Under review as a conference paper at ICLR 2023

CBP-QSNN: SPIKING NEURAL NETWORKS QUAN-
TIZED USING CONSTRAINED BACKPROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) support sparse event-based data processing at
high power efficiency when implemented in event-based neuromorphic proces-
sors. However, the limited on-chip memory capacity of neuromorphic processors
strictly delimits the depth and width of SNNs implemented. A direct solution is the
use of quantized SNNs (QSNNs) in place of SNNs with FP32 weights. To this end,
we propose a method to quantize the weights using constrained backpropagation
(CBP) with the Lagrangian function (conventional loss function plus well-defined
weight-constraint functions) as an objective function. This work utilizes CBP as
a post-training algorithm for deep SNNs pre-trained using various state-of-the-art
methods including direct training (TSSL-BP, STBP, and surrogate gradient) and
DNN-to-SNN conversion (SNN-Calibration), validating CBP as a general frame-
work for QSNNs. CBP-QSNNSs highlight their high accuracy insomuch as the
degradation of accuracy on CIFAR-10, DVS128 Gesture, and CIFAR10-DVS in
the worst case is less than 1%. Particularly, CBP-QSNNs for SNN-Calibration-
pretrained SNNs on CIFAR-100 highlight an unexpected large increase in accu-
racy by 3.72% while using small weight-memory (3.5% of the FP32 case).

1 INTRODUCTION

Spiking Neural Networks (SNNs) are time-dependent models with spiking neurons whose dynamics
in conjunction with synaptic current dynamics constitutes the rich dynamics of SNNs (Jeong, [2018).
Deep SNNs are clearly distinguished from deep neural networks (DNNs) such that (i) presynaptic
spiking neurons send out 1-bit data (spikes a.k.a. events) to their postsynaptic neurons unlike the
nodes sending out real-valued activation values to the nodes in the next layer in a DNN and (ii) SNN
operations are based on asynchronous sparse spikes unlike DNNs based on layerwise synchronous
activation calculations (Jeong, 2018} [Pfeiffer & Pfeil, [2018). These distinct features endow SNNs
with high power efficiency given minimum data movements and high sparsity in operations. Yet,
SNNs leverage the efficiency only when implemented in neuromorphic processors that supports
event-based operations.

Neuromorphic processor design technologies are diverse, e.g., mixed analog/digital circuits (Merolla
et al.,2014a; Moradi et al., 2018 Neckar et al.,[2019), and fully digital circuits (Merolla et al.,[2014b;
Davies et al.| [2018; |[Frenkel et al., 2018} |[Kornijcuk et al., 2019). Albeit diverse, all designs com-
monly suffer from their limited on-chip memory (SRAM) capacity. The on-chip memory is mainly
assigned to neurons (state variables and hyperparameters), synapses (weights, state variables, and
hyperparameters), and event-router (lookup tables). The largest portion of on-chip memory is ded-
icated to synaptic weights given a significant number of synapses in a deep SNN. Additionally,
most neuromorphic processors hardly allow weight-reuse for convolutional SNNs because they are
designed for dense SNNs. Although some compilers for weight-reuse, e.g., NXTF for Loihi (Rueck-
auer et al., 2021), the weight-reuse rate is still far below the ideal rate. Consequently, the limited
on-chip memory capacity strictly limits the size (depth and width) of SNNs implementable in neu-
romorphic processors.

Considering the limitation of on-chip memory capacity, attempts to reduce the use of synaptic
weight-memory have been made, which include unstructured SNN pruning (Neftci et al.| 2016
Rathi et al.l 2019; Martinelli et al.l 2020; (Chen et al. 2021; Deng et al., 2021} |Kim et al., 2022;
Chen et al., [2022)) and weight-quantization (Rueckauer et al., [2017;|Yousefzadeh et al., 2018 |Srini-

Under review as a conference paper at ICLR 2023

92 CIFAR-10 70 CIFAR-100 66 ImageNet
<> [| SNN-Cali + CBP
<> 0 SNN-Cali + CBP
;\3 91r = 661 - Wang et al. (2020) 5 = ¢
< TSSL-BP + CBP Lu et al. (2020) 6 *

* TSSL-BP + CBP Deng et al. (2021) SEW-ResNet-18 + CBP
g9 & SNN-Cali + CBP 62 & & g & B SEW-ResNet-18 + CBP
3 SNN-Cali + CBP sl m & SEW-ResNet-34 + CBP
< g9l B Wang et al. (2020 58l [0l SEW-ResNet-34 + CBP

Deng et al. (2020) - € Luetal (2020)
Zhou et al. (2021) Y Zhou et al. (2020)
88 54 N S S S S 7 S ! . , : .
0 20 40 60 80 100 120 0 50 100 150 200 250

0 20 40 60 80 100 120
Weight memory usage (Mb) Weight memory usage (Mb) Weight memory usage (Mb)

Figure 1: Accuracy and weight-memory usage of CBP-QSNNs on CIFAR-10/100 and ImageNet.
The diamond, square, and star symbols denote binary, ternary, and int2 weight precision, respec-
tively.

vasan & Roy, 2019; |[Lu & Sengupta, 2020; |Kim et al., 2021} |Deng et al.| 2021} |[Eshraghian et al.,
2022). Although unstructured SNN pruning can increase the sparsity of weight matrices, it hardly
reduces the memory usage unless low precision data formats are used for such null weights, which,
however, causes additional significant complexity in computation. Weight-quantization to lower
resolution than the full-precision (FP32) can largely reduce weight-memory usage. Several meth-
ods proposed to date, however, are limited to (i) particular learning algorithms, e.g., spike timing-
dependent plasticity (STDP) (Yousefzadeh et al., 2018} |Srinivasan & Roy, 2019), event-based ran-
dom backprop (eRBP) (Kim et al., 2021)), rate code-based spatio-temporal backprop (Deng et al.,
2021)), or (ii) image datasets (e.g., MNIST, FashionMNIST, CIFAR-10/100, ImageNet) for the con-
version of quantized DNNs to quantized SNNs (QSNNs) (Rueckauer et al.L|2017; Wang et al.,2020;
Lu & Senguptal 2020).

Generally, deep SNNs learn optimal weights using three distinct methods: direct training using
backprop based on (i) rate code (Wu et al., 2018} |Shrestha & Orchard, [2018; Wu et al.| 2019} |[Fang
et al.| [2021a3bj [Zheng et al.| [2021) and (ii) temporal code (Zhang & Li, [2020; [Yang et al., 2021}
Zhou et al.,2021), and (iii)) DNN-to-SNN conversion (Rueckauer et al.,|2017;Sengupta et al.,[2019;
Han et al.| 2020} |Deng & Gul 20205 Li et al., [2021)). Note that the last method covers SNNs on im-
age (static rather than event-based) datasets only. Regarding this diversity in learning methods and
datasets, a general weight-quantization framework can resolve the difficulty in weight-quantization.
To this end, we propose a weight-quantization method based on constrained backpropagation (CBP)
that uses Lagrangian functions (conventional loss function plus weight-constrain functions, each of
which given a Lagrange multiplier) as objective functions (Kim & Jeong} 2021). CBP offers a gen-
eral weight-quantization framework given that any constraints on weight quantization (e.g., binary,
ternary, etc.) can easily be applied to the weight-constraint functions in the Lagrangian function.
CBP is a post-training method so that SNNs that learned real-valued weights using different pre-
training methods can be post-trained using the Lagrangian functions with the same loss functions as
for the pre-training. The main contributions of our work are as follows:

* We validate CBP as a general framework for QSNNs by successfully binary- and ternary-
quantizing deep SNNs (with various topologies) pre-trained on various datasets (CIFAR-
10/100, ImageNet, DVS128 Gesture, CIFAR10-DVS) using representative (i) rate code-
based backprop algorithms with surrogate gradients (Wu et al.l 2018} [Fang et al., 2021a),
(i1) temporal code-based backprop algorithm (Zhang & Li, 2020), and (iii) DNN-to-SNN
conversion (L1 et al.l [2021)).

* We propose a surrogate loss function to quantize SNNs that learned real-valued weights
using the DNN-to-SNN conversion method and report surprisingly high accuracy, partic-
ularly, on CIFAR-100, which exceeds the accuracy of the real-valued SNNs by more than
3%.

* We analyse the accuracy and weight-memory efficiency of CBP-QSNNs on various datasets
in comparison with previous methods, which highlights the state-of-the-art (SOTA) accu-
racy with weight-memory usage similar to or lower than the previous methods as shown in

Figure [T}

Under review as a conference paper at ICLR 2023

2 RELATED WORK

Simple methods for weight-quantization include learning uniformly quantized weights using straight
through estimators (STEs) with surrogate gradients (Zhou et al., [2021} Q1ao et al., 2021; |[Eshraghian
et al., |2022). This quantization method inevitably causes large noise that hinders the loss from
attaining its minima. [Zhou et al.|(2021) overcame the difficulty by using a novel neuron model with
a differential phase-domain integrator, whereas Eshraghian et al.|(2022) overcame it by periodically
boosting the learning rate.

Several methods to convert binarized DNNs to QSNNs have been proposed. [Rueckauer et al.|(2017)
proposed a method to convert BinaryConnect (Courbariaux et al.l [2015) and binarized neural net-
works (Courbariaux et al.,[2016) to binary QSNNs, whereas Lu & Senguptal (2020) to binary weight
networks (Rastegari et al.,2016) to binary QSNNs. Unlike direct training methods, such conversion
methods do not suffer from the issue arising from non-differentiable spiking functions, but such
binary SNNs are incapable of processing event-based datasets.

There exist weight-quantization methods tailored to particular learning algorithms. |Yousefzadeh
et al| (2018)) proposed the probabilistic update of binary weights using STDP for shallow dense
SNNs. |Srinivasan & Roy| (2019) introduced ReStoCNet with one convolutional layer with binary
kernels and one dense layer; the convolutional layer is trained using a probabilistic STDP model
with binary weights, whereas the dense layer using backprop. These quantization methods suffer
from the inherent drawback of STDP, i.e., its limited scalability, and thus limited learning capacity.
Kim et al.| (2021) proposed the eWB algorithm based on the Lagrangian function as an objective
function, which is tailored to eRBP. Given the limited scalability of eRBP, eWB is also limited
to shallow SNNs on datasets of low complexity. |Deng et al.| (2021) proposed an augmented La-
grangian function-based weight-quantization method, where the augmented Lagrangian function is
minimized using the alternating direction method of multiplier (ADMM) (Boyd et al.| 2011). This
method is tailored to STBP with power-of-two and zero weights.

3 METHOD

3.1 CONSTRAINED BACKPROPAGATION

Objective function Constrained backpropagation (CBP) is a post-training method to apply in-
dependent arbitrary constraints to each weight by training DNNs using Lagrangian functions £ as
objective functions (Kim & Jeong| 2021). For CBP-QSNNSs, we define the Lagrangian function
consisting of a conventional loss functions C' and weight-constraint function cs as follows.

L(O,0; W A) =C(0,0; W) + ATes(W),
cs(W) =es (w1),...,es(wn,)] " and X = [Ar,..., A,

w

]T (1)

where O is a set of SNN outputs at all timesteps, O = {ot}thl, and O is the desired output. For

temporal codes, O is also given by a set of desired outputs at all timesteps, o= {6t}tT_l, ie.,
desired output spike sequence, whereas, for rate codes, it is frequently given by a one-hot vector that
indicates the correct label. Given that the loss function C' in Equation (I)) should be identical to that
for pre-training, the choice of types of O and O relies on the pre-training method. The total number
of weights in the SNN and the set of all N,, weights are denoted by NV, and W, respectively. The
value \; fori € {1,..., N, } is the Lagrange multiplier for weight w;.

Constraint function In this work, we consider constraints of binary weights @ = {—1,1} and
ternary weights @ = {—1,0,1}. To this end, we choose sawtooth-shaped constraint functions cs
that attain their minima (cs = 0) at ¢; € @, but modified by unconstrained-weight windows ucs(w)
in which the equation ¢s = 0 holds. The width of ucs(w) is parameterized by g(> 1) which is
shared among all weights.

ng—1

1
ues (w) =1— Z H<2g(qi+1—qi)—|w—mi+e|> ,
i=1

Under review as a conference paper at ICLR 2023

_(a) c _ (b) c

S 21 S 21 S 21 S 21

L — L — -t . L N

£ o=l /18 9=3 J1¢ o=t /18 a-

2 2 2 2

£1 £1 €1 €1

© © © (0]

S o 5 =

%] wn %] wn

S0 5o 5o S0

° " 210 1 2% " 92-10 1 2 2-10 1 2Y"—2-10 1 2
Weight Weight Weight Weight

Figure 2: Constraint functions with unconstrained-weight windows (filled areas) for (a) binary- and
(b) ternary-weight constraints.

where n, = |Q|, and ¢; and ¢;41(> ¢;) are neighboring elements in Q. The median of ¢; and
qi+1 is denoted by m; (= (q; + ¢i+1)/2), and € — 0. The function H denotes the Heaviside step
function. When g = 1, ucs = 0 for all w € [min Q, max Q]. The width of ucs narrows down
as g increases, and it vanishes when g — co. Examples of binary- and ternary-weight constraint
functions for g = 1 and 3 are shown in Figure 2]

Parameter update CBP includes three types of parameters subject to update: W, A, and g. The
weights W and multipliers A are updated using the Lagrange multiplier method (LMM). LMM
with differentiable constraint functions cs calculates the optimal W™ and A* such that (W™ *) =
arg miny, 5 £ (W, A). To include constraint functions that are non-differentiable at W™, we apply
pseudo-LMM (Kim & Jeong] [2021)) to Equation (I)), which is given by

VwC (W) =0,

VW’)\ﬁ (W,)\) =0« { cs (W) -0

That is, at the minima of the Lagrangian function £, the loss function attains its minimum, and
the optimal W satisfies the constrains. In search of W™, we use the basic differential multiplier
method (BDMM) (Platt & Barrl |1987), which updates W and A using a gradient descent and ascent
method, respectively. Note that the weight update conforms to the backpropgation pipeline for the
pre-training, but with the Lagrangian function L rather than the loss function C'

W e W — Vi £ (W,),)
where 7y denotes the learning rate for the weights W.

Unlike the weight update, the multipliers A and unconstrained-weight window parameter g are up-
dated once every learning epoch only if (i) the the sum of the Lagrangian functions over the mini-
batches for a given epoch (Lem) exceeds the sum for the previous epoch (L8m) or (ii) the update
has not been executed in the past p™** epochs.

A A MVALW,A) = A+ 1nes (W g),
g < g+ Ag, where Ag =1 (if g < 10) and 10 (if g > 10).

where 7)) denotes the learning rate for the Lagrange multipliers A. The variable ¢ is initialized to
one and conditionally increases (never decreases) during training. Thus, the unconstrained-weight
window ucs allows rather gradual quantization of weights such that the weights outside the window
(i.e., close to ¢ € Q) are forced to be quantized (which likely increase the loss) while the weights
within the window (far from ¢ € Q) are updated to reduce the loss. CBP is elaborated in Algorithm/[T]

in Appendix

Application CBP can works as a general weight-quantization framework because the algorithm
itself is tailored to neither particular weight constraints nor particular loss functions. The loss func-
tion C' in Equation (I)) and backpropagation pipeline for weight update can readily be chosen as per
the loss function used for the pre-training. The weight-constraints can freely be chosen as per the
weight resolution desired. In the following two sections, we will show applications of CBP to sev-
eral distinct cases for which pre-trained SNNs with FP32 weights and/or codes are publicly available
for fair baselines.

Under review as a conference paper at ICLR 2023

3.2 CBP SETTINGS FOR DIRECT TRAINED SNNS

TSSL-BP-trained conv-SNNs (temporal code) TSSL-BP is a renowned temporal code-based
error-backpropagation algorithm with data labels encoded as distinct output spike sequences O(=

{6t}tT:1 ;6" = &', where ' denotes the desired output spike vector at timestep ¢) (Zhang & Li,
2020). Likewise, the output of the SNN O is a sequence of output spikes over the timesteps;
O = {st}le, where s! denotes the actual output spike vector at timestep ¢. The loss function
C is defined using the van Rossum distance as

C(0.0)= =3 |(ex8") — (exs")|’

t=1

, 3)

[N

where € is an exponential kernel. CBP seamlessly applies to TSSL-BP by plugging Equation (3]
into Equation (T). The weights are updated while being quantized conforming to Equation). To
this end, the backpropagation pipeline for TSSL-BP is used with the same hyper-parameters. TSSL-
BP bypasses spike function gradients (which is non-differentiable) in its backward pass; instead, it
addresses the gradient of potential with respect to presynaptic spike timing, which is available in a
closed-form (Zhang & Li, 2020).

STBP-trained conv-SNNs (rate code) STBP is a representative backpropagation algorithm for
SNNs with rate code (Wu et al., 2018). STBP takes the time-averaged number of output spikes as
the output in response to an input sample; O = 1/T' Zthl st. The label for a given sample (O) is
encoded as a one-hot vector. The loss function for STBP in (Wu et al.,|2018) is given by

C(0,0) = %|0 -0

STBP includes the gradients of spike functions s with respect potential u (0s/0u) in its backprop-
agation pipeline, which are approximated using boxcar functions which are centered at the spiking
threshold ¥ (Wu et al.| 2018).

N0 otherwise,

s 1 if |Ju—19|<a,
ou

where a is a positive constant.

BP-trained SEW-ResNet (rate code) SEW-ResNet is an SNN-version of ResNet, which consists
of residual blocks with residual connections for identity mapping (Fang et al., [2021a). The keys
to SEW-ResNet are the configuration of computational blocks and introduction of suitable spike-
element-wise logic functions to fit the identity mapping in SNNs. |Fang et al.| (2021a) deployed
integrate-and-fire neurons in the output layer and considered their potential v at the last timestep
(u™) which is normalized by the the number of total timesteps T', i.e., a = u” /T, as the output of the
SNN. The output vector is then processed by the subsequent softmax layer to use the crossentropy
loss as the loss function C.

N
C(0,0) ==Y o.log (o). (4)
c=1
T
0c = %’ where a. = u—c,
> e—1 €xp(ac) T

SEW-ResNet also involves the gradients of spike functions with potential u, which are approximated
to the arctan-based surrogate gradient function (Fang et al.,[2021b).

Os o
du 1+ (am (u—10))° ©)

where « is a positive constant.

Under review as a conference paper at ICLR 2023

3.3 CBP SETTINGS FOR SNNs CONVERTED FROM DNNs

DNN-to-SNN conversion methods often apply to indirectly train SNNs (Rueckauer et al.| 2017}
Sengupta et al.| 2019} [Han et al., 2020; |Deng & Gul [2020; |Li et al., 2021). Among them, we chose
the SNN-Calibration algorithm (Li et al., [2021) given its SOTA accuracy on various static datasets.
SNN-Calibration minimizes accuracy-degradation for the limited number of timesteps by attaining
the optimal layer-wise threshold (9" for a layer) that minimizes the discrepancy in layerwise
output between the SNN and its DNN counterpart. Additionally, (i) bias for each neuron and/or (ii)
initial potentials and weights are tweaked to minimize the layerwise output error.

The SNN-Calibration-pretrained SNN utilizes spiking neurons that output real-valued spikes (%),
which is not suitable for CBP. Therefore, we first rescale the weights w® , biases p® , and threshold
91 in the pre-trained SNN as follows.

90-1) X0
wh —w®) l

This rescaling allows the spiking neuron to output integer binary spikes.

Given that conversion methods do not use loss functions, we employ surrogate loss functions C
that are consistent with the neural code used in the pre-trained SNN. SNN-Calibration uses the
time-averaged number of spikes (spike-rate) as neural input and output, so that rate code-based loss
functions are appropriate surrogate loss functions as for the previous two examples. Here, we chose
a cross-entropy loss function with a softmax layer as a surrogate loss function C' as for SEW-ResNet
in Equation @). Similar to SEW-ResNet, we also used the arctan surrogate gradient function in
Equation (3) with « = 1. However, not only weights W but also biases b were subject to post-
learning. Note that the biases b were updated using the loss function C' as an objective function
using the learning rate 7, (= nw). Stochastic gradient descent was used to learn optimal biases b*
as for the weights. CBP for this case is detailed in the pseudocode in Algorithm[2]in Appendix[A.1]

4 EXPERIMENTS

We identified the classification efficacy and weight-memory efficiency of CBP-QSNNs (with bi-
nary Q@ = {—1,1} and ternary weight @ = {—1,0,1} constraints) for (i) TSSL-BP-trained
conv-SNNs, (ii) STBP-trained conv-SNN:Gs, (iii) BP-trained SEW-ResNet, and (iv) SNN-Calibration-
trained SNNs with the settings elaborated in Secion We used total five datasets: three image
datasets (CIFAR-10/100 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015)) and two
event-based datasets (DVS 128 Gesture (Amir et al.l [2017) and CIFAR10-DVS(Li et al.l 2017)).
Note that we used publicly available pre-trained models and/or codes only for fair baselines. The
input pre-processing and encoding conformed to the methods for the pre-training without modi-
fications, which are detailed in the corresponding publications. CBP needs two optimizers (one
for weight update and the other for Lagrange multiplier update). For the weight update, we used
the same optimizer as for the weight pre-training, which are listed in Table [] in Appendix [A.2]
Hereafter, we refer to CBP-QSNN for SNN pre-trained using a particular algorithm as CBP-QSNN-
(pre-training algorithm), e.g., CBP-QSNN-(TSSL-BP) and CBP-QSNN-(SNN-Calibration), except
CBP-QSNN-(SEW-ResNet) whose pre-training algorithm does not have a compact name.

We used layerwise scaling factors ¢(!) for layers [, which are given by ¢ = ||[W©||;/n(®, where

WU and n® are the weight matrix for the layer [and the number of elements in w, respec-
tively. For CBP-QSNN-(TSSL-BP), we used AdamW (Loshchilov & Hutter, [2019) as a Lagrange
multiplier optimizer, whereas Adam (Kingma & Bal, 2014])) for the others. The hyper-parameters for
CBP-QSNN:s are listed in Table[d]in Appendix[A.2] Note that the weights for the first and last layers
were not subject to quantization as for common QDNNSs (Rastegari et al., 2016; [Li et al.,2016)). All
statistic data were acquired from three trials to avoid the random seed effect except on ImageNet.
The CBP algorithm was implemented in Pytorch (Paszke et al.,2019) on a GPU workstation (RTX
A6000).

Under review as a conference paper at ICLR 2023

Table 1: Classification accuracy and weight-memory usage for CBP-QSNNS5 that were pre-trained
using direct training methods.

Network Algorithm Weight precision Avg. (Best) accuracy weight-memory usage
CIFAR-10
TSSL-BP FP32 89.001(89.22%) 677Mb
AlexNet CBP Binary 89.4540.37 (89.95) 21.6Mb
Ternary 88.921+0.03 (88.96) 42.7Mb
STBP FP32 90.267(89.53%) 1.99Gb
7Conv, 3FC CBP Binary 89.514-0.05 (89.59) 62.4Mb
Ternary 89.58+0.08 (89.67) 124Mb
CIFAR-100
STBP FP32 62.25 1.99Gb
7Conv, 3FC CBP Binary 60.81-0.01 (60.83) 63.8Mb
Ternary 60.85+0.18 (61.09) 126Mb
ImageNet
Arctan gradient FP32 62.811(63.18%) 374Mb
SEW-ResNet-18 o Binary 54.34 27.8Mb
Ternary 58.04 39.0Mb
Arctan gradient FP32 66.657(67.04%) 697Mb
SEW-ResNet-34 — op Binary 60.10 37.9Mb
Ternary 62.98 59.2Mb
DVS128 Gesture
Arctan gradient FP32 97.92%(97.92%) 4.16Mb
7B-Net CBP Binary 97.11+0.33 (97.57) 159Kb
Ternary 97.68+0.16 (97.92) 288Kb
CIFAR10-DVS
Arctan gradient FP32 74.77 (74.4%) 40.2Mb
Wide-7B-Net CBP Binary 73.89-0.62 (74.7) 1.33Mb
Ternary 74.8310.46 (75.3) 2.58Mb

TReproduced result *Reported result

To measure the success in weight quantization, we introduce the constraint-failure score (CFS)
which is the average weight-constraint function over all weights included in the SNN.

N
1 w
CFS(W) = 5 Zl es(w;),
where N,, indicates the total number of weights in the SNN. During quantization, CFS keeps de-
creasing toward zero because the constraint functions cs attain their minima (cs = 0) when the
weights are fully quantized. Few weights that have not been quantized until the last CBP epoch
were forced to be quantized to their nearest quantized weights.

4.1 CBP-QSNNS WITH TRUE LOSS FUNCTIONS

CBP-QSNN-(TSSL-BP) We applied CBP with binary- and ternary-weight constraints to AlexNet
(96C3-256C3-MP2-384C3-MP2-384C3-256C3-FC1024-FC1024-FC10) pre-trained on CIFAR-10
using TSSL-BP. The results shown in Table [T highlight a surprising increase in classification accu-
racy by 0.45% when binarized, using merely a weight-memory of 21.6Mb, i.e., 3.19% of that for
the FP32 weight case. The test accuracy and CFS curves are plotted in Figure [3]in Appendix [A.3]
Additionally, the weight distributions sampled at a few epochs are plotted in Figure 3] which show
gradual weight-quantization.

CBP-QSNN-STBP We considered the deep SNN (7Conv,3FC) (Deng et al., 2021) which was
pre-trained on CIFAR-10 using STBP, yielding an accuracy of 90.26 with FP32 weights (Table|T).
The corresponding CBP-QSNN-STBPs with binary- and ternary-weight constraints show accuracy
degradations of 0.75% and 0.68% while reducing weight-memory usage by 96.9% and 93.8%, re-
spectively. The test accuracy and CFS curves, and weight distributions sampled at four learning

Under review as a conference paper at ICLR 2023

Table 2: Classification accuracy and weight-memory usage for CBP-QSNN-(SNN-Calibration).

Network Algorithm Weight precision Avg. (Best) accuracy weight-memory usage

CIFAR-10

SNN-Calibration FP32 91.04T (91.82%) 471Mb

VGG-16 Binary 91.40--0.09 (91.51) 15.1Mb

Ternary 91.49+0.13 (91.66) 29.8Mb
CIFAR-100

SNN-Calibration FP32 62.601 (64.53%) 473Mb

VGG-16 CBP Binary 66.32--0.16 (66.53) 16.6Mb

Ternary 66.3710.44 (66.46) 31.2Mb

TReproduced result *Reported result

epochs are shown in Figure [4] in Appendix Despite the non-availability of baseline perfor-
mance in public, we also applied CBP to the same SNN on CIFAR-100 for a comparison with
another weight-quantization method, which will be addressed in Section f.3] The results are also
listed in Table|[T] and the quantization behaviors are plotted in Figure [5|in Appendix

CBP-QSNN-(SEW-ResNet) We addressed the pre-trained SEW-ResNet-18 and SEW-ResNet-34
on ImageNet, which use ADD operations as element-wise operations in the SEW blocks. CBP
applied to SEW-ResNet-18 and SEW-ResNet-34 with binary- and ternary-weight constraints yielded
the accuracy and weight-memory usage shown in Table |l The quantization curves are plotted in
Figures [6|and[7]in Appendix[A.3]

We also applied CBP to 7B-Net and Wide-7B-Net pre-trained on neuromorphic datasets (DVS128
Gesture and CIFARI0-DVS, respectively). 7B-Net is structured as 32C3-BN-PLIF-{SEW
Block(32C)-MP2}*7-FC11, where BN denotes batch normalization. PLIF denotes a layer of
parametric LIF neurons which use trainable membrane time constants (Fang et al., [2021b).
Wide-7B-Net is structured as 64C3-BN-PLIF-{SEW Block(64C)-MP2}*#4-128C3-BN-PLIF-{SEW
Block(128C)-MP2}*3-FC10. The results are shown in Table and the quantization curves are plot-
ted in Figures[8land[9)in Appendix[A.3] An anomaly is seen in the ternary-weight CBP-QSNN whose
accuracy is rather larger than the FP32 counterpart by 0.13%.

4.2 CBP-QSNNS WITH SURROGATE LOSS FUNCTIONS

CBP-QSNN-(SNN-Calibration) VGG-16 SNNs were CBP-quantized on CIFAR-10 and 100
with binary- and ternary-weight constraints. To acquire CBP-QSNN-(SNN-Calibration), we used
the surrogate loss function and gradient function as for CBP-QSNN-(SEW-ResNet) in Equations
and (), respectively. We applied weight decay (L2-regularization) with a decay rate wy of 107%.
Table [2]shows the accuracy and weight-memory usage, highlighting considerable increases in accu-
racy upon quantization by 0.36% (binary case) and 0.45% (ternary case) on CIFAR-10, and 3.72%
(binary case) and 3.77% (ternary case) on CIFAR-100. The quantization curves and sampled weight
distributions on CIFAR-10 and 100 are plotted in Figures[I0]and [IT]in Appendix [A.3] respectively.

4.3 COMPARISON WITH PREVIOUS QUANTIZATION RESULTS

We finally compare CBP-QSNNs with QSNNs by previous weight-quantization methods in terms of
classification accuracy and weight-memory usage on CIFAR-10/100, ImageNet, DVS128 Gesture,
and CIFAR10-DVS. The comparison is shown in Table[3]

CIFAR-10: CBP-QSNNS exhibit outstanding accuracy and weight-memory efficiency. Particularly,
CBP-QSNN-STBP with ternary weights outperforms (Deng et al.,|2021)) of the same network archi-
tecture by 0.57% in accuracy. Additionally, the ternary CBP-QSNN-(SNN-Calibration) of VGG-16
exceeds the SOTA accuracy of (Zhou et al. [2021) by 0.56% with a reduction in weight-memory
usage by 72.7%.

CIFAR-100: CBP-QSNN-(SNN-Calibration) of VGG-16 outperforms the SOTA accuracy (Wang
et al.l 2020) by 4.3% by using an additional 3.6Mb weight-memory only. CBP-QSNN-STBP of
conv-SNN (7Conv,3FC) records 60.85% in accuracy, exceeding the accuracy of (Deng et al., [2021])

Under review as a conference paper at ICLR 2023

Table 3: Comparison with previous works on QSNNs with binary, ternary, and int2 weight precision.

Algorithm Network Weight precision / memory usage (bit) Accuracy (%)
CIFAR-10
BNN-SNN (Rueckauer et al.|[2017) 6Conv, 3FC Binary/14.0M 88.25
BinaryConnect-SNN (Rueckauer et al.}2017) 6Conv, 3FC Binary/14.0M 83.35
BinaryConnect-SNN (Wang et al.J[2020) 6Conv, 3FC Binary/14.0M 90.19
STBP + ADMM (Deng et al.{[2021 | 7Conv, 3FC Ternary/124M 89.01
Direct-training + STE (Zhou et al.[[2021) SpikingVGG16 int2/109M 90.93
CBP-QSNN-STBP 7Conv, 3FC Binary/62.4M 89.514-0.05 (89.59)
Ternary/124M 89.58+0.08 (89.67)
CBP-QSNN-(TSSL-BP) AlexNet Binary/21.6M 89.451-0.37 (89.95)
Ternary/42.7M 88.921-0.03 (88.96)
. . Binary/15.1M 91.4040.09 (91.51)
CBP-QSNN-(SNN-Calibration) VGG-16 Ternary/29.8M 91.49%0.13 (91.66)
CIFAR-100
BinaryConnect-SNN (Wang et al.}[2020) 6Conv, 2FC Binary/13.0M 62.02
BWN-SNN (Lu & Senguptal|[2Z020) VGG-15 Binary/32.1M 62.00
STBP + ADMM (Deng et al.][2021) 7Conv, 3FC Ternary®/126M 55.95
Binary/63.8M 60.811-0.01 (60.83)
CBP-QSNN-STBP 7Conv, 3FC Ternary/126M 60.85+0.18 (61.09)
. . Binary/16.6M 66.321-0.16 (66.53)
CBP-QSNN-(SNN-Calibration) VGG-16 Ternary/31.2M 66.37-£0.08 (66.46)
ImageNet
BWN-SNN (Lu & Senguptal[2020) VGG-15 Binary/249M 62.71
Direct-training + STE (Zhou et al.}[2021) GoogLeNet int2/44.5M 60.0
Binary/27.8M 54.34
SEW-ResNet18
CBP-QSNN-(SEW-ResNet) Ternary/39.0M 58.04
Binary/37.9M 60.10
SEW-ResNet34 Ternary/59.2M 62.98
DVS128 Gesture
BSNN (Qiao et al.{[2021) 2Conv, 2FC Binary/1.68M 97.57
Binary/159K 97.114+0.33 (97.57)
CBP-QSNN-(7B-Net) 7B-Net Ternary/288K 97.68-£0.16 (97.92)
CIFAR10-DVS
BSNN|Qiao et al.|(2021} 2Conv, 2FC Binary/1.68M 62.10
. . Binary/1.33M 73.8910.62 (74.7)
CBP-QSNN-(wide-7B-Net) Wide-7B-Net Ternary/2.58M 74.8310.46 (75.3)

“25% connection-pruned.

of the same network topology and weight precision by 4.9%. Note that the accuracy in (Deng et al.,
2021) is of a 25% connection-pruned SNN.

ImageNet: CBP-QSNN-(SEW-ResNet34) with ternary weights outperforms the SOTA results (Lu
& Senguptal 2020) by 0.27% in accuracy with reducing weight-memory usage by 76.2%.

DVS128 Gesture: For DVS128 Gesture, CBP-QSNN-(7B-Net) with ternary weights highlight an
accuracy improvement by 0.11% and a weight-memory reduction by 82.9% compared with (Q1ao
et al.l [2021).

CIFAR10-DVS: CBP-QSNN-(Wide-7B-Net) with binary weights achieves a considerable accuracy
improvement by 11.79% with a reduction in weight-memory usage by 20.8% compared with (Q1ao
et al.l [2021).

5 CONCLUSION

We proposed CBP for weight-quantization in SNNs, which can readily be adjusted to particularly
pre-trained SNNs and desired weight-quantization conditions. We validated CBP as a general frame-
work for QSNNs by reporting total 18 weight-quantization cases that vary in weight bitwidth (binary
and ternary), pre-training method (TSSL-BP, STBP, arctan gradient, and SNN-Calibration), network
topology, and dataset (CIFRA-10/100, ImageNet, DVS128 Gesture, and CIFAR10-DVS). CBP for
all datasets highlights its SOTA results in terms of classification accuracy and weight-memory usage
in comparison with previous methods for QSNNs. Therefore, CBP-QSNNs are high accuracy and
high memory-efficient models that are mapped onto a neuromorphic processor with strictly limited
on-chip memory capacity.

Under review as a conference paper at ICLR 2023

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz,
Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7243-7252, 2017.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1-122, 2011.

Yangi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
neural networks through gradient rewiring. In IJCAI, 2021.

Yangi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
sition of dendritic spines improves learning of sparse spiking neural networks. In International
Conference on Machine Learning, pp. 3701-3715. PMLR, 2022.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in neural information processing
systems, 28, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yonggiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. leee Micro, 38(1):82-99, 2018.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie.
Comprehensive snn compression using admm optimization and activity regularization. IEEE
transactions on neural networks and learning systems, 2021.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2020.

Jason K Eshraghian, Corey Lammie, Mostafa Rahimi Azghadi, and Wei D Lu. Navigating Local
Minima in Quantized Spiking Neural Networks, 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Advances in Neural Information Processing
Systems, volume 34, pp. 21056-21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661-2671,
2021b.

Charlotte Frenkel, Martin Lefebvre, Jean-Didier Legat, and David Bol. A 0.086-mm 2 12.7-pj/sop
64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm cmos.
IEEE transactions on biomedical circuits and systems, 13(1):145-158, 2018.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13558-13567, 2020.

Doo Seok Jeong. Tutorial: Neuromorphic spiking neural networks for temporal learning. Journal of
Applied Physics, 124(15):152002, 2018. doi: 10.1063/1.5042243. URL https://doi.org/
10.1063/1.5042243.

Dohun Kim, Guhyun Kim, Cheol Seong Hwang, and Doo Seok Jeong. ewb: Event-based weight
binarization algorithm for spiking neural networks. IEEE Access, 9:38097-38106, 2021.

10

https://doi.org/10.1063/1.5042243
https://doi.org/10.1063/1.5042243

Under review as a conference paper at ICLR 2023

Guhyun Kim and Doo Seok Jeong. Cbp: backpropagation with constraint on weight precision using
a pseudo-lagrange multiplier method. In Advances in Neural Information Processing Systems,
volume 34, pp. 28274-28285, 2021.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai Yin, and
Priyadarshini Panda. Exploring lottery ticket hypothesis in spiking neural networks, 2022. URL
https://arxiv.org/abs/2207.01382.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Vladimir Kornijcuk, Jongkil Park, Guhyun Kim, Dohun Kim, Inho Kim, Jaewook Kim, Joon Young
Kwak, and Doo Seok Jeong. Reconfigurable spike routing architectures for on-chip local learning
in neuromorphic systems. Advanced Materials Technologies, 4(1):1800345, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32-33, 2009. URL
https://www.cs.toronto.edu/~kriz/learning—-features-2009-TR.pdf.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks, 2016. arXiv:1605.04711.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifarl0-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, volume 139, pp. 6316-6325, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Sen Lu and Abhronil Sengupta. Exploring the connection between binary and spiking neural net-
works. Frontiers in Neuroscience, 14:535, 2020.

Flavio Martinelli, Giorgia Dellaferrera, Pablo Mainar, and Milos Cernak. Spiking neural networks
trained with backpropagation for low power neuromorphic implementation of voice activity de-
tection. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8544-8548. IEEE, 2020.

Paul Merolla, John Arthur, Rodrigo Alvarez, Jean-Marie Bussat, and Kwabena Boahen. A multicast
tree router for multichip neuromorphic systems. IEEE Transactions on Circuits and Systems I:
Regular Papers, 61(3):820-833, 2014a. doi: 10.1109/TCS1.2013.2284184.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668-673, 2014b.

Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore architec-
ture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors
(dynaps). IEEE Transactions on Biomedical Circuits and Systems, 12(1):106-122, 2018. doi:
10.1109/TBCAS.2017.2759700.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith,
R. Manohar, and K. Boahen. Braindrop: A mixed-signal neuromorphic architecture with a dy-
namical systems-based programming model. Proceedings of the IEEE, 107(1):144-164, 2019.

Emre O Neftci, Bruno U Pedroni, Siddharth Joshi, Maruan Al-Shedivat, and Gert Cauwenberghs.
Stochastic synapses enable efficient brain-inspired learning machines. Frontiers in neuroscience,
10:241, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

11

https://arxiv.org/abs/2207.01382
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Under review as a conference paper at ICLR 2023

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and chal-
lenges. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X. doi: 10.3389/fnins.2018.00774.

John Platt and Alan Barr. Constrained differential optimization. In Neural Information Processing
Systems, 1987.

GC Qiao, Ning Ning, Y Zuo, SG Hu, Qi Yu, and Y Liu. Direct training of hardware-friendly weight
binarized spiking neural network with surrogate gradient learning towards spatio-temporal event-
based dynamic data recognition. Neurocomputing, 457:203-213, 2021.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525-542. Springer, 2016.

Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning of connections and weight
quantization in spiking neural networks for energy-efficient recognition. /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(4):668-677, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Bodo Rueckauer, Connor Bybee, Ralf Goettsche, Yashwardhan Singh, Joyesh Mishra, and Andreas
Wild. Nxtf: An api and compiler for deep spiking neural networks on intel loihi, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In
Advances in Neural Information Processing Systems, pp. 1412-1421, 2018.

Gopalakrishnan Srinivasan and Kaushik Roy. Restocnet: Residual stochastic binary convolutional
spiking neural network for memory-efficient neuromorphic computing. Frontiers in neuroscience,
13:189, 2019.

Yixuan Wang, Yang Xu, Rui Yan, and Huajin Tang. Deep spiking neural networks with binary
weights for object recognition. IEEE Transactions on Cognitive and Developmental Systems, 13
(3):514-523, 2020.

Yujie Wu, Lei Deng, Guogqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guogqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311-1318, 2019.

Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for accu-
rate training of spiking neural networks. In International Conference on Machine Learning, pp.
11852-11862. PMLR, 2021.

Amirreza Yousefzadeh, Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, and
Bernabé Linares-Barranco. On practical issues for stochastic stdp hardware with 1-bit synap-
tic weights. Frontiers in neuroscience, 12:665, 2018.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. In Advances in Neural Information Processing Systems, volume 33, pp. 12022—
12033, 2020.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062-11070, 2021.

12

Under review as a conference paper at ICLR 2023

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proc. AAAI
Conf. Artif. Intell, volume 35, pp. 11143-11151, 2021.

13

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PSEUDOCODE

Algorithm 1: CBP algorithm. N denotes the number of training epochs in aggregate. M denotes
the number of mini-batches of the training set T'r. The function minibatch(7T'r) samples a mini-
batch of training data and their targets from 7T'r. The function SNN returns output O for x.

Input: Pre-trained weights W in 32FP
Output: Quantized weights W,
Initialization such that A <~ 0,p < 0,9 < 1;
Initial update of A;
for epoch =1 to N do
Loum + 05
/* Update of weight W */
for:=1to M do
2@ 2" « minibatch(Tr);
O + SNN(z); W);
L+ CO,0;W)+ATes (W g);
Csum % ﬁsum + C?
W + clip(W —nwVwZL);
end
/* Update of window variable ¢ and Lagrange multiplier A */
pep+ 1L
if ['sum > ‘C[:l:fn OF P = Pmax then

g < g+ Ag;
A= A+mes(Wig);
p<0;
Lo < Lo
else
| L%+ Loum:
end

end

14

Under review as a conference paper at ICLR 2023

Algorithm 2: CBP for SNN-Calibration

Input: Pre-trained weights W' and biases b in FP32
Output: Quantized weights W, and optimal biases b*
Initialization such that VI, W « W®gl=1 /9@ pO p® 190 9O 1,
Initialization such that A < 0, p <~ 0, g < 1;

Initial update of A;

for epoch = 1to N do

Lsum < 0;

/* Update of weights W and biases b
fori =1to M do

() < minibatch(T'r);

O + SNN(z(): W);

L+ CO,0;W.,b)+ATes(W;yg);

Esum % ﬁsum + ﬁ?

W + clip(W —nwVwZL);

b « clip(b — n,Vp(O);

end

p<p+1;

if Lum > Lo OF P = Dpax then
g g+Ag;
A XA+mes (Wig);
p <+ 0;
Lim L0

else

| L%+ Loum:
end

end

/* Update of window variable g and Lagrange multiplier A

*/

*/

A.2 HYPER-PARAMETERS FOR CBP

Table 4: Hyper-parameters used in our experiments. The learning rates for weights W, Lagrange
multipliers A, and biases b are denoted by 7,,, nx, and 1, respectively. The weight-decay (L2

regularization) is denoted by wy.

. . Optimi Optimi
Algorithm Dataset Nw wq i N Batchsize Epoch Steps \I;/ grgnhzter mrl)lllt]ir};ll?Z;
TSSL-BP CIFAR-10 2e-4 - - le-4 50 200 5 AdamW AdamW

CIFAR-10 - -
STBP CIFAR-100 Se-3 Se-4 50 100 8 SGD Adam
DVS128 Gesture 16 200 16
SEW-ResNet CIFAR10-DVS 0.1 - - 0.01 16 64 16 SGD Adam
ImageNet 32 100 4
. CIFAR-10
SNN-Calib CIFAR-100 0.01 le4 0.01 le3 128 100 32 SGD Adam

15

Under review as a conference paper at ICLR 2023

A.3 EXTRA DATA

Binary weight constraint

6 10°
90 - — 1st
X ~N —— 50th
Y Ly 41 — 100th | §1072
2 g5 x 150th g
7 v 24 F 107
@ O
80 T T (R ! : 10—6_
0 100 200 0 100 200 -2 -1 0 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
6 100
. 90 - — 1st
X N —— 50th 5
o W 47 — 100th | §10
S 854 x —— 150th g
‘qm-; D24 L1074
= @)
80— T T 00— i T 1076+ T T T T
0 100 200 0 100 200 -2 -1 0 1 2
Epoch Epoch Normalized weight

Figure 3: CBP-QSNN-(TSSL-BP) on CIFAR-10. The QSNN topology is of AlexNet.

Binary weight constraint

] 6 10°
90 — 1st
2 -~ —— 30th _
S 701 b4 — 6oth | 5107
o g —— 90th 4%'
@ 50+ ¥ 2; i 1074
@ (@]
30+ y T 0+ y " 107%+ ; 4 "
0 50 100 0 50 100 -2-10 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
] 6 10°
90 — 1st
< ~ —— 30th ~
S 701 4 —— 60th | 51072
o g —— 90th 4§
Q501 ¥ 24 L 1074
@ o
30+ T T 0+ J ! 1076
0 50 100 0 50 100 -2 -1 0 1 2
Epoch Epoch Normalized weight

Figure 4: CBP-QSNN-STBP on CIFAR-10. The QSNN topology is of a deep SNN (7Conv and
3FC).

Under review as a conference paper at ICLR 2023

Test acc(%)

Test acc(%)

Figure 5
3FC).

Test acc (%)

Test acc (%)

Binary weight constraint

70 6 10°
— 1st
=~ —— 30th
>0 N — 6oth | §107%
30 g —— 90th ag
8 2 i 10744
10
T T : 0 } 1 10—6,
0 50 100 0 50 100 -2-10 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
70 6 10°
— 1st
= —— 30th
] m ~
>0 w4 — 6oth | § 107
30. g —— 90th g
D 24 i 10744
10- © _\‘\\
T y T 0+ T " 1075
0 50 100 0 50 100 -2-10 1 2
Epoch Epoch Normalized weight
: CBP-QSNN-STBP on CIFAR-100. The QSNN topology is of a deep SNN (7Conv and
Binary weight constraint
90] 10°
70 1 o c 102
w o
3 £ LA N
307) 2104
O
30" i . oL | | 10-6 L 1 1 |
0 50 100 0 50 100 -2-1 0 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
90 10°
121 — 1st
4 ~N —— 32th
70 wog — 6ath | §107°
F.-—————— X —— 96th is]
50 1 © . _
— Top-1 g 41 @« 107
—— Top-5
301
T T T 0+ ! ! 10—6_
0 50 100 0 50 100 -2-10 1 2
Epoch Epoch Normalized weight

Figure 6: CBP-QSNN-(SEW-ResNet-18) on ImageNet.

17

Under review as a conference paper at ICLR 2023

Test acc (%)

Test acc (%)

Test acc (%)

Test acc (%)

90

100

50
Epoch

Binary weight constraint

10°

Fraction

100

,_.
o
N

=

Fraction
=
o

[

1076

12
— 1st

< —— 32th
Wi 84 —— 64th
< —— 96th
o 4
(@)

oL | !

0 50 100
Epoch

Ternary weight constraint

12

— 1st

~N —— 32th
W 8 —— 64th
X —— 96th
D 4
O

oL |

0 50 100
Epoch

i

2-10 1 2
Normalized weight

-2-10 1 2

Normalized weight

Figure 7: CBP-QSNN-(SEW-ResNet-34) on ImageNet.

90
70
50 1/
— Top-1
30 —— Top-5
0 50 100
Epoch
100
95 1
90
85 1
80— . :
0 100 200
Epoch
100
95 1 pu'ww -
90 1
85 1
80 . ;
0 100 200
Epoch

Binary weight constraint

31 — 1st
S —— 80th
w2 —— 160th
—
a3
214
O
oL | |
0 100 200
Epoch

100

,_.
o
N

]

Fraction
=
o

L

-6

-2-10 1 2

Normalized weight

Ternary weight constraint

CFS (x1E-2)

— 1st
—— 80th
160th

0+ | }
0 100 20

Epoch

0

10°

,_|
o
N

2

Fraction
=
o

L

-6

-2 -1 0

1 2

Normalized weight

Figure 8: CBP-QSNN-(7B-Net) on DVS128 Gesture.

Under review as a conference paper at ICLR 2023

Test acc (%)

Test acc (%)

Test acc (%)

Test acc (%)

Binary weight constraint

76 10°
— 1st
741 ~ 3 —— 20th
1 C -2
W —— 40th | & 10
721 X2 — 6oth | & 1 i~
©
wn = 1044
70 S 11 =
68 y y 0= y y 10764 S L
0 30 60 0 30 60 -2 -1 0 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
76 10°
— 1st
741 ~ 3 —— 20th I
! c 10—2_
L —— 40th o
724 X2 — 60th | B 1
©
wn = 10744
70 G 1 - / l
68 - y y 0 y y 1076 T T
0 30 60 0 30 60 -2 -1 0 1 2
Epoch Epoch Normalized weight
Figure 9: CBP-QSNN-(Wide-7B-Net) on CIFAR10-DVS.
Binary weight constraint
0
100 9. 10
80 - ™
L1 6 § 10724
601 X S
(0 3 £ 10741
40 1 O
20+ T T 0+ . } 1064
0 50 100 0 50 100 -2-1 0 1 2
Epoch Epoch Normalized weight
Ternary weight constraint
100 9 10°
— 1st
80 %) —— 30th
wy 61 — 60th | 5 107
601 X — 9oth | T
©
| n 34 = 1074
40 L i
201 T I I
0 50 10

0 0 50 100 2-10 1 2
Epoch Epoch Normalized weight

Figure 10: CBP-QSNN-(SNN-calibration) on CIFAR-10. The QSNN topology is of VGG-16.

19

Under review as a conference paper at ICLR 2023

Binary weight constraint

80 10°
9 .
m
< 60 A LII.I g 10—2_
9] 1 Bt
O ‘; 6 +—
s ” 5
2 40 £ 5 i 10744
@ (@)
20 - - 0+ - ‘ 107%+ |
0 50 100 0 50 100 —2 —1 0 1
Epoch Epoch Normalized Welght
Ternary weight constraint
80 9 10°
. — 1st
3 = —— 30th
< 60 s 61 — 60th | S 1077
O — —
o x —— 90th .
4(7‘) 40+ (_u/_) 3 LIEi 10—4_
@ (@)
20’ ! ! | O_ : : ! 10—6_
0 50 100 0 50 100 -2 -1 0 1
Epoch Epoch Normalized Welght

Figure 11: CBP-QSNN-(SNN-calibration) on CIFAR-100. The QSNN topology is of VGG-16.

20

	Introduction
	Related work
	Method
	Constrained Backpropagation
	CBP Settings for Direct Trained SNNs
	CBP Settings for SNNs Converted From DNNs

	Experiments
	CBP-QSNNs with true loss functions
	CBP-QSNNs with surrogate loss functions
	Comparison with previous quantization results

	Conclusion
	Appendix
	Pseudocode
	Hyper-parameters for CBP
	Extra data

