation on Claude Opus 4 Evaluation Results

Topology Validity Metrics 2/2

Load-Support Connectivity Easy

Load-Support Connectivity (%) Across Tasks (Easy Difficulty)

Tk

Directional Load-Support Connectivity
Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty)

- Claude Opus 4
= Claude Opus 4 (3 Rotations)

100

Average Isolated Cluster Count

Average Isolated Clusters Count Across Tasks (Easy Difficulty)

005 = Claude Opus 4
= Claude Opus 4 (3 Rotations)

Hard

Load-Support Connectivity (%) Across Tasks (Hard Difficulty)

ectiviy (%)

Load-Support Corn

Hard

Load-Support Directional Connectivity (%) Across Tasks (Hard Difficulty)

Load-Support Directional Connectivty (%)

sk

Hard

Average Isolated Clusters Count Across Tasks (Hard Difficulty)

0.040 - Claude Opus 4

= Claude Opus 4 (3 Rotations)
0035
0030
002

0020

0015

Average tsolated Clusters Count

Physics-Approximating Metrics 1/1

Force Path Cost Average Efficiency Ratio
Easy

Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty)

= Claude Opus 4
= Claude Opus 4 (3 Rotations)

0010
0.005 l

S & B S & &
& & & @‘& ‘bf & &
& K K K & & K
T
Hard

Load-Support Directional Connectivity (%) Across Tasks (Hard Difficulty)

nectivity (%)

Load:Support Directional Conr

Figure 13: Grid rotation evaluation results: Load-Support Connectivity, Directional Load-Support
Connectivity, Average Isolated Cluster Count and Force Path Cost Average Efficiency Ratio for
Claude Opus 4, for all tasks, easy and hard difficulty.
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Table 5: Grid rotation evaluation run results for all metrics for Claude Opus 4, for all tasks, easy and
hard difficulty.

Easy Hard
Task Metric Claude Opus 4 Claude Opus 4 (3 Rotations) | Claude Opus 4 Claude Opus 4 (3 Rotations)
1 Random Cell Exact Match 82 82 77 80
Difference Ratio (%) T 99.05 99.02 95.45 97.24
Relative Difference Ratio (%) T 99.05 99.02 96.72 98.32
Penalized Difference Ratio (%) T 98.40 98.47 93.11 95.60
Average Difficulty Score 199 1.99 196 1.87
Difficulty Weighted Difference Ratio (%) 65.51 65.40 60.97 59.80
Difficulty Weighted Relative Difference Ratio (%) T~ 65.51 65.40 62.25 60.88
Valid Output Grid 100.00 100.00 99.00 100.00
Load-Support Connectivity (%) T 100.00 100.00 98.00 100.00
Load-Support Directional Connectivity (%) T 100.00 86.00 98.00 84.00
Average Isolated Clusters Count | 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 99.94 99.72 97.91 100.00
5 Random Cells Exact Match 45 44 38 41
Difference Ratio (%) 1 95.76 95.54 87.27 87.23
Relative Difference Ratio (%) 95.76 95.54 91.58 91.71
Penalized Difference Ratio (%) T 89.26 90.06 78.42 80.79
Average Difficulty Score 189 1.89 197 205
Difficulty Weighted Difference Ratio (%) 59.89 59.91 56.17 58.59
Difficulty Weighted Relative Difference Ratio (%) T 59.89 59.91 59.65 62.07
Valid Output Grid 1 100.00 100.00 100.00 99.00
Load-Support Connectivity (%) T 100.00 100.00 100.00 95.00
Load-Support Directional Connectivity (%) 1 100.00 87.00 100.00 75.00
Average Isolated Clusters Count |. 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 1 99.70 98.20 99.49 95.37
10 Random Cells ~ Exact Match 15 2 13 18
Difference Ratio (%) T 89.08 91.02 69.70 7357
Relative Difference Ratio (%) T 89.08 91.02 79.91 85.93
Penalized Difference Ratio (%) T 76.41 80.78 49.33 65.62
Average Difficulty Score 197 1.94 2.01 2.00
Difficulty Weighted Difference Ratio (%) 58.23 58.52 45.17 47.31
Difficulty Weighted Relative Difference Ratio (%) T~ 58.23 58.52 52.88 56.59
Valid Output Grid 100.00 100.00 99.00 100.00
Load-Support Connectivity (%) T 100.00 100.00 93.00 96.00
Load-Support Directional Connectivity (%) 1 100.00 86.00 93.00 80.00
Average Isolated Clusters Count | 0.00 0.00 0.01 0.00
Force Path Cost Average Efficiency Ratio (%) 99.06 94.41 91.98 95.00
1 Random Row Exact Match 52 42 49 39
Difference Ratio (%) T 94.92 93.30 80.55 71.92
Relative Difference Ratio (%) 94.92 93.30 94.39 9171
Penalized Difference Ratio (%) T 94.92 93.30 94.39 91.71
Average Difficulty Score 194 198 192 197
Difficulty Weighted Difference Ratio (%) T 61.04 61.36 49.95 4577
Difficulty Weighted Relative Difference Ratio (%) 1 61.04 61.36 60.02 60.12
Valid Output Grid 1 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) T 100.00 100.00 99.00 98.00
Load-Support Directional Connectivity (%) 1 100.00 82.00 99.00 82.00
Average Isolated Clusters Count |. 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 1 99.88 100.00 98.92 98.85
3 Random Rows Exact Match 35 17 21 16
Difference Ratio (%) T 88.64 82.19 32,01 21.98
Relative Difference Ratio (%) T 88.64 82.19 84.70 70.12
Penalized Difference Ratio (%) T 88.64 82.19 84.70 70.12
Average Difficulty Score 189 1.89 199 1.96
Difficulty Weighted Difference Ratio (%) 55.81 51.60 17.50 11.08
Difficulty Weighted Relative Difference Ratio (%) T 55.81 51.60 55.67 4435
Valid Output Grid 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) T 100.00 94.00 97.00 88.00
Load-Support Directional Connectivity (%) 1 100.00 82.00 97.00 78.00
Average Isolated Clusters Count | 0.00 0.03 0.00 0.04
Force Path Cost Average Efficiency Ratio (%) 99.68 96.39 96.97 95.42
1 Random Column  Exact Match 23 27 33
Difference Ratio (%) T 83.09 84.86 61.54
Relative Difference Ratio (%) T 83.09 84.86 79.72
Penalized Difference Ratio (%) T 7351 75.48 60.26
Average Difficulty Score 190 202 1.85
Difficulty Weighted Difference Ratio (%) 50.85 54.04 14.68 27.37
Difficulty Weighted Relative Difference Ratio (%) T 50.85 54.04 37.62 44.46
Valid Output Grid 1 100.00 100.00 99.00 100.00
Load-Support Connectivity (%) T 100.00 97.00 97.00 95.00
Load-Support Directional Connectivity (%) 1 100.00 86.00 97.00 77.00
Average Isolated Clusters Count |. 0.00 0.05 0.00 0.03
Force Path Cost Average Efficiency Ratio (%) 1 94.90 92.78 84.17 9351
3 Random Columns ~ Exact Match 1 5 2 7 6
Difference Ratio (%) T 58.69 60.16 -17.63 -18.77
Relative Difference Ratio (%) T 58.69 60.16 3178 36.93
Penalized Difference Ratio (%) T 27.96 30.59 “43.98 -38.28
Average Difficulty Score 1.8 1.96 190 2.01
Difficulty Weighted Difference Ratio (%) 3452 37.29 -22.99 2191
Difficulty Weighted Relative Difference Ratio (%) T 34.52 37.29 14.44 20.53
Valid Output Grid 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) T 94.00 84.00 93.00 89.00
Load-Support Directional Connectivity (%) 1 94.00 68.00 93.00 73.00
Average Isolated Clusters Count | 0.00 0.01 0.00 0.01
Force Path Cost Average Efficiency Ratio (%) 88.28 84.62 77.05 82.98
Full Exact Match 0 1
Difference Ratio (%) T . : -466.42 -403.39
Relative Difference Ratio (%) T -35.78 -32.88 -177.48 -136.14
Penalized Difference Ratio (%) T 35.78 -32.96 -177.48 -138.43
Average Difficulty Score 192 195 1.96 193
Difficulty Weighted Difference Ratio (%) 2179 -20.08 -310.26 -266.48
Difficulty Weighted Relative Difference Ratio (%) T -21.79 -20.08 1717 90.28
Valid Output Grid 1 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) T 94.00 94.00 88.00 77.00
Load-Support Directional Connectivity (%) 1 94.00 72.00 88.00 74.00
Average Isolated Clusters Count |. 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 1 90.33 81.69 87.83 86.43
Average Exact Match 3212 29.50 29.25
Difference Ratio (%) T 71.68 71.65 -1.08
Relative Difference Ratio (%) T 71.68 7165 . 5229
Penalized Difference Ratio (%) T 64.16 64.74 2627 35.92
Average Difficulty Score 192 1.95 198 1.95
Difficulty Weighted Difference Ratio (%) 4551 46.01 -11.10 -4.81
Difficulty Weighted Relative Difference Ratio (%) T 45.51 46.01 28.17 3234
Valid Output Grid 100.00 100.00 99.62 99.88
Load-Support Connectivity (%) T 98.50 96.12 95.62 9225
Load-Support Directional Connectivity (%) 1 98.50 8112 95.62 77.88
Average Isolated Clusters Count | 0.00 0.01 0.00 0.01
Force Path Cost Average Efficiency Ratio (%) 96.47 93.48 91.79 93.44
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H ADDITIONAL FEW-SHOT EXPERIMENT RESULTS

H.1 PROMPT AND COMPLETION - 1 RANDOM CELL EASY: 1-SHOT

Prompt and Completion - 1 Random Cell Easy: 1-Shot

Prompt :
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
— 'L’ indicates applied load.
— 'V’ indicates void.
- 'S’ indicates support.
The goal is to predict the correct material distribution by filling in all 'V’ cells
with either ’1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).
Example input grid with masked regions:

L LLL

11

el e
el e

888 8
Corresponding completed output grid:
LLLL
11

N N e
N N e

S SSS S
Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.
Below is the input grid with masked regions:
LLL
1

1
1
1
S S S S SSS S
Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .
Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.
Model Completion (differences in red):
LLL

[ N e e
e e

[

B e
[ N
o

S 8 8 ISIESIES IS IS
Ground Truth:
L LL

R N

0P e e
[

S S S S
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H.2 PROMPT AND COMPLETION - 1 RANDOM CELL EASY: 3-SHOT

Prompt and Completion - 1 Random Cell Easy: 3-Shot

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
- 'S’ indicates support.
The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).
Example input grid with masked regions:

LLLL

11

e el
el

$§ 8 8 8 8
Corresponding completed output grid:
LLLL
1

[

I R e
el e e

S S S S
Example input grid with masked regions:
LLL

QS Gy

111
111
1ssSs
Corresponding completed output grid:
LLL
1

el el e

(IS

1

1

S S

ut grid with masked regions:
L

Example in
L L

1

1

e e e e e e e S
o o o B

B e
e

8§ 888888
Corresponding completed output grid:
LLLLL
1 1
1 1

i

[ R N N

(GRS
(R
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Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.
Below is the input grid with masked regions:
LLL
1

1 1
1 1
1 1
g 8 8 ISERSIESEECIES!
Please output the completed grid by replacing all 'V’ cells with either ’1’ (solid) or "0’
(empty) .
Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.
Model Completion (differences in red):
L LL

[ R R S

[y

e
[ N
B e

SIS $8 88 8
Ground Truth:
LLL

I e N L

0 e

S S S S
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H.3 RESULTS FOR CLAUDE OPUS 4 ON ALL TASKS

Few-Shot Evaluation Results

Reconstruction Accuracy Metrics 1/2

(Few Shot 1)
(Few Shot 3)

= Claude Opu
(Few Shot 1) = Claude Opus.
(Few Shot 3) = Claude Opu

Exact Match

2875 Difference Ratio Easy

2876 Difference Ratio (%) Across Tasks (Easy Difficulty) Difference Ratio (%) Across Tasks (Hard Difficulty)

2877

2878
2879
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- Claude Opus 4
= Claude Opus 4 (Few Shot 1)
= Claude Opus 4 (Few Shot 3)

Difference Ratio (%)
Difference Ratio (%)
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2884 Relative Difference Ratio Easy Hard
Relative Difference Ratio (%) Across Tasks (Easy Difficulty) Relative Difference Ratio (%) Across Tasks (Hard Difficulty)
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2907 Figure 14: Few-shot (1, 3) evaluation results: Exact Match, Difference Ratio, Relative Difference
200s  Ratio and Penalized Difference Ratio for Claude Opus 4, for all tasks, easy and hard difficulty.
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Few-Shot Evaluation Results
Reconstruction Accuracy Metrics 2/2
Average Difficulty Score Easy Hard

Average Difficulty Score Across Tasks (Easy Difficulty) Average Difficulty Score Across Tasks (Hard Difficulty)

sa
(Few shot 1) s 4 (Few Shot 1)
s 4 (Few Shot 3) fe Opus 4 (Few Shot 3)

sk sk
Difficulty Wighted Difference Ratio Hard
Difficulty Weighted Difference Ratio (%) Across Tasks (Easy Difficulty) Difficulty Weighted Difference Ratio (%) Across Tasks (Hard Difficulty)

- Claude Opus ¢
= Claude Opus 4 (Few Shot 1)
= Claude Opus 4 (Few Shot 3)

Diffcuty Weighted Difference Ratio (%)

Difficulty Wighted Relative Difference Ratio

. Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Easy Difficulty) . Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Hard Difficulty)
= Claude Opus 4 = Claude Opus 4
= Claude Opus 4 (Few Shot 1) = Claude Opus 4 (Few Shot 1)

= Claude Opus 4 (Few Shot 3) = Claude Opus 4 (Few Shot 3)

Diffcuty Weighted Relatve Difference Ratio (%)

Toplogy Validity Metrics 1/2
Grid Validity Easy Hard

Valid Output Grid (%) Across Tasks (Easy Difficulty)

Valid Output Grid (%) Across Tasks (Hard Difficulty)

Valid Output Grid (%)

Figure 15: Few-shot (1, 3) evaluation results: Average Difficulty Score, Difficulty Weighted Differ-
ence Ratio, Difficulty Weighted Relative Difference Ratio and Grid Validity for Claude Opus 4, for
all tasks, easy and hard difficulty.
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Few-Shot Evaluation Results

Topology Validity Metrics 2/2

Load-Support Connectivity Easy Hard

Load-Support Connectivity (%) Across Tasks (Easy Difficulty) Load-Support Connectivity (%) Across Tasks (Hard Difficulty)

= Claude Opus 4
= Claude Opus 4 (Few Shot 1)
= Claude Opus 4 (Few Shot 3)

= Claude Opus 4 (Few Shot 3)

LoadSupport Connectivity (%)
LoadSupport Connectiviy (%)

Tk Tk

Directional Load-Support Connectivity Hard

Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty) Load-Support Directional Connectivity (%) Across Tasks (Hard Difficulty)

100

Claude Opus 4 (Few Shot 1)
e Claude Opus 4 (Few Shot 3) = Claude Opus 4 (Few Shot 3)

Load:Support Directional Connectivity ()

Load:Support Directional Connectivity (%)

0
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Average Isolated Cluster Count Hard

Average Isolated Clusters Count Across Tasks (Easy Difficulty) Average Isolated Clusters Count Across Tasks (Hard Difficulty)
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= Claude Opus 4 (Few Shot 3 = Claude Opus 4 (Few Sht 3
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Physics-Approximating Metrics 1/1

Force Path Cost Average Efficiency Ratio
Easy Hard

Force Path Cost Average Efficiency Ratio (%) Across Tasks (Easy Difficulty) Force Path Cost Average Efficiency Ratio (%) Across Tasks (Hard Difficulty)

= Claude Opus ¢
= Claude Opus 4 (Few Shot 1)
= Claude Opus 4 (Few Shot 3)

= Claude Opus 4 (Few Shot 3)

Force Path Cost Average Effciency Ratio (%)
Force Path Cost Average Effciency Ratio (%)
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Figure 16: Few-shot (1, 3) evaluation results: Load-Support Connectivity, Directional Load-Support
Connectivity, Average Isolated Cluster Count and Force Path Cost Average Efficiency Ratio for
Claude Opus 4, for all tasks, easy and hard difficulty.
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Table 6: Few-shot (1, 3) evaluation results for all metrics, for Claude Opus 4, for all tasks, easy and
hard difficulty.

Easy Hard

Task Metric Claude Opus 4 (Zero-Shot)  Claude Opus 4 (1-Shot) _ Claude Opus 4 (3-Shot) | Claude Opus 4 (Zero-Shot)  Claude Opus 4 (1-Shot)  Claude Opus 4 (3-Shot)

1 Random Cell Exact Match 1 82 90 90 77 83 88
Difference Ratio (%) T 99.05 99.51 99.50 9545 97.64 9833
Relative Difference Ratio (%) 99.05 9951 99.50 96.72 98.28 99.13
Penalized Difference Ratio (%) 98.40 9893 99.03 9311 9520 91.72
Average Difficulty Score 1.99 1.99 1.99 196 209 1.89
Difficulty Weighted Difference Ratio (%) 51 6592 65.88 6097 6745 61.43
Difficulty Weighted Relative Difference Ratio (%) T 65.92 65.88 6225 68.09 6222
Valid Output Grid 100.00 100.00 99.00 100.00 100.00
Load-Support Connectivity (%) 100.00 100.00 98.00 99.00 99.00
Load-Support Directional Connectivity (%) * 100.00 100.00 98.00 99.00 99.00
Average Isolated Clusters Count | 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 99.94 99.95 9791 98.96 99.00

5 Random Cells Exact Match 7 49 63 38 49 62
Difference Ratio (%) 96.53 9725 87.27 88.28 91.85
Relative Difference Ratio (%) 9653 9725 9158 92.10 9551
Penalized Difference Ratio (%) 92.90 93.93 7842 8015 88.27
Average Difficulty Score 192 1.88 197 201 204
Difficulty Weighted Difference Ratio (%) 6173 60.69 56.17 58.62 61.94
Difficulty Weighted Relative Difference Ratio (%) T 6173 60.69 59.65 6159 64.85
Valid Output Grid 100.00 100.00 100.00 99.00 100.00
Load-Support Connectivity (%) 100.00 100.00 100.00 99.00 100.00
Load-Support Directional Connectivity (%) T 100.00 100.00 100.00 99.00 100.00
Average Isolated Clusters Count 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 1 99.66 99.87 99.49 98.89 99.90

10 Random Cells ~ Exact Match 1. 28 44 13 33 42
Difference Ratio (%) T 9263 9431 69.70 82.11 85.88
Relative Difference Ratio (%) 92.63 9431 7991 8957 92.63
Penalized Difference Ratio (%) 8437 88.11 49.33 73.32 s1.11
Average Difficulty Score 196 1.94 201 198 199
Difficulty Weighted Difference Ratio (%) T 6024 60.77 4517 5292 56.05
Difficulty Weighted Relative Difference Ratio (%) 60.24 60.77 52.88 58.43 61.07
Valid Output Grid 100.00 100.00 99.00 100.00 100.00
Load-Support Connectivity (%) 100.00 100.00 93.00 99.00 100.00
Load-Support Directional Connectivity (%) 100.00 100.00 93.00 99.00 100.00
Average Isolated Clusters Count 0.00 0.00 0.01 0.00 0.0
Force Path Cost Average Efficiency Ratio (%) 9932 99.37 91.98 98.41 9955

1 Random Row Exact Match 7 67 75 49 54 56
Difference Ratio (%) 1 96.86 97.72 8055 8372 7200
Relative Difference Ratio (%) 96.86 91.72 9439 9725 90.29
Penalized Difference Ratio (%) 96.86 9172 9439 97.25 82.61
Average Difficulty Score 1.91 1.90 1.92 1.98 198
Difficulty Weighted Difference Ratio (%) 6129 6166 4995 5353 45.64
Difficulty Weighted Relative Difference Ratio (%) T 61.29 6166 60.02 6378 5935
Valid Output Grid 100.00 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) 100.00 99.00 99.00 100.00 100.00
Load-Support Directional Connectivity (%) T 100.00 99.00 99.00 100.00 100.00
Average Isolated Clusters Count 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 1 99.96 98.85 9892 99.99 99.84

3 Random Rows Exact Match 35 46 21 28 30
Difference Ratio (%) T 89.67 91.83 3201 4588 60.79
Relative Difference Ratio (%) 89.67 91.83 84.70 8971 9224
Penalized Difference Ratio (%) 89.67 91.83 84.70 89.71 89.97
Average Difficulty Score 1.94 1.92 199 2.00 197
Difficulty Weighted Difference Ratio (%) T 57.69 5832 17.50 2729 3805
Difficulty Weighted Relative Difference Ratio (%) T 57.69 5832 55.67 5927 60.37
Valid Output Grid 100.00 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) 99.00 99.00 97.00 99.00 99.00
Load-Support Directional Connectivity (%) 1 99.00 99.00 97.00 99.00 99.00
Average Isolated Clusters Count 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 98.49 98.62 9697 9875 98.73

1 Random Column  Exact Match 34 52 21 34 39
Difference Ratio (%) 1 89.98 93.14 37.46 67.96 69.20
Relative Difference Ratio (%) 89.98 93.14 62.68 84.74 8673
Penalized Difference Ratio (%) 82.16 88.94 3165 7311 7856
Average Difficulty Score 1.95 1.86 213 1.98 207
Difficulty Weighted Difference Ratio (%) 56.22 56.20 14.68 37.66 4122
Difficulty Weighted Relative Difference Ratio (%) T 56.22 56.20 37.62 53.13 51.79
Valid Output Grid 100.00 99.00 99.00 100.00 100.00
Load-Support Connectivity (%) 100.00 99.00 97.00 99.00 97.00
Load-Support Directional Connectivity (%) T 100.00 99.00 97.00 99.00 97.00
Average Isolated Clusters Count 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 98.74 98.65 84.17 98.62 96.66

3 Random Columns  Exact Match 1 5 17 7 8 s
Difference Ratio (%) T 7250 78.86 -17.63 045 24.33
Relative Difference Ratio (%) 7250 78.86 3178 49.90 65.66
Penalized Difference Ratio (%) 49.17 65.13 43.98 7.40 3172
Average Difficulty Score 193 1.96 190 1.96 188
Difficulty Weighted Difference Ratio (%) T 4521 50.03 -22.99 10.19 745
Difficulty Weighted Relative Difference Ratio (%) T 4521 50.03 14.44 2898 38.82
Valid Output Grid 100.00 100.00 100.00 100.00 100.00
Load-Support Connectivity (%) 94.00 97.00 98.00 93.00 84.00 94.00
Load-Support Directional Connectivity (%) 1 94.00 97.00 98.00 93.00 84.00 94.00
Average Isolated Clusters Count | 0.00 0.00 0.00 000 0.04 0.0
Force Path Cost Average Efficiency Ratio (%) 88.28 95.82 96.94 7105 79.48 9220

Full Exact Match 7 0 0 4 0
Difference Ratio (%) T -14.18 23.06 -240.02
Relative Difference Ratio (%) -14.18 23.06 441
Penalized Difference Ratio (%) 14.18 23.06 177.48 441
Average Difficulty Score 194 1.91 1.96 1.96 2.00
Difficulty Weighted Difference Ratio (%) * 2 872 14.96 -310.26 -195.92 5
Difficulty Weighted Relative Difference Ratio (%) 1 -21.79 8.72 14.96 117.17 19.24
Valid Output Grid 100.00 100.00 100.00 100.00 99.00
Load-Support Connectivity (%) 94.00 100.00 98.00 88.00 91.00
Load-Support Directional Connectivity (%) T 94.00 100.00 98.00 88.00 91.00
Average Isolated Clusters Count | 0.00 0.00 0.00 0.00 0.00
Force Path Cost Average Efficiency Ratio (%) 90.33 97.86 96.77 8783 90.10

Average Exact Match 7 32.12 38.50 48.88 2825 36.12
Difference Ratio (%) T 7168 7194 84.46 -10.20 2160
Relative Difference Ratio (%) 7168 7794 84.46 4553 7173
Penalized Difference Ratio (%) 64.16 7248 8097 2627 61.05
Average Difficulty Score 1.92 194 1.92 1.98 1.99
Difficulty Weighted Difference Ratio (% 4551 49.95 53.56 11.10 11.42
Difficulty Weighted Relative Difference Ratio (%) 1 45.51 4995 5356 2817 4675
Valid Output Grid 100.00 100.00 99.88 99.62 99.75
Load-Support Connectivity (%) 98.50 99.50 99.12 95.62 9625
Load-Support Directional Connectivity (%) T 98.50 99.50 99.12 95.62 96.25
Average Isolated Clusters Count | 0.00 0.00 0.00 0.00 0.01
Force Path Cost Average Efficiency Ratio (%) 1 96.47 98.72 98.63 91.79 95.40
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I ADDITIONAL PHYSICS-ENHANCED AND -NEUTRAL EXPERIMENT RESULTS

1.1 PROMPT AND COMPLETION - 1 RANDOM CELL EASY: PHYSICS-NETURAL

Prompt and Completion - 1 Random Cell Easy: Physics-Netural

Prompt :

You are given a grid of cells. Each cell can have one of the following states:
— 'L’ indicates a special marker.

- 'V’ indicates an empty cell.

— 'S’ indicates a fixed marker.

The goal is to predict the correct grid configuration by filling in all 'V’ cells with
either ’1’ (solid) or ’'0’ (empty), based on the surrounding structure and general
consistency rules.

Relevant rules for reasoning:

— Filled cells should form continuous connections between relevant markers when necessary.
— Avoid placing isolated filled cells that are not connected to anything meaningful.

— Minimize the number of filled cells while maintaining a coherent and connected
structure.

Below is the input grid with masked regions:

L L

e
Ll ]

11
S S S

i S e e S R e |

Please output the completed grid by replacing all 'V’ cells with either ’1’ (solid) or "0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

LLLLL

1

1

[
[

N e SR SR S

11
S S S
Ground Truth:

LLLLTL
1 1
1 1

e R e

n -
n -
[92]
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1.2 PROMPT AND COMPLETION - 1 RANDOM CELL EASY: PHYSICS-ENHANCED

Prompt and Completion - 1 Random Cell Easy: Physics-Enhanced

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Relevant physical knowledge for reasoning:

— Loads (’'L’) create forces that must be transferred through continuous material paths to
supports (’S’).

— Stress follows the shortest stiff path from loads to supports.

— Any material cell that is disconnected from both loads and supports does not carry force
and should be avoided.

- Structures should satisfy equilibrium: all loads must eventually be resisted by at
least one support.

— Use as little material as possible while still maintaining at least one valid load path.

Below is the input grid with masked regions:

00LLL

[y

I

1
1
1
S

0

S S S S S S
Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .
Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.
Model Completion (differences in red):
00LLL
1

[
L e e e N

1

1

1
S 8 $ 8 88 8
Ground Truth:
00LLL

[ N N

[
[

S SsSSs
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3186
3187
3188 Physics Enhanced and Neutral Prompt Comparison Evaluation Results
3189
3190

1.3 RESULTS FOR CLAUDE OPUS 4 ON ALL TASKS

Reconstruction Accuracy Metrics 1/2
Exact Match Easy Hard

3191 00 Exact Match Across Tasks (Easy Difficulty) . Exact Match Across Tasks (Hard Difficulty)
= Gemini 25 Pro = Gemini 25 Pro
= Gemini 2.5 ro (Physics Enhanced Prompt) == Gemini 2.5 ro (Physics Enhanced Prompt)

3193

3194 g
319 T s B

3196 © B 8
3197 - - ~
3198 S S
3199 Difference Ratio Easy

3200 00 Difference Ratio (%) Across Tasks (asy Difficulty) . Difference Ratio (%) Across Tasks (Hard Difficuity)

- Gemini 25 Pro - Gemini 25 Pro

Exact Match

= Gemini 2.5 Pro (Physics Enhanced Prompt) = Gemini 2.5 Pro (hysics Enhanced Prompt)
3201 ‘Gemini 2.5 Pro (Physics Neutral Prompt) ‘Gemini 2.5 Pro (Physics Neutral Prompt)

3202
3203
3204
3205
3206
3207 K

3208 Relative Difference Ratio Eas;/
3209 - Rt e 0 s s o i) . PenalizedDiferenceRato (%) Actos Tasks (Hord Dty
3210 =
3211

3212
3213
3214
3215

3216 '
3217 Penalized Difference Ratio Easy Hard

Difference Ratio (%)

&

- Gemini 25 Pro
= Gemini 2.5 Pro (Physics Enhanced Prompt)
Gemnini 2.5 Pro (Physics Neutral Prompt)

Relative Difference Ratio (%)
Penalized Difference Ratio (%)

Penalized Difference Ratlo (%) Across Tasks (Easy Difficulty) . Penalized Difference Ratio (%) Across Tasks (Hard Difficuty)
= Gemin 2.5 Pro = Gemin 2.5 Pro
3218 = Gemini 2.5 Pro Physics Enhanced Prompt) = Gemini 2.5 Pro (Physics Enhanced Prompt)

Gemini 2.5 Pro (Physics Neutral Prompt) ‘Gemini 2.5 ro (Physics Neutral Prompt)

3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229

3230

3231 Figure 17: Physics-Enhanced and -Neutral evaluation run metric: Exact Match, Difference Ratio,
2090 Relative Difference Ratio and Penalized Difference Ratio for Claude Opus 4, for all tasks, easy and
404 hard difficulty.
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Physics Enhanced and Neutral Prompt Comparison Evaluation Results
Reconstruction Accuracy Metrics 2/2
Average Difficulty Score Easy Hard

Difference Ratio (%) Across Tasks (Easy Difficulty) Difference Ratio (%) Across Tasks (Hard Difficulty)

Gemini 25 Pro
Gemini 2.5 Pro (Physics Enhanced Prompt)
(Gemini 2.5 Pro (Physics Netral Prompt)

Difference Ratio (%)
Difference Ratio (%)

&

K

Tk

Difficulty Wighted Difference Ratio

0 Difficulty Weighted Difference Ratio (%) Across Tasks (Easy Difficulty) 00 Difficulty Weighted Difference Ratio (%) Across Tasks (Hard Difficulty)
- Gemini 25 Pro - Gemini 25 Pro
= Gemini 2.5 Pro (Physics Enhanced Prompt) = Gemini 2.5 Pro (Physics Enhanced Prompt)

‘Gemini 2.5 ro (Physics Neutral Prompt) ‘Gemini 2.5 ro (Physics Neutral Prompt)

Diffculty Weighted Difference Ratio (%)
Difficulty Weighted Difference Ratio (%)

Difficulty Wighted Relative Difference Ratio

0 Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Easy Difficulty) 00 Difficulty Weighted Relative Difference Ratio (%) Across Tasks (Hard Difficulty)
- Gemini 25 Pro - Gemini 25 Pro
= Gemini 2.5 Pro (hysics Enhanced Prompt) = Gemini 2.5 Pro (hysics Enhanced Prompt)
‘Gemini 2.5 Pro (Physics Neutral Prompt) ‘Gemini 2.5 Pro (Physics Neutral Prompt)

Diffcuty Weighted Relative Difference Ratio (%)

Toplogy Validity Metrics 1/2
Grid Validity Easy Hard

Valid Output Grid (%) Across Tasks (Easy Difficulty) Valid Output Grid (%) Across Tasks (Hard Difficulty)

Valid Output Grid (%)

Figure 18: Physics-Enhanced and -Neutral evaluation run metric: Average Difficulty Score, Difficulty
Weighted Difference Ratio, Difficulty Weighted Relative Difference Ratio and Grid Validity for
Claude Opus 4, for all tasks, easy and hard difficulty.
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Physics Enhanced and Neutral Prompt Comparison Evaluation Results
Topology Validity Metrics 2/2
Load-Support Connectivity Easy Hard

Load-Support Connectivity (%) Across Tasks (Easy Difficul

Load-Support Connectivity (%) Across Tasks (Hard Difficulty)

100

&

LoadSupport Connectivity (%)
LoadSupport Connectiviy (%)

¢ & & & & ¢ o <
g & Iy & . @f wf ﬂf ; &
Directional Load-Support Connectivity

Load-Support Directional Connectivity (%) Across Tasks (Easy Difficulty)

Load:Support Directional Connectivty ()

& 0 5
& & & <
&S o &
K & & <
B $ ~ >
e T
Average Isolated Cluster Count Hard
‘Average Isolated Clusters Count Across Tasks (Easy Difficulty) Average Isolated Clusters Count Across Tasks (Hard Difficulty)
c0s | jmm caminiz5 0 = cemin 2570
= Gamil 35 o PysicsEnhanced Frompt B o L S S SR
Gemint25 o P Nt Fomen it 25 o Py Nt Fomey
BOOS g T T e -
003
1
S —
g
kS
oa{ M B
& f@\‘ f‘y" Gy“
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~ B 5 B

Physics-Approximating Metrics 1/1

Force Path Cost Average Efficiency Ratio
Easy Hard

Force Path Cost Average Efficiency Ratio (%) Across Tasks (Easy Difficulty) Force Path Cost Average Efficiency Ratio (%) Across Tasks (Hard Difficulty)

Force Path Cost Average Effciency Ratio (%)
Force Path Cost Average Effciency Ratio (%)

Figure 19: Physics-Enhanced and -Neutral evaluation result: Load-Support Connectivity, Directional
Load-Support Connectivity, Average Isolated Cluster Count and Force Path Cost Average Efficiency
Ratio for Claude Opus 4, for all tasks, easy and hard difficulty.
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Table 7: Physics-Enhanced and -Neutral evaluation results for all metrics, for Claude Opus 4, for all
tasks, easy and hard difficulty.

Easy Hard
Task Metric Gemini 2.5 Pro (Base) _ Gemini 2.5 Pro (Physics-Enhanced Prompt) _ Gemini 2.5 Pro (Physics-Neutral Prompt) | Gemini 2.5 Pro (Base) _ Gemini 2.5 Pro (Physics-Enhanced Prompt) i 25 Pro (Physics-Neutral Prompt)
T Random Cell Exact Match 1 77 50 76 ) 71
Difference Ratio (%) 1 9893 9670 9120 9452
Relative Difference Ratio (%) 1 99, 9893 9788 222 9533
Penalized Difference Ratio (%) 9837 9720 9431 777 88.60
Average Difficulty Score 199 185 186 196 192
Difficulty Weighted Difference Ratio (%) 1 6547 6078 S8 5900 5930
Dty Weghted Relav Diflcce R (0 6547 6078 6001 6003 60.11
Valid Output Grid 1 100.00 00.00 100.00 100.00
Low: auvm. Connectivity (%) T 100.00 10000 10000 95.00
LoaiSogpont Dirtioual Comtivy (%)t 100.00 100.00 100.00 95.00
Average 1alted Clustrs Co 0.00 000 001 004
Force Pah Cost Average Efciony Rato (1 9994 983 9992 9493
SRandom Cells  Exact Match 1 39 a 37 37 %
Difference Ratio (%) 9508 9512 95.08 83.19 7981
Relative Difference Ratio (%) 1 9508 9512 95.08 8998 8592
Penalized Difference Ratio (%) 8850 8862 89.15 7562 6634
Average Difficulty Score 189 189 193 196 197
ifficulty Weighied Difference Ratio (%) 5948 5056 6093 5260 5132
Difficulty Weighted Relative Difference Ratio (%) 1 5948 5956 6093 5787 5585
Ve Qi G 1 100.00 100.00 100.00 99.00 95,00
Load-Support Connectivity (%) 100.00 100.00 100.00 98.00 96,00
Low Aupuorl Dirscional Lomlu.nwly @1 100.00 100.00 100.00 98.00 96,00
.00 0.00 0.00 003 002
Foree Pt Cos Avrae ity Rt () 975 975 973 9784 9555
10 Random Cells Exact Match T 13 13 n 14 7 7
Difference Ratio (%) 1 8888 89.86 88.77 6783 6428 6077
Relative Difference Ratio (%) 8888 8986 8877 82,80 77.50 7296
Penalized Difference Ratio (%) 1 621 7719 7570 5750 4408 3078
Average Difficulty Score 197 197 199 194 201 197
Difficulty Weighted Difference Ratio (%) 5806 58.69 s853 4199 als3 3861
Difficulty Weighted Relative Difference Ratio (%) 1 58.06 5869 58.53 5266 5113 743
alid Output Girid 1 100.00 100.00 100.00 100.00 99,00 99.00
Load-Support Connectivity (%) 100.00 100.00 97.00 100.00 95,00 9200
Load-Support Dircctional Connecivity (%) 1 100.00 100.00 97.00 100.00 9800 9200
Average Isolated Clusters Count 000 000 002 002 001 007
Force Path Cost Average Efficiency Ratio ()1 9931 934 96.19 934 9712 9107
TRandom Row  Exact Match 1 a“ 6 o0 m a2 38
Difference Ratio (%) 9390 94.56 9459 71.69 7225 6584
Relative Difference Ratio (%) 1 9390 9456 9459 9386 9055 8459
Penlized Difference Rt (%) 9390 9456 9459 9386 9055 6723
 Difficulty Score 194 194 189 199 192 199
Dy Weighed Diference o () 6055 6098 5959 4504 4452 247
Difficulty Weighted Relative Difference Ratio (%) 1 60.55 6098 5950 6191 5770 5645
Valid Output Girid 100.00 10000 100.00 100.00 100.00 99.00
Load-Support Connectivity (%) 100.00 100.00 99.00 100.00 99.00 9200
Load-Support Directional (mvm,;,(m(y @1 100.00 10000 20 100.00 99,00 9200
Average Isolated Clusters 0.00 000 .07
Foree P Cot Averge Einey Rato (501 9999 Shs 9196
3 Random Rows  Exact Match 9 29 n
Difference Ratio (%) 1 8409 8385 321
Relative Difference Ratio (%) .09 8385 7896
Penalized Difference Ratio (%) T 8284 8218 69.10
Average Difficulty Score 192 195 194
Diffuly Weighted Difference Rato () 1 5352 5434 19.13
culty Weighted Relative Difference Ratio (%) 1 5352 5340 5434 5091
V..hd Output Grid 1 99.00 9800 99.00 9
upport Comectiviy () 98.00 96.00 98.00 95.00
Lo Suppon Dieciona Conneetiiy (51 98.00 96.00 98.00 5.00
Average Isolated Clusters Count | 001 002 001 0.04
Force Path Cost Average Eificiency Ratio (%) 1 97.54 9588 9743 9445
T Random Column _ Exact Match 1 2 n n 17
Difference Ratio (%) T 8195 8045 69586 1841
Relatve Difference Ratio (%) 1 8195 8045 6986 4216
erenc 7055 7085 5794 57
y 185 190 188 208
Difficulty Weighted Difference Ratio (%) 1 4821 5024 4385 094
Difficulty Weighted Relative Difference Ratio (%) 1~ 4821 5024 4385 296
Valid Output Girid 98.00 9800 97.00 10000
Lowd Support Conneciiy (%) 1 98.00 98.00 96.00 94.00
ron imonl Comtivity ()1 98,00 98,00 9600 9400
Averase Toted s Coune . 000 001 0.03 007
Force Path Cost Average Efficiency Ratio (%) 1 97.30 9734 9536 924
3 Random Columns_ Exact Match 3 5
ifference Ratio (%) 60.60
Relative Difference Ratio (%) 1 6060
Penlized Difference Rt (%) 1 2947
Aversge Score 188
Di um d Difference Ratio (%) 1 3609
Diheuly Weghid Relve Dierece Rt (%) 3609
Valid Output Gr 99.00
oniSoppon Comectiviy () 97.00
Load-Support Dircctional Connecivity (%) T 97.00
Average Isolated Clusters Cor 001
Force Path Cost Average Effciency Ratio (%) 1 9526
Full Exact Match 0
Difference Ratio (%) 3034
Relative Difference Ratio (%) 1 3034
Penalized Difference Ratio (%) 3034
Average Difficulty Score .93
Difficulty Weighted Difference Ratio (%) 23,66
Difficulty Weighted Relative Difference Ratio (%) 2366
Valid Output Girid 1 98.00
Lowd-Support Conneciiy (%) 98.00
Load-Support Directional Connecivity (%) 1 98,00
Ang Heoaed Clusers Coun | 000 117
Force Path Cost Average Eificiency Ratio (%) 1 95.30 8143
Average Exact Match 1 2038
Difference Ratio () 045
Relative Difference Ratio (%) 1 70.45
Penalized Difference Ratio (%) 6240
Average Difficulty Score 192 191 98
Difficulty Weighted Difference Ratio (%) 1 4500 4340 -16.16
Difficulty Weighted Relative Difference Ratio (%) 4500 4440 1270
Valid Output Girid 1 9912 9950 9938
Load-Support Connectivity (%) 9838 98.00 9138
Load-Support Directional Connectivity (%) 1 9838 9800 9138
Average Isolated Clusters Count | 001 002 0.08
Force Path Cost Average Efficiency Ratio (%) 1 9759 97.06 9343 8943
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J SAMPLE PROMPTS & COMPLETIONS

J.1 CLAUDE 3.7 SONNET - 1 RANDOM CELL EASY: SAMPLE 1

Claude 3.7 Sonnet - 1 Random Cell Easy: Sample 1

Prompt :

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

— 'L’ indicates applied load.

— 'V’ indicates void.

- 'S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either ’1’ (solid) or ’'0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

LLL
1

[
[ R =

1
1
1
S S S SSS S
Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’'0’
(empty) .
Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLL

[y

[ e

1
1
1
S

0 e

S S S S S S

Ground Truth:
LLL

[

[ e e e

0P
[ PR

S S S S
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J.2 CLAUDE 3.7 SONNET - 1 RANDOM CELL EASY: SAMPLE 2

Claude 3.7 Sonnet - 1 Random Cell Easy: Sample 2

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

L L

LG

I
[N
[
e
o

1
S S

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

LLL

1

1

1

1

1111

11111
11111
111111

888881

Ground Truth:
L

(G o o

[N
[
(SR
i
o
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J.3 CLAUDE 3.7 SONNET - 1 RANDOM CELL HARD

Claude 3.7 Sonnet - 1 Random Cell Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with

a floating point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2,
1.0), based on the surrounding structure and implicit physical reasoning (such as load
paths, supports, and forces).

Important: The completed structure should use as little material as possible while

remaining stable and plausible for carrying the applied forces. Minimize material usage

unless necessary for structural support.
Below is the input grid with masked regions:

L L

Ooo0ooooot
NN RGNS NGNS

n o o
SR
n O o
0 o
o o o
- oo

S

Please output the completed grid by replacing all 'V’ cells with a floating point number

between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0).

Maintain the same format as the input: one row per line, cells separated by spaces, and

the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L
0.5
0.5
0.5
0.5
0.3 0.5
0.6
0.1 0.6 0.6 0.6
0.7 0.2 0.8
S S} S 0.1
Ground Truth:
L L L
0.5
0.5
0.5
0.5
0.5
0.6
0.1 0.6 0.6 0.6
0.7 0.2 0.8
S S S ©.d
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J.4 CLAUDE 3.7 SONNET - FULL EASY

Claude 3.7 Sonnet - Full Easy

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

LLLLL

S SSSSS

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
L LLL

[ N Y
WMrroooooorH
NP OOOO OO
nH-HoOo0ooooor
[0 I e e e e e i )

S|
Ground Truth:
LLLLTL
1 1
1 1

[ N N

w0
w0
w0
w0
0
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J.5 CLAUDE 3.7 SONNET - FULL HARD

Claude 3.7 Sonnet - Full Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with

a floating point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2,
1.0), based on the surrounding structure and implicit physical reasoning (such as load
paths, supports, and forces).

Important: The completed structure should use as little material as possible while

remaining stable and plausible for carrying the applied forces. Minimize material usage

unless necessary for structural support.
Below is the input grid with masked regions:

L LLLLLTL L L

S SSss

Please output the completed grid by replacing all 'V’ cells with a floating point number

between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0).

Maintain the same format as the input: one row per line, cells separated by spaces, and

the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L L L L L L L
0.1 0.2 0.6 0.6 0.2 0.1 0.0
0.2 0.3 0.8 0.8 0.3 0.2
0.3 0.51.0 1.0 0.5 0.3
0.4 0.7 1.0 1.0 0.7 0.4
0.5 0.9 1.0 1.0 0.9 0.5
0.6 1.0 1.0 1.0 1.0 0.6
0.7 1.0 1.0 1.0 1.0 0.7
0.9 1.0 1.0 1.0 1.0 0.9
S S S S} S
Ground Truth:
L L L L L L L L L
0.2 0.3 0.3 0.3 0.2
0.4 0.2 0.3 0.2 0.4
0.2 0.4 0.4 0.2
0.4 0.4
0.2 0.5 0.2
0.6
0.6
0.6
S S S S S
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J.6 DEEPSEEK-R1 - 1 RANDOM CELL EASY: SAMPLE 1

DeepSeek-R1 - 1 Random Cell Easy: Sample 1

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

LLL
1

NP PR e

1
1
1
S

0P

SIS S 8 8 8

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLL

[y

[
R N

1
1
1
S 8 $ 8 88 8
Ground Truth:
L LL

-

[ N

[
[

S SSSs
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J.7 DEEPSEEK-R1 - 1 RANDOM CELL EASY: SAMPLE 2

DeepSeek-R1 - 1 Random Cell Easy: Sample 2

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage

unless necessary for structural support.

Below is the input grid with masked regions:

LLLLLTL
1111
11
11
111
1111
v 1111
11111
1111
1sss

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLLLLL

1111
11
11
111
1111
1 1111
11111
1111
188 8
Ground Truth:
LLLLLTL
111
11
11
111
1111
1111
11111
1111
1888

70



Under review as a conference paper at ICLR 2026

J.8 DEEPSEEK-R1 - 1 RANDOM CELL HARD

DeepSeek-R1 - 1 Random Cell Hard

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
a floating point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ...,
1.0), based on the surrounding structure and implicit physical reasoning (such as load
paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

L L

cOoo0oooo ot
NN RGN NGNS

n o o
Sk
n O o
0 o
o o o
- o o

S

Please output the completed grid by replacing all 'V’ cells with a floating point number
between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0).

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L
0.5
0.5
0.5
0.5
0.3 0.5
0.6
0.1 0.6 0.6 0.6
0.7 0.2 0.8
S S S| 0.1
Ground Truth:
L L L
0.5
0.5
0.5
0.5
0.5
0.6
0.1 0.6 0.6 0.6
0.7 0.2 0.8
S S S 0.1
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J.9 DEEPSEEK-R1 - FULL EASY

DeepSeek-R1 - Full Easy

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

— 'V’ indicates void.

- 'S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either ’1’ (solid) or ’'0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

LLLLL

SSSSSS

Please output the completed grid by replacing all 'V’ cells with either ’1’ (solid) or ’'0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
L L L

e e ==
[ R R S
[ R e e S
[ R = S O S S ]
[ e e e
[ el e e e
[ e e e
e e S N
e e
e e

Ground Truth:
LLLLL

1 1

1 1

R N

[}
2]
[92]
[92]
[92]
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J.10 DEEPSEEK-RI1 - FULL HARD

DeepSeek-R1 - Full Hard

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
a floating point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ...,
1.0), based on the surrounding structure and implicit physical reasoning (such as load
paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

L LLLLLTL L L

S SSSss

Please output the completed grid by replacing all 'V’ cells with a floating point number
between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0).

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L L L L L L L
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0
0.0
0.0
S| S| S S; S|
Ground Truth:
L L L L L L L L L
0.2 0.3 0.3 0.3 0.2
0.4 0.2 0.3 0.2 0.4
0.2 0.4 0.4 0.2
0.4 0.4
0.2 0.5 0.2
0.6
0.6
0.6
S S S S S
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J.11 GPT-4.1 - 1 RANDOM CELL EASY: SAMPLE 1

GPT-4.1 - 1 Random Cell Easy: Sample 1

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage
unless necessary for structural support.

Below is the input grid with masked regions:

LLL
1

NP PR e

1
1
1
S

0P

SIS S 8 8 8

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLL

[y

[
R N

1
1
1
S 8 $ 8 88 8
Ground Truth:
L LL

-

[ N

[
[

S SSSs
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J.12 GPT-4.1 - 1 RANDOM CELL EASY: SAMPLE 2

GPT-4.1 - 1 Random Cell Easy: Sample 2

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit
physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces. Minimize material usage

unless necessary for structural support.

Below is the input grid with masked regions:

LLLLLTL
1111
11
11
111
1111
v 1111
11111
1111
1sss

Model Completion (differences in red):
LLLLLTL
1111

e
el e
e
e e

0=
[

Ground Truth:
LLLLLTL
11

e e e
[ N S S S
e e e
R e e e
(R
[N
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J.13 GPT-4.1 - 1 RANDOM CELL HARD

GPT-4.1 — 1 Random Cell Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
a floating-point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, ...,
1.0), based on the surrounding structure and implicit physical reasoning (such as load

paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

L

ooy vl

Please output the completed grid by replacing all 'V’ cells with a floating-point number
between 0 and 1.

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L
0.5
0.5
0.5
0.5
0.3 0.5
0.6
0.6 0.6 0.6
5] S S| 0.1
Ground Truth:
L L L
0.5
0.5
0.5
0.5
0.5
0.6
0.6 0.6 0.6
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J.14 GPT-4.1 - FULL EASY

GPT-4.1 - Full Easy

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit

physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

LLLLL
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV
VVVVVVVVVYV

S SSSSS

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLLLL

11 11
0 0

e e
mWHrOOOOOOR
[ N N S S

wn =
wn =
wn =
n =

Ground Truth:
LLLLTL

1 1

1 1

[ N

1)
w0
w0
0
0
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J.15 GPT-4.1 - FULL HARD

GPT-4.1 - Full Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
a floating-point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, ...,
1.0), based on the surrounding structure and implicit physical reasoning (such as load
paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

L LLLLLTL L L
\Y% \Y% VVvVvVvvVvVvyvVvyv v \Y%
\Y% \Y% VVVVvVVvVyVv \% v
\Y% \Y% VVVvVVvVVvVvyVv Y v
A% \% VVVvVVvVVvVvyVv \ v
A% \% VVVVVYV v v
\Y% \% VVvVvVvVvVvVvyvVvyv \4 v
\Y% \Y% VVVvVVvVvVvVvyVv v \
\Y% \Y% VVVvVVvVVvVvyVv Y v

S S S S S

Please output the completed grid by replacing all 'V’ cells with a floating-point number
between 0 and 1, with one decimal place.

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):

L L L L L L L L L
0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4
0.3 0.5 0.7 0.9 0.9 0.7 0.5 0.3
0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2
0.1 0.3 0.5 0.7 0.7 0.5 0.3 0.1
0.1 0.2 0.4 0.6 0.6 0.4 0.2 0.1
0.1 0.2 0.3 0.5 0.50.30.20.1
0.1 0.2 0.2 0.4 0.4 0.2 0.2 0.1
0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1
S| S| 5] S; S|
Ground Truth:
L L L L L L L L L
0.2 0.3 0.3 0.3 0.2
0.4 0.2 0.3 0.2 0.4
0.2 0.4 0.4 0.2
0.4 0.4
0.2 0.5 0.2
0.6
0.6
0.6
S} S} S S S}
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J.16 GEMINI 2.5 PRO - 1 RANDOM CELL EASY: SAMPLE 1

Gemini 2.5 Pro — 1 Random Cell Easy: Sample 1

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit

physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

LLL
1

[
[ R S

1
1
1
S 8 $ 8 88 8
Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .
Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.
Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLL
1

=R P o
R R R R
PR o

0000

Ground Truth:
L LL

[

[
[ e e e
[

S S S S
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J.17 GEMINI 2.5 PRO - 1 RANDOM CELL EASY: SAMPLE 2

Gemini 2.5 Pro — 1 Random Cell Easy: Sample 2

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.

— 73’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either 1’ (solid) or ’0’ (empty), based on the surrounding structure and implicit

physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

LLLLLTL
1111
11
11
111
1111
A% 1111
11111
1111
188 8

Please output the completed grid by replacing all 'V’ cells with either "1’ (solid) or ’0’
(empty) .

Maintain the same format as the input: one row per line, cells separated by spaces, and
the total number of rows and columns unchanged.

Return only the completed grid without any additional explanation.

Model Completion (differences in red):
LLLLLL
1111

e
e e S S
e
e e e
[
[

Ground Truth:
LLLLLTL
11

=R P e
[ S S S
e e e
R e e e
(R
[N
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J.18 GEMINI 2.5 PRO - 1 RANDOM CELL HARD

Gemini 2.5 Pro — 1 Random Cell Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can

have one of the following states:

- 'L’ indicates applied load.

- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
(with one decimal place), based on the surrounding

a floating-point number between 0 and 1
(such as load paths, supports, and forces).

structure and implicit physical reasoning

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

L L L L L L L

S S S S S S S S

Model Completion (differences in red):
L 0.2 L L L L L L

S S S S S S S S

Ground Truth:
LLLLLLLTL
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J.19 GEMINI 2.5 PRO - FULL EASY

Gemini 2.5 Pro — Full Easy

Prompt:

You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:

- 'L’ indicates applied load.

— 'V’ indicates void.

- 'S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells
with either ’1’ (solid) or ’'0’ (empty), based on the surrounding structure and implicit

physical reasoning (such as load paths, supports, and forces).

Important: The completed structure should use as little material as possible while
remaining stable and plausible for carrying the applied forces.

Below is the input grid with masked regions:

LLLL

S S S

Model Completion (differences in red):
LLLL

[
[

[ e S
[ I R N e
[ e N e

Ground Truth:
LLLL

[y
[y

[ i )
[ A
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J.20 GEMINI 2.5 PRO - FULL HARD

Gemini 2.5 Pro — Full Hard

Prompt:
You are given a structural material distribution represented as a grid. Each cell can
have one of the following states:
- 'L’ indicates applied load.
- 'V’ indicates void.
S’ indicates support.

The goal is to predict the correct material distribution by filling in all 'V’ cells with
a floating-point number between 0 and 1 (with one decimal place), based on the surrounding
structure and implicit physical reasoning.

Below is the input grid with masked regions:

LLL

S S S SSSs S S S

Model Completion (differences in red):

L L L
0.1 1.0 1.0 1.0 0.1
0.2 1.0 1.0 1.0 0.2
0.1 0.3 1.0 1.0 1.0 0.3 0.1
0.2 0.4 1.0 1.0 1.0 0.4 0.2
0.3 0.51.0 1.0 1.0 0.5 0.3 0.1
0.4 0.6 1.0 1.0 1.0 0.6 0.4 0.2
0.50.7 1.0 1.0 1.0 0.7 0.5 0.3 0.1
0.6 0.8 1.0 1.0 1.0 0.8 0.6 0.4 0.2
S 8 8 S| S| 8§ 8 8 8
Ground Truth:
L L L
0.9
0.8
0.8
0.8
0.9
0.1 0.8 0.1
0.1 0.8 0.1
0.2 0.8 0.2
S S S S} S S S S} S
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