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Figure 1: Our Test-time Embedding Adjustment (TEA) method consistently enhances text-image
alignment across diverse personalization approaches (Textual Inversion, DreamBooth, and their
variants) and architectures (Stable Diffusion, Flux). Notably, TEA also counteracts the anti-
personalization effect of Anti-DreamBooth and restores the protected concept.

ABSTRACT

In this paper, we investigate the semantic collapsing problem in generative person-
alization, an under-explored topic where the learned visual concept (V' *) gradually
shifts from its original textual meaning and comes to dominate other concepts in
multi-concept input prompts. This issue not only reduces the semantic richness of
complex input prompts like "a photo of V* wearing glasses and playing guitar" into
simpler, less contextually rich forms such as "a photo of V*" but also leads to sim-
plified output images that fail to capture the intended concept. We identify the root
cause as unconstrained optimisation, which allows the learned embedding V* to
drift arbitrarily in the embedding space, both in direction and magnitude. To address
this, we propose a simple yet effective training-free method that adjusts the magni-
tude and direction of pre-trained embedding at inference time, effectively mitigating
the semantic collapsing problem. Our method is broadly applicable across different
personalization methods and demonstrates significant improvements in text-image
alignment in diverse use cases. Our code is anonymously published at https
//anonymous.4open.science/r/Embedding—Adjustment.

1 INTRODUCTION

Text-to-image (T2I) diffusion models have achieved unprecedented fidelity and flexibility in image
generation and sparked growing interest in generative personalization (Gal et al,[2022} [Ruiz et al.]
[2023). This emerging problem aims to generate images of a specific user-defined visual concept
(e.g. a particular person, pet, or object) in different contexts (e.g. on the beach) using a small set of
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user-provided reference images paired with text prompts describing the desired context. The core
objective is to generate visually compelling images that faithfully preserve the unique characteristics
of the personal concept while remaining semantically aligned with the textual prompt. Despite recent
progress, misalignment between the generated image and the textual prompt is still a major concern.

A robust generative personalization method should allow the user-defined visual concept to be com-
posed with arbitrary contexts in the text prompt without losing fidelity or expressiveness. However,
existing approaches often struggle to maintain prompt and generated image alignment, particularly
with complex or multi-concept prompts (Kong et al., |2024; Zhu et al., |2025). As illustrated in
the user-defined concept can overpower or distort other elements in the prompt, leading to
unsatisfactory generations. This issue has commonly been attributed to language drift - a phenomenon
where the model gradually forgets how to generate its pretrained concepts and instead becomes overly
focused on the user-defined ones (Lee et al.,[2019). This drift typically stems from overfitting on a
limited number of reference images (Ruiz et al.,|2023). Beyond overfitting, other factors have also
been attributed, such as the limited expressiveness of textual embeddings which compress complex
visual concepts into single tokens (Zhang et al., 2023} [Mou et al., 2024} and the entangled nature
of reference sets, where samples may contain co-occurring objects or irrelevant contextual features
(Avrahami et al., 2023}, Jin et al., [2024). While misalignment between textual prompt and generated
images is a well-recognized challenge in generative personalization, with numerous mitigation strate-
gies proposed, including latent optimization (Rassin et al., 2023)), regularization (Han et al.| 2023}
Qiu et al.,|2023; |Arar et al.| 2024) and concept disentanglement (Motamed et al.| 2024} |Huang et al.,
2024al), the underlying causes and mechanisms remain relatively underexplored.

To gain deeper insight into the misalignment problem, this paper presents an empirical investigation
into the dynamics of learned personalised tokens throughout the personalisation process. Our analysis
reveals an intriguing phenomenon: the personalised token gradually loses its original textual semantic
meaning while acquiring increased visual information from the reference images. When such a
token is used in a prompt with rich descriptive text, the generated image becomes disproportionately
semantically dominated by the personalized concept, often neglecting the other intended elements in
the prompt. For example, in if one learns a token V* to represent a particular cat, a prompt
like “V* in grand canyon” may yield an image that vividly depicts the cat but fails to properly render
the grand canyon background. Essentially, the prompt’s semantic complexity collapses to a simplified
form centred on V*. We refer to this phenomenon as the semantic collapsing problem (SCP). Unlike
language drift where the personalized model overfits to a learned concept and loses its ability to
generate other pretrained concepts, SCP arises when the personalized embedding collapses, no longer
retaining meaningful textual semantics and instead encoding primarily the visual information of the
reference concept. While SCP might not severely affect trivial prompts (e.g., “a photo of V*7), it
undermines the compositionality of the T2I diffusion model on complex prompts.

We identify the root cause of SCP as unconstrained optimisation, which allows the learned embedding
to drift arbitrarily in the embedding space, both in direction and magnitude. We propose a simple
yet effective remedy: a training-free, test-time embedding adjustment (TEA) strategy that realigns
the learned concept embedding with its original semantic meaning at inference time. The key idea
is to calibrate the embedding’s magnitude and direction to be closer to that of its reference concept.
This adjustment is done without altering the model weights or requiring any additional training.
The embedding is modified on-the-fly before image generation. By enforcing a small rotation and
rescaling in the text encoder’s latent space, we constrain the personalized token to behave more like a
regular word, ensuring that it contributes to the image generation in balance with other tokens in the
prompt. Our approach is lightweight and broadly compatible with almost all existing personalization
methods and demonstrates significant improvements in text-image alignment in diverse use cases.
Surprisingly, beyond improving personalization quality, we also uncover a surprising vulnerability
in anti-personalization frameworks like Anti-DreamBooth (Van Le et al., [2023) under the lens of
SCP. In particular, when applying TEA to models poisoned by Anti-DreamBooth, we find that TEA
can partially reverse adversarial corruption and restore more faithful generations of the protected
concept (see[Figure I). This result highlights a false sense of security in current anti-personalization
defenses and provides new insights into their limitations.

In summary, our contributions are as follows: @ We define the semantic collapsing problem (SCP)
in generative personalization problem, and provide an empirical analysis of its existence in both
textual and image spaces. Our analysis reveals its root cause, which is the unconstrained optimisation.
® We propose the test-time embedding adjustment, a novel solution that requires no additional
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training, to mitigate SCP by aligning the learned embedding’s direction and norm with its original
semantic concept. ® We demonstrate that our proposed approach can be applied into almost all
existing personalization frameworks such as Textual Inversion (Gal et al.|[2022), DreamBooth (Ruiz
et al.| 2023)), Custom Diffusion (Kumari et al., 2023)), EasyControl (Zhang et al., 2025)), ReVersion
(Huang et al.l 2024b), and ClassDiffusion (Huang et al., [2024a) to significantly improve image
generation in complex prompts across a wide range of scenarios. @ We show that TEA unexpectedly
mitigates adversarial corruption introduced by Anti-DreamBooth, revealing an overlooked weakness
in anti-personalization defences.

2  SEMANTIC COLLAPSING PROBLEM IN GENERATIVE PERSONALIZATION

2.1 TERMINOLOGIES

Given a set of personal images X’ and a pre-trained T2I model €y, the goal of generative personalization
is to identify a textual embedding v* associated with a specific verbalizable keyword V* (e.g., ‘sks’,
‘<new>’, etc.). This keyword represents the implicit visual concept shared in the reference set
X, enabling the model to generate images with the personal concept using any textual prompt p
containing the keyword V*, e.g., |p, V*| = A photo of V* playing on a beach’, where | ., .] is the
sentence construction operator. We denote c as the reference semantic concept of the keyword V'*.

We denote M is the embedding matrix of the entire vocabulary of the text encoder 7, and My,
is a specific row of the matrix corresponding to the token k € vocab,, where k can be V* (i.e.,
v* = My +) or any arbitrary token like ‘dog’, ‘cat’, etc. We denote & = G(p) as the image generation
model that takes a prompt p as input and outputs an image Z.

2.2  SEMANTIC COLLAPSING PROBLEM

Problem Statement. The semantic collapsing problem (SCP) refers to the phenomenon where the
keyword V* loses its original textual semantic meaning while acquiring increased visual information
from the reference concept during the personalization process. As a result, a prompt |p, V*|,
consisting of a context p and the concept V*, becomes dominated by the learned concept V'*,
eventually collapsing to a simplified form.

Why SCP Matters. We argue that SCP may not pose a serious issue for simple prompts, e.g.,
|p, V*| = ‘aphoto of V**, where the primary information conveyed is still the visual concept V*.
However, for more complex prompts where the context p contributes meaningfully to the overall
semantics, such as ‘a photo of V* wearing glasses and writing in a red notebook’, SCP becomes
more problematic as illustrated in Figure In such cases, the generated image is more likely to be
dominated by the learned concept V' * and less likely to reflect the intended context p.

Comparison with Other Challenges in Generative personalization. First, we emphasise that SCP
is not specific to the two representative methods we study (TT and DB), but is a general issue in
personalization. Second, SCP is distinct from other recognised challenges (ref. Section[A) such
as the language drift problem (Ruiz et al., 2023)), which describes how the personalized model ¢y
overfits to a learned concept and loses generalisation. Third, while SCP contributes to the broader
challenge of misalignment between generated images and prompts, a major concern in generative
personalization, it stems from a specific cause: the unconstrained optimisation of the embedding
during personalization, which has not been thoroughly studied in prior work.

2.3 EMPIRICAL HUNTING FOR SCP

In this section, we present empirical evidence supporting the existence of the semantic collapsing
problem and its impact on generation quality. Our key findings are as follows:

0 Existence of SCP. SCP exists in the textual domain, where the prompt |p, V*| is dominated by
the learned embedding V'* and the semantic meaning of the entire prompt gradually collapses to the
learned embedding V*, i.e., 7(|p, V*]) — 7(V*).

0 Negative Impact on Generation Quality. SCP leads to the degradation/misalignment in generation
quality in the image space, i.e., G(|p,V*|) — G(V*), particularly for prompts with complex
semantic structures.

® Surprisingly Positive Impact. SCP can also lead to the positive impact on generation quality,
particularly for prompts where the concept c requires a strong visual presence to be recognisable.
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Figure 2: (a/left) The inter-set distance d(Py «, P,.) and intra-set distance d(Py «, Py ) over the per-
sonalization process, and (b) The distance between all possible pairs of sets, notably

Time Step

® Root Cause of SCP. SCP arises from unconstrained optimisation during personalization, which
leads to arbitrary shifts (both in magnitude and direction) in the embedding of V* away from its
original semantic concept c.

2.3.1 EMPIRICAL EVIDENCE FOR SCP IN TEXTUAL SPACE

Recall our hypothesis: a keyword V* initialised from a concept c to capture a visual target vy, will
lose its semantic meaning and dominate any arbitrary context p when combined into a prompt.

To verify this, we propose measuring the difference between V' * and c in the presence of a diverse
set of contextual prompts A = {a1, a9, - ,a,}. These are generated by querying an LLM with the
instruction: "Write 200 sentences with diverse topics and contents. Each sentence should be 10-30
words long and must include the keyword c." Sample sentences are provided in Table [3] We then
construct two sets of prompts: Py~ = {|a;, V*]|}4,c4 and P, = {|a;, ¢] }4;c 4. Which are used to
assess the contextualised difference between V* and c.

To quantify this difference, we compute distances between the sets Py« and P, using four met-
rics: Euclidean, Hausdorff, Mahalanobis, and KL divergence. We also evaluate intra-set variability
d(Py«, Py+) measuring the separation among items within Py«. The distance metrics are sum-
marised in Table E} We use Textual Inversion (TT) and DreamBooth (DB) to learn a personalized
human face concept. The training data comprises 16 images from the CelebA dataset (Liu et al.|
2015) (subject ID: 342, ‘Henry Cavill’). The embedding v* is initialised using the concept ¢ = ‘man’
for TI, and ¢ = ‘a photo of a sks man’ for DB.

Results. Figure a) shows the average inter-set and intra-set distances, d(Py-,P.) and
d(Py«, Py~ ), measured over training iterations. It can be seen that the inter-set distance d(Py -, P.)
increases steadily over time, indicating that the learned embedding v* progressively diverges from
its initial textual semantic meaning c. Interestingly, the intra-set distance d(Py -, Py ~) decreases
over time, suggesting that the embeddings of prompts |a;, V* | within Py« become less diverse and
more similar to one another. This reflects a growing dominance of the learned embedding v* across
prompts, effectively overriding the contextual variations in a; and becoming the principal semantic
component of each prompt.

To further verify this dominance effect, we introduce an additional set of simple prompts, denoted
PSP which consists of 200 concise sentences such as ‘a photo of a V**, ‘a portrait of a V**, etc.,
where V'* is clearly the central concept. As shown in Figure b), the distance d(Py -, P‘S}Tp]e), which
captures the difference between complex prompts |p, V* | and simple prompts | V* |, decreases over
time. This trend indicates that the representations of complex prompts become increasingly similar to
those of simple prompts in PS™P¢_ further supporting the hypothesis that v* gradually dominates
and collapses the semantic contribution of contextual components.

2.3.2 THE TWO-WAY IMPACTS ON PERSONALIZATION

In this section, we extend our analysis to investigate how SCP impacts image generation quality.
Specifically, we generate personalized images & = G(|p, V*|) using a list of prompts P (e.g., ‘a
photo of a V* man holding a cat’), with 100 images generated per prompt. We evaluate the generation
quality using the CLIP-Image-Image alignment score S; = S(&, x4 ), which measures the similarity
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Figure 3: Analysis of the SCP on TI (left) and DB (right). Alignment with the ground-truth image
(S(Z, x4¢) — ©) increases over time, while alignment with the contextual part (S (2, p) —[J) decreases.

between the generated image & and the ground-truth image x,4; of the reference concept. In addition,
we compute three CLIP-Text-Image alignment scores: (i) CLIP. or S7. = S(&, p) alignment with the
contextual part p (e.g., ‘holding a cat’), and (ii) CLIP7. or S5 = S(&, ¢) alignment with the original
concept ¢ (e.g., ‘a man’). (iii) CLIP% orSL =9 (z, |p, c]) alignment with the full prompt.

Interestingly, we observe that the SCP has both negative and positive effects on generation quality,
depending on the nature of the prompt. Our key findings (illustrated in Figure[3)) are as follows:

(Unsurprising) The image-to-image alignment score .St increases over time (+ line), indicating that
V'* effectively captures the visual appearance of the target concept. This confirms that the learned
embedding V* successfully personalizes the visual identity from the reference set.

(Surprising Negative Impact) The context-to-image alignment score S}, decreases over time ([
line), showing that generated images increasingly lose alignment with the contextual component p.
This highlights the negative impact of semantic collapsing: as V* dominates the prompt, the image
generator pays less attention to the surrounding context.

(Unexpected Positive Effect) For some prompts, the concept-to-image alignment score S5 actually
increases over time (¢ line). Early in training, prompts with ¢ (e.g., man) often generate images
dominated by the context p. As training progresses, the learned embedding V'* reduces this context
dominance, strengthening the representation of c. This effect is most evident when ¢ demands a strong
visual presence (e.g., man in “man writing in a red notebook™), where close-up subject renderings
naturally downplay the surrounding context.

2.3.3 THE RooT CAUSE OF SCP

In the previous sections, we demonstrated the semantic collapsing problem in both textual and image
generation spaces. In this section, we investigate the underlying cause of this phenomenon. Our key
findings are summarised below:

@ The semantic collapsing problem arises from the unconstrained optimisation process used in
Equation ] and Equation 5] Without any regularisation, the learned embedding V* can deviate
significantly from the original semantic meaning c in both magnitude and direction. Specifically,
the embedding norm becomes much larger (| My~ | > | M,|), and the cosine similarity between the
two drops sharply (cos(My -, M.) < 1), leading to a semantic drift.

@ As a result of this semantic shift in V*, the embedding of the entire prompt |p, V*| is also
affected. That is, the prompt embedding becomes nearly identical to that of V*, i.e., 7(|p, V*]) ~
7(V*) # 7(|p, ¢]), which directly manifests the semantic collapsing problem discussed earlier.

To support this analysis, Figure ] presents a histogram of embedding norms for all vocabulary tokens,
along with the norm of V* tracked over the course of optimisation. It is evident that the norm
of V* grows significantly, placing it in the long tail of the distribution—substantially larger than
standard tokens such as ‘man’, ‘woman’, and ‘person’, and approaching that of special tokens like
‘<lIstartoftextl>" or ‘<lendoftext>’.

It is worth noting that in some DreamBooth-based implementations (e.g., DreamBooth with LoRA in
Diffusers (Hugging Face)), the full text encoder is fine-tuned to incorporate the personalized concept,
instead of updating a dedicated token embedding V' * as done in Textual Inversion. In such cases,
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Figure 4: Left: The distribution of the norm of the token embedding M including special token
V*, Right: The semantic drift of V* in term of magnitude and direction over time.

The same phenomenon is
observed in DreamBooth as shown in Figure @

V* wearing glasses and writing in a notebook U-Net

Tlp, V"]

Tg [:]?J

“’ e N i N ) *@ Normalizing
tlp,c ] —_

— Rotating

lp,V*] -

A man wearing glasses and writing in a notebook P

Figure 5: (left) TEA framework that adjusts the embedding on inference time where both U-Net and
text encoder are just personalized pre-trained models. (right) the two stages of TEA: normalization
and rotation with SLERP.

while the individual embedding vector M is not explicitly altered, the semantic shift still occurs at
the prompt level, i.e., 7(|p, V*|) = 7(V*) # 7(|p, c]).

Additionally, these DreamBooth implementations already include a gradient clipping mechanism
(Hugging Face)) to constrain parameter updates. However, this method was not designed with semantic
stability in mind, and does not prevent cumulative semantic drift in practice. Even when the gradient
norm is bounded, the embedding can still gradually shift over successive iterations.

To the best of our knowledge, our work is the first to identify and explain the root cause of the
semantic collapsing problem as a consequence of unregularised embedding dynamics.

3 TEST-TIME EMBEDDING ADJUSTMENT FOR SCP

As demonstrated in the previous section, SCP exhibits two-way impacts that vary depending on the
nature of the context prompt. This variability makes it challenging to devise a universal solution
that mitigates the negative effects of SCP while preserving its beneficial aspects across all inference
prompts. Recall that in the earlier analysis, we observed that the learned embedding V* often drifts
from its original semantic anchor ¢ due to unconstrained optimisation—resulting in significant shifts
in both magnitude and direction. This raises a natural question: Can we reverse this semantic shift at
test time by adjusting V'*, without modifying the personalization method?

A key advantage of this approach is that it is training-free and can be applied to almost all existing
personalization methods, regardless of whether it is based on Textual Inversion or DreamBooth.
Surprisingly, this simple adjustment proves to be highly effective.

Embedding Adjustment. Given a pre-trained embedding matrix M that includes a learned token
V* (as in Textual Inversion), and a target concept c toward which we wish to regularise, we propose
to adjust My« by aligning both its magnitude and direction with M,.. This is achieved by first
normalising the vectors and then applying Spherical Linear Interpolation (SLERP) (Shoemakel |1985)
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to interpolate the direction of My « towards M., which is effective in high-dimensional vector spaces.
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Here, 6 is the angle between the normalized vectors ]\;[c and ]\;[V*, and « € [0, 1] controls the rotation
factor, where the bigger « is, the more the embedding is rotated towards M.. The normalisation
My«

vectors are defined as My - = (3 || M,|| T and M, = B || M.|| H%%” where (3 is the scaling factor

to control the magnitude of the embedding relative to the reference concept c.

In Dreambooth-based personalization, because the embedding matrix M is not updated during the
optimisation, we propose to adjust at the prompt level instead of the token level as illustrated in
Figure 5] More specifically, given a prompt |p, V* | and a target prompt |p, c|, we obtain the two
embeddings 7(|p, V*|) and 7(|p, ¢]) from the text encoder 7, and then adjust the embedding of
|p, V*] by using the above equation on every token in the prompt.

sin((1 — «)6;)
sin(6;)

sin(«b;)

#lp, V)i = e

7(lp, VI DI + F(Lp, )] @

where 7 indexes each token in the prompt, and 6; is the angle between the i-th token embeddings of
the two prompts after normalisation. This method enables a test-time adjustment of semantic drift
without retraining, making it a lightweight and broadly applicable solution to mitigating SCP effects.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of TEA on addressing the SCP across six represen-
tative and recent personalization methods, two architectures (Stable Diffusion and Flux) and three
datasets (CS101, CelebA, and Relationship) consisting of total 22 concepts. Due to the space limit,
we present the main results here and refer readers to Appendix [C|and [D]for additional quantitative and
qualitative findings. Full reproducibility details are available in the anonymous GitHub repository.

4.1 EXPERIMENTAL SETUP

Reference Images. We use a subset of 9 concepts from the CustomConcept101 (CC101) dataset
as in [Kumari et al.[ (2023)), each of which has 3-15 images, including ‘Barn’, ‘Tortoise plushy’,
‘Teddy-Bear’, “Wooden Pot’, ‘Dog’, ‘Cat’, ‘Flower’, ‘Table’, ‘Chair’ subjects. For the human concept,
we use a subset of 10 concepts from the CelebA-HQ dataset (Liu et al.| 2015), which includes 10
identities with 10-15 images per subject. Sample images are shown in Fig.[I5]and[16]

Prompts. We collect complex prompts from the CC101 dataset, where each prompt contains at
least two concepts, e.g., ‘a watercolor painting of VV'* tortoise plushy on a mountain’. For the human
concept, we create a list of 17 prompts, where each prompt contains the main concept and a complex
context/action, e.g., ‘A photo of a I/ wearing glasses and writing in a red notebook’. The prompts
can be found in Table [l

Metrics. In addition to the CLIP-T and CLIP-I alignment scores introduced in Section we also
use the DINO image-image alignment score (Caron et al.,[2021) to evaluate the alignment between
the generated images and the reference images.

4.2 EVALUATION RESULTS
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Table 1: Performance over EasyControl (ES) and ReVersion (RV) when integrat-
ing with our TEA. Qualitative results are shown in Figures 28] [29] [31}

Method ~ CLIP%. ¢ CLIP:{« T CLIP-1 1 DINO-I 1 VLM-P 1 VLM-I 1

CC10I - Pet Dog
ES 18.54 26.02 61.33 43.71 64.25 74.00
ES+TEA 18.72 (+0.18) 26.11 (+0.09) 64.56 (+3.23) 48.32 (+4.61) 66.50 (+2.25) 77.25 (+3.25)

CC101 - Plushie Teddybear
ES 20.48 26.80 81.64 49.08 78.00 80.25
ES+TEA 20.61 (+0.13) 27.3 (+0.50) 82.84 (+1.20) 51.17 (+2.09) 80.25 (+2.25) 81.50 (+1.25)

Subject - Clock
ocC 18.11 23.90 81.37 3241 67.50 62.25
OC+TEA 18.78 (+0.67) 23.98 (+0.08) 83.10 (+1.73) 34.48 (+2.07) 71.75 (+4.25) 64.50 (+2.25)

Subject - Oranges
oC 21.49 27.62 70.43 30.33 68.50 53.00
OC+TEA 21.60 (+0.11) 27.70 (+0.08) 71.90 (+1.47) 31.64 (+1.31) 70.00 (+1.50) 55.50 (+2.50)

Subject - Penguin
ocC 20.30 31.61 78.58 45.59 86.25 83.25
OC+TEA 20.33 (+0.03) 32.02 (+0.41) 80.64 (+2.06) 49.37 (+3.78) 90.50 (+4.25) 86.75 (+3.50)

Relationship - A <Carved by> B

RV 25.64 27.74 N/A N/A N/A N/A
RV+TEA 27.84 (+2.20) 30.17 (+2.43) N/A N/A N/A N/A
Relationship - A <Inside> B
RV 24.97 27.87 N/A N/A N/A N/A
RV+TEA 25.15 (+0.18) 28.40 (+0.53) N/A N/A N/A N/A
Relationship - A <Painted on> B
RV 23.98 30.07 N/A N/A N/A N/A
RV+TEA 24.38 (+0.40) 30.35 (+0.28) N/A N/A N/A N/A

We evaluate the effectiveness of Test-time Embedding Ad- Table 2: Improvement of our TEA over
Jjustment (TEA) when combined with various personaliza- its baseline counterparts on CC101 and
tion baselines, including Textual Inversion (TI) (Gal et al, CelebA datasets (positive or negative).
2022), DreamBooth (DB) (Ruiz et al., [2023)), CustomD- Details are shown in Tables @ and
iffusion (CD) (Kumari et al., 2023)), and ClassDiffusion

(CL) (Huang et al.} [2024a). As shown in Table@ TEA con- Method

sistently enhances full prompt alignment (CLIP;) across

all methods and datasets. Gains are particularly notable for
TI and DB, with increases up to +1.87 on CC101, demon- TI+TEA 055 064 -234  -3.81
trating that TEA substantially strengthens text-image DB+TEA 077 187 457 0-59
straling y g 8¢ CD+TEA -0.13 034 037 024
consistency. Importantly, these improvements hold across  cL+TEA -0.12 042  0.67 1.24

diverse concepts (Figure [6), indicating that TEA is ro-

. L= . . CelebA

bust to different personalization scenarios, even with fixed,

TI+TEA 0.33 0.57 -241 -1.78

easily chosen hyper-parameters. DB+TEA 051 064 237 297

In terms of visual quality, TEA often improves CLIP-I ~ CD+TEA -0.12° 0.09  1.56  3.09
and DINO-I scores (e.g., +4.57 CLIP-I for DB on CC101), CATEA 022 039 069 017
while in some cases—particularly on CelebA—there is

a trade-off, with modest drops in CLIP-I (e.g., —2.37 for

DB+TEA). However, qualitative comparisons (Figures[24] 23), particularly in Figure 22] show that
TEA reduces distortions and produces more coherent, realistic outputs, even when quantitative scores
dip slightly. This suggests TEA better preserves semantic fidelity while mitigating common artifacts
in baseline methods.

CLIP?, CLIPJ, CLIP-I DINO-I
CC101

Generality across architectures and use cases. We further assess TEA on state-of-the-art
frameworks beyond the original baselines: EasyControl (Zhang et al., 2025),

, two Flux-based personalization methods, and ReVersion (Huang et al.,[2024b)), which
targets compositional relationships, e.g., ‘a cat carved by a carrot’. As shown in Table[I} TEA again
yields consistent improvements. For EasyControl, TEA achieves substantial gains in image—image
alignment (+3.23 CLIP-I, +4.61 DINO-I, +3.25 VLM-I), while for ReVersion it strengthens prompt

fidelity, with up to +2.43 CLIP{; in complex relations such as ‘carved by’.
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Qualitative results (Figures [28] [29] [31)) confirm these findings:

Together, these results highlight TEA as a lightweight yet broadly applicable enhancement to person-
alization. It systematically improves text-image alignment, generalizes across methods, datasets, and
architectures, and provides qualitative corrections to baseline failure modes, establishing TEA as a
robust and versatile component for personalization.

Surprising Impact of TEA on Anti-DreamBooth. Anti-personalization (Liang et al.,[2023; Van Le
et al.l 2023} |Salman et al., 2023) aims to protect users from malicious actors who might exploit
personal images to train unauthorized personalized models. The core idea is to apply an invisible
perturbation (a ‘mask’) to the user’s data before it is shared. Although attackers can still access these
masked images, they are prevented from training effective personalized models. One representative
approach is Anti-DreamBooth (Van Le et al., 2023)), which employs adversarial learning (Szegedy
et al.,[2013} |Goodfellow et al.| 2014) to generate such masks.

=
)
)

= —— AntiDB-0%
-=-- AntiDB-25%
—= AntiDB-100%

N
o

'S —
R RS
-

P+
= N}
o S
o o
@ ©

i
o

o

o

«
o
n

L2 Distance || t(p + V") — 7(

o
3
Cosine Similarity cos(t(p+ V"), T(p + ¢)

o
o
S

200 400 600 800 1000

) s
—e— TTEA(064) —— DB4TEA(187) —— CS+TEA(0.30) Steps

Figure 6: Comparison on prompt alignment of  Figure 7: Semantic drift analysis of Dream-
our TEA over its baselines counterpart on CC101 ~ Booth trained with Anti-DreamBooth adversarial
dataset. Refer to Table @for detailed numbers. masks.

Given that background, we analyze Anti-DreamBooth through the lens of SCP. We hypothesize that
its adversarial learning process actually amplifies the dominance of the personalized concept V'*,
but with good implications for user privacy, by causing the prompt embedding |p, V* | to drift even
further from its original concept |p, c|, resulting to distorted generations of the protected concept V'*.

To verify this hypothesis, we conduct a controlled experiment. Given a set of benign personal images
{x;}, we apply Anti-DreamBooth to produce masked images {&;}?_,. We then train DreamBooth
models using mixtures of masked and benign images, with varying proportions p € {0,0.2,1.0},
where p = 0 corresponds to standard DreamBooth, and p = 1.0 uses only masked data. We then
analyze the resulting prompt embeddings as in Section[2.3.3] As shown in Figure[7] increasing p
leads to greater embedding drift, evident in the larger norm of ||7(|p, V*]) — 7(|p, ¢])|| and the
lower cosine similarity between 7(|p, V*|) and 7(|p, ¢]). This result confirms our hypothesis and
provides an interesting perspective on why anti-personalization works.

Surprisingly, when we apply TEA to DreamBooth models poisoned by Anti-DreamBooth, we observe
a mitigation effect such that the generated images by TEA are less distorted and more aligned with
the to-be-protected concept V* as shown in Figure [§| (more results can be found in Appendix [C.2).
This surprising result reveals an intriguing false sense of security of Anti-DreamBooth, such that
despite adversarial masking, the poisoned personalized model still retains traces of the correct/to-
be-protected concept V*
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(p=0.2, €=0.9) (p=0.3, a=0.9) (p=0.4, a=0.9) (p=0.5, €=0.9) (p=0.6, a=0.9) (p=0.7, €=0.9)

Figure 8: Effect of applying TEA to models poisoned by Anti-DreamBooth. TEA is able to mitigate
the corruption and recover less distorted generations of the protected concept, revealing a surprising
weakness in Anti-DreamBooth. Additional results and discussion can be found in Appendix @

To the best of our knowledge, this is the first work to uncover such a
counter-intuitive vulnerability of Anti-DreamBooth and sheds new light on the limitations of current
anti-personalization defenses.

5 CONCLUSION

In this paper, we identified the Semantic Collapsing Problem (SCP) in generative personalization,
where personalized tokens lose their original semantic meaning and dominate other concepts in
complex prompts. We traced this issue to unconstrained optimisation, which allows the learned token
embedding to drift in direction and magnitude, disrupting prompt interpretation.

To address this, we proposed a training-free test-time embedding adjustment (TEA) that realigns
the personalized embedding with its original semantic context, significantly improving text—image
alignment without modifying model weights. Our method is lightweight, broadly compatible with
almost all existing personalization frameworks such as Textual Inversion and DreamBooth and their
variants, and delivers substantial improvements in prompt consistency and image fidelity across
diverse scenarios.

In addition to tackling SCP, we also provided an initial probe into the interaction between TEA and
anti-personalization. Surprisingly, when applied to models corrupted by Anti-DreamBooth, TEA
partially mitigates adversarial corruption and recovers more faithful generations of the protected
concept. This finding suggests that current defenses may offer a false sense of security, opening an
intriguing direction for future work at the intersection of personalization and privacy protection.

Overall, beyond introducing SCP and proposing a practical solution, this work lays the founda-
tion for further exploration of adaptive embedding adjustments, context-aware constraints during
personalization, and new perspectives on the robustness of anti-personalization methods.
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STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) in this work for two primary purposes. First, we
employed LLMs like ChatGPT to correct grammatical errors and enhance the manuscript’s clarity.
Second, we leveraged these models to generate diverse context sets to vefiry the hypothesis of SCP in
the main text. The instructions for the LLMs are provided in Appendix [F]]

A RELATED WORK

A.1 DIFFUSION MODELS

Given a text-to-image diffusion model ey, where eg(x¢, ¢, p) represents the predicted noise at time
step t given the textual embedding 7(p) of a prompt p and the noisy intermediate vector x; (Ho et al.,
2020; [Song et al.l 2020; Rombach et al.,|2022), the model is trained by minimizing the following
objective:

2
L = E(2,p)~poast~U[0,T] e~ N (0,1) {HG — eg(ar + V1 — aqe, t,p)HZ] 3

Here, z and p denote the input image and its associated prompt, respectively, while € is the Gaussian
noise sampled from a standard normal distribution. The intermediate input z; . = oy + /1 — o€
is obtained from the forward diffusion process. For simplicity, we use the notation E; ,, ; . [-] to
represent the expectation over the input data z, the prompt p, the diffusion time step ¢, and noise e.

A.2  GENERATIVE PERSONALIZATION.
Generative personalization task aims to capture personal concepts which are implicitly shared in a

reference set of images as generative conditions and then use them as a guided condition to generate
new images containing the personal concept. These personal concepts are very difficult to express
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in the input prompt, e.g., how to express the concept of your dog that is different from a generic
dog. Therefore, rather than using prompt engineering techniques to describe the concept in text, this
task usually uses a gradient-based method to fine-tune the model parameters to capture the personal
concept. There are several categories of generative personalization (Cao et al.|[2024) classified based
on the type of generative conditions, such as subject-driven (Gal et al., [2022} Ruiz et al., [2023} |Chen
et al.,2022; |[Kumari et al.| 2023} [Wang et al., |2024]), person-driven (Xiao et al.| [2024} |Valevski et al.,
2023} |Chen et al.| [2024b; 2023b), style-driven (Sohn et al., [2023} [Liu et al.| 2023 (Chen et al.;|2024a)
or image-driven (Ramesh et al.| 2022} |Xu et al., 2023 2024). Personalizing a T2I diffusion model
from only a few examples presents several well-known challenges, including language drift, limited
expressiveness of generative conditions, entanglement of concepts, and conditional misalignment.

Textual Inversion and Dreambooth. While there are many personalization methods have been
proposed, they can be traced back to the two representative methods: Textual Inversion (TT) (Gal
et al.}2022) and DreamBooth (Ruiz et al.| 2023)). Mathematically, given a set of personal images
X ={z1,22, -+ ,x,} and a pre-trained T2I model €y, the goal is to identify a textual embedding
v* associated with a specific verbalizable keyword V* (e.g., ‘sks’, ‘<new>’, etc.). This keyword
represents the implicit visual concept shared in the reference set X', enabling the model to generate
images with the personal concept using any textual prompt p containing the keyword V*, e.g.,
|p, V*| =’A photo of V* playing on a beach’, where | ., .| is the sentence construction operator.

Textual Inversion (TI) (Gal et al.| 2022) is a pioneering method that proposes obtaining a textual
embedding by minimising the following objective:

min By p, e [le = e (@e,t, 15, V)11 @

Here, p ~ T is a template prompt sampled from a set of predefined neutral prompts 7, such as
{“a photo of a’, ‘a high-quality photo of a’, - - - }. In T, only the embedding v* is learned, while all
other parameters, such as the model €y or textual encoder 7, remain fixed. Although this method
is parameter-efficient, the learned embedding may not be sufficiently representative to capture the
true visual concept in the reference set. Building on TI, Dreambooth (Ruiz et al., [2023) suggests
fine-tuning not only the embedding v* (i.e., by fine-tuning the textual encoder 7) but also the model
parameters € by minimizing the following objective:

. ’ . ’
min Ez’p’xmpmé,el,t lle — €g (zre.t, |, V*J)Hﬁ + A He — €g (xf]&/ 't ’ppr)

6,v*

] o

In this context, 2P and pP" are the prior-preservation image and its associated prompt, respectively,
which help prevent the model from overfitting to the small reference set with a tradeoff hyper-
parameter .

A.3 CHALLENGES IN GENERATIVE PERSONALIZATION

Language Drift and Overfitting. Language drift or overfitting occurs due to the limited number of
reference images and results in the incorporation of irrelevant elements and the neglect of the textual
context within the outputs. Prior works address this issue by introducing preservation mechanisms
such as prior-preservation loss (Ruiz et al.,2023)), locking concept-specific parameters (Tewel et al.,
2023)) and regularising model weights (Han et al., 2023} |Q1u et al., 2023).

Limited Expressiveness of Generative Conditions. This occurs due to the limited expressiveness
of the original textual format and the limited number of tokens allowed in each condition. A common
mitigation approach is to use multi-modal conditions such as image-image and sketch-image. To
enable pre-trained T2I models to accept new types of conditions and generate in conjunction with
the current text prompt conditioning, previous works have attempted to incorporate an additional
encoder (Zhang et al.,[2023)), or add a new adapter module to align internal knowledge of the model
with the new condition (Mou et al.| 2024; Jiang et al., 2024).

Entanglement of Concepts. The reference image set might include samples that contain both the
intended concept and other irrelevant concepts. To effectively isolate and extract the intended concept
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from the reference set, previous works have employed explicit masks (Avrahami et al., 2023} Jin
et al.,|2024; Safaee et al.| 2024)) and additional data with the personalized concept (Li et al.,|2023]).
Alternatively, Disenbooth (Chen et al., [2023a)) proposed to mitigate the influence of background
elements in the reference set by disentangling the identity and background of the reference set.

Conditional Misalignment. Beyond overfitting and entanglement, generative personalization faces
the broader challenge of conditional misalignment where outputs deviate from the intended prompt
due to the limited alignment capacity of the original generative model. The trade-off between
identity fidelity and semantic fidelity is a well-known and fundamental challenge in generative
personalization. Most existing works address this as an overfitting issue during training and propose
various regularization strategies, which typically require modifying the training process or adding
supervision. PALP (Arar et al.| 2024)) introduces score distillation sampling to explicitly regularize
the learned token toward its original class concept, preventing semantic drift. However, it operates
with a single fixed prompts and requires training-time modification. LEGO (Motamed et al., 2024])
and ReVersion (Huang et al., [2024b) aim to disentangle compositional concepts (e.g., adjectives,
verbs, or relationships) from exemplar images using token-based personalization. However, they are
limited to token-based personalization model only.

A largely unaddressed gap in prior personalization work is the potential drift or misalignment
of the textual embedding itself during concept learning. We refer this phenomenon as semantic
collapse where the learned concept token is still faithful to the visual reference, but fails to retain any
meaningful textual semantics and eventually collapses to a simplified form. We directly address the
semantic drift of the learned embedding. Our method mitigates this drift without altering the training
pipeline or requiring additional training. As a training-free, plug-and-play solution, our method can
be seamlessly integrated into a wide range of existing personalization frameworks.

B SCP ON MULTI-CONCEPTS PERSONALIZATION

In this section, we investigate the question: What is the SCP in the context of multi-concept person-
alization? For instance, consider a prompt like ‘A photo of a V,7,, touching a V  beside a park

man
bench’, where V.7, and V,  represent two independently personalized concepts. Will one concept

dominate the other, as observed in single-concept personalization in the previous section?
To explore this, we conduct an experiment where the two concepts, V,;, and V7 .., (subject 342),
are learned independently using Textual Inversion. We then construct a list of prompts that combine

these two personalized concepts with an additional complex context, such as ‘A photo of a V),

touching a V;,  beside a park bench’ (refer to Tablefor more examples).

man 18 held fixed, while the
embedding of Vd’; g,step 18 v?ried across different'training steps. AF early steps, Viiog,step TEMAINs
close to the original, generic ‘dog’ concept, while at later steps, it progressively captures more
personalized visual information of the specific dog. This design allows us to observe how changes in

the V,, embedding influence the generation of V7 ,,, within the same prompt.

Figure [9 illustrates the generated images where the embedding of V,*

It can be observed from Figure D2 that at early steps (e.g., < 400), V%, ,,, tends to dominate the prompt,
resulting in images that primarily capture the ‘man’ concept, consistent with the SCP observed in
single-concept settings. However, as the training progresses and V., ;.,, captures more distinctive
features of the personalized dog concept, it begins to overshadow V.., leading to outputs that
predominantly depict only the dog, effectively suppressing the presence of the other concept. As
shown in Figure [Ob] the alignment score with anchor man image drops gradually while that with

anchor dog image increases over time further confirming the dominance of Vj,  over V7 ..

This trend, observed consistently across multiple settings as shown in Figure [26]and 27} highlights
the intricate nature of SCP in multi-concept personalization. It suggests that SCP not only persists
but can intensify when multiple personalized concepts are involved, presenting a challenging but
potentially fruitful direction for future research.
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(a) Sample generated images

(b) Alignment scores (average over 50 random runs)

Figure 9: Analysis the SCP on multi-concepts personalization. The embedding of V. ... is fixed
while the embedding of Vj,  is varied across different training steps. Prompt: ‘A photo of a V]

touching a V;, ~ beside a park bench’. See Figure @ and@ for more examples. o

C FURTHER QUANTITATIVE RESULTS

In this section, we present additional quantitative and qualitative results that further validate our
findings and broaden the scope of analysis. Specifically, we include:

* Hyper-parameter sensitivity (Section[C.I)), showing how different settings affect TEA’s perfor-
mance.

* Unexpected effects on Anti-DreamBooth (Section [C.2), where TEA reveals new insights into
mitigating distortions in unlearning scenarios.

* Textual evidence of semantic collapse (Figure [I7), where we measure embedding drift using
multiple distance metrics.

* Visual evidence of collapse across methods (Figures[I8][T9), confirming SCP in both Textual
Inversion and DreamBooth.

* Prompt-level embedding drift (Figure 21)), providing direct evidence that SCP is not confined
to TI variants but also affects DreamBooth and its extensions, consistent with our argument that
unconstrained optimization underlies the problem (Section [2.3.3).

* Detailed quantitative comparisons (Tables[6] [7) on CustomConcept101 and CelebA, offering a
comprehensive view of TEA’s improvements over multiple baselines.

Together, these results not only strengthen our main claims but also uncover broader implica-
tions—most notably, that SCP and TEA’s corrective effect are general phenomena spanning datasets,
frameworks, and experimental setups.

C.1 THE EFFECT OF HYPER-PARAMETERS

An important question is how to choose the hyper-parameters «v and 3 appropriately, or whether they
should be adapted based on the input prompt. Interestingly, our experiments reveal a clear pattern
in the performance of the proposed method across a range of « and 3 values, providing practical
guidance for their selection. For simplicity and consistency, we set & = 0.2 and 8 = 1.5 as default
values, which consistently deliver robust performance across diverse prompts.

Figure [12] shows the performance of our adjustment method over a range of 3 values with fixed
a = 1.0 (no rotation). It can be seen that when 3 is too small (i.e., 8 < 0.5, meaning ||MV* I <
0.5 || Me|) or too large (i.e., § > 5.0, meaning || My | > 5.0 | M.||), the generated images become
less aligned with the ground truth indicating by the significant drop in S;(Z, x4 ), suggesting that V*
has lost its personalized information. However, the alignment S; (%, z,,) is relatively stable when

B is in the range of [1.0, 5.0], suggesting that the personalized concept can be effectively captured

without extreme scaling V'*. As a practical choice, we simply set § = 1.5 ~ W (which is

a middle value interpolated from || M.|| to || My

), as the default setting.
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Figure 10: Illustration of the SCP on Textual Inversion. Left: The intermediate generated images
Z of a prompt ‘a photo of a V* wearing glasses and writing in a red notebook’. The generated
image is gradually biased towards the personalized concept V'* (i.e., easier to recognize as ‘Henry
Cavill’) and loses the context p (i.e., harder to recognize as ‘writing in a red notebook’) through out
the personalization process. Right: The alignment scores (average over 100 random seeds) which
empirically validate the SCP. The alignment S(, p) ((J) with the context p drops over time, while
the alignment S(Z, x4 ) (+) with the ground truth x4 increases.

Figure 11: Analysis of the effect of rotation factor.
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Table [[T] shows the performance over a range of « values with fixed 8 = 1.5. Unlike the scaling pa-
rameter, the rotation factor «v is more sensitive and significantly impacts prompt alignment capability.
Increasing « generally improves the model’s ability to capture context, as reflected in the CLIP!}
score, which increases from 26.5 to 28.2 (an improvement of 1.7), and the CLIP’} score, which rises
from 21.4 to 21.9 (a gain of 0.5). While this comes at a minor cost to visual fidelity, with the CLIP-I
score dropping from 73.5 to 71.1 when o« = 0.2, the generated images still maintain high visual
quality, as shown in Figures 23]and

These findings highlight the critical role of the rotation factor o, which directly controls the semantic
alignment between V'* and the target concept c. Higher « values encourage better prompt alignment
by rotating V'* closer to ¢, while the scaling factor § should remain within a moderate range to
prevent excessive distortion of the learned visual concept.

C.2 SURPRISING IMPACT OF TEA ON ANTI-DREAMBOOTH

In this section, we present additional results highlighting the surprising impact of TEA on Anti-
DreamBooth. Figures[I3]and[I4]analyze the effect of varying the rotation factor p and the scaling
factor a, respectively.

Interestingly, while scaling has shown its effectiveness in mitigating the SCP in standard person-
alization settings as discussed in Section [C.I] when applied to Anti-DreamBooth, it does little to
correct the visual distortion in generated images. By contrast, adjusting the rotation factor p shows
a pronounced effect such that the generated images become substainally less distorted and better
aligned with the protected concept V* as shown in Figure This contrast suggests that the se-
mantic misalignment in anti-personalization settings is more sensitive to directional shift than
to embedding magnitude, and that rotation-based corrections are inherently more effective than
scaling-based adjustments.

We view this as a valuable and unexpected finding that not only deepens our understanding of
why Anti-DreamBooth works (by amplifying the semantic collapse), but also points to promising
directions for future work such as geometric interventions or adaptive adjustments during the defense
process.

D QUALITATIVE RESULTS

We provide additional qualitative results to complement the quantitative analysis:

» Correcting distorted generations. Figure22]illustrates how SCP in DreamBooth leads to distorted
generations, while TEA corrects the semantic embedding to produce more coherent and realistic
images. This connects directly to the discussion on TEA’s unexpected impact on Anti-DreamBooth

(Section[C.2).

* Cross-dataset comparisons. Figures [24] and 23] compare TEA-augmented variants of Textual
Inversion, DreamBooth, and Custom Diffusion against their baselines on CS101 and CelebA.
Further comparisons on Subject Control and Relationship tasks are shown in Figures 28] [29] [30}
and|31] highlighting TEA’s robustness across frameworks.

* SCP in multi-concept prompts. Figures[26|and 27| demonstrate SCP when multiple concepts are
combined, with corresponding alignment scores provided in Figure 25

E LIMITATIONS AND FUTURE WORK

Limitations on Methodology. We believe that the insights and understanding provided by this paper,
especially the analysis of the Semantic Collapsing Problem, are the most important contributions.
Based on this analysis, we propose a simple method to adjust the embedding vectors at test time.
While this method has clear advantages, such as simplicity, generalizability, and no additional training
requirement, the simplicity of the method itself might be a limitation. There are still trade-offs
between alignment with the input prompt and alignment with the visual concept, which depend on
the hyper-parameters, suggesting that fixed hyper-parameters might not be optimal for all prompts.
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Figure 13: Applying TEA on mitigating the Anti-Personalization Effect of DreamBooth by varying

the rotation factor p
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Figure 14: Applying TEA on mitigating the Anti-Personalization Effect of DreamBooth by varying
the scaling factor o
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Future Work. We believe that the insights and understanding provided by this paper, especially the
analysis of the Semantic Collapsing Problem, can guide future research on this topic. For example,
integrating additional constraints to restrict semantic shift during the fine-tuning phase, rather than
relying solely on test-time adjustment, is a promising direction. This approach could directly produce
adjusted and bounded embedding vectors that retain the original semantic meaning of the base
concept.

In this work, we provide a simple method to adjust the embedding vectors at test time. This adjustment
is applied equally across all dimensions of the embedding vectors. However, we believe that this
is not the optimal way to adjust embedding vectors, as each dimension of the embedding vector
has different meanings and importance. Therefore, a more sophisticated method that considers the
importance of each dimension could also be a promising direction.

In Section|C.1I] we provide an analysis of the impact of hyper-parameters on the performance of the
proposed method. It has been shown that the performance of the proposed method is sensitive to the
rotation factor a: the larger the v, the more the embedding vector is rotated toward the target concept,
improving alignment with the generated images but potentially reducing alignment with the visual
concept. In this work, we simply use the same hyper-parameters for all settings. We believe that a
search algorithm could be applied to find the optimal hyper-parameters for each prompt, with a stop
condition based on the desired alignment with the input prompt.

F EXPERIMENTAL SETTING

F.1 DATASET CONSTRUCTION

Contextual Prompts for Measuring Semantic Collapsing. Recall our hypothesis: a personalized
keyword V'*, initialized from a base concept c to capture a specific visual target vy, tends to lose
its original semantic meaning and dominate arbitrary contexts p when used in complex prompts.
This phenomenon, which we refer to as semantic shift, can be directly assessed by comparing the
embedding vectors My~ and M,.. However, this is challenging due to the use of contextualized text
embeddings in modern LLMs and diffusion models, where the surrounding context significantly
shapes the final representation of each token.

To address this, we propose evaluating the semantic shift of V'* relative to ¢ in the presence of
a diverse set of contextual prompts. Specifically, we define a prompt set A = {a1,a2, -+ ,an},
constructed by querying a large language model (LLM) with the following instruction:

Write 200 sentences with diverse topics and contents.
Each sentence should be 10-30 words long and must
include the keyword c.

This approach allows us to measure how well the learned embedding My « retains the original
semantic characteristics of c across varied contexts, providing a robust test for the semantic collapsing
problem.

To further examine the dominance effect of V*, we introduce a complementary set of simple prompts,
denoted as PP, This set consists of 200 straightforward sentences where V* is the clear focal
point, such as “a photo of a V*”,“a portrait of a V*”, etc. These simple prompts
serve as a baseline for assessing the degree to which V* overshadows other contextual elements in

the generated outputs.

Sample sentences from both prompt sets are provided in Table [3] and the full dataset, along with
all prompt templates, is available in the anonymous repository at https://anonymous. 4open.
science/r/Embedding-Adjustmentl

Dataset for Evaluating Personalization Performance. We use a subset of 9 concepts from the
CustomConcept101 dataset as in the original paper (Kumari et al., 2023)), each of which has 3-15
images, including ‘Barn’, ‘Tortoise plushy’, ‘Teddy-Bear’, ‘Wooden Pot’, ‘Dog’, ‘Cat’, ‘Flower’,
‘Table’, ‘Chair’ subjects. For the human concept, we use a subset of 10 concepts from the CelebA-HQ
dataset (Liu et al.| 2015), which includes 10 identities with 10-15 images per subject. Sample
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Table 3: Sample sentences for Py~ and P‘S,irfp . Set P, can be constructed by replacing the word ¢
with V* in the prompt of P. All the data and prompts can be found in the anonymous repository.

Set | Sample Sentences

Py« |‘A V" walked his dog through the park every morning before sunrise’

‘Despite the heavy rain, a I/* stood patiently waiting for the bus’

‘In the small village, a VV* known for his kindness helped everyone’

‘After twenty years of dedicated service, a I/ retired from his factory job’

‘While climbing Mount Everest, a VV* discovered the true meaning of perseverance’
‘During the concert, a V" in the front row sang along to every song’

‘At the crowded marketplace, a VV* sold handcrafted jewelry made from local materials’
‘Throughout history, a VV'* with vision has often changed the course of events’
‘Behind every successful company, there is often a V* with an innovative idea’
‘Within the ancient temple, a VV* prayed silently for his family’s wellbeing’

PSP <A photo of a V**

‘A rendering of a V'’

‘A cropped photo of a V'™’

‘A portrait of a V'**

‘A close-up shot of a V' *’

‘A full-body image of a V' *’

‘A black-and-white photograph of a V'*’
‘A candid shotof a V'™’

‘A digital illustration of a V'*’

‘A stylized caricature of a V'*’

images from the CustomConcept101 and CelebA-HQ datasets are shown in Figure [I5]and Figure [16]
respectively.

To assess complex prompt handling, we compile a set of multi-concept prompts from the Custom-
Concept101 dataset. Each prompt is designed to include two to three distinct elements, encouraging
the model to balance multiple visual contexts. For instance:

* “V/* tortoise plushy sitting at the beach with a view of the sea”
* “a watercolor painting of /" tortoise plushy on a mountain”

These prompts contain a primary subject VV* and one or more contextual elements (context p),
allowing us to measure the model’s ability to preserve the personalized concept while maintaining
accurate context alignment.

Sample prompts are provided in Table ] and the full dataset, along with all prompt templates,
is available in the anonymous repository at https://anonymous.4open.science/r/
Embedding-Adjustment.

F.2 EVALUATION METRICS

Personalization Metrics. We use the CLIP-T text-image alignment score (Radford et al.,|[2021)
to evaluate the alignment between the generated images & and the prompts. To have a better
understanding of which part of the prompt contributes to construct the generated images, we break
down each prompt into multiple segments/concepts and calculate the alignment score for each
segment/concept, i.e., ‘CLIP%’/ ‘CLIPS’/*CLIPY.” denotes the alignment score of the full prompt, the
first segment—the personal concept, and the second segment—the context, respectively. We use
the CLIP-I image-image alignment score (Radford et al.,|2021)) and DINO image-image alignment
score (Caron et al.| |2021) to evaluate the alignment between the generated images and the reference
images.
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Table 4: Sample prompts to generate personalized images. Each prompt consists of a main subject
V* and a context p. All the data and prompts can be found in the anonymous repository.

Set | Sample Sentences

CelebA ‘A photo of a VV* wearing glasses and handshaking with a man’

‘A photo of a V" wearing glasses and handshaking with a woman’
‘A photo of a V" wearing glasses and handshaking with an old man’
‘A photo of a VV* wearing glasses and handshaking with a kid’

‘A photo of a V* wearing glasses and holding a dog’

‘A photo of a V* wearing glasses and holding a cat’

‘A photo of a VV* wearing glasses and holding a red book’

‘A photo of a V* wearing glasses and holding a red phone’

‘A photo of a V" wearing glasses and sitting on a red chair’

‘A photo of a VV* wearing glasses and lying on a red bed’

‘A photo of a V" wearing glasses and writing in a red notebook’
‘A photo of a V" wearing glasses and drinking a Coco Cola can’
‘A photo of a V" wearing glasses and lifting weights’

‘A photo of a V" wearing glasses and cycling’

‘A photo of a V" wearing glasses and kicking a football’

‘A photo of a I/ wearing glasses and playing a guitar’

‘A photo of a V" wearing glasses and eating a pizza’

CustomConcept101 |‘V* in snowy ice’

‘V* in blooming sunflower field’
‘V* on aboat in the sea’

‘V* on top of a mountain’

‘V* made of crochet’

‘V* in a garden’

‘a floor lamp on the side of 1/*’
‘V* and a table with chocolate cake on it’
‘a puppy sittingona V'*’

‘acat sittingona V'*’

‘a squirrel sittingona V"’

‘a deer grazing neara V' *’

‘ateddy bearona V/*”’

‘aphoto of a V* in Van Gogh style’

Multi-Concept ‘A photo of a V%

man

wearing glasses and kissing a Vj,, ’

‘A photo of a V. wearing glasses and handshaking with a V}; g
‘A photo of a V" ,,, wearing a hat and hugging a V;, °

‘A photo of a V" ,,, walking a Vj, on a road with a car behind’
‘A photo of a V7 ,,, holding a V;, / beside a car’

‘A photo of a V7 ,,, touching a V;;,  beside a park bench’

‘A photo of a V,7,,, feeding a V;, - with a bowl of flowers’

Table 5: Inter-set and intra-set distances for different distance metrics

Distance Inter-set Distance d(P, ()) Intra-set Distance d(P, P)

2 2
L2 IS o - ailf R S S PO
Hausdorff max(maxp, c p ming eq dr2 (isq5) max,,ep Miny, e pp;£p, dr2 (pirpj)

maxg, e Miny, e p dra(gi, pj))

Mahalanobis | 2 57 1 /(pi — 11p) "S5 (pi — pp) | 2 S0y Sy /(0 — )75 (s — )
KL D1 (P Q) Di1(P| P)
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(c) Chair

(d) Table

(g) Barn (h) Teddy Bear (1) Tortoise Plushy

Figure 15: Sample images from the CustomConcept101 dataset.
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Figure 16: Sample images from the CelebA dataset.
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Semantic Shifting Metrics. Given the two sets P and @ (i.e., P = Py~ = {7(|a;, V*|)} and
Q = P. = {7(|a;,c])} which are the embeddings of the prompts in the prompt sets Py~ and P,
respectively), we propose to use the following metrics to measure the difference between the two sets.

L2 distance measures the Euclidean distance between two points in a vector space.

dr2(pi, ¢i) = |lpi — aill, (6)

Hausdorff distance measures the maximum distance from any point in P to the nearest point in ).
In other words, it measures the greatest distance from a point in one set to the nearest point in another
set.

P,Q) = d i D 7
dg(P,Q) = maX(ggggelg 2(Pir q5)s g}gggégdm(qz,p])) (7

Mahalanobis distance measures how far the point p; is from the center of the set P, taking into
account the correlation between the dimensions of the set. Unlike the L2 distance which treats all
dimensions equally, the Mahalanobis distance adapts to the shape and spread of the set P.

dat(pis P) =\ (i — 1) TS5 (pi — ) (®)
where 1 p is the mean of the set P and X p is the covariance matrix of the set P.

KL divergence . We propose to measure the relative relationship between each data point to the
entire set by using the Normalized Temperature-scaled Softmax function

- exp(sim(p;, p;)/T)

- 9
S, exp(sim(pi, pe) /T) ®

p(pi | pj, P

where T is the temperature parameter. p(p; | p;, P) measures the the relative relationship between
p; and the anchor p; in comparison to the entire set P. From that, we can have p(p; | P) = {p(p; |
pj, P) ¥p; € P} to represent the relative relationship between p; and the entire set P. Similarly,
p(g: | Q) = {p(ai | ¢;, Q) Yg; € Q} to represent the relative relationship between ¢; and the entire
set ()

The KL divergence between P and () is then defined as:

;| P
Drr(P Q)= przlPlog plpi | P) (10)

2 P 1 Q)

which measures the difference between the two distributions P and ). The higher the KL divergence,
the more different the two distributions are, the more semantic shifting the learned embedding v* has.

Alignment Metrics. The primary objective of generative personalization is to produce visually
compelling images that accurately capture the unique characteristics of a personalized concept from a
reference set, while maintaining semantic alignment with the input textual prompt.

To evaluate this, we use two key metrics based on the CLIP model (Radford et al.||2021):

Visual Fidelity: We measure the alignment between the generated image and a ground-truth image
using the CLIP image-image alignment score. A higher score indicates a closer match to the
reference, reflecting better preservation of the personalized visual features.

Prompt Consistency: We assess the alignment between the generated image and the input textual
prompt using the CLIP text-image alignment score. A higher score indicates that the generated
image more accurately reflects the intended context and details of the input text.
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However, complex prompts often contain multiple concepts, making a single text-image alignment
score insufficient to capture the nuanced relationship between the personalized concept V* and its
broader context p. To address this, we separately compute alignment scores for:

Main Concept Alignment (V' *): Measuring the fidelity of the personalized concept itself.

Context Alignment (p): Evaluating how well the broader contextual elements are represented.

This multi-level evaluation provides a more comprehensive understanding of how well the generated
images capture both the personalized visual identity and the intended scene context.

For all evaluations, we use the implementation provided in the TorchMetrics library,
available at https://lightning.ai/docs/torchmetrics/stable/multimodal/
clip_score.html.

VLM-based Evaluation Metrics. We use the VLM-P and VLM-I metrics to evaluate the alignment
between the generated images and the reference images and the prompts, respectively. Both metrics
output a score between 0 and 4, where 0 means there are no correspondence between the generated
image and the reference image (VLM-I) or input prompt (VLM-P), while 4 means the perfectly
matches. The final score for each metric is obtained by averaging all inference prompts and samples
(16 prompts times 50 random samples per concept/setting) and normalizing to the range [0, 100%].
We include the full system prompts and evaluation scripts in the anonymous github repository.
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System Prompt for VLM-based Evaluation Metrics

Task Definition
You are an expert visual evaluator for subject-driven image generation. You will receive:

1. Reference image A — the target subject (object or person)
2. Prompt P — text describing the desired scene/context
3. Generated image O — the image to evaluate

Produce two independent integer scores (0—4):

1. Prompt Adherence — Does O match the scene, spatial relations, actions, attributes, and
style in P?

2. Subject Identity — Does the subject in O visually match the reference subject in A?

Key Principle: These scores are independent. Perfect subject in wrong scene = high Subject, low
Prompt. Wrong subject in correct scene = high Prompt, low Subject.

Prompt Adherence Score (Scene/Context)

Evaluate: Scene/setting, spatial relationships, actions, attributes, style specified in P.

Ignore: Whether the specific subject from A is present (only check if something fills the subject role
correctly).

0 - No alignment with prompt

1 - Minimal alignment; major elements missing/wrong

2 - Some core elements correct; important parts missing/contradicted

3 - Most elements correct; minor omissions in secondary attributes

4 - All major elements present and correct; full prompt satisfaction

Subject Identity Score (Visual Matching)

Evaluate: Does the subject in O look like the reference in A? Check shape, distinctive features, colors,
recognizable characteristics.

Ignore: Whether subject is in correct scene/position (that’s Prompt Adherence).

0 - Subject absent or completely unrecognizable

1 - Weak resemblance; most identifying features differ

2 - Ambiguous identity; significant changes to important features

3 - Clearly recognizable; some features altered but identity preserved

4 - Unambiguous match; all distinctive features preserved

Output Format

Output ONLY these two lines with no other text:
PromptScore: <integer 0-4>
SubjectScore: <integer 0-4>
Examples:

¢ Same subject, wrong scene — PromptScore: 1, SubjectScore: 4
* Wrong subject, correct scene — PromptScore: 3, SubjectScore: 0
¢ Both perfect — PromptScore: 4, SubjectScore: 4

Now evaluate the following inputs:

F.3 COMPUTATIONAL SETTINGS

All experiments are conducted on a single NVIDIA RTX 4090 GPU with 24GB of memory, using
the Stable Diffusion v1.5 model as the base model. To prevent memory overflow, we fine-tune the
model with Textual Inversion (TI), DreamBooth (DB), and Custom Diffusion (CD) using a batch size
of 1 across all methods.

For the DreamBooth LoRA method, we follow the recommended settings from the Diffusers’
example page, using a learning rate of le-4, rank 4, and enabling text encoder training for improved
performance. Textual Inversion is fine-tuned with a learning rate of 5e-4, while Custom Diffusion
uses a more conservative learning rate of Se-6.

All code implementations are adapted from the Hugging Face Diffusers library.
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Figure 17: Different distance metrics between the sets P = {7(|a;, V*|)} and Q = {7(|as,¢c])}
in Textual Inversion (TI), showing the semantic shifting of the learned embedding over training

iterations.

Table 6: Results on CustomConcept101 dataset, tort* means tortoise plushy, teddy* means plushy
teddy bear, wpot* means wooden pot. The first/second metric is the CLIP%/CLIP—I score. The blue
number indicates the proposed method outperforms its baseline counterpart, while the red number
indicates the opposite. The GAP is the average improvement over all concepts. Qualitative results are
shown in Fig. 24}

Method dog cat tort* teddy* chair table flower wpot* barn GAP

TI 26.05/60.18 26.64/79.65 30.49/73.09 27.29/77.05 27.19/77.97 27.06/ 64.36 25.26/68.63 28.0/67.02 27.45/80.22 0.00/0.00
TI+TEA  26.14/58.97 27.94/77.47 30.71/72.74 27.68/76.02 28.13/73.27 27.78/ 61.33 26.28/ 63.77 28.34/ 66.44 28.2/77.06 0.64/-2.34
DB 20.28/59.93 20.29/74.82 24.55/91.14 18.89/85.52 21.87/87.5 20.77/73.83 20.07/82.98 20.43/66.69 23.58/80.98 0.00/0.00
DB+TEA 21.71/66.25 20.1/92.43 25.08/91.1 19.65/86.98 23.61/86.6 22.97/84.87 23.12/76.05 24.99/82.46 26.31/77.77 1.87/4.57
CD 27.33/56.09 29.37/78.34 31.33/78.42 28.47/77.67 27.16/ 69.88 27.88/62.84 26.7/62.66 30.0/69.18 26.34/70.95 0.00/0.00
CD+TEA 27.45/56.18 29.25/77.59 31.06/79.61 28.04/78.64 28.16/71.81 28.34/63.08 27.37/62.63 30.15/68.0 27.82/71.78 0.34/0.37
CL 27.28/55.06 29.19/77.42 31.11/78.32 28.26/76.4 28.49/74.52 27.68/ 60.34 26.76/ 63.98 29.69/61.09 25.72/69.87 0.00/0.00
CL+TEA 27.72/56.44 29.12/77.26 30.89/78.87 28.07/77.46 29.01/75.56 28.11/60.54 27.21/64.87 30.2/60.72 27.65/71.27 0.42/0.67

Table 7: Results on CelebA dataset. The first/second metric is the CLIP?/CLIP—I score. The blue
number indicates the proposed method outperforms its baseline counterpart, while the red number
indicates the opposite. The GAP is the average improvement over all concepts. Qualitative results are
shown in Fig. 23]

Method 124

181

276 342 351

437 615 908 1335 1429 GAP

TI 23.7/68.93
TI+TEA 24.23/68.48

26.29/61.68
26.49/ 59.6

21.32/65.33 26.06/ 75.64 25.25/69.63
20.97/65.2 27.28/71.01 26.11/65.73

23.46/71.19 26.54/74.37 24.61/64.5 25.4/67.55 24.97/60.88 0.00/0.00
23.93/66.25 26.89/70.56 25.98/62.97 25.69/66.72 25.68/59.01 0.57/-2.41

DB 25.37/54.78
DB+TEA 26.26/ 50.67

25.91/61.75
26.59/ 60.23

22.11/58.7 24.37/70.41 25.0/62.95
24.3/47.66 25.58/65.83 25.43/61.34

20.65/75.15 25.06/ 66.56 24.93/63.46 23.66/59.2 24.65/60.42 0.00/0.00
22.56/ 68.79 26.03/ 60.88 25.92/60.34 24.79/53.66 25.37/58.46 1.11/-4.55

Cs 26.92/ 43.56
CS+TEA 27.09/44.88

26.87/52.48
26.83/55.03

26.91/36.22 27.14/52.64 26.94/53.39
27.18/37.1 27.37/53.63 26.99/ 55.56

26.97/ 55.45 26.99/53.96 26.93/53.32 27.05/44.95 26.88/50.33 0.00/0.00
27.11/56.41 27.16/55.01 26.93/55.33 26.94/46.68 26.98/52.27 0.09/1.56

CL 26.44/57.5
CL+TEA 26.87/54.69

29.44/59.93
29.75/ 60.04

24.73/55.39 27.11/56.91 29.25/59.16
25.54/52.67 27.5/56.92 29.51/59.61

24.68/ 61.77 26.77/58.71 28.76/59.07 28.45/49.39 29.33/56.45 0.00/0.00
25.37/59.28 27.13/59.12 29.1/59.45 28.75/49.42 29.34/56.2 0.39/-0.69
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Figure 18: Alignment scores showing the SCP on Textual Inversion with different prompts.
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Figure 19: Alignment scores showing the SCP on DreamBooth with different prompts.
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Figure 22: Some cool effects of our method (DB+TEA) over the baseline counterpart DB. The SCP in
DB lead to the distorted generated images. Our method successfully corrects the semantic embedding
and generates more coherent and realistic images.
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(d) 437

Figure 23: Qualitative comparison between baseline methods and their TEA variants on the CelebA
dataset. Column 1-2: Reference images. Column 3: TI, Column 4: TI+TEA, Column 5: DB, Column
6: DB+TEA. Input prompts are shown below each image while alignment scores are shown on the
top. More results can be found in the anonymous repository.
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(d) Scene Barn

Figure 24: Qualitative comparisons between baseline methods and their TEA variants on the Custom-
Concept101 dataset. Column 1-2: Reference images. Column 3: TI, Column 4: TI+TEA, Column 5:
DB, Column 6: DB+TEA. Input prompts are shown below each image while alignment scores are
shown on the top. More results can be found in the anonymous repository.
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Figure 25: Alignment scores showing the SCP in multiple-concept personalization settings.
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for the example images.
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Figure 26: Illustration of the semantic collapsing problem on multi-concepts personalization. The
embedding of V7, .., is fixed while the embedding of V,, is varied across different training steps.

See Flgurelfor the detailed alignment scores.
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Figure 27: Illustration of the semantic collapsing problem on multi-concepts personalization. The
embedding of V.7, is varied across different training steps while the embedding of Vs fixed.

See Flgurelfor the detailed alignment scores.
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SKS dog in a construction outfit

(a) Output from EasyControl

SKS dog in a construction outfit

(b) Output from EasyControl with TEA

Figure 28: Comparison of the output from EasyControl pipeline with and without TEA with the
same prompt: ‘V,  dog in a construction outfit’ and same random seed. EasyControl with TEA
significantly improves the prompt fidelity, mitigating the failure cases of the original EasyControl
pipeline, such as the dog stands beside a person or holding a gun. More results showing the same

improvement of EasyControl with TEA can be found in the anonymous repository at https

anonymous.4open.science/r/Embedding-Adjustment!
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(b) Output from ReVersion with TEA

Figure 29: Comparison of the output from ReVersion pipeline with and without TEA with the same
prompt: ‘cat <R> carrot in the garden’ and same random seed. ReVersion with TEA significantly
improves the prompt fidelity, mitigating the failure cases of the original ReVersion pipeline, such
as the cat is not carved by the carrot or only shows the carrot. More results showing the same
improvement of ReVersion with TEA can be found in the anonymous repository at https://
anonymous.4open.science/r/Embedding-Adjustment.
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SKS barn surrounded by blooming sunflower field

(a) Output from ClassDiffusion

SKS barn surrounded by blooming sunflower field

(b) Output from ClassDiffusion with TEA

Figure 30: Comparison of the output from ClassDiffusion pipeline with and without TEA with
the same prompt: ‘barn’ and same random seed. ClassDiffusion with TEA significantly improves
the prompt fidelity, mitigating the failure cases of the original ClassDiffusion pipeline, such as
the image does not contain a barn but only a sunflower field. More results showing the same
improvement of ClassDiffusion with TEA can be found in the anonymous repository at https:
//anonymous.4open.science/r/Embedding—Adjustment!
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I g!" '-‘.I:. [

(a) Output from OminiCo

Brofrhe ool

(b) Output from OminiControl with TEA

Figure 31: Comparison of the output from OminiControl pipeline with and without TEA with
the same prompt: ‘this item wearing glasses’ and same random seed. OminiControl with TEA
significantly improves the prompt fidelity, mitigating the failure cases of the original OminiControl
pipeline, such as the subject (penguin) is not wearing glasses but a person does. More results showing
the same improvement of OminiControl with TEA can be found in the anonymous repository at
https://anonymous.4open.science/r/Embedding-Adjustment.
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