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Few-shot Semantic Segmentation via Perceptual Attention and
Spatial Control
Anonymous Authors

ABSTRACT
Few-shot semantic segmentation (FSS) aims to locate pixels of
unseen classes with clues from a few labeled samples. Recently,
thanks to profound prior knowledge, diffusion models have been
expanded to achieve FSS tasks. However, due to probabilistic nois-
ing and denoising processes, it is difficult for them to maintain
spatial relationships between inputs and outputs, leading to inac-
curate segmentation masks. To address this issue, we propose a
Diffusion-based Segmentation network (DiffSeg), which decouples
probabilistic denoising and segmentation processes. Specifically,
DiffSeg leverages attention maps extracted from a pretrained dif-
fusion model as support-query interaction information to guide
segmentation, which mitigates the impact of probabilistic processes
while benefiting from rich prior knowledge of diffusion models. In
the segmentation stage, we present a Perceptual Attention Module
(PAM), where two cross-attention mechanisms capture semantic
information of support-query interaction and spatial information
produced by the pretrained diffusion model. Furthermore, a self-
attention mechanism within PAM ensures a balanced dependence
for segmentation, thus preventing inconsistencies between the
aforementioned semantic and spatial information. Additionally,
considering the uncertainty inherent in the generation process of
diffusion models, we equip DiffSeg with a Spatial Control Mod-
ule (SCM), which models spatial structural information of query
images to control boundaries of attention maps, thus aligning the
spatial location between knowledge representation and query im-
ages. Experiments on PASCAL-5𝑖 and COCO datasets show that
DiffSeg achieves new state-of-the-art performance with remarkable
advantages.

CCS CONCEPTS
•Computingmethodologies→ Image segmentation;Machine
learning.

KEYWORDS
Few-shot segmentation, Diffusion model, Perceptual attention, Spa-
tial control

1 INTRODUCTION
Semantic segmentation has achieved tremendous success due to the
advancement of deep learning methods. However, deep learning
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Figure 1: Comparison among different models. (a) Metric-
based methods find co-occurrence features between support
images and query images to locate targets. (b) Generation-
based methods synthesize adequate samples for training
segmentation models. (c) Regarding segmentation masks
as generated targets, Diffusion segmenters directly perform
segmentation task during the denoising process. (d) Our pro-
posed DiffSeg decouples probabilistic denoising and segmen-
tation processes, which could reduce the impact of probabilis-
tic processes while benefiting from profound prior knowl-
edge of pretrained diffusion models.

algorithms require large amounts of dataset to learn knowledge,
where labeling is extremely time-consuming and annoying. Es-
sentially, humans could understand a new category with a few
samples, which inspires researchers to transfer knowledge from
known to unknown. By properly encoding humans’ knowledge,
few-shot learning successfully relieves the high demand of col-
lecting large-scale dataset, thus expanding its usage into variant
scenarios [1, 6, 14].

In this paper, we focus on the task of Few-shot Semantic Seg-
mentation (FSS), which aims to segment new categories with a
few samples. Recently, metric-based methods [5, 17] have signifi-
cantly contributed to the FSS task, which locate targets by finding
co-occurrence features between support images and query images,
as shown in Fig.1 (a). However, these methods face challenges in
fully leveraging intrinsic features of categories with limited sam-
ples, resulting in compromises in target integrity and boundary
accuracy. Thanks to profound prior knowledge, diffusion models
[26] can thoroughly express intrinsic features of new categories.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Nevertheless, extended to FSS, those methods [27] are merely used
to generate samples for training segmentation models, as shown
in Fig.1 (b). It essentially reverts FSS tasks back to conventional
segmentation tasks, which fails to meet the requirements of low
time consumption and computational cost for training. To avoid
this issue, researchers propose diffusion segmenters [12? ], which
directly perform the segmentation task during denoising processes,
as shown in Fig.1 (c). Due to probabilistic noising and denoising
processes, those methods struggle to maintain spatial relationships
between inputs and outputs, thus generating results with inaccurate
boundaries.

Facing the aforementioned challenges, we propose a novel FSS
paradigm named DiffSeg, as shown in Fig.1 (d). DiffSeg utilizes prior
knowledge of a pretrained diffusion model to assist in segmentation,
thus mining intrinsic features of categories with limited samples
and avoiding generating probabilistic results. Specifically, we feed
support images as prompts and query images as latent images into
a diffusion model, where we extract multiscale attention maps, i.e.,
self-attention maps and cross-attention maps. The former effec-
tively capture the similarity relationship among pixels, which helps
understand semantic contents of query images. The latter contain
response information of support-query interaction, which could
help the model locate target areas. In fact, the attention maps are
able to locate the general position of target areas through simply
processing, which provide a strong guidance for segmentation.

In the segmentation phase, we propose a Perceptual Attention
Module (PAM) to highlight significant regions within query im-
ages based on support images and attention maps of a pretrained
diffusionmodel, respectively. Firstly, we employ two cross-attention
mechanisms to handle data of different branches. The cross-attention
between query-attention pairs could capture spatial information
produced by pretrained diffusion models, thus introducing prior
knowledge of pretrained diffusion models into segmentation phase.
Simultaneously, the cross-attention between query-support images
could capture semantic interaction information, which could find
co-occurrence objects between support images and query images.
Secondly, considering confliction between the spatial information
and the semantic information, we utilize a self-attention to estab-
lish a balanced dependence for segmentation, which improves the
robustness of DiffSeg. Noted that those computations are conducted
at the latent image level. A latent image is a compression trans-
formation that attenuates high frequency information of a natural
image, which not only reduces computational burdens, but also
keeps visual features of the original natural image.

Considering the generation uncertainty of diffusion models, we
propose a Spatial Control Module (SCM) for DiffSeg to align se-
mantic boundaries between extracted attention maps and query
images. Specifically, we integrate edge maps of query images with
the hidden states of down-sample processes in diffusion models.
Subsequently, this combined information is transformed into spatial
structural information and inserted into corresponding scale levels
of up-sample processes. On the one hand, the spatial structural
information serves as conditional input to control spatial structural
information of attention maps during up-sample processes. On
the other hand, direct connections between corresponding down-
sample and up-sample processes help mitigate changes in spatial
structures of attention maps. Differing from ControlNet [44], which

employs latent images for control, SCM utilizes conditional infor-
mation to govern attention maps.

The main contributions of this paper are as follows:
• We introduce a novel FSS paradigm named DiffSeg, which ef-
fectively decouples probabilistic processes of diffusion mod-
els with segmentation phases, thus avoiding uncertain re-
sults while utilizing profound prior knowledge.

• We propose a Perceptual Attention Module for segmentation,
where two cross-attention capture semantic information of
support-query interaction and spatial information produced
by the pretrained diffusion model, respectively, Additionally,
a self-attention mechanism is employed to find a balance in
dependency for segmentation tasks.

• Considering the probabilistic generation of diffusion mod-
els, we propose a Spatial Control Module to align semantic
boundaries between extracted attention maps and query im-
ages, which keeps spatial structures of query images during
diffusion processes.

• Experimental results on the PASCAL-5𝑖 dataset show the
proposedmethod achieves themIOU score of 69.3% for 1-shot
segmentation and 72.1% for 5-shot segmentation, setting new
state-of-the-art performance with remarkable advantages.

2 RELATEDWORK
2.1 Semantic Segmentation
Semantic segmentation aims to classify each pixel of an image into
a set of preset categories. According to different network struc-
tures, current methods can be roughly divided into four categories,
i.e., CNN-based, RNN-based, GNN-based and transformer-based
methods. CNN-based methods [13, 18, 43] utilize convolution op-
erations to extract semantic information from feature maps for
pixel-level label prediction. Considering dependence of context in-
formation, RNN-based methods [9, 22, 32] use recurrent layers to
capture local and global spatial structure information of images. Us-
ing topological structure of graphs, GNN-based methods [19, 20, 30]
transform task of image segmentation into the classification task
of graph nodes. Recently, transformer-based methods [37, 39, 46]
have received more popularity. They regard patches of images as a
sequence, then utilize an encoder-decoder structure with attention
mechanisms to achieve segmentation.

Among them, transformer-based methods are most relevant
to our work. To comprehensively understand image contents, In-
cepFormer [4] introduces an efficient inception transformer that
integrates global context, fine localization information and mul-
tiscale features to segment images. Considering the background
incompleteness issue, Liu et al. [16] propose WegFormer, where
the depth-taylor decomposition principle and soft erasure module
are incorporated to generate more complete pseudo-labels. Using a
pretrained transformer in a data collection loop, Kirillov et al. [11]
propose a Segment Anything (SA) project: a new task, model, and
dataset for image segmentation, which shows the advantages of
transformer for image segmentation tasks.

2.2 Few-shot Semantic Segmentation
Few-shot semantic segmentation extends the ability of segmenta-
tion to novel category with a few labeled samples. Many researchers
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regard few-shot segmentation as a guided segmentation task, thus
following a two-branch framework [24, 41]. For instance, Shaban
et al. [28] apply few-shot learning on semantic segmentation us-
ing a two-branch framework, where the support branch generates
parameters in the last layer of the query branch for segmentation.
Following their idea, Michaelis et al. [21] combine embeddings
with a U-net to find unknown objects in a complex scene guided
by only one sample. To better utilize information of the support
set, Wang et al. [34] learn prototype representations based on a
few support images in an embedding space, which could match
pixels to the learned prototypes, thus performing segmentation in
few-shot settings.

Recently, Gu et al. [5] propose DRCNet to achieve sufficient
support-query interaction for accurate FSS, where a dynamic con-
text module is presented to capture spatial details in query images
by building dynamic convolutions in local views. For better feature
fusion, MFNet [45] utilizes an attention mechanism to achieve sup-
port feature modulation and multi-scale combination. Facing heavy
computational operations of high-dimensional vectors, QCLNet
[47] explores latent interaction between images through the utiliza-
tion of operations grounded in well-established quaternion algebra..

However, those methods are challenging in digging internal
relationship between query and support images, due to limited
available semantic information with a few samples. Unlike former
methods, DiffSeg introduces a pretrained diffusion model to provide
sufficient prior knowledge for guiding segmentation, thus reducing
the dependence on training data scale.

2.3 Diffusion Models for Segmentation
Diffusion models have recently gained significant attention from
the research community due to their ability to generate high-fidelity
contents, which are gradually extended to FSS tasks [2, 33]. For
instance, to effectively train segmentation models using generated
images, Roy et al. [27] propose diffusion-based DiffAlign, which
could align the synthetic images to the real images and minimize
the domain gap.

In contrast to those methods that synthesize samples, LEDM [2]
directly use the generative model to perform segmentation, which
extracts the intermediate activations from the reverse diffusion pro-
cess as excellent pixel-level representations for the segmentation
problem. In order to enhance the step-wise regional attention in dif-
fusion probabilistic model for the image segmentation, MedSegDiff
[36] proposes dynamic conditional encoding, which establishes the
state-adaptive conditions for each sampling step.

Different from previous methods, our method decouples proba-
bilistic processes and segmentation phase, which could reduce the
impact of probabilistic processes while benefiting from rich prior
knowledge of pretrained diffusion models.

3 TASK DESCRIPTION
Given only one or a few images with pixel-level annotations, few-
shot segmentation aims to accurately locate foreground pixels in
test images. Specifically, we divide the dataset into training set
𝐶𝑡𝑟𝑎𝑖𝑛 and test set 𝐶𝑡𝑒𝑠𝑡 according to category of images, where
𝐶𝑡𝑟𝑎𝑖𝑛 and 𝐶𝑡𝑒𝑠𝑡 don’t contain same-category images, which can
be represented as 𝐶𝑡𝑟𝑎𝑖𝑛 ∩𝐶𝑡𝑒𝑠𝑡 = ∅.

For each 𝑘-shot segmentation task, we firstly define a target class
𝑐 , and then sample 𝑘 + 1 images with the class label 𝑐 from 𝐶𝑡𝑒𝑠𝑡 .
Defining the first 𝑘 labeled images as support set 𝑆 and the last
image as 𝑥𝑞 , few-shot segmentation model𝑀𝜃 aims to compute the
segmentation mask of the query image 𝑦𝑞 with:

𝑦𝑞 = 𝑀𝜃 (𝑆, 𝑥𝑞) (1)

where 𝜃 are parameters of the model. Assuming that 𝑦𝑞 is the
ground-truth label for the query image 𝑥𝑞 , task goal of few-shot
segmentation is to minimize the loss 𝐿(𝑦𝑞, 𝑦𝑞) by updating 𝜃 , where
such process could be represented as:

𝜃 = argmin
𝜃

𝐿(𝑦𝑞, 𝑦𝑞) = argmin
𝜃

𝐿(𝑀𝜃 (𝑆, 𝑥𝑞), 𝑦𝑞) (2)

Since an image may contain objects of different categories, the
ground-truth query mask could vary with different assigned labels.

4 METHOD
4.1 Overview
The framework of DiffSeg is shown in Fig.2, where a Perceptual At-
tention Module (PAM) performs perceptual attention mechanisms
among support latent images, query latent images and attention
maps generated by a knowledgeable diffusion model, which helps
locate target areas with compact boundaries. Besides, a Spatial Con-
trol Module (SCM) inserts conditional spatial information into the
denoising process of diffusion UNet, which aligns edges between
query images and attention maps, thus keeping spatial structures
of query images during probabilistic diffusion processes.

Specifically, we first multiply a support image 𝐼𝑠 and a binary
support mask𝑀𝑠 to remove background. Then, the output is pro-
cessed by a Variational Auto-Encoder (VAE) encoder and a Clip
[23] to generate the support latent image 𝐿𝑠 and embedding 𝐸𝑚 ,
respectively. The process can be expressed as:

𝐿𝑠 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑠 ⊗ 𝑀𝑠 ) (3)

𝐸𝑚 = 𝐶𝑙𝑖𝑝 (𝐼𝑠 ⊗ 𝑀𝑠 ) (4)
where ⊗ is element-wise multiplication. The embedding 𝐸𝑚 gen-
erated by Clip is the conditional information of diffusion models,
which is interacted with query latent images during denoising pro-
cesses. Then encoder module transforms the query image 𝐼𝑞 to
the query latent image 𝐿𝑞 , which is input into a diffusion model
prompted by 𝐸𝑚 to obtain attention maps 𝐴𝑚 . Noted that 𝐼𝑠 is pro-
cessed by HDE algorithm [38] to generate an edge map 𝐼𝑙 , which
is used by SCM to control attention maps of diffusion model, thus
aligning spatial structures between attention maps and query im-
ages. The process can be expressed as:

𝐿𝑞 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑞) (5)

𝐴𝑚 = 𝐷𝑖 𝑓 𝑓 (𝐿𝑞 |𝐸𝑚, 𝑆𝐶𝑀 (𝐼𝑙 )) (6)
where𝐷𝑖 𝑓 𝑓 (·) and 𝑆𝐶𝑀 (·) represent the process of diffusion model
and spatial control module, respectively. Then, the attention maps
𝐴𝑚 is processed to obtain an attention score map𝑀𝑎 :

𝑀𝑎 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 (𝐴𝑚) (7)

where 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 (·) presents the operation that transforms 𝐴𝑚 to𝑀𝑎 ,
which details are shown in section 4.2.

Afterwards, PAM performs perceptual attention mechanisms
among attention maps 𝑀𝑎 , the support latent image 𝐿𝑠 and the
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Figure 2: The pipeline of DiffSeg, where * means updating parameters in training phase. Firstly, a pretrained diffusion model
extracts support-query interaction information𝑀𝑎 , which provides a strong guidance for segmentation. Then, PAM emphasizes
key areas of query image based on support images and𝑀𝑎 , thus achieving dense prediction with compact boundaries. In this
manner, DiffSeg decouples probabilistic de-noising and segmentation processes, thus reducing the impact of probabilistic
processes while benefiting from profound prior knowledge of diffusion models.

query latent image 𝐿𝑞 to locate target areas with compact bound-
aries, which outputs the predicted latent image 𝐿𝑝𝑟𝑒 .

𝐿𝑝𝑟𝑒 = 𝑃𝐴𝑀 (𝑀𝑎, 𝐿𝑠 , 𝐿𝑞) (8)

Finally, a VAE decoder transforms 𝐿𝑝𝑟𝑒 to prediction image 𝐼𝑝𝑟𝑒 ,
which can be formulated as:

𝐼𝑝𝑟𝑒 = 𝐷𝑒𝑐𝑜𝑑𝑒 (𝐿𝑝𝑟𝑒 ) (9)

In training phase, we only update parameters of SCM and PAM.
Therefore, we supervise the attention score map 𝑀𝑎 and the pre-
dicted latent image 𝐿𝑝𝑟𝑒 , where both two supervision use the MSE
loss function. For computing loss of 𝐿𝑝𝑟𝑒 , we use a VAE [10] en-
coder to obtain the latent image of ground truth. The whole loss L
can be computed as:

L = 𝛼𝐿(𝑀𝑎, 𝐼𝑔𝑡 ) + 𝛽𝐿(𝐿𝑝𝑟𝑒 , 𝐸𝑛𝑐𝑜𝑑𝑒 (𝐼𝑔𝑡 )) (10)

where 𝐿(·) presents MSE loss function and 𝐼𝑔𝑡 refers to ground
truth. 𝛼 and 𝛽 are weights of each loss. Based on experimental study
shown in supplementary, we set them to 2 and 1, respectively.

For𝑘-shot segmentation, both𝑘 embeddings and𝑘 support latent
images are fused in an average manner. Thanks to the ability of Clip
to align image with text and rich prior knowledge of pretrained
diffusion models, there is little gap in segmentation performance
between different fusion methods. Experiments in supplementary
can prove it. Therefore, we select simple but effective average fusion
as our 𝑘-shot solution.

4.2 Diffusion UNet
To incorporate profound prior knowledge into the FSS task, we
equip DiffSeg with a pretrained diffusion model named Kandinsky
[25], which helps understand semantic contents of query images

and achieve support-query interaction. Specifically, we input sup-
port images as prompt and query images as latent into Kandinsky,
and then extract attention maps from the model, i.e., cross-attention
maps and self-attention maps. The former contain the response
information of query images to support images, and the latter helps
fully extract semantic information from query images.

Kandinsky diffusion contains attention maps of 3 different scales
(i.e., 8×8, 16×16, 32×32), which are interpolated to the same size for
fusion. By averaging self-attention maps and cross-attention maps,
respectively, we can obtain a fused self-attention map 𝑀𝑠𝑒𝑙 𝑓 ∈
R𝐻𝑊 ×𝐻𝑊 and a fused cross-attention map𝑀𝑐𝑟𝑜𝑠𝑠 ∈ R𝐻×𝑊 .

In fact, cross-attention maps serve as a vital component in the
conditional generation process, providing valuable insights into the
conditional probability distribution. However, the produced cross-
attention score maps often lack clear object boundaries and may
exhibit internal holes. Fortunately, self-attention maps are able to
establish the correlations between different pixels, which provides
the ability to perform region completion, thus compensating for
the incomplete activation regions in cross-attention. Therefore,
the final attention score map 𝐴𝑚 can be obtained by multiplying
the cross-attention maps with pixel affinity weights obtained from
self-attention maps:

𝑀𝑎 = 𝑛𝑜𝑟𝑚(𝑀𝑠𝑒𝑙 𝑓 · 𝑣𝑒𝑐 (𝑀𝑐𝑟𝑜𝑠𝑠 )) (11)

where 𝑛𝑜𝑟𝑚(·) is min-max normalization to ensure the segmenta-
tion score maps are appropriately scaled, 𝑣𝑒𝑐 (𝑀𝑐𝑟𝑜𝑠𝑠 ) ∈ R𝐻𝑊 ×1,
and 𝑣𝑒𝑐 (·) is a vectorization operation of a matrix.

Briefly, the attention score map 𝐴𝑚 is simply produced during
the denoising inference process of the pretrained diffusion model,
which locates target areas with prior knowledge of the diffusion
model, thus providing useful guidance for segmentation phases.
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Figure 3: The design of perceptual attention module. Two
cross-attention operations provide segmentation task for se-
mantic information of support-query interaction and spatial
information produced by prior information of pretrained
diffusion models, respectively. Considering confliction be-
tween them, we utilize a self-attention to find a balance of
dependence for segmentation.

4.3 Perceptual Attention Module
Different from most previous methods which performs dense com-
parisons within feature maps of images, PAM performs perceptual
attention mechanisms in latent image level. A latent image is a com-
pression transformation that removes high frequency information
of a natural image, which not only reduces computational burdens
in comparison, but also keeps visual features of original images.
Moreover, PAM considers extracted attention maps to perceptual
attention, thus introducing prior knowledge of diffusion models
into segmentation phase.

The design of PAM is shown in Fig.3. Firstly, we perform cross-
attention for a query latent image 𝐿𝑞 with a support latent image
𝐿𝑠 and an attention score map𝑀𝑎 , respectively. In this process, we
set 𝐿𝑞 as Query (𝑄) and set 𝐿𝑠 or𝑀𝑎 as Key (𝐾 ) and Value (𝑉 ). The
cross-attention can be computed as:

𝐿1 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝐿𝑖𝑛𝑒𝑟 (𝐿𝑞) · 𝐿𝑖𝑛𝑒𝑟 (𝐿𝑠 )√

𝑑
) · 𝐿𝑖𝑛𝑒𝑟 (𝐿𝑠 ) (12)

where𝐿𝑖𝑛𝑒𝑟 (·) function refers to linear transformation and𝑑 presents
the dimension of linear features. In the samemanner, cross-attention
is performed between 𝐿𝑞 and𝑀𝑎 to obtain 𝐿2.

Essentially, 𝐿1 contains semantic information of support-query
interaction, while 𝐿2 contains spatial information produced by the
pretrained diffusion model. In most cases, they have the same inter-
ested areas, which could provide positive guidance for segmentation.
Unfortunately, their interested areas are completely inconsistent
on occasion.

Considering confliction between the prior information and the
semantic interaction information, we utilize a self-attention to find
a balance of dependence for segmentation. Specifically, we fuse
𝐿𝑞 , 𝐿1 and 𝐿2 in an average manner to achieve 𝐿3, which is set
to 𝐾 , 𝑄 and 𝑉 in the self-attention operation. Then, the output of
self-attention is incorporated to 𝐿3 in a residual form. Finally, we
use a convolution and ReLU block to achieve the latent image 𝐿𝑝𝑟𝑒
of predicted mask.

11Conv+
ReLU NormLinear Linear

MLP

Diffusion UNet

Spatial Control Module

1

Figure 4: The design of spatial control module, where arrows
of different colors represent different paths. SCM preserves
the capabilities of the pretrained diffusion model by freezing
its parameters, and inserts spatial conditional information
into the model to control its semantic boundaries.

4.4 Spatial Control Module
Due to probabilistic noising and denoising processes, diffusion
models are unable to maintain spatial relationships between inputs
and outputs, leading to inaccurate segmentation masks. To solve
this problem, we present an SCM for DiffSeg to align semantic
boundaries between extracted attention maps and query images,
which is shown in Fig.4.

SCM treats the pretrained diffusion model as a strong backbone
for learning conditional controls. Firstly, an edge map is processed
by convolution and ReLU blocks to obtain spatial information of a
query image. Then it merges with features resized to 64×64 of diffu-
sion UNet and goes through a linear layer. The output of the linear
layer not only goes through a normalized layer and a Multi-Layer
Perception (MLP), but is also added to output of MLP in a residual
form to avoid excessive transforms. Finally, after the process of a
linear layer, we insert spatial controls into diffusion UNet in a resid-
ual form, which helps align spatial structures between attention
maps and query images. On the one hand, the spatial information is
regarded as conditional information to control spatial structures of
attention maps in up-sample processes. On the other hand, direct
connections between corresponding down-sample and up-sample
processes could reduce changes in spatial structures. Noted that
SCM extracts features from each scale level of UNet and inserts
spatial controls into a corresponding level, as shown in Fig.4, where
arrows of different color represent different paths.

Differing from ControlNet [44], which employs latent images for
control, SCM utilizes conditional information to govern attention
maps Additionally, while ControlNet operates at each encoder level
of a diffusion U-net with cascaded multiscale encoder blocks, SCM
handles state information from various levels by parameter sharing,
thus achieving control with reduced computational overhead.

5 EXPERIMENTS
5.1 Dataset and Evaluation Metric
PASCAL-5𝑖 [28] is a public dataset of few-shot semantic segmenta-
tion, which is made up of PASCAL VOC 2012 [3] with extra SDS [7]
annotations. The dataset includes 20 categories, which are divided
into 4 splits, and each split contains 5 categories.
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Table 1: Comparison results of 1-shot and 5-shot Segmentation on PASCAL-5𝑖 . Best in Bold and Second in Underline.

Method mIOU (1-shot) FB-IOU mIOU (5-shot) FB-IOUsplit-1 split-2 split-3 split-4 mean (1-shot) split-1 split-2 split-3 split-4 mean (5-shot)

PFENet [31] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
DCAMA [29] 67.5 72.3 59.6 59.0 64.6 75.7 70.5 73.9 63.7 65.8 68.5 79.5
CyCTR [42] 65.7 71.0 59.5 59.7 64.0 74.3 69.3 73.5 63.8 63.5 67.5 75.9
DRCNet [5] 70.3 74.7 67.9 62.0 68.7 75.8 72.3 76.5 70.6 68.2 71.9 77.4

AAFormer [35] 69.1 73.3 59.1 59.2 65.2 73.8 72.5 74.7 62.0 61.3 67.6 76.2
VAT [8] 67.6 72.0 62.3 60.1 65.5 77.8 72.4 73.6 68.6 65.7 70.1 80.9

DPCN [17] 65.7 71.6 69.1 60.6 66.7 78.0 70.0 73.2 70.9 65.5 69.9 80.7
MIANet [40] 68.5 75.7 67.4 63.1 68.6 76.3 70.2 77.3 70.0 68.8 71.6 76.8
DiffSeg (ours) 70.5 75.8 67.9 63.2 69.3 78.4 72.8 77.6 68.7 69.3 72.1 81.2

Table 2: Comparison results of 1-shot and 5-shot Segmentation on COCO dataset.

Method mIOU (1-shot) FB-IOU mIOU (5-shot) FB-IOUsplit-1 split-2 split-3 split-4 mean (1-shot) split-1 split-2 split-3 split-4 mean (5-shot)

PFENet [31] 36.8 41.8 38.7 36.7 38.5 63.0 40.4 46.8 43.2 40.5 42.7 65.8
DCAMA [29] 41.9 45.1 44.4 41.7 43.3 69.5 45.9 50.5 50.7 46.0 48.3 71.7
CyCTR [42] 38.9 43.0 39.6 39.8 40.3 64.2 41.1 48.9 45.2 47.0 45.6 66.7
DRCNet [5] 44.8 53.2 49.5 45.7 48.3 67.7 50.2 57.7 52.0 50.1 52.5 68.5

AAFormer [35] 40.4 44.1 43.5 38.4 41.6 67.7 45.2 51.6 46.1 44.7 46.9 68.2
VAT [8] 39.1 42.7 42.9 40.5 41.3 68.8 46.5 47.3 48.0 49.7 47.9 72.4

DPCN [17] 42.0 47.0 43.2 39.7 43.0 63.2 46.0 54.9 50.8 47.4 49.8 67.4
MIANet [40] 42.7 52.9 47.8 47.4 47.7 67.1 45.8 58.2 51.3 51.9 51.6 68.3
DiffSeg (ours) 45.2 54.1 47.9 48.3 48.9 69.0 50.7 58.9 51.6 52.4 53.4 72.6

COCO 2014 [15] is a challenging large-scale dataset containing
80 categories. The purpose of COCO is scene understanding, which
is mainly acquired from complex daily scenes. The target objects
in images are annotated in precise pixel-level masks.

According to the introduction of few-shot segmentation task, a
cross-validation experiment is performed. On PASCAL-5𝑖 , three
splits are utilized for training, and the final split is used to evaluate
models. On COCO 2014, according to [41], we select 40 classes for
training, 20 classes for validation and 20 classes for test.

The mean Intersection-over-Union (mIoU) of all classes and the
average of the foreground & background IoU (FB-IOU) are twomain
evaluation metrics of few-shot segmentation. For fair comparison
with current methods, we use mIoU and FB-IOU to measure our
model performance, but mIOU is regarded as the main metric due
to its higher evaluation ability.

5.2 Implementation Details
To evaluate the performance of our method, we implement DiffSeg
using the PyTorch library, and train it for 200 epochs on 4 Nvidia
V100 GPUs. We set the learning rate to 0.01 and use the StepLR
scheduler in PyTorch, thus reducing the learning rate to 0.9 times for
every 20 epochs. Diffusion and Clip are pretrained models, which
parameters are frozen in training phase. We only update parameters
of PAM and SCM with a gradient descent algorithm. To reduce the
effect of the random selection of support images, we run all tests
10 times and report the mean results.

5.3 Comparison with Other Methods
PASCAL-5𝑖 . We compare DiffSeg with current methods on the
PASCAL-5𝑖 dataset, where Table 1 shows results with mIOU and
FB-IOU metrics. By comparing results, DiffSeg outperforms current
methods and reaches new state-of-the-art performance in most
cases. Under mIOU metric, DiffSeg is superior to current works in
both 1-shot and 5-shot segmentation. We notice that DPCN [17]
exceeds DiffSeg on split-3 of PASCAL-5𝑖 , which is caused by nonuni-
form distribution of categories in splits. In fact, the average size of
objects on split-3 is relatively large, where DPCN can better find the
pixel-wise dense correlation between query and support images.
Besides, considering that our approach is transformer-based, we
compare DiffSeg with transformer-based methods (e.g., AAFormer
[35] and VAT [8]) for fair comparison. The comparison results show
that our method outperforms existing transformer-based meth-
ods. Essentially, our method benefits from rich prior knowledge
rather than solely relying on transformer architectures, which is
not present in other transformer-based methods.

Under FB-IOU metric, DiffSeg still achieves outstanding perfor-
mance. Since mIOU is regarded as the main evaluation metric, we
only report the average FB-IOU of 4 splits. More detailed results
are reported in the Supplementary.

MS COCO. The results of DiffSeg and other methods on the
MS COCO dataset are shown in Table 2, from which we can see
DiffSeg reaches the highest performance on MS COCO. Regarding
that PASCAL-5𝑖 contains 20 categories and MS COCO contains
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Figure 5: The qualitative results of DiffSeg. The similarity between attention maps and predictions indicates that the knowledge
of pretrained diffusion model provides a significant guidance for segmentation.

Table 3: Results of DiffSeg with different modules in 1-shot
and 5-shot segmentation.

UNet SCM PAM 1-shot 5-shot
× × √

53.7 56.0√ × √
65.8 67.4√ √ × 42.2 44.6√ √ √
69.3 72.1

80 classes, the increase in classes brings more difficult problem
and higher requirements to methods. As shown in Table 2, the
evaluation score of mIOU drops significantly, but the score of FB-
IOU is still at a high level. As most objects are small in images, even
if models fail to predict target objects, the background IoU is still
very high, thus resulting in a high FB-IOU.

Qualitative results. Some qualitative results of 1-shot segmen-
tation are shown in Fig. 5, where each column represents the sup-
port set, query set, attention map of the pretrained diffusion model,
prediction, and ground-truth, respectively.

Noted that given the same query image, DiffSeg is able to seg-
ment different targets when different objects are labeled in support
images. For instance, in the 7th and 8th examples, given different
support images with the category “dog” or “sofa”, DiffSeg can seg-
ment different objects in the same query image. Essentially, the
pretrained diffusion model can generate different attention score
maps of a query image, which provides a strong guidance for seg-
menting different objects.

Table 4: Results of DiffSeg in 1-shot and 5-shot segmentation
when different features are selected as prior knowledge rep-
resentation.

Methods SA CA 1-shot 5-shot

Attention

√ × 59.4 62.7
× √

65.3 66.9√ √
69.3 72.1

FRB — — 50.1 52.8
FST — — 52.6 54.2

5.4 Ablation Study
To validate the effectiveness of each module, we perform ablation
experiments on PASCAL-5𝑖 , where we still use the cross-validation
method and report the average mIOU of 4 splits.

Network Design. To prove effectiveness of the proposed mod-
ules, we compare the performance of DiffSeg when certain modules
are removed. When UNet with SCM is removed, PAM only com-
pares support latent images and query latent images, without con-
sidering attention maps. When PAM is removed, a convolutional
layer is used to generate predicted latent image 𝐿𝑝𝑟𝑒 .

Table 3 shows the elimination of certain module would reduce
the performance of DiffSeg, which means that each module plays
a positive role in segmentation. When diffusion UNet is removed,
segmentation performance drops significantly, which proves that
prior knowledge in the pretrained diffusion model is powerful to
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Table 5: Results of DiffSeg in 1-shot and 5-shot segmentation
when certain attention operations are removed or changed in
PAM. "×" and "⃝" present removing attention and changing
attention to convolutional operations, respectively.

Att_1 Att_2 Att_3 1-shot 5-shot
× × × 44.3 46.5
× √ √

58.6 60.4√ × √
52.1 53.7√ √ × 64.2 66.8

⃝ ⃝ ⃝ 59.2 61.1
⃝ √ √

62.4 63.7√ ⃝ √
59.9 61.5√ √ ⃝ 65.4 67.2√ √ √
69.3 72.1

Table 6: Results of DiffSeg in 1-shot and 5-shot segmentation
when SCM is inserted into different levels of diffusion UNet.

8×8 16×16 32×32 Params sharing 1-shot 5-shot
× √ √ √

62.5 65.7√ × √ √
60.3 62.1√ √ × √
67.9 70.2√ √ √ × 69.2 72.1√ √ √ √
69.3 72.1

interact semantic information between support-query images and
provide a strong guidance for segmentation.

Knowledge representation of diffusion models. To validate
the significance of extracted prior knowledge, we compare results of
DiffSeg which extracts feature maps at different locations as knowl-
edge representation. First, we explore the performance impact of
removing self-attention or cross-attention. Second, we study the
impact of extracting features at other locations in diffusion UNet as
prior knowledge, e.g., Features of Resnet Blcok (FRB) and Features
of Spatial Transformer (FST).

The ablation results are as shown in Table 4, where SA and
CA refer to self-attention and cross-attention, respectively. The
results show that extracting only self-attention or cross-attention
will result in a performance decrease. Self-attention maps effec-
tively capture the similarity relationship between pixels of query
images, and cross-attention maps contain the response informa-
tion of query images to support images, which could contribute
to extract semantic features and locate target areas. Noted that
the result of DiffSeg with cross-attention is better than its with
self-attention, which shows that information interaction between
support images and query images is more important than semantic
perception in query images. Besides, when using features of resnet
block or spatial transformer as prior knowledge, the performance
of DiffSeg decreases, which shows that attention could provide the
fullest prior knowledge.

Attention in PAM. To validate the effectiveness of 3 attention
operations in PAM, we compare the performance of DiffSeg where
certain attention operations are removed or changed to convolu-
tional operations. The comparison results are shown in Table 5,
where Att_1 and Att_2 present to cross-attention of query-support

Query image 88 1616 3232

Figure 6: Attention maps of different levels, where maps in
16×16 scale are the most complete.

pairs and query-attention pairs, respectively. Att_3 presents a self-
attention operation in PAM. From Table 5 we can see, removing
certain attention operation could reduce the performance of Diff-
Seg, which signifies all attention operations in PAM play positive
roles in segmentation. When Att_3 (self-attention) is removed, the
model encounters difficulties in preserving a balanced segmenta-
tion dependency between the guidance from diffusion and support
images. In cases these two sources of guidance are incongruent,
accurate segmentation cannot be attained. It’s worth noting that
DiffSeg with Att_2 performs better than it with Att_1, indicating
that spatial information from diffusion is more crucial than seman-
tic information from support images for segmentation. Besides, the
result of DiffSeg with attention operations is better than its with
convolutional operations, which shows that attention mechanisms
have more strong ability to capture interest areas for segmentation.

Design of SCM. To validate advantages of SCM design, we in-
sert SCM into different levels of diffusion UNet and compare the
performance whether SCMs from different levels share parameters.
The comparison results are shown in Table 5.

From the Table we can see, removing SCM from each level will
lead to drop in performance, which shows SCM could work well in
each level of diffusion UNet. Specifically, when SCM is deactivated
in 16×16 scale level, performance of DiffSeg significantly decreases.
Through visualizing attention maps of each level as shown in Fig.
6 , we find 16×16 attention maps are the most complete. Therefore,
controls of 16×16 attention maps by SCM directly affect the perfor-
mance of segmentation. Besides, training a separate SCM for each
layer doesn’t improve performance, while introducing additional
parameters and increasing computational burden. It shows sharing
parameters of SCM is a better strategy for lightweight computation.

6 CONCLUSION
In this paper, we present a DiffSeg for FSS, which decouples proba-
bilistic denoising and segmentation processes, thereby mitigating
the impact of probabilistic processes while benefiting from rich
prior knowledge of the model. We propose a PAM for segmenta-
tion, where two cross-attention capture semantic information of
support-query interaction and spatial information produced by the
pretrained diffusion model. Moreover, considering the probabilis-
tic generation of diffusion models, we present an SCM to align
semantic boundaries between extracted attention maps and query
images. Comprehensive experiments show that DiffSeg achieves
new state-of-the-art performance.
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