

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING SEMANTIC COLLAPSING PROBLEM IN GENERATIVE PERSONALIZATION WITH TEST-TIME EM- BEDDING ADJUSTMENT

Anonymous authors
Paper under double-blind review

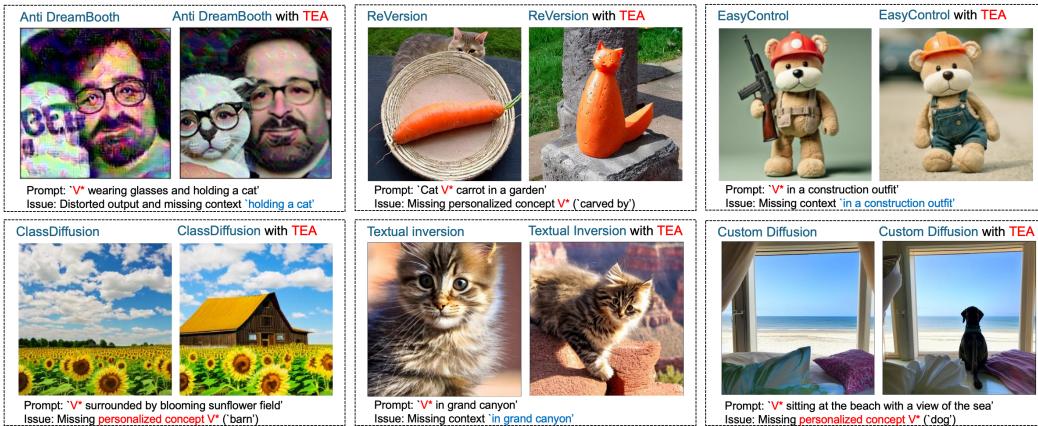


Figure 1: Our Test-time Embedding Adjustment (TEA) method consistently enhances text-image alignment across diverse personalization approaches (Textual Inversion, DreamBooth, and their variants) and architectures (Stable Diffusion, Flux). Notably, TEA also counteracts the anti-personalization effect of Anti-DreamBooth and restores the protected concept.

ABSTRACT

In this paper, we investigate the semantic collapsing problem in generative personalization, an under-explored topic where the learned visual concept (V^*) gradually shifts from its original textual meaning and comes to dominate other concepts in multi-concept input prompts. This issue not only reduces the semantic richness of complex input prompts like "a photo of V^* wearing glasses and playing guitar" into simpler, less contextually rich forms such as "a photo of V^* " but also leads to simplified output images that fail to capture the intended concept. We identify the root cause as unconstrained optimisation, which allows the learned embedding V^* to drift arbitrarily in the embedding space, both in direction and magnitude. To address this, we propose a simple yet effective training-free method that adjusts the magnitude and direction of pre-trained embedding at inference time, effectively mitigating the semantic collapsing problem. Our method is broadly applicable across different personalization methods and demonstrates significant improvements in text-image alignment in diverse use cases. Our code is anonymously published at <https://anonymous.4open.science/r/Embedding-Adjustment>.

1 INTRODUCTION

Text-to-image (T2I) diffusion models have achieved unprecedented fidelity and flexibility in image generation and sparked growing interest in generative personalization (Gal et al., 2022; Ruiz et al., 2023). This emerging problem aims to generate images of a specific user-defined visual concept (e.g. a particular person, pet, or object) in different contexts (e.g. on the beach) using a small set of

054 user-provided reference images paired with text prompts describing the desired context. The core
 055 objective is to generate visually compelling images that faithfully preserve the unique characteristics
 056 of the personal concept while remaining semantically aligned with the textual prompt. Despite recent
 057 progress, misalignment between the generated image and the textual prompt is still a major concern.
 058

059 A robust generative personalization method should allow the user-defined visual concept to be com-
 060 posed with arbitrary contexts in the text prompt without losing fidelity or expressiveness. However,
 061 existing approaches often struggle to maintain prompt and generated image alignment, particularly
 062 with complex or multi-concept prompts (Kong et al., 2024; Zhu et al., 2025). As illustrated in
 063 Figure 1, the user-defined concept can overpower or distort other elements in the prompt, leading to
 064 unsatisfactory generations. This issue has commonly been attributed to *language drift* - a phenomenon
 065 where the model gradually forgets how to generate its pretrained concepts and instead becomes overly
 066 focused on the user-defined ones (Lee et al., 2019). This drift typically stems from overfitting on a
 067 limited number of reference images (Ruiz et al., 2023). Beyond overfitting, other factors have also
 068 been attributed, such as the limited expressiveness of textual embeddings which compress complex
 069 visual concepts into single tokens (Zhang et al., 2023; Mou et al., 2024) and the entangled nature
 070 of reference sets, where samples may contain co-occurring objects or irrelevant contextual features
 071 (Avrahami et al., 2023; Jin et al., 2024). While misalignment between textual prompt and generated
 072 images is a well-recognized challenge in generative personalization, with numerous mitigation strate-
 073 gies proposed, including latent optimization (Rassin et al., 2023), regularization (Han et al., 2023;
 074 Qiu et al., 2023; Arar et al., 2024) and concept disentanglement (Motamed et al., 2024; Huang et al.,
 075 2024a), the underlying causes and mechanisms remain relatively underexplored.
 076

077 To gain deeper insight into the misalignment problem, this paper presents an empirical investigation
 078 into the dynamics of learned personalised tokens throughout the personalisation process. Our analysis
 079 reveals an intriguing phenomenon: the personalised token gradually loses its original textual semantic
 080 meaning while acquiring increased visual information from the reference images. When such a
 081 token is used in a prompt with rich descriptive text, the generated image becomes disproportionately
 082 **semantically dominated by the personalized concept**, often neglecting the other intended elements in
 083 the prompt. For example, in Figure 1, if one learns a token V^* to represent a particular cat, a prompt
 084 like “ V^* in grand canyon” may yield an image that vividly depicts the cat but fails to properly render
 085 the grand canyon background. Essentially, the prompt’s semantic complexity collapses to a simplified
 086 form centred on V^* . We refer to this phenomenon as the **semantic collapsing problem** (SCP). Unlike
 087 language drift where the personalized model overfits to a learned concept and loses its ability to
 088 generate other pretrained concepts, SCP arises when the personalized embedding collapses, no longer
 089 retaining meaningful textual semantics and instead encoding primarily the visual information of the
 090 reference concept. While SCP might not severely affect trivial prompts (e.g., “a photo of V^* ”), it
 091 undermines the compositionality of the T2I diffusion model on complex prompts.
 092

093 We identify the root cause of SCP as *unconstrained optimisation*, which allows the learned embedding
 094 to drift arbitrarily in the embedding space, both in direction and magnitude. We propose a simple
 095 yet effective remedy: a training-free, **test-time embedding adjustment** (TEA) strategy that realigns
 096 the learned concept embedding with its original semantic meaning at inference time. The key idea
 097 is to calibrate the embedding’s magnitude and direction to be closer to that of its reference concept.
 098 This adjustment is done *without altering the model weights or requiring any additional training*.
 099 The embedding is modified on-the-fly before image generation. By enforcing a small rotation and
 100 rescaling in the text encoder’s latent space, we constrain the personalized token to behave more like a
 101 regular word, ensuring that it contributes to the image generation in balance with other tokens in the
 102 prompt. Our approach is lightweight and broadly compatible with **almost all existing** personalization
 103 methods and demonstrates significant improvements in text-image alignment in diverse use cases.
 104 Surprisingly, beyond improving personalization quality, we also uncover a surprising vulnerability
 105 in anti-personalization frameworks like Anti-DreamBooth (Van Le et al., 2023) under the lens of
 106 SCP. In particular, when applying TEA to models poisoned by Anti-DreamBooth, we find that TEA
 107 can partially *reverse adversarial corruption* and restore more faithful generations of the protected
 108 concept (see Figure 1). This result highlights a false sense of security in current anti-personalization
 109 defenses and provides new insights into their limitations.
 110

111 In summary, our contributions are as follows: ① We define the semantic collapsing problem (SCP)
 112 in generative personalization problem, and provide an empirical analysis of its existence in both
 113 textual and image spaces. Our analysis reveals its root cause, which is the unconstrained optimisation.
 114 ② We propose the test-time embedding adjustment, a novel solution that requires no additional
 115

108 training, to mitigate SCP by aligning the learned embedding’s direction and norm with its original
 109 semantic concept. ③ We demonstrate that our proposed approach can be applied into **almost all**
 110 **existing** personalization frameworks such as Textual Inversion (Gal et al., 2022), DreamBooth (Ruiz
 111 et al., 2023), Custom Diffusion (Kumari et al., 2023), EasyControl (Zhang et al., 2025), ReVersion
 112 (Huang et al., 2024b), and ClassDiffusion (Huang et al., 2024a) to significantly improve image
 113 generation in complex prompts across a wide range of scenarios. ④ We show that TEA unexpectedly
 114 mitigates adversarial corruption introduced by Anti-DreamBooth, revealing an overlooked weakness
 115 in anti-personalization defences.

116 2 SEMANTIC COLLAPSING PROBLEM IN GENERATIVE PERSONALIZATION

117 2.1 TERMINOLOGIES

118 Given a set of personal images \mathcal{X} and a pre-trained T2I model ϵ_θ , the goal of generative personalization
 119 is to identify a textual embedding v^* associated with a specific verbalizable keyword V^* (e.g., ‘sks’,
 120 ‘<new>’, etc.). This keyword represents the implicit visual concept shared in the reference set
 121 \mathcal{X} , enabling the model to generate images with the personal concept using any textual prompt p
 122 containing the keyword V^* , e.g., $[p, V^*]$ = ‘A photo of V^* playing on a beach’, where $[., .]$ is the
 123 sentence construction operator. We denote c as the reference semantic concept of the keyword V^* .

124 We denote M is the embedding matrix of the entire vocabulary of the text encoder τ , and M_k
 125 is a specific row of the matrix corresponding to the token $k \in \text{vocab}_\tau$, where k can be V^* (i.e.,
 126 $v^* = M_{V^*}$) or any arbitrary token like ‘dog’, ‘cat’, etc. We denote $\hat{x} = G(p)$ as the image generation
 127 model that takes a prompt p as input and outputs an image \hat{x} .

128 2.2 SEMANTIC COLLAPSING PROBLEM

129 **Problem Statement.** The **semantic collapsing problem** (SCP) refers to the phenomenon where the
 130 keyword V^* loses its original *textual semantic meaning* while acquiring increased *visual information*
 131 from the reference concept during the personalization process. As a result, a prompt $[p, V^*]$,
 132 consisting of a context p and the concept V^* , becomes dominated by the learned concept V^* ,
 133 eventually collapsing to a simplified form.

134 **Why SCP Matters.** We argue that SCP may not pose a serious issue for simple prompts, e.g.,
 135 $[p, V^*]$ = ‘a photo of V^* ’, where the primary information conveyed is still the visual concept V^* .
 136 However, for more complex prompts where the context p contributes meaningfully to the overall
 137 semantics, such as ‘a photo of V^* wearing glasses and writing in a red notebook’, SCP becomes
 138 more problematic as illustrated in Figure 10. In such cases, the generated image is more likely to be
 139 dominated by the learned concept V^* and less likely to reflect the intended context p .

140 **Comparison with Other Challenges in Generative personalization.** First, we emphasise that SCP
 141 is not specific to the two representative methods we study (TI and DB), but is a general issue in
 142 personalization. Second, SCP is distinct from other recognised challenges (ref. Section A) such
 143 as the *language drift* problem (Ruiz et al., 2023), which describes how the personalized model ϵ_θ
 144 overfits to a learned concept and loses generalisation. Third, while SCP contributes to the broader
 145 challenge of misalignment between generated images and prompts, a major concern in generative
 146 personalization, it stems from a specific cause: the unconstrained optimisation of the embedding
 147 during personalization, which has not been thoroughly studied in prior work.

148 2.3 EMPIRICAL HUNTING FOR SCP

149 In this section, we present empirical evidence supporting the existence of the semantic collapsing
 150 problem and its impact on generation quality. Our key findings are as follows:

151 **① Existence of SCP.** SCP exists in the textual domain, where the prompt $[p, V^*]$ is dominated by
 152 the learned embedding V^* and the semantic meaning of the entire prompt gradually collapses to the
 153 learned embedding V^* , i.e., $\tau([p, V^*]) \rightarrow \tau(V^*)$.

154 **② Negative Impact on Generation Quality.** SCP leads to the degradation/misalignment in generation
 155 quality in the image space, i.e., $G([p, V^*]) \rightarrow G(V^*)$, particularly for prompts with complex
 156 semantic structures.

157 **③ Surprisingly Positive Impact.** SCP can also lead to the positive impact on generation quality,
 158 particularly for prompts where the concept c requires a strong visual presence to be recognisable.

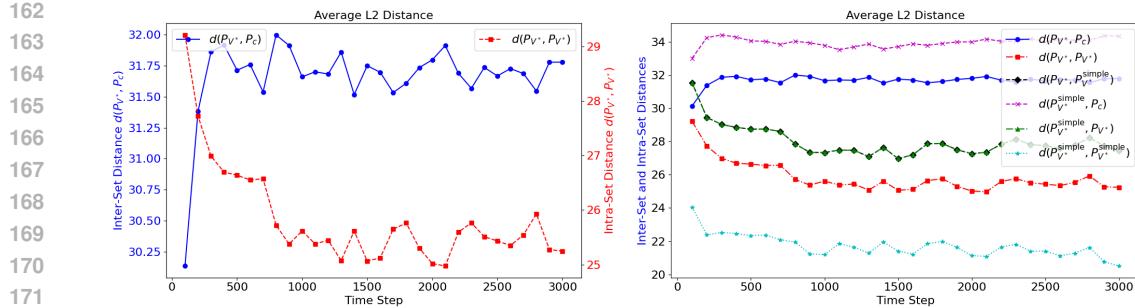


Figure 2: (a/left) The inter-set distance $d(P_{V^*}, P_c)$ and intra-set distance $d(P_{V^*}, P_{V^*})$ over the personalization process, and (b) The distance between all possible pairs of sets, notably $d(P_{V^*}, P_{V^*}^{\text{simple}})$.

4 Root Cause of SCP. SCP arises from unconstrained optimisation during personalization, which leads to arbitrary shifts (both in magnitude and direction) in the embedding of V^* away from its original semantic concept c .

2.3.1 EMPIRICAL EVIDENCE FOR SCP IN TEXTUAL SPACE

Recall our hypothesis: a keyword V^* initialised from a concept c to capture a visual target v_{gt} will lose its semantic meaning and dominate any arbitrary context p when combined into a prompt.

To verify this, we propose measuring the difference between V^* and c in the presence of a diverse set of contextual prompts $A = \{a_1, a_2, \dots, a_n\}$. These are generated by querying an LLM with the instruction: "Write 200 sentences with diverse topics and contents. Each sentence should be 10–30 words long and must include the keyword c ." Sample sentences are provided in Table 3. We then construct two sets of prompts: $P_{V^*} = \{[a_i, V^*]\}_{a_i \in A}$ and $P_c = \{[a_i, c]\}_{a_i \in A}$, which are used to assess the contextualised difference between V^* and c .

To quantify this difference, we compute distances between the sets P_{V^*} and P_c using four metrics: Euclidean, Hausdorff, Mahalanobis, and KL divergence. We also evaluate intra-set variability $d(P_{V^*}, P_{V^*})$ measuring the separation among items within P_{V^*} . The distance metrics are summarised in Table 5. We use Textual Inversion (TI) and DreamBooth (DB) to learn a personalized human face concept. The training data comprises 16 images from the CelebA dataset (Liu et al., 2015) (subject ID: 342, 'Henry Cavill'). The embedding v^* is initialised using the concept c = 'man' for TI, and c = 'a photo of a sks man' for DB.

Results. Figure 2(a) shows the average inter-set and intra-set distances, $d(P_{V^*}, P_c)$ and $d(P_{V^*}, P_{V^*})$, measured over training iterations. It can be seen that the inter-set distance $d(P_{V^*}, P_c)$ increases steadily over time, indicating that the learned embedding v^* progressively diverges from its initial textual semantic meaning c . Interestingly, the intra-set distance $d(P_{V^*}, P_{V^*})$ decreases over time, suggesting that the embeddings of prompts $[a_i, V^*]$ within P_{V^*} become less diverse and more similar to one another. This reflects a *growing dominance* of the learned embedding v^* across prompts, effectively *overriding the contextual variations* in a_i and becoming the principal semantic component of each prompt.

To further verify this dominance effect, we introduce an additional set of simple prompts, denoted $P_{V^*}^{\text{simple}}$, which consists of 200 concise sentences such as 'a photo of a V^* ', 'a portrait of a V^* ', etc., where V^* is clearly the central concept. As shown in Figure 2(b), the distance $d(P_{V^*}, P_{V^*}^{\text{simple}})$, which captures the difference between complex prompts $[p, V^*]$ and simple prompts $[V^*]$, decreases over time. This trend indicates that the *representations of complex prompts become increasingly similar* to those of simple prompts in $P_{V^*}^{\text{simple}}$, further supporting the hypothesis that v^* *gradually dominates and collapses* the semantic contribution of contextual components.

2.3.2 THE TWO-WAY IMPACTS ON PERSONALIZATION

In this section, we extend our analysis to investigate how SCP impacts image generation quality. Specifically, we generate personalized images $\hat{x} = G([p, V^*])$ using a list of prompts P (e.g., 'a photo of a V^* **man holding a cat**'), with 100 images generated per prompt. We evaluate the generation quality using the CLIP-Image-Image alignment score $S_I = S(\hat{x}, x_{gt})$, which measures the similarity

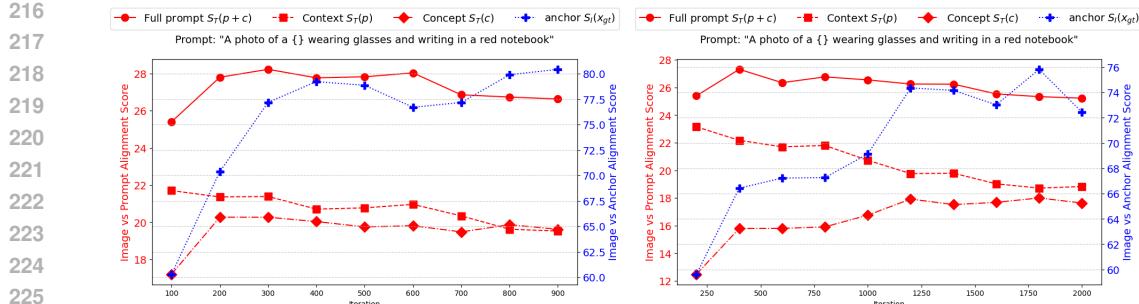


Figure 3: Analysis of the SCP on TI (left) and DB (right). Alignment with the ground-truth image ($S(\hat{x}, x_{gt}) - \diamond$) increases over time, while alignment with the contextual part ($S(\hat{x}, p) - \square$) decreases.

between the generated image \hat{x} and the ground-truth image x_{gt} of the reference concept. In addition, we compute three CLIP-Text-Image alignment scores: (i) $CLIP_T^p$ or $S_T^p = S(\hat{x}, p)$ alignment with the contextual part p (e.g., ‘holding a cat’), and (ii) $CLIP_T^c$ or $S_T^c = S(\hat{x}, c)$ alignment with the original concept c (e.g., ‘a man’). (iii) $CLIP_T^f$ or $S_T^f = S(\hat{x}, [p, c])$ alignment with the full prompt.

Interestingly, we observe that the SCP has both negative and positive effects on generation quality, depending on the nature of the prompt. Our key findings (illustrated in Figure 3) are as follows:

(Unsurprising) The image-to-image alignment score S_I increases over time (+ line), indicating that V^* effectively captures the visual appearance of the target concept. This confirms that the learned embedding V^* successfully personalizes the visual identity from the reference set.

(Surprising Negative Impact) The context-to-image alignment score S_T^p decreases over time (□ line), showing that generated images increasingly *lose alignment with the contextual component p* . This highlights the negative impact of semantic collapsing: as V^* dominates the prompt, the image generator pays less attention to the surrounding context.

(Unexpected Positive Effect) For some prompts, the concept-to-image alignment score S_T^c actually increases over time (◊ line). Early in training, prompts with c (e.g., man) often generate images dominated by the context p . As training progresses, the learned embedding V^* reduces this context dominance, strengthening the representation of c . This effect is most evident when c demands a strong visual presence (e.g., man in “man writing in a red notebook”), where close-up subject renderings naturally downplay the surrounding context.

2.3.3 THE ROOT CAUSE OF SCP

In the previous sections, we demonstrated the semantic collapsing problem in both textual and image generation spaces. In this section, we investigate the underlying cause of this phenomenon. Our key findings are summarised below:

① The semantic collapsing problem arises from the unconstrained optimisation process used in Equation 4 and Equation 5. Without any regularisation, the learned embedding V^* can deviate significantly from the original semantic meaning c in both magnitude and direction. Specifically, the embedding norm becomes much larger ($|M_{V^*}| \gg |M_c|$), and the cosine similarity between the two drops sharply ($\cos(M_{V^*}, M_c) \ll 1$), leading to a semantic drift.

② As a result of this semantic shift in V^* , the embedding of the entire prompt $[p, V^*]$ is also affected. That is, the prompt embedding becomes nearly identical to that of V^* , i.e., $\tau([p, V^*]) \approx \tau(V^*) \neq \tau([p, c])$, which directly manifests the semantic collapsing problem discussed earlier.

To support this analysis, Figure 4 presents a histogram of embedding norms for all vocabulary tokens, along with the norm of V^* tracked over the course of optimisation. It is evident that the norm of V^* grows significantly, placing it in the long tail of the distribution—substantially larger than standard tokens such as ‘man’, ‘woman’, and ‘person’, and approaching that of special tokens like ‘<startoftext>’ or ‘<endoftext>’.

It is worth noting that in some DreamBooth-based implementations (e.g., DreamBooth with LoRA in Diffusers (Hugging Face)), the full text encoder is fine-tuned to incorporate the personalized concept, instead of updating a dedicated token embedding V^* as done in Textual Inversion. In such cases,

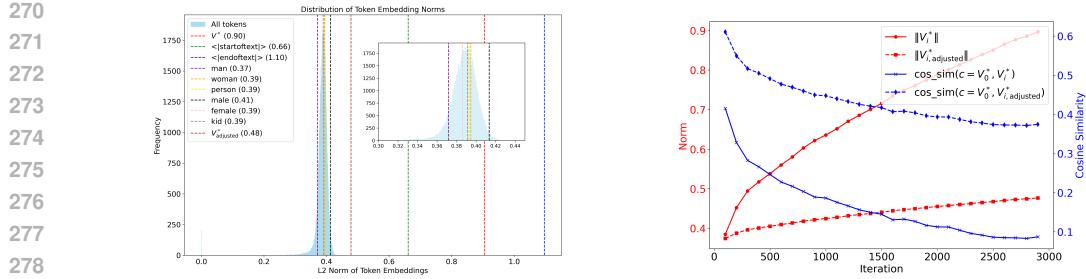


Figure 4: Left: The distribution of the norm of the token embedding M including special token V^* . Right: The semantic drift of V^* in term of magnitude and direction over time. The adjusted embedding V^*_{adjusted} is obtained by using TEA with $\alpha = 0.2$ and $\beta = 1.5$. The same phenomenon is observed in DreamBooth as shown in Figure 21.

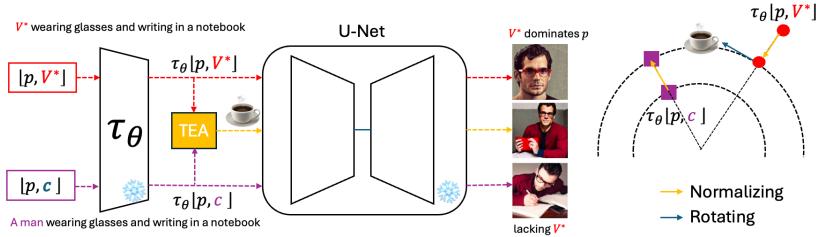


Figure 5: (left) TEA framework that adjusts the embedding on inference time where both U-Net and text encoder are just personalized pre-trained models. (right) the two stages of TEA: normalization and rotation with SLERP.

while the individual embedding vector M is not explicitly altered, the semantic shift still occurs at the prompt level, i.e., $\tau([p, V^*]) \approx \tau(V^*) \neq \tau([p, c])$.

Additionally, these DreamBooth implementations already include a gradient clipping mechanism (Hugging Face) to constrain parameter updates. However, this method was not designed with semantic stability in mind, and does not prevent cumulative semantic drift in practice. Even when the gradient norm is bounded, the embedding can still gradually shift over successive iterations.

To the best of our knowledge, our work is the *first to identify and explain the root cause of the semantic collapsing problem* as a consequence of unregularised embedding dynamics.

3 TEST-TIME EMBEDDING ADJUSTMENT FOR SCP

As demonstrated in the previous section, SCP exhibits two-way impacts that vary depending on the nature of the context prompt. This variability makes it challenging to devise a universal solution that mitigates the negative effects of SCP while preserving its beneficial aspects across all inference prompts. Recall that in the earlier analysis, we observed that the learned embedding V^* often drifts from its original semantic anchor c due to unconstrained optimisation—resulting in significant shifts in both magnitude and direction. This raises a natural question: *Can we reverse this semantic shift at test time by adjusting V^* , without modifying the personalization method?*

A key advantage of this approach is that it is training-free and can be applied to **almost all existing** personalization methods, regardless of whether it is based on Textual Inversion or DreamBooth. Surprisingly, this simple adjustment proves to be highly effective.

Embedding Adjustment. Given a pre-trained embedding matrix M that includes a learned token V^* (as in Textual Inversion), and a target concept c toward which we wish to regularise, we propose to adjust M_{V^*} by aligning both its magnitude and direction with M_c . This is achieved by first normalising the vectors and then applying Spherical Linear Interpolation (SLERP) (Shoemake, 1985)

324 to interpolate the direction of M_{V^*} towards M_c , which is effective in high-dimensional vector spaces.
 325

$$\hat{M}_{V^*} = \frac{\sin((1-\alpha)\theta)}{\sin(\theta)} \tilde{M}_{V^*} + \frac{\sin(\alpha\theta)}{\sin(\theta)} \tilde{M}_c \quad (1)$$

329 Here, θ is the angle between the normalized vectors \tilde{M}_c and \tilde{M}_{V^*} , and $\alpha \in [0, 1]$ controls the rotation
 330 factor, where the bigger α is, the more the embedding is rotated towards M_c . The normalisation
 331 vectors are defined as $\tilde{M}_{V^*} = \beta \|M_c\| \frac{M_{V^*}}{\|M_{V^*}\|}$ and $\tilde{M}_c = \beta \|M_c\| \frac{M_c}{\|M_c\|}$ where β is the scaling factor
 332 to control the magnitude of the embedding relative to the reference concept c .
 333

334 In Dreambooth-based personalization, because the embedding matrix M is not updated during the
 335 optimisation, we propose to adjust at the prompt level instead of the token level as illustrated in
 336 Figure 5. More specifically, given a prompt $[p, V^*]$ and a target prompt $[p, c]$, we obtain the two
 337 embeddings $\tau([p, V^*])$ and $\tau([p, c])$ from the text encoder τ_ϕ and then adjust the embedding of
 338 $[p, V^*]$ by using the above equation on every token in the prompt.
 339

$$\hat{\tau}([p, V^*])[i] = \frac{\sin((1-\alpha)\theta_i)}{\sin(\theta_i)} \tilde{\tau}([p, V^*])[i] + \frac{\sin(\alpha\theta_i)}{\sin(\theta_i)} \tilde{\tau}([p, c])[i] \quad (2)$$

341 where i indexes each token in the prompt, and θ_i is the angle between the i -th token embeddings of
 342 the two prompts after normalisation. This method enables a test-time adjustment of semantic drift
 343 without retraining, making it a lightweight and broadly applicable solution to mitigating SCP effects.
 344

345 4 EXPERIMENTS

348 In this section, we demonstrate the effectiveness of TEA on addressing the SCP across six represen-
 349 tative and recent personalization methods, two architectures (Stable Diffusion and Flux) and three
 350 datasets (CS101, CelebA, and Relationship) consisting of total 22 concepts. Due to the space limit,
 351 we present the main results here and refer readers to Appendix C and D for additional quantitative and
 352 qualitative findings. Full reproducibility details are available in the anonymous GitHub repository.
 353

354 4.1 EXPERIMENTAL SETUP

356 **Reference Images.** We use a subset of 9 concepts from the CustomConcept101 (CC101) dataset
 357 as in Kumari et al. (2023), each of which has 3-15 images, including ‘Barn’, ‘Tortoise plushy’,
 358 ‘Teddy-Bear’, ‘Wooden Pot’, ‘Dog’, ‘Cat’, ‘Flower’, ‘Table’, ‘Chair’ subjects. For the human concept,
 359 we use a subset of 10 concepts from the CelebA-HQ dataset (Liu et al., 2015), which includes 10
 360 identities with 10-15 images per subject. Sample images are shown in Fig. 15 and 16.

361 **Prompts.** We collect complex prompts from the CC101 dataset, where each prompt contains at
 362 least two concepts, e.g., ‘a **watercolor painting** of **V^* tortoise plushy** on a mountain’. For the human
 363 concept, we create a list of 17 prompts, where each prompt contains the main concept and a complex
 364 context/action, e.g., ‘A photo of a **V^*** wearing glasses and **writing in a red notebook**’. The prompts
 365 can be found in Table 4.

366 **Metrics.** In addition to the CLIP-T and CLIP-I alignment scores introduced in Section 2.3, we also
 367 use the DINO **image-image** alignment score (Caron et al., 2021) to evaluate the alignment between
 368 the generated images and the reference images.
 369

370 **We also use VLM-based evaluation metrics, VLM-P and VLM-I using VLM (i.e., GPT-4o-mini)**
 371 **as the judge to assess the alignment between the generated images and the reference images and**
 372 **the prompts, respectively.** Both metrics output a score between 0 and 4, where 0 means there are
 373 no correspondence between the generated image and the reference image (VLM-I) or input prompt
 374 (VLM-P), while 4 means the perfectly matches. The final score for each metric is obtained by
 375 averaging all inference prompts and samples and normalizing to the range [0, 100%]. We include the
 376 full system prompts and evaluation scripts in the anonymous github repository.
 377

4.2 EVALUATION RESULTS

378
379
380
381 Table 1: Performance over EasyControl (ES) **OminiControl (OC)** and ReVersion (RV) when integrating
382 with our TEA. Qualitative results are shown in Figures 28, 29, 31.
383
384

Method	CLIP _T ^p ↑	CLIP _T ^f ↑	CLIP-I ↑	DINO-I ↑	VLM-P ↑	VLM-I ↑
<i>CC101 - Pet Dog</i>						
ES	18.54	26.02	61.33	43.71	64.25	74.00
ES+TEA	18.72 (+0.18)	26.11 (+0.09)	64.56 (+3.23)	48.32 (+4.61)	66.50 (+2.25)	77.25 (+3.25)
<i>CC101 - Plushie Teddybear</i>						
ES	20.48	26.80	81.64	49.08	78.00	80.25
ES+TEA	20.61 (+0.13)	27.3 (+0.50)	82.84 (+1.20)	51.17 (+2.09)	80.25 (+2.25)	81.50 (+1.25)
<i>Subject - Clock</i>						
OC	18.11	23.90	81.37	32.41	67.50	62.25
OC+TEA	18.78 (+0.67)	23.98 (+0.08)	83.10 (+1.73)	34.48 (+2.07)	71.75 (+4.25)	64.50 (+2.25)
<i>Subject - Oranges</i>						
OC	21.49	27.62	70.43	30.33	68.50	53.00
OC+TEA	21.60 (+0.11)	27.70 (+0.08)	71.90 (+1.47)	31.64 (+1.31)	70.00 (+1.50)	55.50 (+2.50)
<i>Subject - Penguin</i>						
OC	20.30	31.61	78.58	45.59	86.25	83.25
OC+TEA	20.33 (+0.03)	32.02 (+0.41)	80.64 (+2.06)	49.37 (+3.78)	90.50 (+4.25)	86.75 (+3.50)
<i>Relationship - A <Carved by> B</i>						
RV	25.64	27.74	N/A	N/A	N/A	N/A
RV+TEA	27.84 (+2.20)	30.17 (+2.43)	N/A	N/A	N/A	N/A
<i>Relationship - A <Inside> B</i>						
RV	24.97	27.87	N/A	N/A	N/A	N/A
RV+TEA	25.15 (+0.18)	28.40 (+0.53)	N/A	N/A	N/A	N/A
<i>Relationship - A <Painted on> B</i>						
RV	23.98	30.07	N/A	N/A	N/A	N/A
RV+TEA	24.38 (+0.40)	30.35 (+0.28)	N/A	N/A	N/A	N/A

402
403
404 We evaluate the effectiveness of Test-time Embedding Ad-
405 justment (TEA) when combined with various personaliza-
406 tion baselines, including Textual Inversion (TI) (Gal et al.,
407 2022), DreamBooth (DB) (Ruiz et al., 2023), CustomD-
408 iffusion (CD) (Kumari et al., 2023), and ClassDiffusion
409 (CL) (Huang et al., 2024a). As shown in Table 2, TEA con-
410 sistently enhances full prompt alignment (CLIP_T^f) across
411 all methods and datasets. Gains are particularly notable for
412 TI and DB, with increases up to +1.87 on CC101, demon-
413 strating that TEA substantially strengthens text–image
414 consistency. Importantly, these improvements hold across
415 diverse concepts (Figure 6), indicating that TEA is ro-
416 bust to different personalization scenarios, even with fixed,
417 easily chosen hyper-parameters.

418 In terms of visual quality, TEA often improves CLIP-I
419 and DINO-I scores (e.g., +4.57 CLIP-I for DB on CC101),
420 while in some cases—particularly on CelebA—there is
421 a trade-off, with modest drops in CLIP-I (e.g., -2.37 for
422 DB+TEA). However, qualitative comparisons (Figures 24, 23), particularly in Figure 22, show that
423 TEA reduces distortions and produces more coherent, realistic outputs, even when quantitative scores
424 dip slightly. This suggests TEA better preserves semantic fidelity while mitigating common artifacts
425 in baseline methods.

426
427 **Generality across architectures and use cases.** We further assess TEA on **three** state-of-the-art
428 frameworks beyond the original baselines: EasyControl (Zhang et al., 2025), **OminiControl** (Tan
429 et al., 2025), two Flux-based personalization methods, and ReVersion (Huang et al., 2024b), which
430 targets compositional relationships, e.g., ‘a cat **carved by** a carrot’. As shown in Table 1, TEA again
431 yields consistent improvements. For EasyControl, TEA achieves substantial gains in image–image
432 alignment (+3.23 CLIP-I, +4.61 DINO-I, +3.25 VLM-I), while for ReVersion it strengthens prompt
433 fidelity, with up to +2.43 CLIP_T^f in complex relations such as ‘carved by’. For **OminiControl**, TEA

402
403
404 Table 2: Improvement of our TEA over
405 its baseline counterparts on CC101 and
406 CelebA datasets (**positive** or **negative**).
407 Details are shown in Tables 6 and 7.

Method	CLIP _T ^p	CLIP _T ^f	CLIP-I	DINO-I
CC101				
TI+TEA	0.55	0.64	-2.34	-3.81
DB+TEA	0.77	1.87	4.57	0.59
CD+TEA	-0.13	0.34	0.37	0.24
CL+TEA	-0.12	0.42	0.67	1.24
CelebA				
TI+TEA	0.33	0.57	-2.41	-1.78
DB+TEA	0.51	0.64	-2.37	-2.27
CD+TEA	-0.12	0.09	1.56	3.09
CL+TEA	0.22	0.39	-0.69	0.17

improves VLM-P by 4.25 points and VLM-I by 3.50 points, as well as by 0.41 points in $CLIP_T^f$ and 2.06 points in $CLIP_I$, demonstrating the consistent improvement across different metrics.

Qualitative results (Figures 28, 29, 31) confirm these findings: While producing impressive high-quality generations, these SOTA frameworks still suffer from failure cases such as EasyControl producing spurious objects or unsafe generations, OminiControl failing to control the subject’s action, and ReVersion failing to accurately represent relationships. Our TEA corrects these failure cases effectively, significantly improving the prompt fidelity of these frameworks without compromising the image-reference fidelity. Again, all these results are obtained in inference time without any additional training or finetuning.

Together, these results highlight TEA as a lightweight yet broadly applicable enhancement to personalization. It systematically improves text–image alignment, generalizes across methods, datasets, and architectures, and provides qualitative corrections to baseline failure modes, establishing TEA as a robust and versatile component for personalization.

Surprising Impact of TEA on Anti-DreamBooth. Anti-personalization (Liang et al., 2023; Van Le et al., 2023; Salman et al., 2023) aims to protect users from malicious actors who might exploit personal images to train unauthorized personalized models. The core idea is to apply an invisible perturbation (a ‘mask’) to the user’s data before it is shared. Although attackers can still access these masked images, they are prevented from training effective personalized models. One representative approach is Anti-DreamBooth (Van Le et al., 2023), which employs adversarial learning (Szegedy et al., 2013; Goodfellow et al., 2014) to generate such masks.

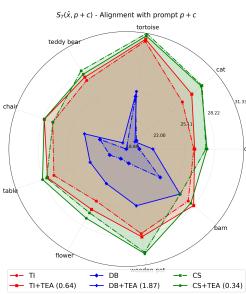


Figure 6: Comparison on prompt alignment of our TEA over its baselines counterpart on CC101 dataset. Refer to Table 6 for detailed numbers.

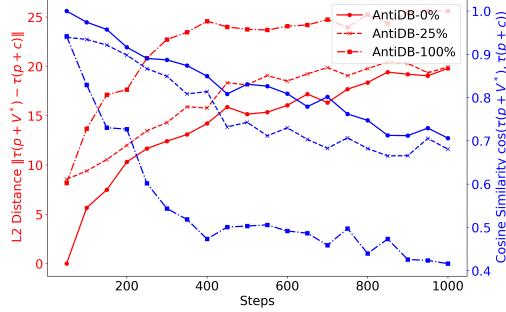


Figure 7: Semantic drift analysis of DreamBooth trained with Anti-DreamBooth adversarial masks.

Given that background, we analyze Anti-DreamBooth through the lens of SCP. We hypothesize that its **adversarial learning process actually amplifies the dominance of the personalized concept V^*** , but with good implications for user privacy, by causing the prompt embedding $[\mathbf{p}, V^*]$ to drift even further from its original concept $[\mathbf{p}, c]$, resulting in distorted generations of the protected concept V^* .

To verify this hypothesis, we conduct a controlled experiment. Given a set of benign personal images $\{\mathbf{x}_i\}_{i=1}^n$, we apply Anti-DreamBooth to produce masked images $\{\hat{\mathbf{x}}_i\}_{i=1}^n$. We then train DreamBooth models using mixtures of masked and benign images, with varying proportions $p \in \{0, 0.2, 1.0\}$, where $p = 0$ corresponds to standard DreamBooth, and $p = 1.0$ uses only masked data. We then analyze the resulting prompt embeddings as in Section 2.3.3. As shown in Figure 7, increasing p leads to greater embedding drift, evident in the larger norm of $\|\tau([\mathbf{p}, V^*]) - \tau([\mathbf{p}, c])\|$ and the lower cosine similarity between $\tau([\mathbf{p}, V^*])$ and $\tau([\mathbf{p}, c])$. This result confirms our hypothesis and provides an interesting perspective on why anti-personalization works.

Surprisingly, when we apply TEA to DreamBooth models poisoned by Anti-DreamBooth, we observe a mitigation effect such that the generated images by TEA are less distorted and more aligned with the to-be-protected concept V^* as shown in Figure 8 (more results can be found in Appendix C.2). This surprising result reveals an intriguing false sense of security of Anti-DreamBooth, such that despite adversarial masking, **the poisoned personalized model still retains traces of the correct/to-be-protected concept V^*** and the distortion of the generated images is just the consequence of the **extreme Semantic Collapsing Problem** magnified by the adversarial masking. The distorted

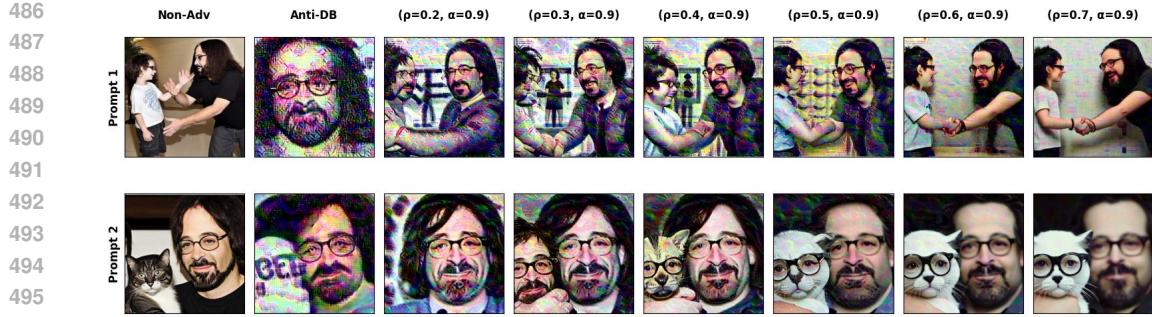


Figure 8: Effect of applying TEA to models poisoned by Anti-DreamBooth. TEA is able to mitigate the corruption and recover less distorted generations of the protected concept, revealing a surprising weakness in Anti-DreamBooth. Additional results and discussion can be found in Appendix C.2.

generations bring the false sense of security because the attacker can use TEA to recover partially the to-be-protected concept V^* . To the best of our knowledge, this is the first work to uncover such a counter-intuitive vulnerability of Anti-DreamBooth and sheds new light on the limitations of current anti-personalization defenses.

5 CONCLUSION

In this paper, we identified the *Semantic Collapsing Problem* (SCP) in generative personalization, where personalized tokens lose their original semantic meaning and dominate other concepts in complex prompts. We traced this issue to unconstrained optimisation, which allows the learned token embedding to drift in direction and magnitude, disrupting prompt interpretation.

To address this, we proposed a training-free test-time embedding adjustment (TEA) that realigns the personalized embedding with its original semantic context, significantly improving text–image alignment without modifying model weights. Our method is lightweight, broadly compatible with almost all existing personalization frameworks such as Textual Inversion and DreamBooth and their variants, and delivers substantial improvements in prompt consistency and image fidelity across diverse scenarios.

In addition to tackling SCP, we also provided an initial probe into the interaction between TEA and anti-personalization. Surprisingly, when applied to models corrupted by Anti-DreamBooth, TEA partially mitigates adversarial corruption and recovers more faithful generations of the protected concept. This finding suggests that current defenses may offer a false sense of security, opening an intriguing direction for future work at the intersection of personalization and privacy protection.

Overall, beyond introducing SCP and proposing a practical solution, this work lays the foundation for further exploration of adaptive embedding adjustments, context-aware constraints during personalization, and new perspectives on the robustness of anti-personalization methods.

REFERENCES

Moab Arar, Andrey Voynov, Amir Hertz, Omri Avrahami, Shlomi Fruchter, Yael Pritch, Daniel Cohen-Or, and Ariel Shamir. Palp: Prompt aligned personalization of text-to-image models. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024.

Omri Avrahami, Kfir Aberman, Ohad Fried, Daniel Cohen-Or, and Dani Lischinski. Break-a-scene: Extracting multiple concepts from a single image. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–12, 2023.

Pu Cao, Feng Zhou, Qing Song, and Lu Yang. Controllable generation with text-to-image diffusion models: A survey. *arXiv preprint arXiv:2403.04279*, 2024.

540 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 541 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
 542 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

543

544 Dar-Yen Chen, Hamish Tennent, and Ching-Wen Hsu. Artadapter: Text-to-image style transfer using
 545 multi-level style encoder and explicit adaptation. In *Proceedings of the IEEE/CVF conference on*
 546 *computer vision and pattern recognition*, pp. 8619–8628, 2024a.

547

548 Hong Chen, Yipeng Zhang, Simin Wu, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu Zhu.
 549 Disenbooth: Identity-preserving disentangled tuning for subject-driven text-to-image generation.
 550 *arXiv preprint arXiv:2305.03374*, 2023a.

551

552 Li Chen, Mengyi Zhao, Yiheng Liu, Mingxu Ding, Yangyang Song, Shizun Wang, Xu Wang, Hao
 553 Yang, Jing Liu, Kang Du, et al. Photoverse: Tuning-free image customization with text-to-image
 554 diffusion models. *arXiv preprint arXiv:2309.05793*, 2023b.

555

556 Wenhui Chen, Hexiang Hu, Chitwan Saharia, and William W Cohen. Re-imagen: Retrieval-augmented
 557 text-to-image generator. *arXiv preprint arXiv:2209.14491*, 2022.

558

559 Zhuowei Chen, Shancheng Fang, Wei Liu, Qian He, Mengqi Huang, and Zhendong Mao. Dreami-
 560 dentity: enhanced editability for efficient face-identity preserved image generation. In *Proceedings*
 561 *of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 1281–1289, 2024b.

562

563 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
 564 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
 565 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

566

567 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 568 examples. *arXiv preprint arXiv:1412.6572*, 2014.

569

570 Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff:
 571 Compact parameter space for diffusion fine-tuning. In *Proceedings of the IEEE/CVF International*
 572 *Conference on Computer Vision*, pp. 7323–7334, 2023.

573

574 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 575 *neural information processing systems*, 33:6840–6851, 2020.

576

577 Jiannan Huang, Jun Hao Liew, Hanshu Yan, Yuyang Yin, Yao Zhao, Humphrey Shi, and Yunchao
 578 Wei. Classdiffusion: More aligned personalization tuning with explicit class guidance. *arXiv*
 579 *preprint arXiv:2405.17532*, 2024a.

580

581 Ziqi Huang, Tianxing Wu, Yuming Jiang, Kelvin CK Chan, and Ziwei Liu. Reversion: Diffusion-
 582 based relation inversion from images. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11,
 583 2024b.

584

585 Hugging Face. Dreambooth training example. https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py.
 586 dev 0.33.0.

587

588 Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. Scedit: Efficient and control-
 589 lable image diffusion generation via skip connection editing. In *Proceedings of the IEEE/CVF*
 590 *conference on computer vision and pattern Recognition*, pp. 8995–9004, 2024.

591

592 Chen Jin, Ryutaro Tanno, Amrutha Saseendran, Tom Diethe, and Philip Alexander Teare. An image
 593 is worth multiple words: Discovering object level concepts using multi-concept prompt learning.
 594 In *Forty-first International Conference on Machine Learning*, 2024.

595

596 Zhe Kong, Yong Zhang, Tianyu Yang, Tao Wang, Kaihao Zhang, Bizhu Wu, Guanying Chen, Wei Liu,
 597 and Wenhan Luo. Omg: Occlusion-friendly personalized multi-concept generation in diffusion
 598 models. In *European Conference on Computer Vision*, pp. 253–270. Springer, 2024.

599

600 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 601 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF conference on computer*
 602 *vision and pattern recognition*, pp. 1931–1941, 2023.

594 Jason Lee, Kyunghyun Cho, and Douwe Kiela. Counteracting language drift via visual grounding.
 595 In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019*
 596 *Conference on Empirical Methods in Natural Language Processing and the 9th International Joint*
 597 *Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 4385–4395, Hong Kong,
 598 China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1447.
 599 URL <https://aclanthology.org/D19-1447/>.

600 Yuheng Li, Haotian Liu, Yangming Wen, and Yong Jae Lee. Generate anything anywhere in any
 601 scene. *arXiv preprint arXiv:2306.17154*, 2023.

602

603 Chumeng Liang, Xiaoyu Wu, Yang Hua, Jiaru Zhang, Yiming Xue, Tao Song, Zhengui Xue, Ruhui
 604 Ma, and Haibing Guan. Adversarial example does good: Preventing painting imitation from
 605 diffusion models via adversarial examples. In *International Conference on Machine Learning*, pp.
 606 20763–20786. PMLR, 2023.

607 Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Yibo Wang, Xintao Wang, Yujiu
 608 Yang, and Ying Shan. Stylecrafter: Enhancing stylized text-to-video generation with style adapter.
 609 *arXiv preprint arXiv:2312.00330*, 2023.

610

611 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaou Tang. Deep learning face attributes in the wild. In
 612 *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

613 Saman Motamed, Danda Pani Paudel, and Luc Van Gool. Lego: Learning to disentangle and invert
 614 personalized concepts beyond object appearance in text-to-image diffusion models. In *European*
 615 *Conference on Computer Vision*, pp. 116–133. Springer, 2024.

616

617 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-
 618 adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models.
 619 In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–4304, 2024.

620 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
 621 and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances*
 622 *in Neural Information Processing Systems*, 36:79320–79362, 2023.

623

624 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 625 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 626 models from natural language supervision. In *International conference on machine learning*, pp.
 627 8748–8763. PMLR, 2021.

628

629 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 630 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

631

632 Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik.
 633 Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map
 634 alignment. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 635 <https://openreview.net/forum?id=AOKU4nRw1W>.

636

637 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 638 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 639 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

640

641 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 642 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceed-
 643 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22500–22510,
 644 2023.

645

646 Mehdi Safaei, Aryan Mikaeili, Or Patashnik, Daniel Cohen-Or, and Ali Mahdavi-Amiri. Clic:
 647 Concept learning in context. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 648 *Pattern Recognition*, pp. 6924–6933, 2024.

649

650 Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Aleksander Madry. Raising the
 651 cost of malicious ai-powered image editing. In *International Conference on Machine Learning*, pp.
 652 29894–29918. PMLR, 2023.

648 Ken Shoemake. Animating rotation with quaternion curves. In *Proceedings of the 12th annual*
 649 *conference on Computer graphics and interactive techniques*, pp. 245–254, 1985.
 650

651 Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
 652 Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
 653 style. *arXiv preprint arXiv:2306.00983*, 2023.

654 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 655 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 656 *arXiv:2011.13456*, 2020.

657 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 658 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

660 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Mini-
 661 mal and universal control for diffusion transformer. In *Proceedings of the IEEE/CVF International*
 662 *Conference on Computer Vision*, pp. 14940–14950, 2025.

663 Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. Key-locked rank one editing for text-to-
 664 image personalization. In *ACM SIGGRAPH 2023 conference proceedings*, pp. 1–11, 2023.

666 Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. Face0: Instantaneously condi-
 667 tioning a text-to-image model on a face. In *SIGGRAPH Asia 2023 Conference Papers*, pp. 1–10,
 668 2023.

669 Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan Dao, Ngoc N Tran, and Anh Tran. Anti-
 670 dreambooth: Protecting users from personalized text-to-image synthesis. In *Proceedings of the*
 671 *IEEE/CVF International Conference on Computer Vision*, pp. 2116–2127, 2023.

673 Xierui Wang, Siming Fu, Qihan Huang, Wanggui He, and Hao Jiang. Ms-diffusion: Multi-subject
 674 zero-shot image personalization with layout guidance. *arXiv preprint arXiv:2406.07209*, 2024.

675 Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcomposer:
 676 Tuning-free multi-subject image generation with localized attention. *International Journal of*
 677 *Computer Vision*, pp. 1–20, 2024.

679 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text,
 680 images and variations all in one diffusion model. In *Proceedings of the IEEE/CVF International*
 681 *Conference on Computer Vision*, pp. 7754–7765, 2023.

682 Xingqian Xu, Jiayi Guo, Zhangyang Wang, Gao Huang, Irfan Essa, and Humphrey Shi. Prompt-free
 683 diffusion: Taking "text" out of text-to-image diffusion models. In *Proceedings of the IEEE/CVF*
 684 *Conference on Computer Vision and Pattern Recognition*, pp. 8682–8692, 2024.

685 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 686 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 687 pp. 3836–3847, 2023.

689 Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding
 690 efficient and flexible control for diffusion transformer. *arXiv preprint arXiv:2503.07027*, 2025.

692 Chenyang Zhu, Kai Li, Yue Ma, Chunming He, and Xiu Li. Multibooth: Towards generating all your
 693 concepts in an image from text. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 694 volume 39, pp. 10923–10931, 2025.

695
 696
 697
 698
 699
 700
 701

702 703 704 705 Appendix 706 707

708 Table of Contents

709	A Related Work	14
710	A.1 Diffusion Models	14
711	A.2 Generative Personalization.	14
712	A.3 Challenges in Generative Personalization	15
713		
714	B SCP on Multi-Concepts Personalization	16
715		
716	C Further Quantitative Results	17
717	C.1 The Effect of Hyper-parameters	17
718	C.2 Surprising Impact of TEA on Anti-DreamBooth	19
719		
720	D Qualitative Results	19
721		
722	E Limitations and Future Work	19
723		
724	F Experimental Setting	22
725	F.1 Dataset Construction	22
726	F.2 Evaluation Metrics	23
727	F.3 Computational Settings	29
728		
729		

730 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

731
732 We utilized Large Language Models (LLMs) in this work for two primary purposes. First, we
733 employed LLMs like ChatGPT to correct grammatical errors and enhance the manuscript's clarity.
734 Second, we leveraged these models to generate diverse context sets to verify the hypothesis of SCP in
735 the main text. The instructions for the LLMs are provided in Appendix F.1
736

737 A RELATED WORK

739 A.1 DIFFUSION MODELS

741 Given a text-to-image diffusion model ϵ_θ , where $\epsilon_\theta(x_t, t, p)$ represents the predicted noise at time
742 step t given the textual embedding $\tau(p)$ of a prompt p and the noisy intermediate vector x_t (Ho et al.,
743 2020; Song et al., 2020; Rombach et al., 2022), the model is trained by minimizing the following
744 objective:

$$745 \mathcal{L} = \mathbb{E}_{(x,p) \sim p_{\text{data}}, t \sim \mathcal{U}[0,T], \epsilon \sim \mathcal{N}(0,1)} \left[\left\| \epsilon - \epsilon_\theta(\alpha_t x + \sqrt{1 - \alpha_t} \epsilon, t, p) \right\|_2^2 \right] \quad (3) \\ 746$$

747 Here, x and p denote the input image and its associated prompt, respectively, while ϵ is the Gaussian
748 noise sampled from a standard normal distribution. The intermediate input $x_{t,\epsilon} = \alpha_t x + \sqrt{1 - \alpha_t} \epsilon$
749 is obtained from the forward diffusion process. For simplicity, we use the notation $\mathbb{E}_{x,p,t,\epsilon} [\cdot]$ to
750 represent the expectation over the input data x , the prompt p , the diffusion time step t , and noise ϵ .
751

752 A.2 GENERATIVE PERSONALIZATION.

753 Generative personalization task aims to capture personal concepts which are implicitly shared in a
754 reference set of images as generative conditions and then use them as a guided condition to generate
755 new images containing the personal concept. These personal concepts are very difficult to express

756 in the input prompt, e.g., how to express the concept of your dog that is different from a generic
 757 dog. Therefore, rather than using prompt engineering techniques to describe the concept in text, this
 758 task usually uses a gradient-based method to fine-tune the model parameters to capture the personal
 759 concept. There are several categories of generative personalization (Cao et al., 2024) classified based
 760 on the type of generative conditions, such as subject-driven (Gal et al., 2022; Ruiz et al., 2023; Chen
 761 et al., 2022; Kumari et al., 2023; Wang et al., 2024), person-driven (Xiao et al., 2024; Valevski et al.,
 762 2023; Chen et al., 2024b; 2023b), style-driven (Sohn et al., 2023; Liu et al., 2023; Chen et al., 2024a)
 763 or image-driven (Ramesh et al., 2022; Xu et al., 2023; 2024). Personalizing a T2I diffusion model
 764 from only a few examples presents several well-known challenges, including language drift, limited
 765 expressiveness of generative conditions, entanglement of concepts, and conditional misalignment.
 766

767 **Textual Inversion and Dreambooth.** While there are many personalization methods have been
 768 proposed, they can be traced back to the two representative methods: Textual Inversion (TI) (Gal
 769 et al., 2022) and DreamBooth (Ruiz et al., 2023). Mathematically, given a set of personal images
 770 $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ and a pre-trained T2I model ϵ_θ , the goal is to identify a textual embedding
 771 v^* associated with a specific verbalizable keyword V^* (e.g., ‘sks’, ‘<new>’, etc.). This keyword
 772 represents the implicit visual concept shared in the reference set \mathcal{X} , enabling the model to generate
 773 images with the personal concept using any textual prompt p containing the keyword V^* , e.g.,
 774 $[p, V^*] = \text{‘A photo of } V^* \text{ playing on a beach’}$, where $[., .]$ is the sentence construction operator.
 775

776 Textual Inversion (TI) (Gal et al., 2022) is a pioneering method that proposes obtaining a textual
 777 embedding by minimising the following objective:
 778

$$\min_{v^*} \mathbb{E}_{x, p, \epsilon, t} \left[\|\epsilon - \epsilon_\theta(x_{t, \epsilon}, t, [p, V^*])\|_2^2 \right] \quad (4)$$

779 Here, $p \sim \mathcal{T}$ is a template prompt sampled from a set of predefined neutral prompts \mathcal{T} , such as
 780 {‘a photo of a’, ‘a high-quality photo of a’, …}. In TI, only the embedding v^* is learned, while all
 781 other parameters, such as the model ϵ_θ or textual encoder τ , remain fixed. Although this method
 782 is parameter-efficient, the learned embedding may not be sufficiently representative to capture the
 783 true visual concept in the reference set. Building on TI, Dreambooth (Ruiz et al., 2023) suggests
 784 fine-tuning not only the embedding v^* (i.e., by fine-tuning the textual encoder τ) but also the model
 785 parameters θ by minimizing the following objective:
 786

$$\min_{\theta, v^*} \mathbb{E}_{x, p, x_{pr}, p_{pr}, \epsilon, \epsilon', t} \left[\|\epsilon - \epsilon_\theta(x_{t, \epsilon}, t, [p, V^*])\|_2^2 + \lambda \left\| \epsilon' - \epsilon_\theta(x_{t', \epsilon'}, t', p_{pr}) \right\|_2^2 \right] \quad (5)$$

787 In this context, x_{pr} and p_{pr} are the prior-preservation image and its associated prompt, respectively,
 788 which help prevent the model from overfitting to the small reference set with a tradeoff hyper-
 789 parameter λ .
 790

791 A.3 CHALLENGES IN GENERATIVE PERSONALIZATION

792 **Language Drift and Overfitting.** Language drift or overfitting occurs due to the limited number of
 793 reference images and results in the incorporation of irrelevant elements and the neglect of the textual
 794 context within the outputs. Prior works address this issue by introducing preservation mechanisms
 795 such as prior-preservation loss (Ruiz et al., 2023), locking concept-specific parameters (Tewel et al.,
 796 2023) and regularising model weights (Han et al., 2023; Qiu et al., 2023).
 797

801 **Limited Expressiveness of Generative Conditions.** This occurs due to the limited expressiveness
 802 of the original textual format and the limited number of tokens allowed in each condition. A common
 803 mitigation approach is to use multi-modal conditions such as image-image and sketch-image. To
 804 enable pre-trained T2I models to accept new types of conditions and generate in conjunction with
 805 the current text prompt conditioning, previous works have attempted to incorporate an additional
 806 encoder (Zhang et al., 2023), or add a new adapter module to align internal knowledge of the model
 807 with the new condition (Mou et al., 2024; Jiang et al., 2024).
 808

809 **Entanglement of Concepts.** The reference image set might include samples that contain both the
 810 intended concept and other irrelevant concepts. To effectively isolate and extract the intended concept

810 from the reference set, previous works have employed explicit masks (Avrahami et al., 2023; Jin
 811 et al., 2024; Safaei et al., 2024) and additional data with the personalized concept (Li et al., 2023).
 812 Alternatively, Disenbooth (Chen et al., 2023a) proposed to mitigate the influence of background
 813 elements in the reference set by disentangling the identity and background of the reference set.
 814
 815

816 **Conditional Misalignment.** Beyond overfitting and entanglement, generative personalization faces
 817 the broader challenge of conditional misalignment where outputs deviate from the intended prompt
 818 due to the limited alignment capacity of the original generative model. The trade-off between
 819 identity fidelity and semantic fidelity is a well-known and fundamental challenge in generative
 820 personalization. Most existing works address this as an overfitting issue during training and propose
 821 various regularization strategies, which typically require modifying the training process or adding
 822 supervision. PALP (Arar et al., 2024) introduces score distillation sampling to explicitly regularize
 823 the learned token toward its original class concept, preventing semantic drift. However, it operates
 824 with a single fixed prompts and requires training-time modification. LEGO (Motamed et al., 2024)
 825 and ReVersion (Huang et al., 2024b) aim to disentangle compositional concepts (e.g., adjectives,
 826 verbs, or relationships) from exemplar images using token-based personalization. However, they are
 827 limited to token-based personalization model only.

828 A largely unaddressed gap in prior personalization work is the potential drift or misalignment
 829 of the textual embedding itself during concept learning. We refer this phenomenon as *semantic*
 830 *collapse* where the learned concept token is still faithful to the visual reference, but fails to retain any
 831 meaningful textual semantics and eventually collapses to a simplified form. We directly address the
 832 semantic drift of the learned embedding. Our method mitigates this drift without altering the training
 833 pipeline or requiring additional training. As a training-free, plug-and-play solution, our method can
 834 be seamlessly integrated into a wide range of existing personalization frameworks.

837 B SCP ON MULTI-CONCEPTS PERSONALIZATION

840 In this section, we investigate the question: *What is the SCP in the context of multi-concept person-*
 841 *alization?* For instance, consider a prompt like ‘A photo of a V_{man}^* touching a V_{dog}^* beside a park
 842 V_{bench}^* ’, where V_{man}^* and V_{dog}^* represent two independently personalized concepts. Will one concept
 843 dominate the other, as observed in single-concept personalization in the previous section?

844 To explore this, we conduct an experiment where the two concepts, V_{dog}^* and V_{man}^* (subject 342),
 845 are learned independently using Textual Inversion. We then construct a list of prompts that combine
 846 these two personalized concepts with an additional complex context, such as ‘A photo of a V_{man}^*
 847 touching a V_{dog}^* beside a park bench’ (refer to Table 4 for more examples).

848 Figure 9 illustrates the generated images where the embedding of V_{man}^* is held fixed, while the
 849 embedding of $V_{dog,step}^*$ is varied across different training steps. At early steps, $V_{dog,step}^*$ remains
 850 close to the original, generic ‘dog’ concept, while at later steps, it progressively captures more
 851 personalized visual information of the specific dog. This design allows us to observe how changes in
 852 the V_{dog}^* embedding influence the generation of V_{man}^* within the same prompt.

853 It can be observed from Figure 9a that at early steps (e.g., < 400), V_{man}^* tends to dominate the prompt,
 854 resulting in images that primarily capture the ‘man’ concept, consistent with the SCP observed in
 855 single-concept settings. However, as the training progresses and $V_{dog,step}^*$ captures more distinctive
 856 features of the personalized dog concept, it begins to overshadow V_{man}^* , leading to outputs that
 857 predominantly depict only the dog, effectively suppressing the presence of the other concept. As
 858 shown in Figure 9b, the alignment score with anchor man image drops gradually while that with
 859 anchor dog image increases over time further confirming the dominance of V_{dog}^* over V_{man}^* .

860 This trend, observed consistently across multiple settings as shown in Figure 26 and 27, highlights
 861 the intricate nature of SCP in multi-concept personalization. It suggests that SCP not only persists
 862 but can intensify when multiple personalized concepts are involved, presenting a challenging but
 863 potentially fruitful direction for future research.

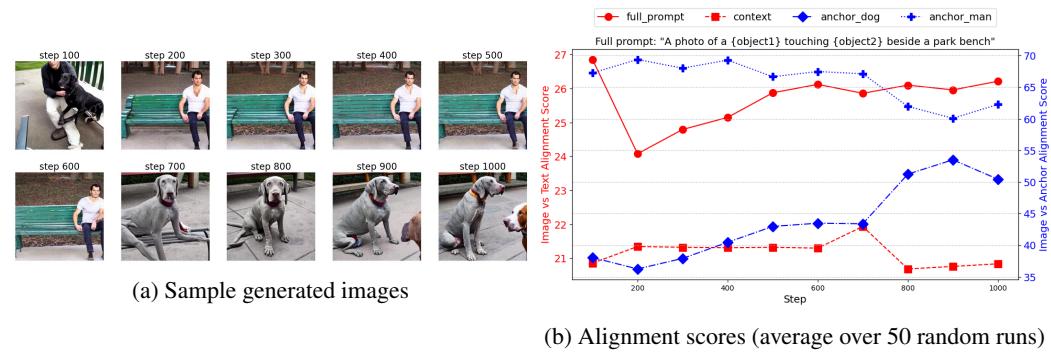


Figure 9: Analysis the SCP on multi-concepts personalization. The embedding of V_{man}^* is **fixed** while the embedding of V_{dog}^* is **varied** across different training steps. Prompt: ‘A photo of a V_{man}^* touching a V_{dog}^* beside a park bench’. See Figure 26 and 27 for more examples.

C FURTHER QUANTITATIVE RESULTS

In this section, we present additional quantitative and qualitative results that further validate our findings and broaden the scope of analysis. Specifically, we include:

- **Hyper-parameter sensitivity** (Section C.1), showing how different settings affect TEA’s performance.
- **Unexpected effects on Anti-DreamBooth** (Section C.2), where TEA reveals new insights into mitigating distortions in unlearning scenarios.
- **Textual evidence of semantic collapse** (Figure 17), where we measure embedding drift using multiple distance metrics.
- **Visual evidence of collapse across methods** (Figures 18, 19), confirming SCP in both Textual Inversion and DreamBooth.
- **Prompt-level embedding drift** (Figure 21), providing direct evidence that SCP is not confined to TI variants but also affects DreamBooth and its extensions, consistent with our argument that unconstrained optimization underlies the problem (Section 2.3.3).
- **Detailed quantitative comparisons** (Tables 6, 7) on CustomConcept101 and CelebA, offering a comprehensive view of TEA’s improvements over multiple baselines.

Together, these results not only strengthen our main claims but also uncover broader implications—most notably, that SCP and TEA’s corrective effect are general phenomena spanning datasets, frameworks, and experimental setups.

C.1 THE EFFECT OF HYPER-PARAMETERS

An important question is how to choose the hyper-parameters α and β appropriately, or whether they should be adapted based on the input prompt. Interestingly, our experiments reveal a clear pattern in the performance of the proposed method across a range of α and β values, providing practical guidance for their selection. For simplicity and consistency, we set $\alpha = 0.2$ and $\beta = 1.5$ as default values, which consistently deliver robust performance across diverse prompts.

Figure 12 shows the performance of our adjustment method over a range of β values with fixed $\alpha = 1.0$ (no rotation). It can be seen that when β is too small (i.e., $\beta < 0.5$, meaning $\|\hat{M}_{V^*}\| < 0.5 \|M_c\|$) or too large (i.e., $\beta > 5.0$, meaning $\|\hat{M}_{V^*}\| > 5.0 \|M_c\|$), the generated images become less aligned with the ground truth indicating by the significant drop in $S_I(\hat{x}, x_{gt})$, suggesting that V^* has lost its personalized information. However, the alignment $S_I(\hat{x}, x_{gt})$ is relatively stable when β is in the range of $[1.0, 5.0]$, suggesting that the personalized concept can be effectively captured without extreme scaling V^* . As a practical choice, we simply set $\beta = 1.5 \approx \frac{\|M_{V^*}\| + \|M_c\|}{2\|M_c\|}$ (which is a middle value interpolated from $\|M_c\|$ to $\|M_{V^*}\|$), as the default setting.

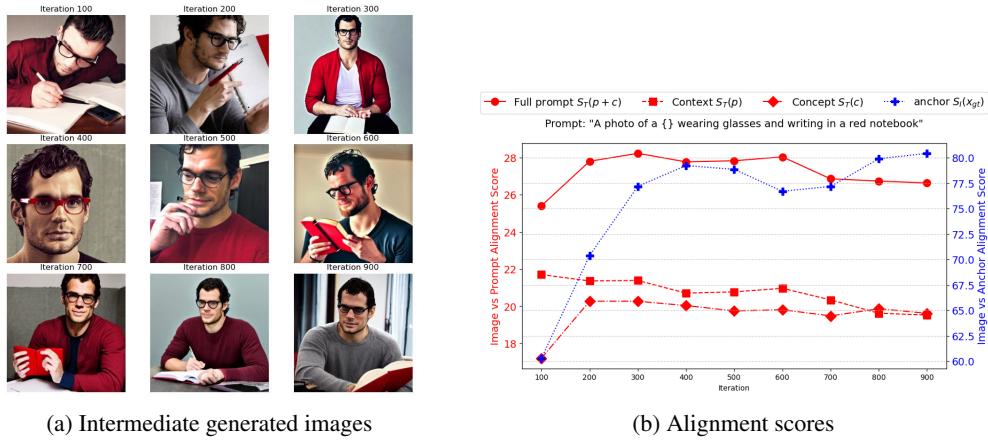


Figure 10: Illustration of the SCP on Textual Inversion. Left: The intermediate generated images \hat{x} of a prompt ‘a photo of a V^* wearing glasses and writing in a red notebook’. The generated image is gradually biased towards the personalized concept V^* (i.e., easier to recognize as ‘Henry Cavill’) and loses the context p (i.e., harder to recognize as ‘writing in a red notebook’) through out the personalization process. Right: The alignment scores (average over 100 random seeds) which empirically validate the SCP. The alignment $S(\hat{x}, p)$ (\square) with the context p drops over time, while the alignment $S(\hat{x}, x_{gt})$ ($+$) with the ground truth x_{gt} increases.

Figure 11: Analysis of the effect of rotation factor.

Method	CLIP ^c _T	CLIP ^p _T	CLIP ^f _T	CLIP-I
TI	17.4 ± 1.8	21.4 ± 1.1	26.5 ± 1.8	73.5 ± 4.7
$\alpha = 0.20$	17.8 ± 1.9	21.7 ± 1.1	27.5 ± 1.9	71.1 ± 5.7
$\alpha = 0.25$	18.0 ± 1.9	21.8 ± 1.0	27.8 ± 1.9	69.6 ± 5.7
$\alpha = 0.30$	18.0 ± 2.0	21.9 ± 1.1	28.0 ± 1.9	67.3 ± 5.8
$\alpha = 0.35$	18.2 ± 2.0	21.9 ± 1.1	28.2 ± 1.8	63.6 ± 5.3

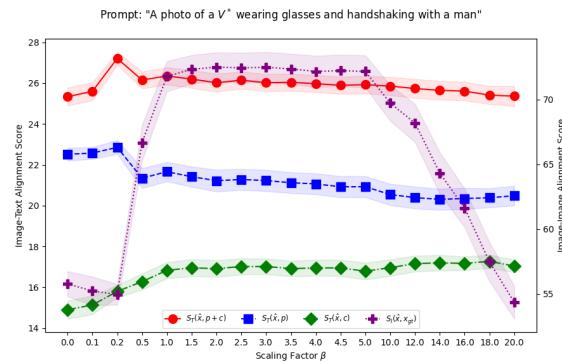


Figure 12: Analysis of the effect of scaling factor.

972 Table 11 shows the performance over a range of α values with fixed $\beta = 1.5$. Unlike the scaling pa-
 973 rameter, the rotation factor α is more sensitive and significantly impacts prompt alignment capability.
 974 Increasing α generally improves the model’s ability to capture context, as reflected in the CLIP_T^f
 975 score, which increases from 26.5 to 28.2 (an improvement of 1.7), and the CLIP_T^p score, which rises
 976 from 21.4 to 21.9 (a gain of 0.5). While this comes at a minor cost to visual fidelity, with the CLIP-I
 977 score dropping from 73.5 to 71.1 when $\alpha = 0.2$, the generated images still maintain high visual
 978 quality, as shown in Figures 23 and 24.

979 These findings highlight the critical role of the rotation factor α , which directly controls the semantic
 980 alignment between V^* and the target concept c . Higher α values encourage better prompt alignment
 981 by rotating V^* closer to c , while the scaling factor β should remain within a moderate range to
 982 prevent excessive distortion of the learned visual concept.
 983

984 C.2 SURPRISING IMPACT OF TEA ON ANTI-DREAMBOOTH

985 In this section, we present additional results highlighting the surprising impact of TEA on Anti-
 986 DreamBooth. Figures 13 and 14 analyze the effect of varying the rotation factor ρ and the scaling
 987 factor α , respectively.

988 Interestingly, while scaling has shown its effectiveness in mitigating the SCP in standard person-
 989 alization settings as discussed in Section C.1, when applied to Anti-DreamBooth, it does little to
 990 correct the visual distortion in generated images. By contrast, adjusting the rotation factor ρ shows
 991 a pronounced effect such that the generated images become substantially less distorted and better
 992 aligned with the protected concept V^* as shown in Figure 13. This contrast suggests that the **semantic**
 993 **misalignment in anti-personalization settings is more sensitive to directional shift than**
 994 **to embedding magnitude**, and that rotation-based corrections are inherently more effective than
 995 scaling-based adjustments.
 996

997 We view this as a valuable and unexpected finding that not only deepens our understanding of
 998 why Anti-DreamBooth works (by amplifying the semantic collapse), but also points to promising
 999 directions for future work such as geometric interventions or adaptive adjustments during the defense
 1000 process.

1001 D QUALITATIVE RESULTS

1002 We provide additional qualitative results to complement the quantitative analysis:

- 1003 • **Correcting distorted generations.** Figure 22 illustrates how SCP in DreamBooth leads to distorted
 1004 generations, while TEA corrects the semantic embedding to produce more coherent and realistic
 1005 images. This connects directly to the discussion on TEA’s unexpected impact on Anti-DreamBooth
 1006 (Section C.2).
- 1007 • **Cross-dataset comparisons.** Figures 24 and 23 compare TEA-augmented variants of Textual
 1008 Inversion, DreamBooth, and Custom Diffusion against their baselines on CS101 and CelebA.
 1009 Further comparisons on Subject Control and Relationship tasks are shown in Figures 28, 29, 30,
 1010 and 31, highlighting TEA’s robustness across frameworks.
- 1011 • **SCP in multi-concept prompts.** Figures 26 and 27 demonstrate SCP when multiple concepts are
 1012 combined, with corresponding alignment scores provided in Figure 25.

1013 E LIMITATIONS AND FUTURE WORK

1014 **Limitations on Methodology.** We believe that the insights and understanding provided by this paper,
 1015 especially the analysis of the Semantic Collapsing Problem, are the most important contributions.
 1016 Based on this analysis, we propose a simple method to adjust the embedding vectors at test time.
 1017 While this method has clear advantages, such as simplicity, generalizability, and no additional training
 1018 requirement, the simplicity of the method itself might be a limitation. There are still trade-offs
 1019 between alignment with the input prompt and alignment with the visual concept, which depend on
 1020 the hyper-parameters, suggesting that fixed hyper-parameters might not be optimal for all prompts.
 1021



Figure 13: Applying TEA on mitigating the Anti-Personalization Effect of DreamBooth by varying the rotation factor ρ

Figure 14: Applying TEA on mitigating the Anti-Personalization Effect of DreamBooth by varying the scaling factor α

1134 **Future Work.** We believe that the insights and understanding provided by this paper, especially the
 1135 analysis of the Semantic Collapsing Problem, can guide future research on this topic. For example,
 1136 integrating additional constraints to restrict semantic shift during the fine-tuning phase, rather than
 1137 relying solely on test-time adjustment, is a promising direction. This approach could directly produce
 1138 adjusted and bounded embedding vectors that retain the original semantic meaning of the base
 1139 concept.

1140 In this work, we provide a simple method to adjust the embedding vectors at test time. This adjustment
 1141 is applied equally across all dimensions of the embedding vectors. However, we believe that this
 1142 is not the optimal way to adjust embedding vectors, as each dimension of the embedding vector
 1143 has different meanings and importance. Therefore, a more sophisticated method that considers the
 1144 importance of each dimension could also be a promising direction.

1145 In Section C.1, we provide an analysis of the impact of hyper-parameters on the performance of the
 1146 proposed method. It has been shown that the performance of the proposed method is sensitive to the
 1147 rotation factor α : the larger the α , the more the embedding vector is rotated toward the target concept,
 1148 improving alignment with the generated images but potentially reducing alignment with the visual
 1149 concept. In this work, we simply use the same hyper-parameters for all settings. We believe that a
 1150 search algorithm could be applied to find the optimal hyper-parameters for each prompt, with a stop
 1151 condition based on the desired alignment with the input prompt.

1153 F EXPERIMENTAL SETTING

1154 F.1 DATASET CONSTRUCTION

1155 **Contextual Prompts for Measuring Semantic Collapsing.** Recall our hypothesis: a personalized
 1156 keyword V^* , initialized from a base concept c to capture a specific visual target v_{gt} , tends to lose
 1157 its original semantic meaning and dominate arbitrary contexts p when used in complex prompts.
 1158 This phenomenon, which we refer to as *semantic shift*, can be directly assessed by comparing the
 1159 embedding vectors M_{V^*} and M_c . However, this is challenging due to the use of contextualized text
 1160 embeddings in modern LLMs and diffusion models, where the surrounding context significantly
 1161 shapes the final representation of each token.

1162 To address this, we propose evaluating the semantic shift of V^* relative to c in the presence of
 1163 a diverse set of contextual prompts. Specifically, we define a prompt set $A = \{a_1, a_2, \dots, a_n\}$,
 1164 constructed by querying a large language model (LLM) with the following instruction:

1165 Write 200 sentences with diverse topics and contents.
 1166 Each sentence should be 10–30 words long and must
 1167 include the keyword c .

1168 This approach allows us to measure how well the learned embedding M_{V^*} retains the original
 1169 semantic characteristics of c across varied contexts, providing a robust test for the semantic collapsing
 1170 problem.

1171 To further examine the dominance effect of V^* , we introduce a complementary set of simple prompts,
 1172 denoted as $P_{V^*}^{\text{simple}}$. This set consists of 200 straightforward sentences where V^* is the clear focal
 1173 point, such as “a photo of a V^* ”, “a portrait of a V^* ”, etc. These simple prompts
 1174 serve as a baseline for assessing the degree to which V^* overshadows other contextual elements in
 1175 the generated outputs.

1176 Sample sentences from both prompt sets are provided in Table 3, and the full dataset, along with
 1177 all prompt templates, is available in the anonymous repository at <https://anonymous.4open.science/r/Embedding-Adjustment>.

1178 **Dataset for Evaluating Personalization Performance.** We use a subset of 9 concepts from the
 1179 CustomConcept101 dataset as in the original paper (Kumari et al., 2023), each of which has 3–15
 1180 images, including ‘Barn’, ‘Tortoise plushy’, ‘Teddy-Bear’, ‘Wooden Pot’, ‘Dog’, ‘Cat’, ‘Flower’,
 1181 ‘Table’, ‘Chair’ subjects. For the human concept, we use a subset of 10 concepts from the CelebA-HQ
 1182 dataset (Liu et al., 2015), which includes 10 identities with 10–15 images per subject. Sample

1188
 1189 Table 3: Sample sentences for P_{V^*} and $P_{V^*}^{\text{simple}}$. Set P_c can be constructed by replacing the word c
 1190 with V^* in the prompt of P . All the data and prompts can be found in the anonymous repository.
 1191

Set	Sample Sentences
P_{V^*}	'A V^* walked his dog through the park every morning before sunrise' 'Despite the heavy rain, a V^* stood patiently waiting for the bus' 'In the small village, a V^* known for his kindness helped everyone' 'After twenty years of dedicated service, a V^* retired from his factory job' 'While climbing Mount Everest, a V^* discovered the true meaning of perseverance' 'During the concert, a V^* in the front row sang along to every song' 'At the crowded marketplace, a V^* sold handcrafted jewelry made from local materials' 'Throughout history, a V^* with vision has often changed the course of events' 'Behind every successful company, there is often a V^* with an innovative idea' 'Within the ancient temple, a V^* prayed silently for his family's wellbeing'
$P_{V^*}^{\text{simple}}$	'A photo of a V^* , 'A rendering of a V^* , 'A cropped photo of a V^* , 'A portrait of a V^* , 'A close-up shot of a V^* , 'A full-body image of a V^* , 'A black-and-white photograph of a V^* , 'A candid shot of a V^* , 'A digital illustration of a V^* , 'A stylized caricature of a V^* ',

1212
 1213 images from the CustomConcept101 and CelebA-HQ datasets are shown in Figure 15 and Figure 16,
 1214 respectively.

1215 To assess complex prompt handling, we compile a set of multi-concept prompts from the Custom-
 1216 Concept101 dataset. Each prompt is designed to include two to three distinct elements, encouraging
 1217 the model to balance multiple visual contexts. For instance:

1218

- 1219 • “ V^* tortoise plushy sitting at the beach with a view of the sea”
- 1220 • “a watercolor painting of V^* tortoise plushy on a mountain”

1221 These prompts contain a primary **subject V^*** and one or more contextual elements (**context p**),
 1222 allowing us to measure the model’s ability to preserve the personalized concept while maintaining
 1223 accurate context alignment.

1224 Sample prompts are provided in Table 4, and the full dataset, along with all prompt templates,
 1225 is available in the anonymous repository at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/Embedding-Adjustment)
 1226 Embedding-Adjustment.

1227 F.2 EVALUATION METRICS

1228 **Personalization Metrics.** We use the CLIP-T **text-image** alignment score (Radford et al., 2021)
 1229 to evaluate the alignment between the generated images \hat{x} and the prompts. To have a better
 1230 understanding of which part of the prompt contributes to construct the generated images, we break
 1231 down each prompt into multiple segments/concepts and calculate the alignment score for each
 1232 segment/concept, i.e., ‘ CLIP_T^f ’/‘ CLIP_T^c ’/‘ CLIP_T^p ’ denotes the alignment score of the full prompt, the
 1233 first segment—the personal concept, and the second segment—the context, respectively. We use
 1234 the CLIP-I **image-image** alignment score (Radford et al., 2021) and DINO **image-image** alignment
 1235 score (Caron et al., 2021) to evaluate the alignment between the generated images and the reference
 1236 images.

1242

1243

Table 4: Sample prompts to generate personalized images. Each prompt consists of a main **subject** V^* and a **context** p . All the data and prompts can be found in the anonymous repository.

1244

1245

1246

1247

Set	Sample Sentences
CelebA	'A photo of a V^* wearing glasses and handshaking with a man', 'A photo of a V^* wearing glasses and handshaking with a woman', 'A photo of a V^* wearing glasses and handshaking with an old man', 'A photo of a V^* wearing glasses and handshaking with a kid', 'A photo of a V^* wearing glasses and holding a dog', 'A photo of a V^* wearing glasses and holding a cat', 'A photo of a V^* wearing glasses and holding a red book', 'A photo of a V^* wearing glasses and holding a red phone', 'A photo of a V^* wearing glasses and sitting on a red chair', 'A photo of a V^* wearing glasses and lying on a red bed', 'A photo of a V^* wearing glasses and writing in a red notebook', 'A photo of a V^* wearing glasses and drinking a Coco Cola can', 'A photo of a V^* wearing glasses and lifting weights', 'A photo of a V^* wearing glasses and cycling', 'A photo of a V^* wearing glasses and kicking a football', 'A photo of a V^* wearing glasses and playing a guitar', 'A photo of a V^* wearing glasses and eating a pizza'
CustomConcept101	' V^* in snowy ice', ' V^* in blooming sunflower field', ' V^* on a boat in the sea', ' V^* on top of a mountain', ' V^* made of crochet', ' V^* in a garden', 'a floor lamp on the side of V^* ', ' V^* and a table with chocolate cake on it', 'a puppy sitting on a V^* ', 'a cat sitting on a V^* ', 'a squirrel sitting on a V^* ', 'a deer grazing near a V^* ', 'a teddy bear on a V^* ', 'a photo of a V^* in Van Gogh style'
Multi-Concept	'A photo of a V_{man}^* wearing glasses and kissing a V_{dog}^* ', 'A photo of a V_{man}^* wearing glasses and handshaking with a V_{dog}^* ', 'A photo of a V_{man}^* wearing a hat and hugging a V_{dog}^* ', 'A photo of a V_{man}^* walking a V_{dog}^* on a road with a car behind', 'A photo of a V_{man}^* holding a V_{dog}^* beside a car', 'A photo of a V_{man}^* touching a V_{dog}^* beside a park bench', 'A photo of a V_{man}^* feeding a V_{dog}^* with a bowl of flowers'

1284

1285

1286

1287

1288

Table 5: Inter-set and intra-set distances for different distance metrics

1289

1290

1291

1292

1293

1294

1295

Distance	Inter-set Distance $d(P, Q)$	Intra-set Distance $d(P, P)$
L2	$\frac{1}{n} \sum_{i=1}^n \ p_i - q_i\ _2^2$	$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \ p_i - p_j\ _2^2$
Hausdorff	$\max(\max_{p_i \in P} \min_{q_j \in Q} d_{L2}(p_i, q_j), \max_{q_i \in Q} \min_{p_j \in P} d_{L2}(q_i, p_j))$	$\max_{p_i \in P} \min_{p_j \in P, p_j \neq p_i} d_{L2}(p_i, p_j)$
Mahalanobis	$\frac{1}{n} \sum_{i=1}^n \sqrt{(p_i - \mu_P)^T \Sigma_P^{-1} (p_i - \mu_P)}$	$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \sqrt{(p_i - p_j)^T \Sigma_P^{-1} (p_i - p_j)}$
KL	$D_{KL}(P \parallel Q)$	$D_{KL}(P \parallel P)$

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

(a) Wooden Pot

(b) Flower

(c) Chair



(d) Table

(e) Dog

(f) Cat

(g) Barn

(h) Teddy Bear

(i) Tortoise Plushy

Figure 15: Sample images from the CustomConcept101 dataset.

1340

1341

1342

1343

1344

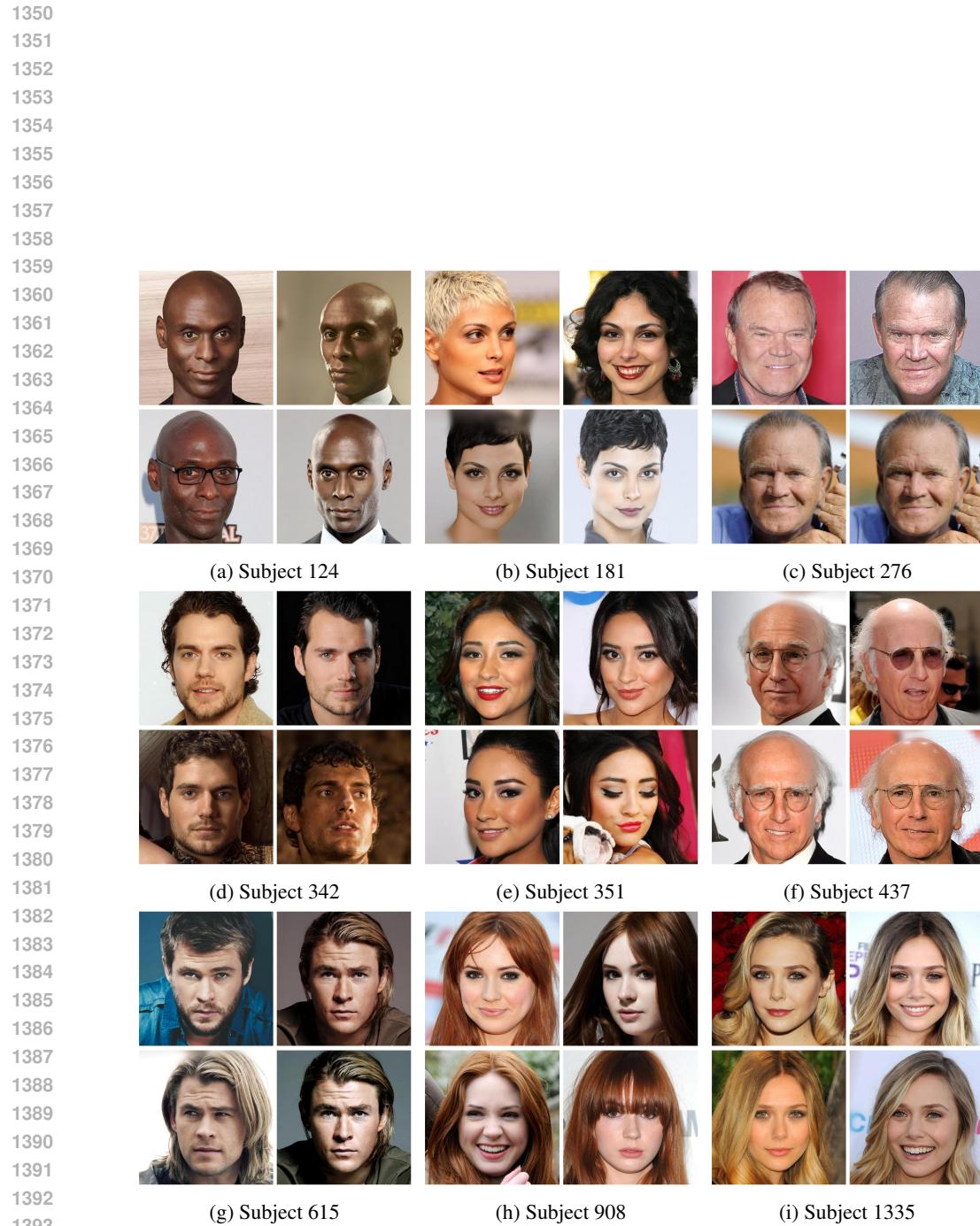
1345

1346

1347

1348

1349



1394 Figure 16: Sample images from the CelebA dataset.
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 **Semantic Shifting Metrics.** Given the two sets P and Q (i.e., $P = P_{V^*} = \{\tau(\lfloor a_i, V^* \rfloor)\}$ and
 1405 $Q = P_c = \{\tau(\lfloor a_i, c \rfloor)\}$ which are the embeddings of the prompts in the prompt sets P_{V^*} and P_c
 1406 respectively), we propose to use the following metrics to measure the difference between the two sets.
 1407

1408 **L2 distance** measures the Euclidean distance between two points in a vector space.
 1409

$$d_{L2}(p_i, q_i) = \|p_i - q_i\|_2 \quad (6)$$

1410 **Hausdorff distance** measures the maximum distance from any point in P to the nearest point in Q .
 1411 In other words, it measures the greatest distance from a point in one set to the nearest point in another
 1412 set.
 1413

$$d_H(P, Q) = \max(\max_{p_i \in P} \min_{q_j \in Q} d_{L2}(p_i, q_j), \max_{q_i \in Q} \min_{p_j \in P} d_{L2}(q_i, p_j)) \quad (7)$$

1414 **Mahalanobis distance** measures how far the point p_i is from the center of the set P , taking into
 1415 account the correlation between the dimensions of the set. Unlike the L2 distance which treats all
 1416 dimensions equally, the Mahalanobis distance adapts to the shape and spread of the set P .
 1417

$$d_M(p_i, P) = \sqrt{(p_i - \mu_P)^T \Sigma_P^{-1} (p_i - \mu_P)} \quad (8)$$

1418 where μ_P is the mean of the set P and Σ_P is the covariance matrix of the set P .
 1419

1420 **KL divergence**. We propose to measure the relative relationship between each data point to the
 1421 entire set by using the Normalized Temperature-scaled Softmax function
 1422

$$p(p_i | p_j, P) = \frac{\exp(\text{sim}(p_i, p_j)/T)}{\sum_{p_k \in P} \exp(\text{sim}(p_i, p_k)/T)} \quad (9)$$

1423 where T is the temperature parameter. $p(p_i | p_j, P)$ measures the relative relationship between
 1424 p_j and the anchor p_i in comparison to the entire set P . From that, we can have $p(p_i | P) = \{p(p_i | P)$
 1425 $\forall p_j \in P\}$ to represent the relative relationship between p_i and the entire set P . Similarly,
 1426 $p(q_i | Q) = \{p(q_i | q_j, Q) \forall q_j \in Q\}$ to represent the relative relationship between q_i and the entire
 1427 set Q .
 1428

1429 The KL divergence between P and Q is then defined as:
 1430

$$D_{KL}(P || Q) = \sum_{i=1}^n p(p_i | P) \log \frac{p(p_i | P)}{p(q_i | Q)} \quad (10)$$

1431 which measures the difference between the two distributions P and Q . The higher the KL divergence,
 1432 the more different the two distributions are, the more semantic shifting the learned embedding v^* has.
 1433

1434 **Alignment Metrics.** The primary objective of generative personalization is to produce visually
 1435 compelling images that accurately capture the unique characteristics of a personalized concept from a
 1436 reference set, while maintaining semantic alignment with the input textual prompt.
 1437

1438 To evaluate this, we use two key metrics based on the CLIP model (Radford et al., 2021):
 1439

1440 **Visual Fidelity:** We measure the alignment between the generated image and a ground-truth image
 1441 using the CLIP image-image alignment score. A higher score indicates a closer match to the
 1442 reference, reflecting better preservation of the personalized visual features.
 1443

1444 **Prompt Consistency:** We assess the alignment between the generated image and the input textual
 1445 prompt using the CLIP text-image alignment score. A higher score indicates that the generated
 1446 image more accurately reflects the intended context and details of the input text.
 1447

1458 However, complex prompts often contain multiple concepts, making a single text-image alignment
 1459 score insufficient to capture the nuanced relationship between the personalized concept V^* and its
 1460 broader context p . To address this, we separately compute alignment scores for:
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468

1469 **Main Concept Alignment (V^*):** Measuring the fidelity of the personalized concept itself.
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479

1480 **Context Alignment (p):** Evaluating how well the broader contextual elements are represented.
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488

1489 This multi-level evaluation provides a more comprehensive understanding of how well the generated
 1490 images capture both the personalized visual identity and the intended scene context.
 1491

1492 For all evaluations, we use the implementation provided in the TorchMetrics library,
 1493 available at https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html.
 1494

1505
 1506 **VLM-based Evaluation Metrics.** We use the VLM-P and VLM-I metrics to evaluate the alignment
 1507 between the generated images and the reference images and the prompts, respectively. Both metrics
 1508 output a score between 0 and 4, where 0 means there are no correspondence between the generated
 1509 image and the reference image (VLM-I) or input prompt (VLM-P), while 4 means the perfectly
 1510 matches. The final score for each metric is obtained by averaging all inference prompts and samples
 1511 (16 prompts times 50 random samples per concept/setting) and normalizing to the range [0, 100%].
 We include the full system prompts and evaluation scripts in the anonymous github repository.

1512
1513

System Prompt for VLM-based Evaluation Metrics

1514

Task Definition

1515

You are an expert visual evaluator for subject-driven image generation. You will receive:

1516

1. **Reference image A** — the target subject (object or person)
2. **Prompt P** — text describing the desired scene/context
3. **Generated image O** — the image to evaluate

1517

1518

1519

1520

Produce two independent integer scores (0–4):

1521

1522

1523

1. **Prompt Adherence** — Does O match the scene, spatial relations, actions, attributes, and style in P?
2. **Subject Identity** — Does the subject in O visually match the reference subject in A?

1524

1525

Key Principle: These scores are independent. Perfect subject in wrong scene = high Subject, low Prompt. Wrong subject in correct scene = high Prompt, low Subject.

1526

Prompt Adherence Score (Scene/Context)

1527

Evaluate: Scene/setting, spatial relationships, actions, attributes, style specified in P.

1528

Ignore: Whether the specific subject from A is present (only check if *something* fills the subject role correctly).

1529

0 - No alignment with prompt

1530

1 - Minimal alignment; major elements missing/wrong

1531

2 - Some core elements correct; important parts missing/contradicted

1532

3 - Most elements correct; minor omissions in secondary attributes

1533

4 - All major elements present and correct; full prompt satisfaction

1534

Subject Identity Score (Visual Matching)

1535

Evaluate: Does the subject in O look like the reference in A? Check shape, distinctive features, colors, recognizable characteristics.

1536

Ignore: Whether subject is in correct scene/position (that's Prompt Adherence).

1537

0 - Subject absent or completely unrecognizable

1538

1 - Weak resemblance; most identifying features differ

1539

2 - Ambiguous identity; significant changes to important features

1540

3 - Clearly recognizable; some features altered but identity preserved

1541

4 - Unambiguous match; all distinctive features preserved

1542

Output Format

1543

Output ONLY these two lines with no other text:

1544

PromptScore: <integer 0–4>

1545

SubjectScore: <integer 0–4>

Examples:

1546

- Same subject, wrong scene → PromptScore: 1, SubjectScore: 4

1547

- Wrong subject, correct scene → PromptScore: 3, SubjectScore: 0

1548

- Both perfect → PromptScore: 4, SubjectScore: 4

1549

Now evaluate the following inputs:

1550

1551

F.3 COMPUTATIONAL SETTINGS

1552

1553

1554

1555

1556

1557

All experiments are conducted on a single NVIDIA RTX 4090 GPU with 24GB of memory, using the Stable Diffusion v1.5 model as the base model. To prevent memory overflow, we fine-tune the model with Textual Inversion (TI), DreamBooth (DB), and Custom Diffusion (CD) using a batch size of 1 across all methods.

1558

1559

1560

1561

For the DreamBooth LoRA method, we follow the recommended settings from the Diffusers' example page, using a learning rate of 1e-4, rank 4, and enabling text encoder training for improved performance. Textual Inversion is fine-tuned with a learning rate of 5e-4, while Custom Diffusion uses a more conservative learning rate of 5e-6.

1562

1563

1564

1565

All code implementations are adapted from the Hugging Face Diffusers library.

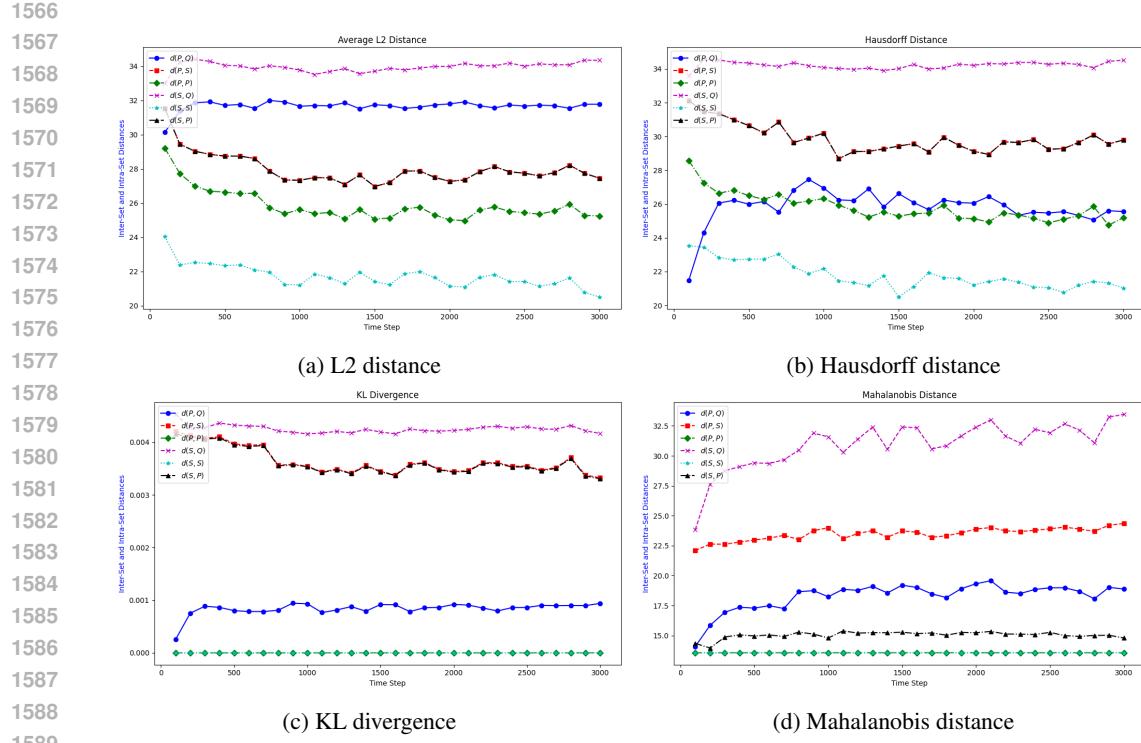


Figure 17: Different distance metrics between the sets $P = \{\tau([a_i, V^*])\}$ and $Q = \{\tau([a_i, c])\}$ in Textual Inversion (TI), showing the semantic shifting of the learned embedding over training iterations.

Table 6: Results on CustomConcept101 dataset, tort* means tortoise plushy, teddy* means plushy teddy bear, wpot* means wooden pot. The first/second metric is the $\text{CLIP}_T^f/\text{CLIP-I}$ score. The **blue number** indicates the proposed method outperforms its baseline counterpart, while the **red number** indicates the opposite. The GAP is the average improvement over all concepts. Qualitative results are shown in Fig. 24.

Method	dog	cat	tort*	teddy*	chair	table	flower	wpot*	barn	GAP
TI	26.05/60.18	26.64/79.65	30.49/73.09	27.29/77.05	27.19/77.97	27.06/64.36	25.26/68.63	28.0/67.02	27.45/80.22	0.00/0.00
TI+TEA	26.14 / 58.97	27.94 / 77.47	30.71 / 72.74	27.68 / 76.02	28.13 / 73.27	27.78 / 61.33	26.28 / 63.77	28.34 / 66.44	28.21 / 77.06	0.64 / -2.34
DB	20.28/59.93	20.29/74.82	24.55/91.14	18.89/85.52	21.87/87.5	20.77/73.83	20.07/82.98	20.43/66.69	23.58/80.98	0.00/0.00
DB+TEA	21.71 / 66.25	20.1 / 92.43	25.08 / 91.1	19.65 / 86.98	23.61 / 86.6	22.97 / 84.87	23.12 / 76.05	24.99 / 82.46	26.31 / 77.77	1.87 / 4.57
CD	27.33/56.09	29.37/78.34	31.33/78.42	28.47/77.67	27.16/69.88	27.88/62.84	26.7/62.66	30.0/69.18	26.34/70.95	0.00/0.00
CD+TEA	27.45 / 56.18	29.25 / 77.59	31.06 / 79.61	28.04 / 78.64	28.16 / 71.81	28.34 / 63.08	27.37 / 62.63	30.15 / 68.0	27.82 / 71.78	0.34 / 0.37
CL	27.28/55.06	29.19/77.42	31.11/78.32	28.26/76.4	28.49/74.52	27.68/60.34	26.76/63.98	29.69/61.09	25.72/69.87	0.00/0.00
CL+TEA	27.72 / 56.44	29.12 / 77.26	30.89 / 78.87	28.07 / 77.46	29.01 / 75.56	28.11 / 60.54	27.21 / 64.87	30.2 / 60.72	27.65 / 71.27	0.42 / 0.67

Table 7: Results on CelebA dataset. The first/second metric is the $\text{CLIP}_T^f/\text{CLIP-I}$ score. The **blue number** indicates the proposed method outperforms its baseline counterpart, while the **red number** indicates the opposite. The GAP is the average improvement over all concepts. Qualitative results are shown in Fig. 23.

Method	124	181	276	342	351	437	615	908	1335	1429	GAP
TI	23.7/68.93	26.29/61.68	21.32/65.33	26.06/75.64	25.25/69.63	23.46/71.19	26.54/74.37	24.61/64.5	25.4/67.55	24.97/60.88	0.00/0.00
TI+TEA	24.23 / 68.48	26.49 / 59.6	20.97 / 65.2	27.28 / 71.01	26.11 / 65.73	23.93 / 66.25	26.89 / 70.56	25.98 / 62.97	25.69 / 66.72	25.68 / 59.01	0.57 / -2.41
DB	25.37/54.78	25.91/61.75	22.11/58.7	24.37/70.41	25.0/62.95	20.65/75.15	25.06/66.56	24.93/63.46	23.66/59.2	24.65/60.42	0.00/0.00
DB+TEA	26.26 / 50.67	26.59 / 60.23	24.3 / 47.66	25.58 / 65.83	25.43 / 61.34	22.56 / 68.79	26.03 / 60.88	25.92 / 60.34	24.79 / 53.66	25.37 / 58.46	1.11 / -4.55
CS	26.92/43.56	26.87/52.48	26.91/36.22	27.14/52.64	26.94/53.39	26.97/55.45	26.99/53.96	26.93/53.32	27.05/44.95	26.88/50.33	0.00/0.00
CS+TEA	27.09 / 44.88	26.83 / 55.03	27.18 / 37.1	27.37 / 53.63	26.99 / 55.56	27.11 / 56.41	27.16 / 55.01	26.93 / 55.33	26.94 / 46.68	26.98 / 52.27	0.09 / 1.56
CL	26.44/57.95	29.44/59.93	24.73/55.39	27.11/56.91	29.25/59.16	24.68/61.77	26.77/58.71	28.76/59.07	28.45/49.39	29.33/56.45	0.00/0.00
CL+TEA	26.87 / 54.69	29.75 / 60.04	25.54 / 52.67	27.5 / 56.92	29.51 / 59.61	25.37 / 59.28	27.13 / 59.12	29.1 / 59.45	28.75 / 49.42	29.34 / 56.2	0.39 / -0.69

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

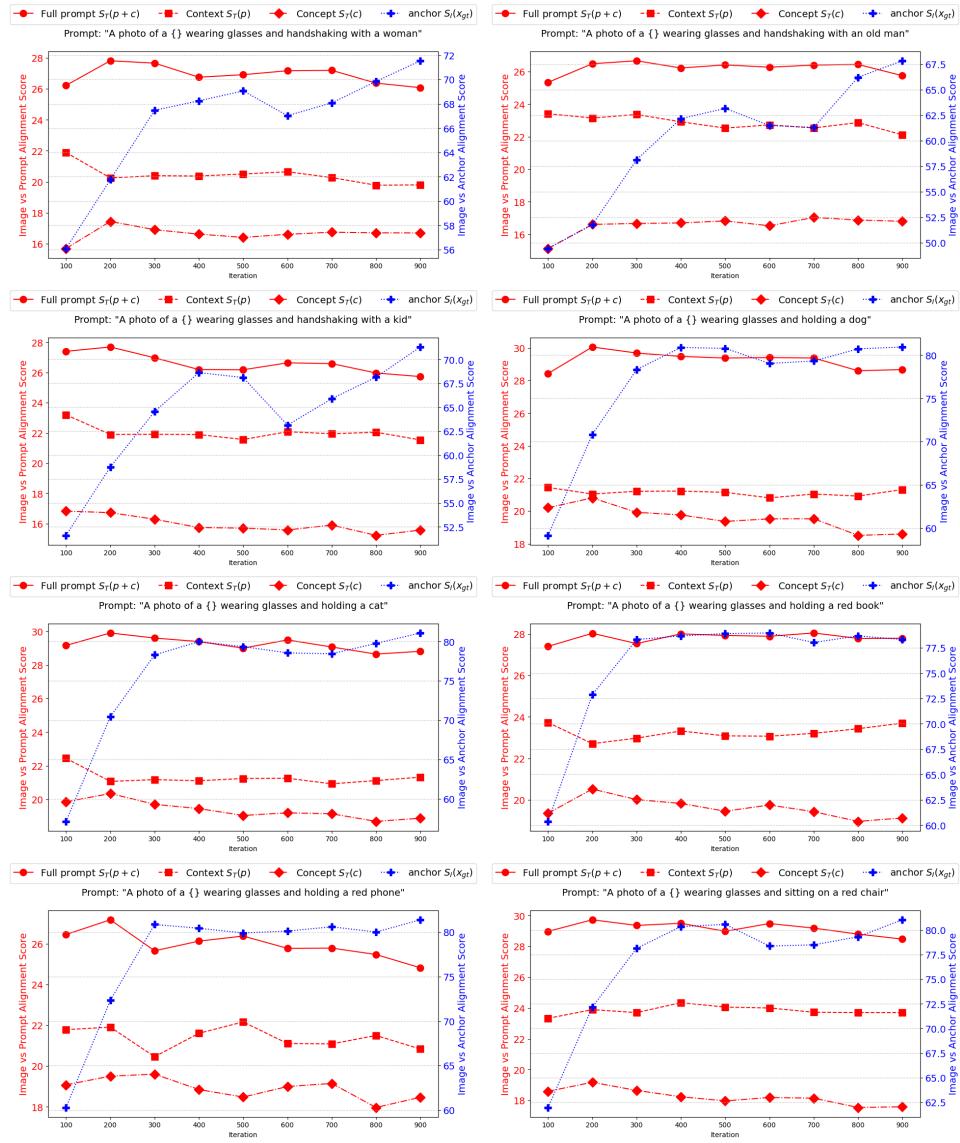


Figure 18: Alignment scores showing the SCP on Textual Inversion with different prompts.

1666

1667

1668

1669

1670

1671

1672

1673

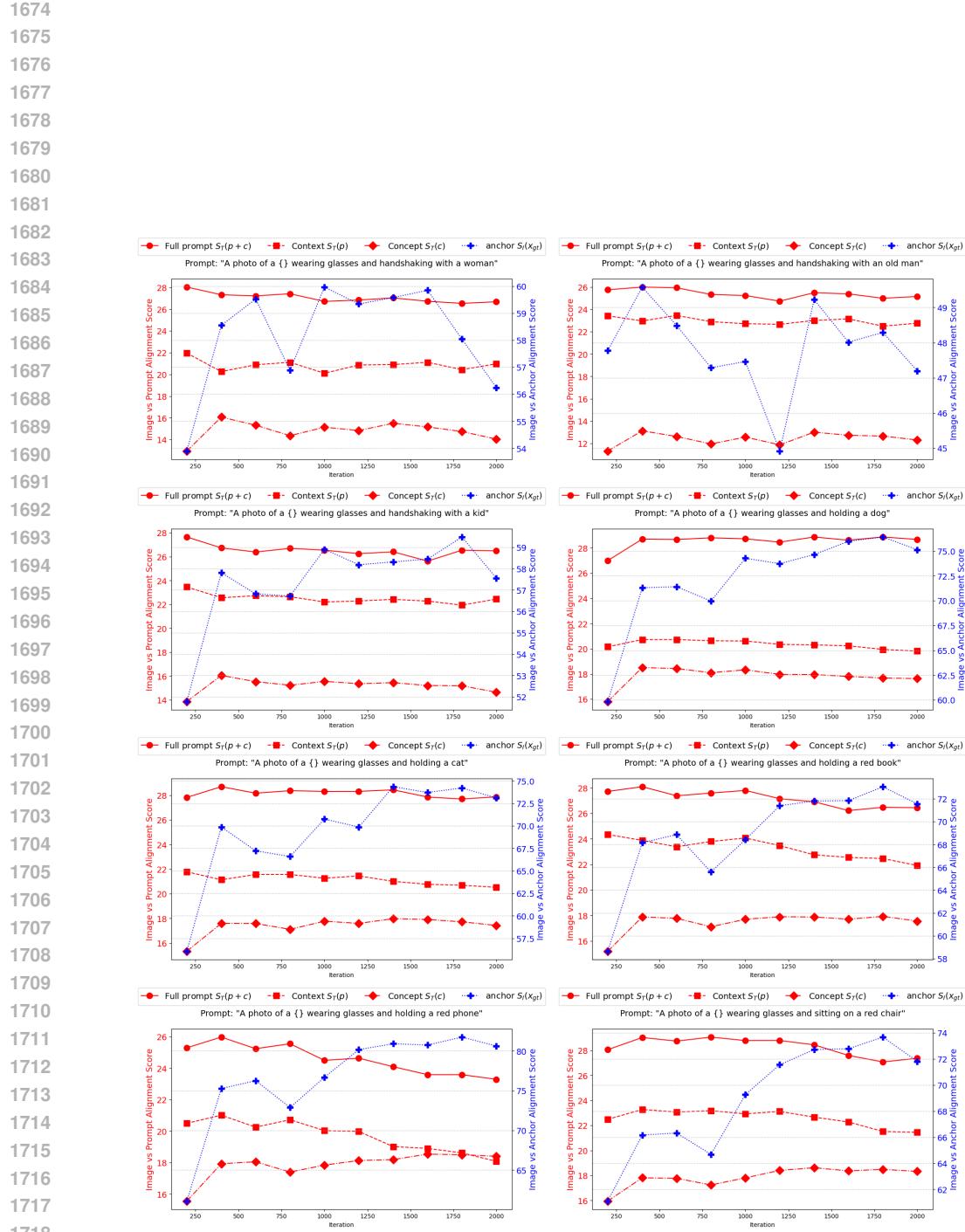


Figure 19: Alignment scores showing the SCP on DreamBooth with different prompts.

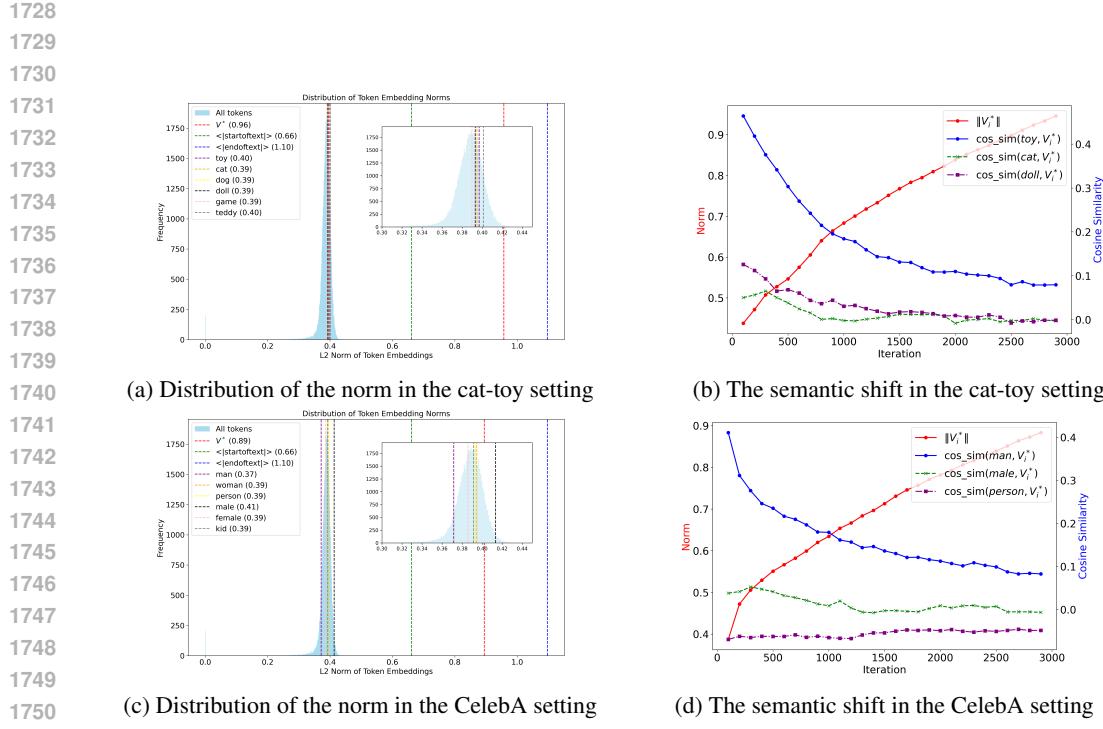


Figure 20: Left: The distribution of the norm of the token embedding M including special token V^* , Right: The semantic drift of V^* in term of magnitude and direction over time. The same phenomenon is observed in DreamBooth as shown in Figure 21.

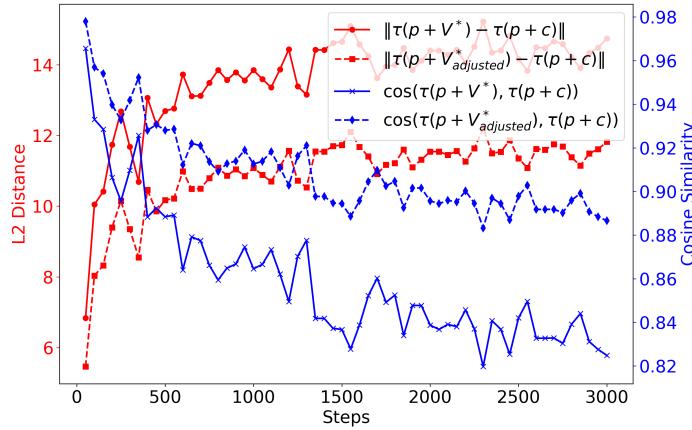


Figure 21: The semantic drift of the embedding of entire prompt $[p, V^*]$ in term of magnitude and direction over time with DreamBooth. The adjusted embedding $[p, V^*_{adjusted}]$ is obtained by using the TEA framework with $\alpha = 0.2$ and $\beta = 1.5$.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

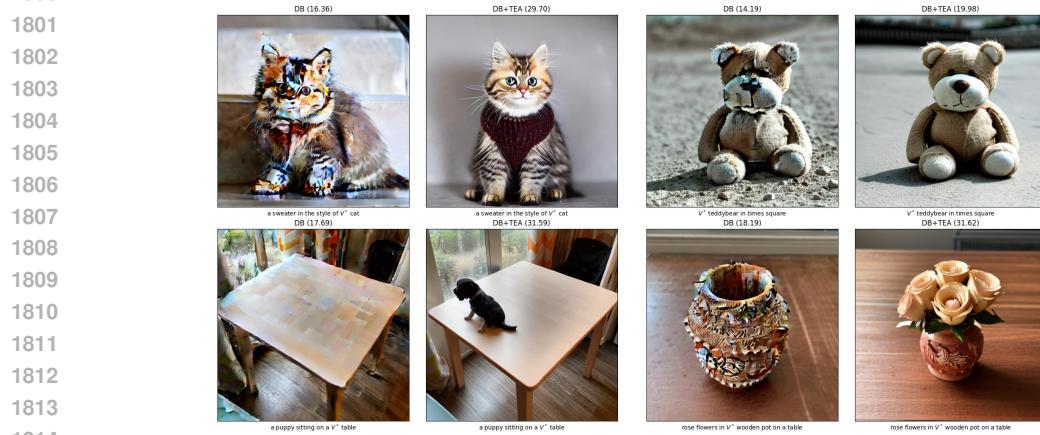


Figure 22: Some cool effects of our method (DB+TEA) over the baseline counterpart DB. The SCP in DB lead to the distorted generated images. Our method successfully corrects the semantic embedding and generates more coherent and realistic images.

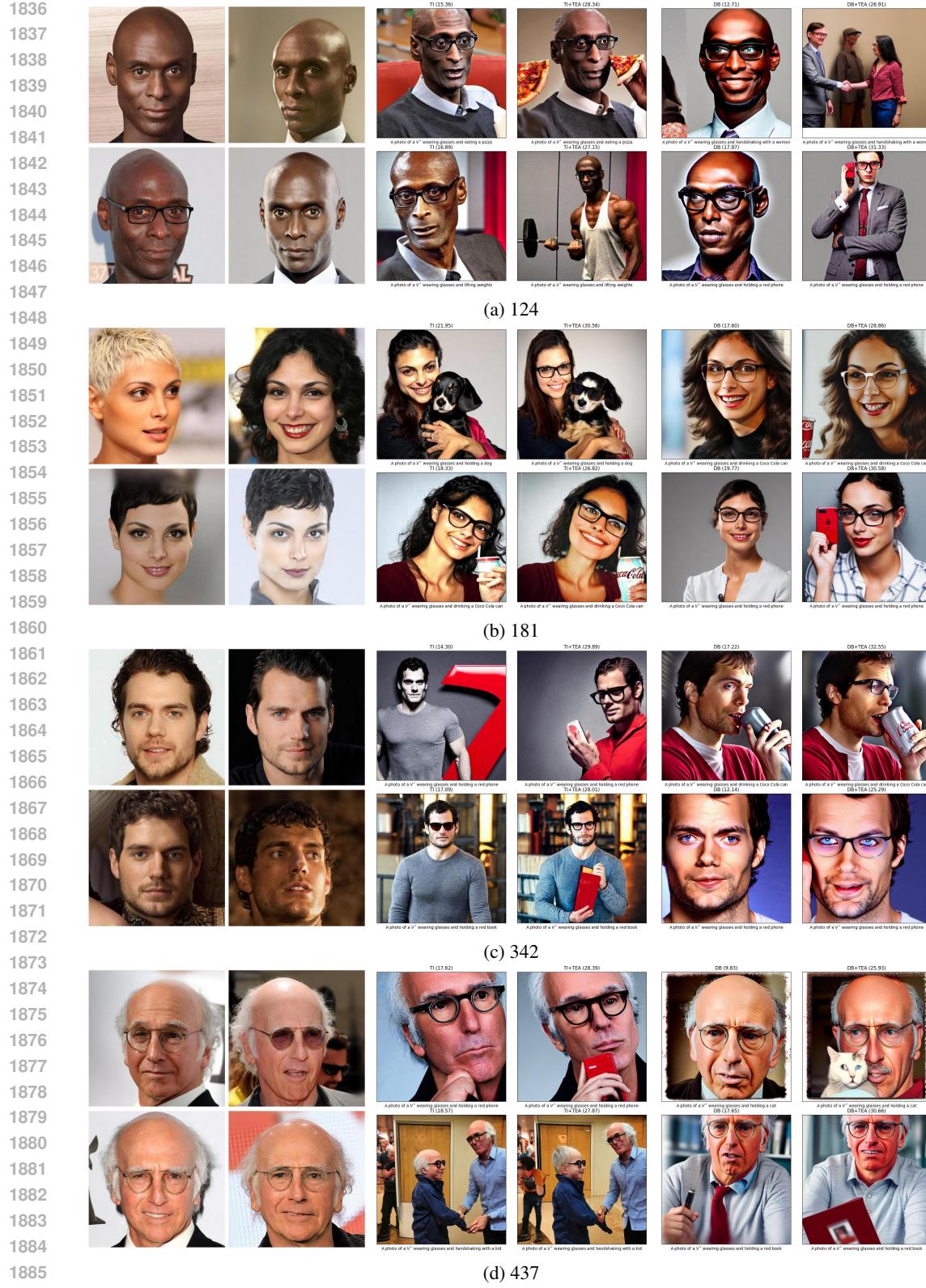


Figure 23: Qualitative comparison between baseline methods and their TEA variants on the CelebA dataset. Column 1-2: Reference images. Column 3: TI, Column 4: TI+TEA, Column 5: DB, Column 6: DB+TEA. Input prompts are shown below each image while alignment scores are shown on the top. More results can be found in the anonymous repository.

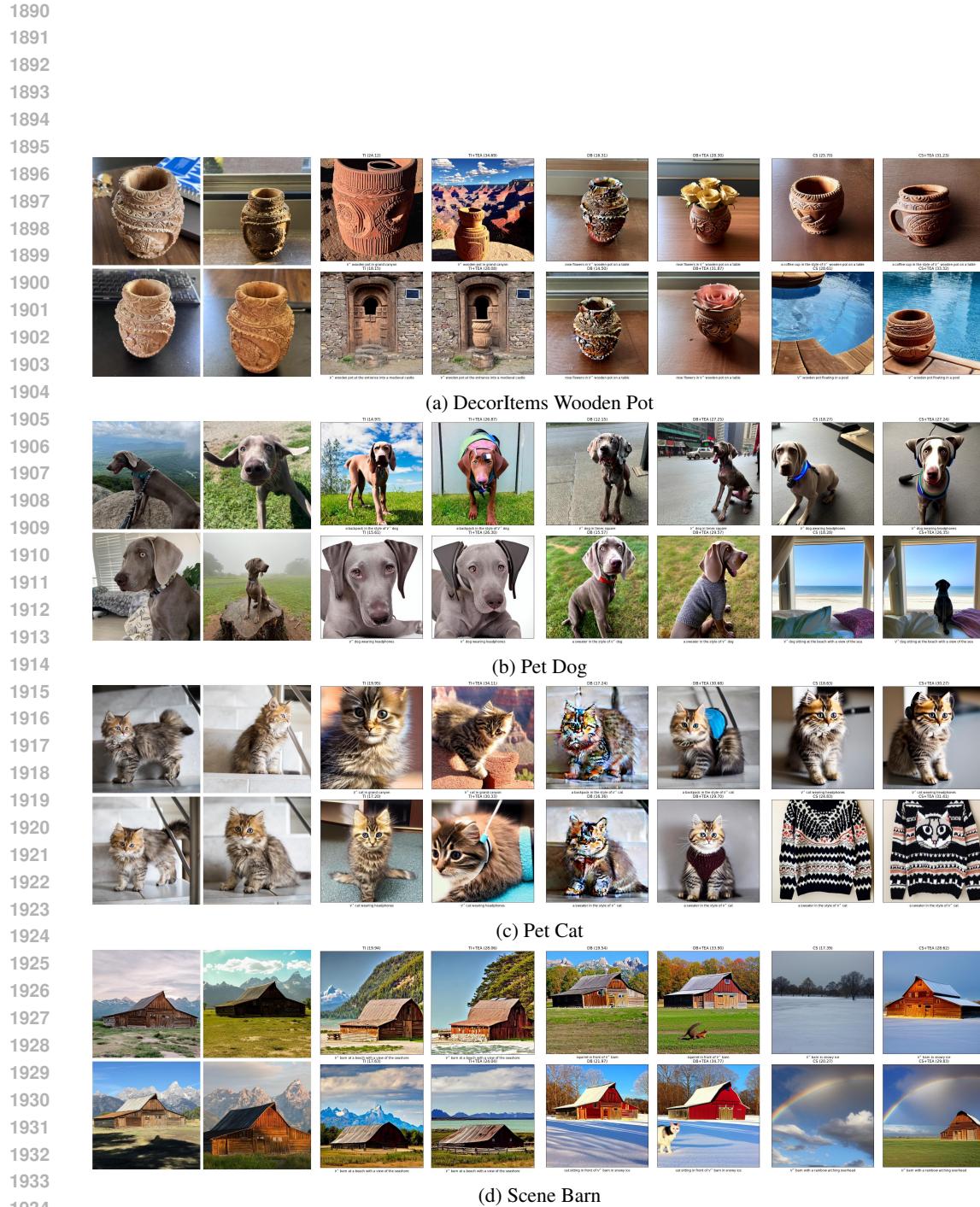


Figure 24: Qualitative comparisons between baseline methods and their TEA variants on the Custom-Concept101 dataset. Column 1-2: Reference images. Column 3: TI, Column 4: TI+TEA, Column 5: DB, Column 6: DB+TEA. Input prompts are shown below each image while alignment scores are shown on the top. More results can be found in the anonymous repository.

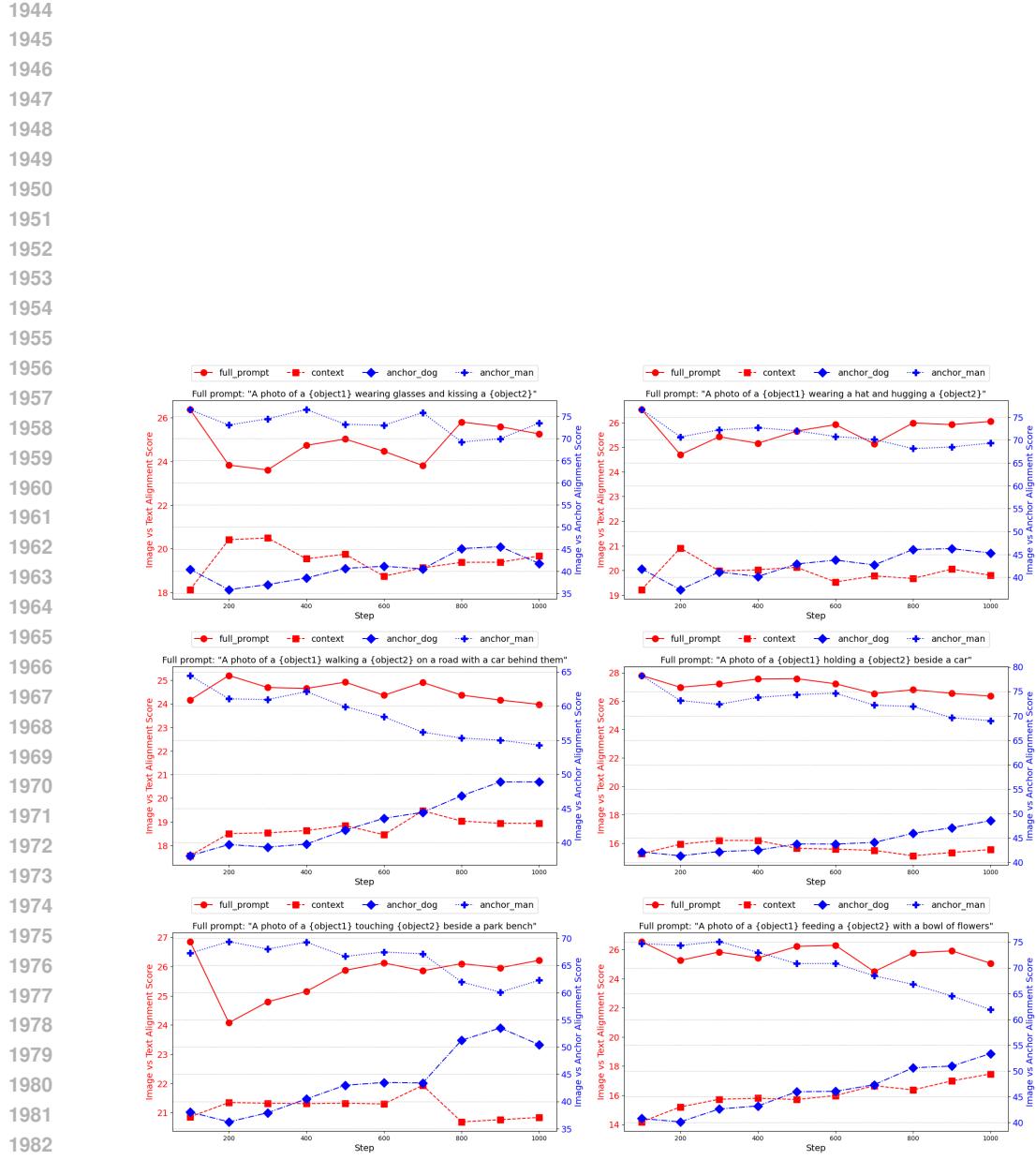


Figure 25: Alignment scores showing the SCP in multiple-concept personalization settings. The embedding of V_{man}^* held fixed while the embedding of V^*_{dog} is varied over fine-tuning step. See Figures 26 and 27 for the example images.

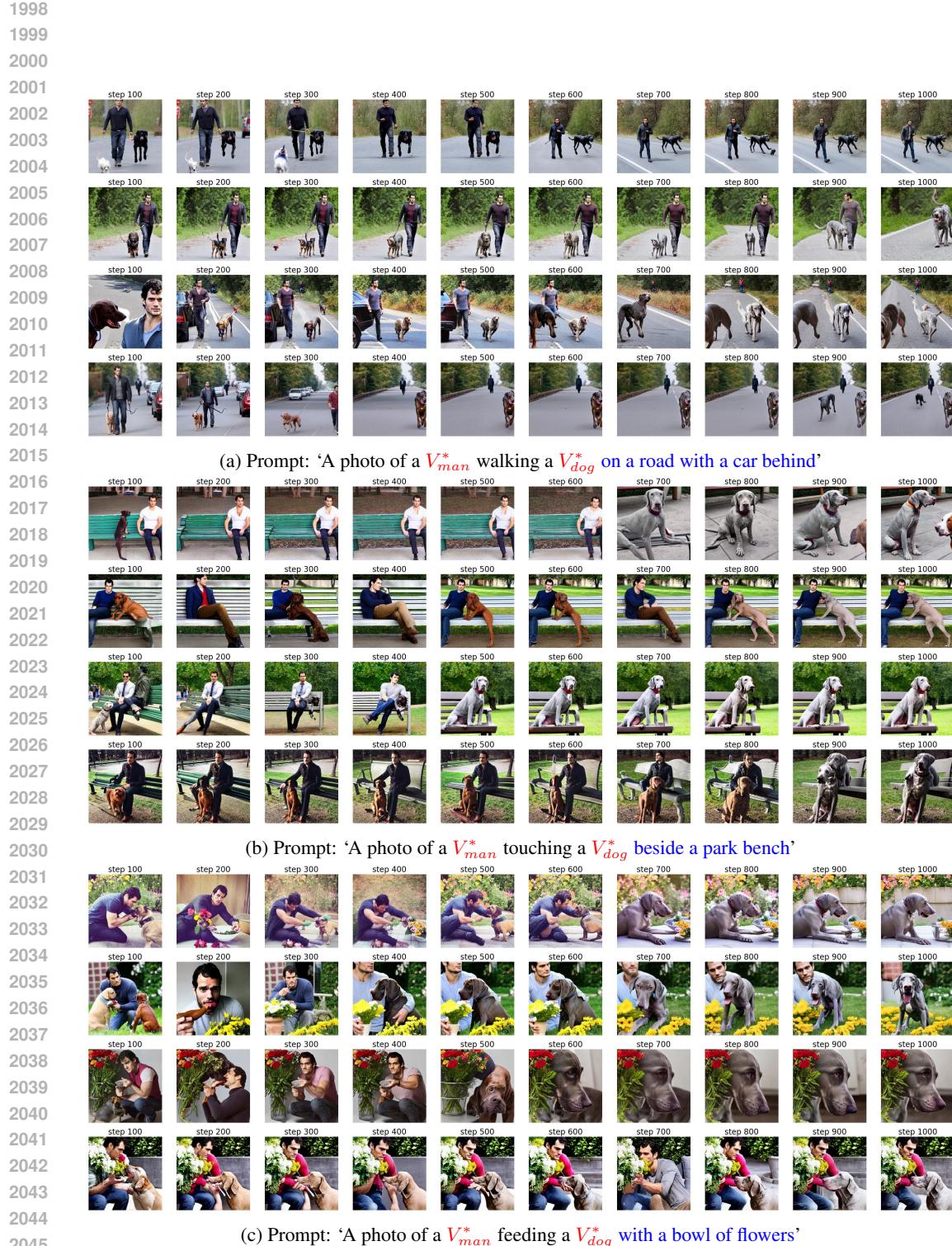
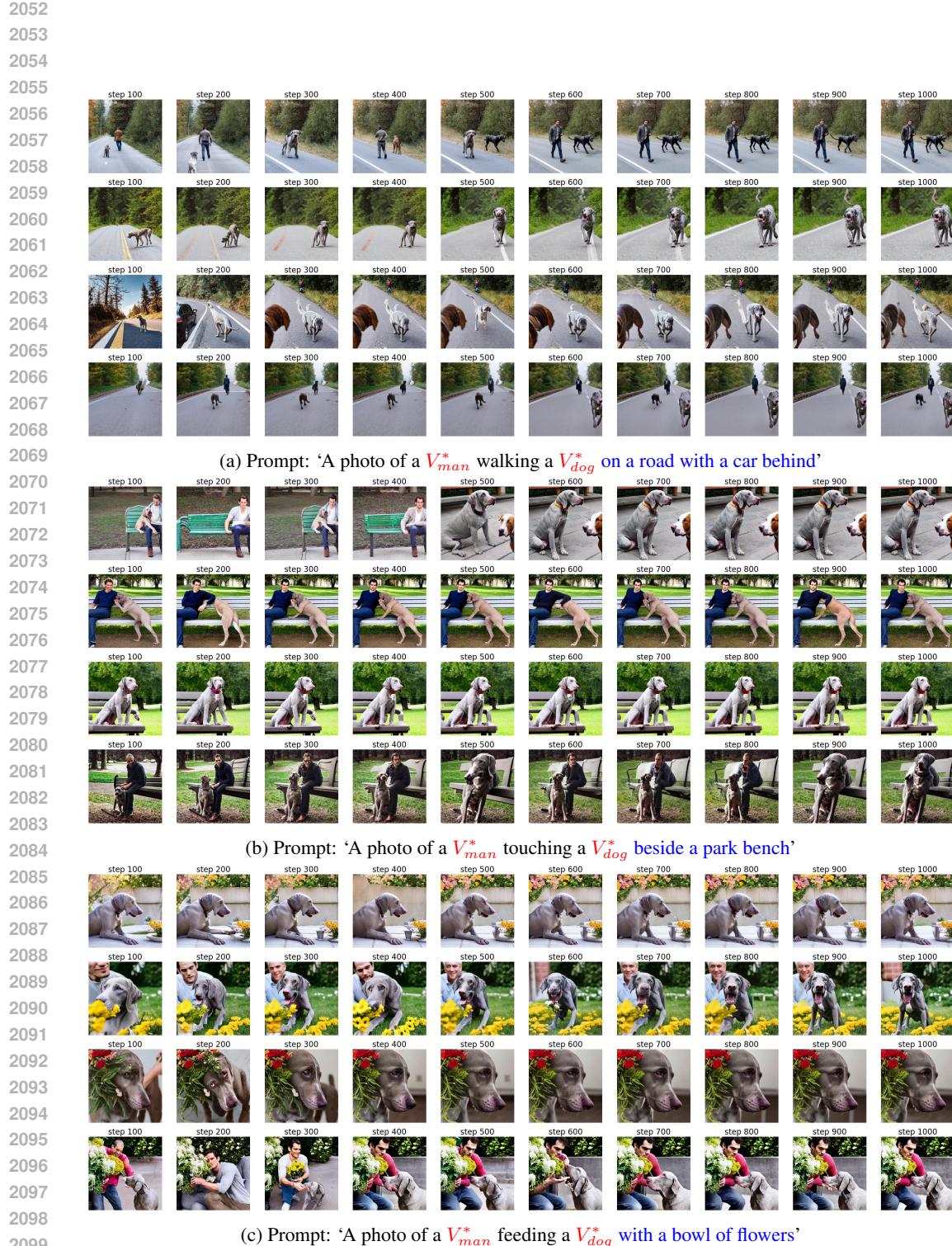


Figure 26: Illustration of the semantic collapsing problem on multi-concepts personalization. The embedding of V_{man}^* is fixed while the embedding of V_{dog}^* is varied across different training steps. See Figure 9 for the detailed alignment scores.

2049
2050
2051



2100
2101
2102
2103
2104
2105

Figure 27: Illustration of the semantic collapsing problem on multi-concepts personalization. The embedding of V^*_{man} is varied across different training steps while the embedding of V^*_{dog} is fixed. See Figure 9 for the detailed alignment scores.

2106

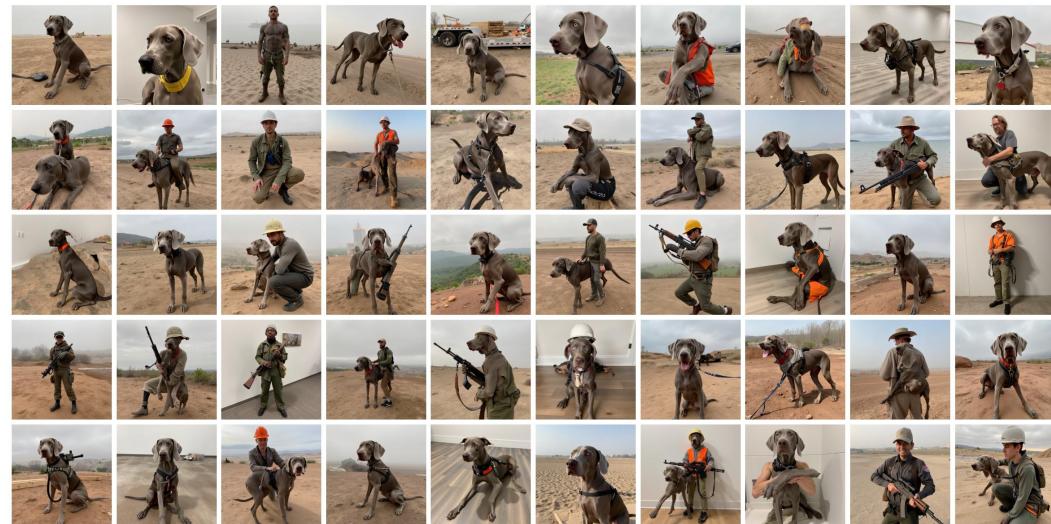
2107

2108

2109

2110 SKS dog in a construction outfit

2111



(a) Output from EasyControl

SKS dog in a construction outfit

2129

2130

(b) Output from EasyControl with TEA

2149

2150

Figure 28: Comparison of the output from EasyControl pipeline with and without TEA with the same prompt: ' V_{man}^* dog in a construction outfit' and same random seed. EasyControl with TEA significantly improves the prompt fidelity, mitigating the failure cases of the original EasyControl pipeline, such as the dog stands beside a person or holding a gun. More results showing the same improvement of EasyControl with TEA can be found in the anonymous repository at <https://anonymous.4open.science/r/Embedding-Adjustment>.

2156

2157

2158

2159

(a) Output from ReVersion

(b) Output from ReVersion with TEA

Figure 29: Comparison of the output from ReVersion pipeline with and without TEA with the same prompt: ‘cat <R> carrot in the garden’ and same random seed. ReVersion with TEA significantly improves the prompt fidelity, mitigating the failure cases of the original ReVersion pipeline, such as the cat is not carved by the carrot or only shows the carrot. More results showing the same improvement of ReVersion with TEA can be found in the anonymous repository at <https://anonymous.4open.science/r/Embedding-Adjustment>.

2214
2215
2216
2217
2218
2219

SKS barn surrounded by blooming sunflower field

(a) Output from ClassDiffusion

SKS barn surrounded by blooming sunflower field

(b) Output from ClassDiffusion with TEA

2259 Figure 30: Comparison of the output from ClassDiffusion pipeline with and without TEA with
2260 the same prompt: ‘barn’ and same random seed. ClassDiffusion with TEA significantly improves
2261 the prompt fidelity, mitigating the failure cases of the original ClassDiffusion pipeline, such as
2262 the image does not contain a barn but only a sunflower field. More results showing the same
2263 improvement of ClassDiffusion with TEA can be found in the anonymous repository at <https://anonymous.4open.science/r/Embedding-Adjustment>.
2264

2265
2266
2267

2268

2269

2270

2271

2272

2273

2274

(a) Output from OminiControl

(b) Output from OminiControl with TEA

2310 Figure 31: Comparison of the output from OminiControl pipeline with and without TEA with
 2311 the same prompt: ‘this item wearing glasses’ and same random seed. OminiControl with TEA
 2312 significantly improves the prompt fidelity, mitigating the failure cases of the original OminiControl
 2313 pipeline, such as the subject (penguin) is not wearing glasses but a person does. More results showing
 2314 the same improvement of OminiControl with TEA can be found in the anonymous repository at
 2315 <https://anonymous.4open.science/r/Embedding-Adjustment>.

2316

2317

2318

2319

2320

2321