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ABSTRACT

Latent variable time-series models are among the most heavily used tools from
machine learning and applied statistics. These models have the advantage of learn-
ing latent structure both from noisy observations and from the temporal ordering
in the data, where it is assumed that meaningful correlation structure exists across
time. A few highly-structured models, such as the linear dynamical system with
linear-Gaussian observations, have closed-form inference procedures (e.g. the
Kalman Filter), but this case is an exception to the general rule that exact posterior
inference in more complex generative models is intractable. Consequently, much
work in time-series modeling focuses on approximate inference procedures for
one particular class of models. Here, we extend recent developments in stochastic
variational inference to develop a ‘black-box’ approximate inference technique
for latent variable models with latent dynamical structure. We propose a struc-
tured Gaussian variational approximate posterior that carries the same intuition as
the standard Kalman filter-smoother but, importantly, permits us to use the same
inference approach to approximate the posterior of much more general, nonlinear
latent variable generative models. We show that our approach recovers accurate
estimates in the case of basic models with closed-form posteriors, and more inter-
estingly performs well in comparison to variational approaches that were designed
in a bespoke fashion for specific non-conjugate models.

1 INTRODUCTION

Latent variable models are commonplace in time-series analysis, with applications across statis-
tics, engineering, the sciences, finance and economics. The core approach is to assume that la-
tent variables z1, . . . , zT ∈ Rn, which are correlated across t, underlie correlated observations
x1, . . . ,xT ∈ Rm. Standard models for latent dynamics include the linear dynamical system (LDS)
and hidden Markov models. While each approach comes with a distinct model and set of com-
putational tools, often the basic goal of inference is the same: to discern the filtering distribution
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p(zt|x1:t) and the smoothing distribution p(zt|x1:T ) of the latent variables. Closed-form expres-
sions for these distributions are available when the overall probabilistic model has tree or chain
structure that admits closed-form message passing. In general, inference in non-Gaussian or nonlin-
ear models requires numerical approximation or sampling.

Markov chain Monte Carlo sampling and particle filtering for general time-series models are well-
developed but typically do not scale well to large-scale problems. Even when a model pθ(x, z),
with parameters θ, has been trained, we can only access an analytically-intractable posterior through
further sampling. Here, we take a variational approach to time-series modeling: rather than attempt-
ing to compute the posterior pθ(z|x) of our generative model, we approximate it with a distribution
qφ(z|x) with variational parameters φ. Inference proceeds by simultaneously optimizing pθ (through
its model parameters θ) and qφ (through its variational parameters φ) such that qφ approximates the
true posterior.

Our main contributions are (1) a structured approximate posterior that can express temporal de-
pendencies, and (2) a fast and scalable inference algorithm. We propose a multivariate Gaussian
approximate posterior with block tri-diagonal inverse covariance, and formulate an algorithm that
scales (in both time and space complexity) only linearly in the length of the time-series. For infer-
ence, we make use of recent advances in variational inference, stochastic gradient variational Bayes
(SGVB) (Rezende et al., 2014; Kingma & Welling, 2013; Kingma et al., 2014), to learn an approxi-
mate posterior with a complex functional dependence upon the observations x. Using this approach
we are able to learn a neural network (NN) that maps x into the smoothed posterior q(z|x) (some-
times called the recognition model). This approach is ‘black-box’ in the sense that the inference
algorithm does not depend explicitly upon the functional form of the generative model pθ.

Our motivations lie in the study of high-dimensional time-series, such as neural spike-train record-
ings (Kao et al., 2015). We seek to infer trajectories z that provide insight into the latent, low-
dimensional structure in the dynamics of such data. Recent, related approaches to variational infer-
ence in time-series models focus upon the design and learning of rich generative models capable of
capturing the statistical structure of large, complex datasets (Gan et al., 2015; Chung et al., 2015;
Bayer & Osendorfer, 2014). In contrast, our focus is upon computationally efficient inference in
structured, interpretable parameterizations that build upon methods fundamental in scientific appli-
cations.

We apply our smoothing approach for approximate posterior inference of a well-studied generative
model: the Poisson linear dynamical system (PLDS) model. We find that our general, black-box
approach outperforms a specialized variational Bayes expectation maximization (VBEM) approach
(Emtiyaz Khan et al., 2013) to inference in PLDS, reaching comparable solutions to VBEM before
it can complete a single EM iteration. Additionally, we apply our method to inference in a one-
dimensional, nonlinear dynamical system, showing that we are able to accurately recover nonlinear
relationships in the posterior mean.

2 STOCHASTIC GRADIENT VARIATIONAL BAYES

In variational inference we approximate an intractable posterior distribution pθ(z|x) =
pθ(x, z)/pθ(x) with qφ(z|x)1 that comes from a tractable class (e.g., the Gaussian family) and
is parameterized by variational parameters φ. We learn φ and θ together by optimizing the evidence
lower bound (ELBO) of the marginal likelihood (Jordan et al., 1999), given by,

log pθ(x) ≥ L(θ, φ;x) = Eqφ(z|x) [− log qφ(z|x) + log pθ(x, z)] (1)

= H(qφ(z|x)) + Eqφ(z|x) [log pθ(x, z)] . (2)

The quantity L(θ, φ;x) is the ELBO, and H(qφ(z|x)) is the entropy of the approximating posterior.
Our goal is to differentiate L(θ, φ) with respect to φ and θ so as to maximize L,

∇L(θ, φ;x) := ∇Eqφ(z|x)[− log qφ(z|x) + log pθ(x, z)︸ ︷︷ ︸
:=f{θ,φ}(z)

]. (3)

1In many approaches to variational inference the dependence of upon x is dropped; in our case, the param-
eterization of qφ(z|x) may depend explicitly upon the observations x.
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For the remainder of this section, we use the notation f{θ,φ}(z) = − log qφ(z|x) + log pθ(x, z).
Typically at least some terms of eq. 3 cannot be integrated in closed form. While it is often possi-
ble to estimate the gradient by sampling directly from q(z|x), in general the approximate gradient
exhibits high variance (Paisley et al., 2012). One approach to addressing this difficulty, indepen-
dently proposed by Kingma & Welling (2013), Rezende et al. (2014) and Titsias & Lázaro-Gredilla
(2014), is to compute the integral using the “reparameterization trick”: choose an easy-to-sample
random variable ε with distribution p(ε) and parameterize z through a function g of observations x
and parameters φ,

z = gφ(x, ε). (4)

The point of this notation is to make clear that gφ(x, ·) is a deterministic function: all randomness
in q comes from the random variable ε. This allows us to approximate the gradient using the simple
estimator,

∇Eqφ(z)
[
f{θ,φ}(z)

]
= Ep(ε)

[
∇f{θ,φ}(gφ(x, ε))

]
≈ 1

L

L∑
l=1

∇f{θ,φ}(gφ(x, εl)), (5)

where εl are iid samples from p(ε). In Kingma & Welling (2013) this estimator is referred to as
the Stochastic Gradient Variational Bayes (SGVB) estimator. Empirically, eq. 5 has much lower
variance than previous sampling-based approaches to the estimation of eq. 3 (Kingma & Welling,
2013; Titsias & Lázaro-Gredilla, 2014).

An important property of eq. 5 is that it does not depend upon the particular form of f{θ,φ}(·): we
need only be able to evaluate it at the samples εi. It is in this sense that our approach is “black-box”:
in principle, inference works the same way regardless of our choice of generative model pθ. In
practice, of course, different modeling choices will affect the computation time and the convergence
rate of the method.

The estimator also permits significant freedom in our parameterization of the transformation
gφ(x, ·): for inference, we just need to be able to differentiate g with respect to φ. While it is
possible to use the SGVB approach with a separate set of parameters φt for each observation (as in
Hoffman et al. (2013), for instance), much recent work has used deep neural networks (DNNs) to
train a function that maps directly into the posterior (Rezende et al., 2014; Kingma & Welling, 2013;
Kingma et al., 2014). Under this approach, with a trained gφ(x, ·), no additional gradient steps are
needed to obtain q(z|x) for new observations x.

3 VARIATIONAL APPROACH TO STATE-SPACE MODELING

Using a black-box inference approach, learning a state-space model is in part just a matter of pa-
rameterizing a generative model pθ with time-series structure. However, the posterior p(z|x) will
in general have temporal correlation structure inadequately captured by the approximate posteriors
studied in most previous variational inference literature. The first challenge, then, is to formulate
an approximate posterior expressive enough to capture the temporal correlations characteristic of
time-series models.

In the timeseries setting, we take x and z as “stacked” versions of the observation and latent
state, respectively, at a particular time t. In symbols: we let x = (x1, . . . ,xt, . . . ,xT ) and
z = (z1, . . . , zt, . . . , zT ), where xt ∈ Rm and zt ∈ Rn.

3.1 GAUSSIAN APPROXIMATE POSTERIOR

One common, convenient choice of approximate posterior is the multivariate normal. In the notation
of Section 2, the multivariate normal comes about if we choose ε ∼ N (0, I) and take gφ(x, ·) to be
an affine function (Titsias & Lázaro-Gredilla, 2014). We can then express a sample z ∼ q(z|x) as,

z = gφ(x, ε) (6)
= µφ(x) +Rφ(x)ε, (7)
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so that z is distributed as multivariate normal with mean µφ(x) and covariance Σφ(x) =

Rφ(x)Rφ(x)
T:

q(z|x) = N (µφ(x),Σφ(x)) . (8)

It is easy to sample from a Gaussian approximate posterior using eq. 6, and the entropy term within
eq. 2 has a closed form:

H(qφ(z|x)) = −Eqφ(z|x) [log qφ(z|x)] =
nT

2
(1 + log(2π)) +

1

2
log det(Σφ(x)). (9)

A potential downside of the Gaussian approach that Σ is nT ×nT , and so the number of parameters
scales quadratically in T . This makes it difficult to manage and learn for large-scale datasets. A
simple workaround is to consider Σ with a special structure that reduces the effective number of
parameters. Possible examples include using diagonal covariance (fully-factorized, or “mean field”
approximation) (Bishop, 2006), or a diagonal covariance matrix plus low-rank matrix (for instance,
a sum of outer products) (Rezende et al., 2014).

3.2 SMOOTHING GAUSSIAN APPROXIMATE POSTERIOR

For modeling time-series data, we seek an approximate posterior capable of expressing our strong
expectation that the latent variables change smoothly over time. While the Gaussian approximate
posterior of eq. 8 can represent arbitrary correlation structure, we propose a Gaussian approximate
posterior whose parameterization scales only linearly in T . To do so, we borrow from the toolkit
of the standard Kalman filter. In an LDS model with Gaussian observations, the posterior is a
multivariate Gaussian with a block tri-diagonal inverse covariance. This block-tridiagonal structure
results from (and expresses) the conditional independence properties of the LDS prior.

To enable our approximate posterior to express the same correlation structure we parameterize the
inverse covariance of eq. 8, Σ−1, to be block tri-diagonal. Our final posterior takes the form:

q(z|x) = N
(
µφ(x),

[
Rφ(x)Rφ(x)T

]−1)
, (10)

where µφ(x) is the posterior mean and Rφ(x) is a lower block bi-diagonal matrix with n×n blocks
2.

3.2.1 COMPUTATION

In this subsection we drop subscripts and functional notation for clarity and refer, for instance, to
Σφ(x) as Σ. We can perform inference efficiently by exploiting the special structure of Σ.

While Σ is in general a dense matrix, we parameterize Σ−1 as block tri-diagonal. Since Σ is sym-
metric, in practice we represent only the diagonal and first block off-diagonal matrices of Σ−1.
Matrix inversion and sampling may be performed quickly using the Cholesky decomposition3,
Σ−1 = RRT. The computation of the lower-triangular Cholesky factor, R, is linear (in both time in
space) in the length of the time-series T .

We can sample as in eq. 6, where now:

z = µ+R−Tε. (11)

For an arbitrary matrixR ∈ RnT×nT , computation ofR−Tε scales cubically in the dimensionality of
the matrix. However, by exploiting the lower-triangular structure of R, matrix inversion scales only
linearly (Trefethen & Bau III, 1997). The entropy of q is also easy to compute since log det(Σ) =

−2 log det(R) = −2
∑T
i=1 log(Rii).

In short, for learning φ and θ we need never explicitly represent any part of Σ. For data analysis
and model comparison, however, it may be useful to compute the covariance cov(zt, zt+1). These

2A lower block bi-diagonal matrix has only non-zero diagonal and (first) lower-diagonal blocks.
3Block structure is frequently exploited in computation of the Cholesky decomposition; see for instance

Björck (1996).
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covariances correspond to the block-diagonal and first block off-diagonals of Σ, and may also be
computed efficiently (Jain et al., 2007).

Our overall approach is closely related to the standard forward-backward algorithm used for instance
in Kalman smoothing. However, there is a major technical distinction between its standard use (e.g.,
in expectation maximization) and our approach: we explicitly differentiate parameters φ through the
matrix factorization Σ−1 = RRT.

4 PARAMETERIZATION OF THE SMOOTHING POSTERIOR

While eq. 10 succinctly states the general mathematical form of the smoothing posterior, the prac-
tical performance of the algorithm depends upon the specifics of the parameterization. There are
many possible parameterizations, especially since the parameters Σφ(x) and µφ(x) may be arbi-
trary functions of observations x. To illustrate, we discuss two distinct parameterizations. We use
the notation P = NNφP (x) to indicate that parameter P is defined as a function of inputs x through
a neural network NNφP (·) with parameters φP . The parameters of all networks are incorporated
into φ:

φ = {φP1
, φP2

, φP3
, . . . } . (12)

4.1 DIAGONAL AND BLOCK OFF-DIAGONAL PARAMETERIZATION

We can naturally parameterize µφ(x) and Σφ(x) of eq. 10 using 3 neural networks. We use one
neural network to represent a map xt → µt,

µt = NNφµ(xt), (13)

where µt is a n × 1 segment of µ, and µ = (µ1, µ2, . . . , µT ). We can parameterize the block
tri-diagonal covariance Σφ(x)

−1,

Σφ(x)
−1

=


D0 BT

0

B0 D1 BT
1

. . . . . . BT
T−1

BT−1 DT

 , (14)

by parmeterizing each of the blocks separately:

Dt = NNφD (xt) (15)
Bt = NNφB (xt,xt−1). (16)

In practice, we found it necessary to enforce the positive-definiteness of the covariance by adding a
diagonal matrix αI to Σφ(x)

−1, where α > 0 is a fixed constant. In the experiments, we refer to
this parameterization as VILDSblk.

4.2 PRODUCT-OF-GAUSSIANS APPROXIMATE POSTERIOR

We can also define the approximate posterior through a product of Gaussian factors, q(z|x) ∝
r1(z|x)r0(z), where:

r0(z) := N (z|0,D) (17)
r1(z|x) := N (z|Mφ(x),Cφ(x)), (18)

D and C are nT × nT matrices and M is a nT -dimensional vector. In this set-up, we can view r0
as a prior. In terms of eq. 10, the final posterior is then given by:

Σφ(x) =
(
D−1 + C−1φ (x)

)−1
(19)

µφ(x) = Σφ(x)C−1φ (x)Mφ(x). (20)

In order to be a parameterization of the smoothing posterior, eq. 10, D−1 and C−1 must be block
tri-diagonal. The multiplicative interaction between the posterior mean and covariance leads to
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Figure 1: Posterior mean inference compared with ground truth. Each panel shows the posterior
mean along a dimension of the two-dimensional (n = 2) state space of a Kalman filter. We show
300 time-points of the posterior means from a T = 5000 sample Kalman filter experiment. We fit
using VILDS with the parameterization described in Section 4.1 (VILDSblk) and that described in
Section 4.2 (VILDSmult). The true posterior means computed using the closed-form Kalman filter
equations (black) agree closely with those recovered using VILDSmult (blue) and VILDSblk (red).

different performance from the parameterization described in Section 4.1. Further, we can choose
D to initialize the means with a given degree of smoothness, which is not possible in the formulation
of Section 4.1. In the experiments, we refer to this parameterization as VILDSmult; in Appendix A
we describe the specific parameterization we used for C−1 and D−1.

5 EXPERIMENTS

In the experiments, we refer to the SGVB with the smoothing approximate posterior as VILDS. We
refer to SGVB with an approximate posterior independent across time as mean field (MF). The mean
field posterior is given by,

q(z|x) =

T∏
t=1

N (zt;µt, Vt), (21)

where Vt is a full n×n covariance matrix. We optimize all parameters by gradient ascent, using the
SGVB approach with L = 1 to estimate the gradient with eq. 5.

For training VILDS and MF, we performed gradient descent on all parameters {θ, φ} of the gen-
erative model and approximate posterior. We tried several adaptive gradient stochastic optimiza-
tion methods, including: ADAM (Kingma & Ba, 2014), Adadelta (Zeiler, 2012), Adagrad (Duchi
et al., 2011) and RMSprop (Tieleman & Hinton, 2012). In the experiments we show here, we used
Adadelta to learn all parameters. We gradually decreased the base learning rate by a factor of 10
after a period of 20 “epochs” without an increase of the objective function.

5.1 KALMAN FILTER MODEL

First, we illustrate the efficacy of our approach by showing that we can recover the analytic posterior
of a Kalman filter model. Under a Kalman filter model, the latents are governed by an LDS,

zt = Azt−1 + εt, (22)

with Gaussian innovation noise with covariance matrix Q, εt ∼ N (0,Q). Observations are coupled
to the latents through a loading matrix C,

xt = Czt + ηt, (23)

and ηt are Gaussian noise with diagonal covariance.

We simulated 5000 time-points from a 2-dimensional latent dynamical system model, with 100-
dimensional linear observations. We parameterize the VILDS approximate posterior using a 5-
layer, dense NN for each of µφ(x) and Rφ(x). We use a rectified-linear nonlinearity between each
layer, followed by a linear output layer mapping into the parameterization. We compare both of the
approximate posterior parameterizations described in Section 4. We refer to the parameterization of
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VBDual

Figure 2: Speed comparison: ELBO convergence vs time (seconds) for VILDS, MF and VBDual.
VBDual is fit by an iterative procedure that optimizes a dual-space cost function for each E-step
(Emtiyaz Khan et al., 2013). The first VBDual E-step takes many iterations to converge, and causes
the long gap from 0 seconds to the first VBDual datapoint. Subsequent VBDual E-steps are less
time-consuming. VILDS and MF are learned by stochastic gradient descent using the adaptive-
gradient technique, Adadelta (Zeiler, 2012). Gradients are computed on minibatches of size 100,
and each datapoint is collected after 100 minibatches (one “epoch”). Both MF and VILDS were
run for 500 epochs. VILDS achieves the highest ELBO value, followed by MF and then VBDual.
VILDS achieves ELBO values comparable to VBDual before VBDual can complete a single EM
iteration.

Section 4.1 as VILDSblk, and that of Section 4.2 as VILDSmult. For both choices of approximate
posterior, the VILDS smoothed posterior means (Fig. 1) show good agreement with the true Kalman
filter posterior. The VILDS smoothed posterior variances, V[zt] and cov(zt, zt−1) also show good
agreement with the Kalman filter posterior covariance (not shown).

5.2 POISSON LDS (PLDS)

The Kalman filter/smoother is exact for an LDS with linear-Gaussian observations. A common
generalization in the literature is an LDS with non-Gaussian observations. One well-studied example
is the Poisson LDS (PLDS). Under this model, the latents are again governed by an LDS,

zt = Azt−1 + εt, (24)

with Gaussian innovation noise with covariance matrix Q, εt ∼ N (0,Q). Observations are modu-
lated by a log-rate rt, which is coupled to the latent state zt via a loading matrix C,

rt = Czt + d. (25)

The vector d is a vector bias term for each element of the observation. Given the log-rate rt,
observations xt ∈ Nm are Poisson-distributed,

xk,t|zt ∼ Poisson(exp(rk,t)). (26)

With Poisson observations, the posterior does not have a closed form. Several methods have been
proposed for approximate learning and inference in the special case of the PLDS (Buesing et al.,
2014; 2012; Macke et al., 2011); Laplace approximation is also frequently used (Paninski et al.,
2010; Fahrmeir & Kaufmann, 1991). We compare VILDS to the variational Bayes expectation-
maximization approach proposed by Emtiyaz Khan et al. (2013). This VBEM approach uses a
full, unconstrained Gaussian as a variational approximate posterior qφ, and performs EM iterations
through a dual-space parameterization. We refer to it by the abbreviation VBDual, to emphasize
this dual-space parameterization. We parameterize both the MF and VILDS approximate posteriors
using a 5-layer, dense NN for each of µφ(x) and Rφ(x). For VILDS, we use the parameterization
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VBDual

VBDual

Figure 3: Comparison of posterior means learned using the mean field approximate posterior
(green), VILDS (red) and VBDual with an unstructured Gaussian approximate posterior (black).
The model has a rotational invariance, and so we project the MF and VILDS posteriors onto the
VBDual posterior means using least squares. The posterior mean trajectories learned by VILDS are
visibly smoother than the MF posterior mean trajectories.

of Section 4.2. We use a rectified-linear nonlinearity between each layer, followed by a linear output
layer mapping into the parameterization. We simulated T = 5000 samples from a PLDS model with
n = 2 latent states and m = 100 observation dimensions. We initialized all three methods (VILDS,
MF and VBDual) using the nuclear-norm minimization methods outlined in Pfau et al. (2013).

To better illustrate the timecourse of learning, each epoch consisted of only 100 minibatches, where
each minibatch was of size 100. A single gradient step was taken for each minibatch. We ran both
MF and VILDS for a fixed 500 iterations. We find that VILDS reaches a higher ELBO value than
either MF or VBDual, and does so before VBDual can complete a single expectation-maximization
iteration (see Fig. 2). Further, the posterior means learned by VILDS are smoother than those learned
using the MF approximate posterior (see Fig. 3).

5.3 NONLINEAR DYNAMICS SIMULATION

VILDS can perform approximate posterior inference for nonlinear-dyanamical generative models.
To illustrate, we simulated 5000 samples from a toy one-dimensional nonlinear dynamical model
given by:

zt = −1

2
zt−1 + 5 cos(.5zt−1) + .5εt (27)

xt =
1

2
zt + .5ηt, (28)

where εt and ηt are each iid N (0, 1) random variables. For the approximate posterior, we param-
eterized both the µ and R using 8-layer networks where each layer has only a single unit, and
rectified-linear nonlinearity. We use the LDS-inspired parameterization of Section 4.2. As shown
in Fig. 4, VILDS is capable of recovering the nonlinear relationship in the state space. For these
experiments, we held the generative model parameters θ fixed and learned only φ.

6 CONCLUSION

We proposed a Gaussian variational approximate posterior with block tri-diagonal covariance struc-
ture capable of expressing “smoothed” trajectories of a time-series posterior. Exploiting the block
tri-diagonal covariance structure, inference scales only linearly (in both time and space complexity)
in the length T of a time-series. Using the SGVB approach to variational inference, we can perform
approximate inference for a wide class of latent variable generative models.

Despite the generality of the inference algorithm, the approach is limited by the Gaussian approx-
imate posterior: most latent variable time-series generative models have non-Gaussian posteriors.
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A B

Figure 4: True and VILDS-fit posterior means for nonlinear dynamics simulation. VILDS was fit
to 5000 samples drawn from the nonlinear dynamical system described in eq. 27. Each red point
represents a single ordered pair (E[zt],E[zt−1]), while each blue point represents a “true” latent
state (zt, zt−1). (A) We illustrate the nonlinear dynamical relationship between zt and zt−1; in a
linear dynamical system this relationship would be a straight line. In red, we show the posterior
means recovered by VILDS. (B) The VILDS posterior means of (A) plotted alone, for comparison.

One possible route forward are the methods of Rezende & Mohamed (2015) and Dinh et al. (2014),
which permit learning and inference using a non-Gaussian approximate posterior within the SGVB
framework.

We implemented all methods in Python using Theano with the Lasagne library (Bastien et al., 2012;
Bergstra et al., 2010). We plan to release the source code on Github shortly.

As we were preparing this manuscript we became aware of Krishnan et al. (2015), which studies a
closely-related (but distinct) method. In future work, we will plan to perform detailed comparisons
between the methods.
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A SMOOTHING APPROXIMATE POSTERIOR WITH EXPLICIT
FORWARD/BACKWARD

The posterior mean and covariances may be computed by the standard Kalman forward-backward
algorithm. To see this, we can write the posterior in matrix form as the product of two Gaussians.
We have

r0(z) := N (z|0,D) (29)
r1(z|x) := N (z|Mφ(x),Cφ(x)), (30)

where,

Q = IT×T ⊗Q, A =


0
1 0

. . . . . .
1 0

⊗A, D = (I −A)−TQ(I −A)
−1
, (31)

where the positive-definite matrix Q is a covariance matrix, analogous to the “innovation noise” in
the standard Kalman filter, n× n matrix A is a linear dynamics matrix4.

We can then re-write the approximate posterior q as the product q(z|x) ∝ r0(z)r1(z). By the
standard product-of-normal-densities identity, q(z|x) also has a multivariate normal distribution q =
N (µφ(x),Σφ(x)), where µ and Σ are given by eq. 19 (which we repeat here):

Σφ(x) =
(
D−1 + C−1φ (x)

)−1
(32)

µφ(x) =
(
D−1 + C−1φ (x)

)−1
C−1φ (x)Mφ(x). (33)

Computation proceeds just as in Section 3.2.1, except that now the computation of eq. 19 takes the
form,

µ = (RRT)
−1

C−1M = R−T(R−1(C−1M)) (34)

which may be computed efficiently by exploiting the block bi-diagonal structure of R.

4For stable dynamics, we assume that the eigenvalues of A have magnitude less than one; in the examples
we considered, we did not need to enforce this constraint.
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