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Abstract

The success of Vision Transformers has
sparked growing interest in integrating the self-
attention mechanism and Transformer-based
architecture into Spiking Neural Networks
(SNNs), aiming to combine the brain-inspired
efficiency of SNN with the power of attention-
based models. While recent efforts have intro-
duced spiking-compatible self-attention mod-
ules, they often suffer from two key limitations:
the absence of effective scaling strategies and
architectural bottlenecks that hinder the extrac-
tion of fine-grained local features and the in-
tegration of multimodal information. To ad-
dress these issues, we introduce the Spiking-
Generated Multimodal Transformer, which fea-
tures a spiking self-attention mechanism with
biologically plausible and computationally ef-
ficient scaling. Unlike conventional spiking
models that focus narrowly on single modal-
ities or shallow representations, our model
adopts a multi-stage architecture, including
both single-modal processing and modality fu-
sion networks, enabling a deeper understanding
and integration of complex multimodal inputs
like audio, text, and visual signals. This syn-
ergistic design allows the model to leverage
the temporal dynamics of spikes while main-
taining high-level semantic alignment across
modalities. As a result, our approach improves
both energy efficiency and performance. Exper-
iments on benchmark datasets, including SIMS
and MOSEI for multimodal sentiment analysis,
validate the effectiveness of our approach.

1 Introduction

Spiking Neural Networks (SNNs), inspired by bio-
logical neural systems, are considered the third gen-
eration of artificial neural networks(Maass, 1997).
In recent years, SNNs have been successfully in-
tegrated with various deep learning architectures,
such as Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Trans-
formers, which has shown its promise in tasks like

image analysis (Lan et al., 2023; Patel et al., 2021),
robotics(Lele et al., 2020; Rueckert et al., 2016)
and sequence modeling.

Unlike traditional networks, SNNs exhibit dis-
continuous and temporally dynamic behaviors.
They excel in modeling chaotic, such as Lorenz
systems, where a single spike can significantly alter
subsequent spike sequences (Nicola and Clopath,
2017). Moreover, SNNs operate across diverse
dynamical states, subcritical, critical, supercriti-
cal and periodic, by adjusting neuron parameters
(Liang and Zhou, 2022). These characteristics
make SNNs a compelling choice for complex mod-
eling tasks.

Multimodal sentiment analysis integrates text,
audio, and visual inputs for sentiment prediction.
There are many datasets(Yu et al., 2020; Zadeh
et al., 2018b) and related studies(Liu et al., 2018;
Han et al., 2021; Sun et al., 2023) about this issue.
A key challenge is aligning and integrating modali-
ties effectively. Inspired by the brain’s architecture,
we model each modality as input to interconnected
SNN neurons and apply a shared SNN-based struc-
ture for consistent single-modal feature extraction
prior to fusion.

Neuroscience research suggests that Transform-
ers equipped with recurrent positional mimic the
spatial representation of the hippocampal forma-
tion(Whittington et al., 2021). Motivated by this
connection, we propose integrating SNNs with
Transformers to leverage their complementary
strengths in modeling temporal and sequential in-
formation. Our contributions are as follows:

* We propose an SNN-based fusion framework
that combines multi-layer integration and
Transformer architectures for effective mul-
timodal sentiment analysis.

* We exploit the synergy between SNN dynam-
ics and Transformer modeling to advance mul-
timodal affective computing.



* We conduct extensive experiments, demon-
strating our model’s superiority over existing
approaches.

2 Related Work

2.1 Spiking Neural Networks

Spiking Neural Networks (SNNs), regarded as the
third generation of artificial neural networks, are
biologically inspired and known for their energy ef-
ficiency and suitability for temporal processing due
to their spike-based, event-driven nature (Maass,
1997). Recent research has explored integrating
SNNs with deep learning, particularly Transform-
ers, inspired by findings that recurrent positional
encoding in Transformers resembles hippocampal
spatial representations (Whittington et al., 2021).
Spikformer (Zhou et al., 2022) is the first directly
trained spiking Vision Transformer, introducing a
spiking self-attention mechanism by activating the
Query, Key, and Value with spiking neurons and
replacing softmax with spike-based neurons. It
also replaces Transformer components like layer
normalization and GELU activation with batch nor-
malization and spiking neurons. Based on this,
Spikingformer (Zhou et al., 2023) achieves a purely
spike-driven architecture by modifying the resid-
ual connections. Spike-driven Transformer (Yao
et al., 2023) further reduces energy consumption
by proposing a linear-complexity spike-driven at-
tention mechanism. However, these models rely
on shallow convolutional layers to extract local
features and form patch sequences, and they lack
effective scaling strategies for input vectors.

2.2 Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) aims to
predict sentiment by integrating textual, acoustic,
and visual modalities. Traditional modality fusion
strategies are typically categorized into early fu-
sion (which combines raw features) and late fu-
sion (which combines model outputs) (Lu et al.,
2023), yet both struggle to effectively capture cross-
modal dependencies. To address this, deep learn-
ing methods have introduced more sophisticated
fusion techniques, including attention-based mech-
anisms (Yuan et al., 2021) and Graph Neural Net-
works (GNNs) for modeling inter-modal relation-
ships (Zeng et al., 2023). However, the majority of
these approaches are still built upon conventional
deep-learning architectures.

Recent studies have explored biologically in-

spired fusion strategies, but the application of
SNNs in MSA remains largely unexplored. Given
their spike-driven, temporally dynamic nature,
SNNs offer a compelling alternative for multimodal
integration. In this work, we propose an SNN-
based fusion framework, leveraging multi-layer
feature integration and hybrid SNN-Transformer
architecture to enhance sentiment classification.

3 Methodology

In this section, we provide a detailed description
of the proposed method. We begin by defining the
multimodal sentiment analysis task and its corre-
sponding notation. Next, we introduce the overall
model architecture of this article, with a particular
focus on the spatial module. Finally, we outline
the multi-task learning strategy and the overall op-
timization objective.

3.1 Task definition

The MSA task in this paper refers to predicting the
polarity and intensity of sentiment through video
information. MSA task usually contains three main
modalities: text (denoted by T), audio (denoted by
A,) and visual (denoted by V). We define the input
as X; € RTixDi_where T; is the sequence length
of modality ¢, D; denotes the feature dimension of
modality %, ¢ € t,a,v. We expect the model to in-
tegrate information from all modalities and assign
an emotion score to the person in the video, rep-
resenting both the polarity (indicated by the sign)
and intensity (indicated by the absolute value).

3.2 Overall Architecture

The overall architecture of our model is illustrated
in Figure 1, which mainly consists of three com-
ponents: the multimodal data preprocessing mod-
ule, the single-modal network, and the fusion net-
work. The preprocessing module is responsible
for transforming the raw multimodal inputs into
coarse-grained features. However, due to the shal-
low structure of this module, it can only capture
limited local information and generates only single-
modal feature tensors. Therefore, we introduce a
spatial module for further processing. This module
includes both the single-modal network and the fu-
sion network, which perform refined processing for
each modality and fusion across modalities, respec-
tively. Within these modules, we incorporate SNNs
and attention mechanisms to encode the coarse fea-
tures into a high-level semantic representation.
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Figure 1: The overall architecture of our method. The O, Oy, O,, Oy, and O,,, are the prediction outputs of the
three single-modal and multi-modal tasks, respectively. The model components include a Single-Modal Module and

a Fusion Network.

In previous architectures that combine SNNs
with attention mechanisms, such as SpikingRes-
Former, the input data is primarily visual, resulting
in relatively short temporal lengths 7. However, in
multimodal video-based emotion recognition tasks,
T is typically much larger. Directly applying such
architectures in this context leads to severe gradient
vanishing problems. To address the limitations of
these existing models in handling multimodal emo-
tion recognition, while retaining the strengths of
SNN-attention integration, we propose a novel ar-
chitecture named Spiking-Generated Multimodal
Transformer, which combines the residual struc-
ture of Transformer with a biologically inspired
spiking self-attention mechanism.

Each spatial layer consists of two modules: the
(Connectted) Multi-Head Spike-generated Self-
Attention ((C)MHSGSA) block and a Spiking Feed-
Forward Network with residual. Finally, the model
ends with a classification layer to produce the final
result. Additionally, to facilitate multi-task train-
ing, we attach separate classifiers to the outputs of
each modality prior to the fusion network.

3.3 Spatial Module

As illustrated in Figure 1, the spatial mod-
ule consists of a Multi-Head Spike-Generated
Self-Attention (MHSGSA) module and a Spike-
Generated Feed-Forward Network (SGFFN). We
first introduce the two modules and then derive the
form of the basic layers.

LIF Model. The LIF model (leaky integrate-and-
fire) we used here is a computationally simpli-
fied version of the more biologically meaningful
conductance-based LIF model. The specific ver-
sion used in this study is shown below, which is
consistent with the formulations adopted in previ-
ous works that integrate SNNs and Transformer:

Uit) = Vil + ~(5ld) — (Vile) -

si[t] = H(U;[t] — Vin)
Vilt +1] = 5i[t]Vyest + (1 — si[t]) Us[t]

Vrest))

ey
where H(-) is the Heaviside function. The first
equation represents the charge and leak processes,
the second equation represents that the neuron will
fire a spike when the neuron’s potential reaches the
threshold potential V;;, and the third equation rep-
resents that the neuron’s potential will be reset to
the resting potential V,..¢; after firing. The simplifi-
cation process and detailed analysis can be found
in Appendix A.

In subsequent sections, for an input current I €
RT*F the above model can be used to calculate
the output spike results S € {0, 1}7>¥, which we
will denote as S = LIF(I) for simplicity.

Since the LIF model is a discontinuous model,
for the elements in .S that only take the values 0 and
1, we use a method similar to previous work(Shi
et al., 2024) to approximate the gradient calculation
with arctan function.



Vanilla Self-Attention. We first review the clas-
sic Vanilla Self-Attention and propose our Spike-
Generated Self-Attention model.

In the original Transformer paper(Vaswani et al.,
2017), Vanilla Self-Attention is formulated as fol-
lows: for the input X € R"*¢,

- QK" @)
VSA(X) = softmax < Nz > A\

where Wy, Wik, Wy € Rm*d are learnable
weight matrices. In some papers(Zhou et al., 2022;
Yao et al., 2023), the authors argue that introduc-
ing floating-point multiplication and exponential
operations in softmax during the VSA process does
not conform to the computational rules of SNNs.
However, In some more recent papers that com-
bine Transformers with SNNs(Shi et al., 2024), the
authors added a convolution layer after the spike
output; similarly, in(Nicola and Clopath, 2017),
a double exponential filter is directly applied to
the spike output to compute the firing rate for use
in subsequent layers, indicating that introducing
floating-point operations in spike output process-
ing is reasonable. Therefore, our model will more
fully retain the original architecture of VSA.

Spike-generated Self-Attention. We present
Spike-Generated Self-Attention (SGSA), a novel
mechanism tailored for spiking neural networks,
enabling self-attention to integrate while efficiently
managing multimodal feature representations.

In this module, due to the characteristics of the
LIF model, it is necessary to control the magni-
tude of the input values. Therefore, we apply a
normalization method to normalize the inputs. To
accommodate sequential input, we adopt Layer
Normalization as the normalization function. A
scaling factor scale; is then applied to control the
data magnitude. The specific value of this factor
is discussed in the experimental section; in short,
it is currently treated as a tunable hyperparameter.
The normalized and scaled input is then passed
into the LIF model to obtain the SNN output of this
module.

Xporm = scale; LN (X)

(3)
Xspik’e = LIF(Xnorm)

Next, similar to Vanilla Self-Attention (VSA),

we compute the queries Q, keys K, and values V.

Q = Xspik’eWQ
K= XspikeWK (4)
V= XspikeWV

Additionally, it is necessary to determine an ap-
propriate scaling factor scales to ensure numerical
stability during the softmax operation. Inspired
by the original VSA paper(Vaswani et al., 2017),
for Q and K whose elements are independent and
identically distributed (i.i.d.), with zero mean and
unit variance, the dot product QK yields a matrix
where each element has a mean of 0 and variance
of d, where d is the dimensionality of the key/query
vectors. Thus, dividing by v/d can standardize the
result.

Our model applies a similar idea to compute

scaley = /o?03dd2, f2. Here f denotes the aver-

age firing rate of all neurons over the entire time

. : Total number of spikes during this period

interval, i.e., Total time length X Number of neurons ° d
2

0203 is the product of the variances of the matri-
ces W and Wg. The detailed derivation can
be found in Appendix B. Based on this scaling,
the remaining computation of the Spike-Generated
Self-Attention (SGSA) is formulated as follows:

T
SGSA(X) = softmax < QK > vV )
scales

Here, we propose the single-head form of SGSA.
It can be easily extended to the multi-head SGSA
(MHSGSA) following a similar approach to the
vanilla Transformer(Vaswani et al., 2017). In MHS-
GSA, we employ d parallel SGSA attention mod-
ules to process the input, and then concatenate their
outputs as shown below:

SGSA;(X)
SGSA5(X)

MHSGSA(X) = (6)

SGSA.X)

Connected Spike-generated Self-Attention. In
the MHSGSA module, we do not introduce con-
nections between neurons, as this module mainly
serves to preprocess individual modalities. Each
neuron only needs to respond to the information it
receives. However, during the multimodal fusion
process, it is also necessary for neurons to inte-
grate information from different modalities. There-
fore, in the multimodal fusion part, we introduce
the CMHSGSA module: similar to the approach



in (Nicola and Clopath, 2017), we incorporate a
non-trainable connection matrix generated from a
normal distribution w € R%*%m into the original
LIF model as follows:

VAt + L (Lft] — (Vilt] -

T

Ui [t] = West))
where the input current no longer consists solely
of external input, but also includes interactions be-
tween neurons. Specifically, the equation can be
rewritten as:

dm
U] = VA4 2 (Gl iyl — Vil Vrewr)

If we denote the output of this new LIF model as
S = LIF’'(X), then replacing all instances of LI F'
in MHSGSA with LIF’ yields the CMHSGSA
module.

Single-modal Network and Fusion Network.
Following the architecture of MHSGSA and
CMHSGSA modules, we define two key compo-
nents of our model: the Single-Modal Network and
the Fusion Network, each responsible for distinct
aspects of representation learning.

The Single-Modal Network is designed to pro-
cess single-modal inputs and its basic layer is struc-
tured by attaching a Spiking Feed-Forward Net-
work with residual connection is attached after
MHSGSA as follows:

Y rorm = scaley LN (M HSGSA(X))
Y spike = LIF(Yrnorm)
Your = linear(Y spike) ;
Rorm = scaley LN (Y out)
R = Ruorm + Xnorm + Ynorm

(N

where R represents the output of the correspond-
ing module. The Fusion Network incorporates a
cross-modal attention mechanism and a variant of
the spiking activation unit, enabling effective inte-
gration of multi-modal information. Its structure is
largely similar to that of the Single-Modal Network,
with the primary difference being the substitution
of the LIF model by its connected counterpart.
Both networks adopt a residual connection be-
fore the SNN module to alleviate the vanishing
gradient problem during training. While their pro-
cessing pipelines are structurally aligned, the key
difference lies in their attention strategies: the
Single-Modal Network uses standard multi-head at-
tention (MHSGSA) for single-modal data, whereas

the Fusion Network employs cross-modal multi-
head attention (CMHSGSA) to support inter-modal
feature fusion. In addition, the spiking function
LIF is adapted in the Fusion Network to handle
multi-modal signal dynamics better. Concatenating
the outputs of these two networks yields the final
multi-modal representation used by the model.
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Figure 2: Architecture of the basic layer that makes
up the Single-modal Network and the Fusion Net-
work. Including Multi-Head Spike-generated Self-
Attention (MHSGSA) and Connected Multi-Head
Spike-generated Self-Attention (CMHSGSA).

What’s more, as stated in (Shi et al., 2024), in
multimodal sentiment analysis, video, audio, and
text information are closely related, yet methods
based on single modality or direct feature fusion
often struggle with fine-grained feature extraction
and prediction accuracy. By treating single-modal
and fused-modal predictions as sub-tasks and ap-
plying multi-task learning to share representations,
the complementary features of different modali-
ties can be better utilized, thereby improving the
model’s generalization performance. Moreover,
compared with the fusion of multiple models, multi-
task learning enables independent and joint opti-
mization within a single model, significantly reduc-
ing computational complexity. Accordingly, we
introduce our total loss as:

Eloss = )\aﬁa + >\v£'u + )\tﬁt + )\t(wﬁtav + >\m£m

The loss function £ is computed using the MAE,
with weighting coefficients of each component in
the overall loss Ay, Ay, A\t Aigw and A\, setto 1, 1,
1, 3 and 6, respectively.



4 [Experiments

In this section, we introduce the datasets used in
the experiment and evaluate the performance of
our model on the multimodal sentiment analysis
task. Then, we perform ablation experiments on
key components in our model. The experiment
involves three modalities: video, text, and audio.

4.1 Dataset

CH-SIMSv2: The dataset CH-SIMS (Yu et al.,
2020) contains 2281 carefully edited Chinese video
clips from 60 film and television videos. Compared
with the original dataset, the CH-SIMS v2.0(Liu
et al., 2022) doubles its size with another 2121 re-
fined video segments with both single-modal and
multimodal annotations. The voice part of the
video is in Mandarin, the length of the short clip is
no less than 1 second and no more than 10 seconds.
The annotation task includes 2 categories (Posi-
tive and negative), 3 categories (Positive, Negative,
Neutral), and 5 categories (Negative, weakly Nega-
tive, neutral, weakly positive, and Positive). This
dataset has accurate multimodal and independent
single-modal annotations, which can be used to sup-
port researchers in multimodal or single-modal sen-
timent analysis. MOSEI: The Multimodal Opinion
Sentiment and Emotion Intensity (MOSEI) (Zadeh
et al., 2018b) dataset is designed to enhance the
diversity of training samples, including a broader
range of topics and richer annotations. It contains
23,453 annotated video clips collected from online
video-sharing platforms, involving 1,000 different
speakers across 250 topics. The dataset provides
sentiment scores on a 7-point Likert scale ranging
from —3 (highly negative) to 43 (highly positive)
for each sample.

4.2 Implementation Details

In this article, our model training is based on the
NVIDIA V100 GPU. We use the Adam optimizer
in the experiment to optimize the model parameters.
To make a fair comparison with other baselines, we
follow the preprocessing method of the previous
work(Cheng et al., 2023; Jin et al., 2023; Cai et al.,
2025) to extract features of images, audios, and
texts. For visual features, we use Facet(Ekman and
Rosenberg, 1997) to extract facial expression fea-
tures from MOSEI, and OpenFace 2.0(Tadas et al.,
2018) for the SIMS dataset. Both tools detect fa-
cial landmarks, action units (20 dimensions), head
pose, and eye gaze. For audio, Librosa(McFee

et al., 2015) extracts 33-dimensional acoustic fea-
tures from SIMS (log-F0, 20 MFCCs, 12 CQT) at
22,050 Hz, while COVAREP(Degottex et al., 2014)
is used for MOSEI, capturing MFCC:s, pitch, glot-
tal parameters, and prosody-related features. For
text, we adopt the BERT pre-trained model(Devlin
et al., 2019) to extract contextualized word embed-
dings, without requiring prior word segmentation.
Finally, all modal features are organized as ten-
sors with shape [batch size, sequence length,
feature dimensions].

4.3 Baselines and Metrics

The details of the baselines are as follows: EF-
LSTM: utilizes feature-level fusion and sequence
learning of Bidirectional Long-Short Term Mem-
ory (Bi-LSTM) deep neural networks.(Williams
et al., 2018b) LF-DNN: introduces three model
structures to encode multimodal data and then com-
bines PCA for early feature fusion and late decision
fusion.(Williams et al., 2018a) TFN: introduces an
end-to-end fusion method for sentiment analysis
by modeling the single-modal, bimodal, and tri-
modal interactions using a 3-fold Cartesian prod-
uct from modality embeddings.(Zadeh et al., 2017)
LMF: utilizes low-rank factors for multimodal rep-
resentation and making multimodal feature fusion
more efficient.(Liu et al., 2018) MFN: proposes
a Delta-Memory Attention Network (DMAN) to
identify cross-view interactions while summarizing
through Multi-view Gated Memory.(Zadeh et al.,
2018a) Graph-MFN: introduces the Dynamic Fu-
sion Graph (DFG) module based on the MFN net-
work and performs fusion analysis.(Zadeh et al.,
2018b) MulT: utilizes a bidirectional cross-modal
attention mechanism to focus on the interactions be-
tween multi-modal data at different time steps.(Tsai
et al., 2019) MLF-DNN: is a multi-task version of
LF-DNN.(Yu et al., 2020) MLMF: is a multi-task
version of LMEF.(Yu et al., 2020)

For metrics, on MOSEI, following previous
works(Peng et al., 2023; Lin and Hu, 2023; Yuan
et al., 2021), our evaluation indicators include bi-
nary accuracy (Acc-2), seven-class accuracy (Acc-
7), Fl-score, mean absolute error (MAE), and
Pearson correlation coefficient (Corr). It is worth
noting that Acc-2 has two different representa-
tion methods, namely negative/non-negative and
negative/positive(Zadeh et al., 2018b). Here, we
only use the negative/positive classification crite-
rion. On SIMS, following previous works(Yu et al.,
2020; Liang et al., 2021), our evaluation indicators



include Acc-2, Acc-3, Acc-5, Fl-score, MAE, and
Corr. The detailed formulations are provided in the
Appendix C.

4.4 Main Results

The performance of our proposed model is pre-
sented in Table 1 and Table 2, alongside repro-
duced results from several competitive baseline
models (Cai et al., 2025; Mao et al., 2022). Our
model consistently surpasses all baselines in terms
of Acc-5 and Acc-7, respectively. Beyond these pri-
mary metrics, the SNN-Transformer also achieves
highly competitive or improved results across most
other evaluation indicators, with only marginal
gaps in a few cases. These results highlight the
effectiveness of integrating biologically inspired
spiking neural dynamics with Transformer-based
architectures for multimodal sentiment analysis.
The temporal encoding and energy-efficient event-
driven processing of SNNs, combined with the se-
quence modeling capacity of Transformers, enable
our model to better capture cross-modal dependen-
cies and temporal nuances, leading to more robust
and accurate sentiment classification.

Model Acc-5 Acc-3 F1 Corr MAE
ef_Istm 4926 72.38 79.03 0.6588 0.3374
If_dnn 5276 7259 79.46 0.7120 0.3014
tfn 52.55 7221 80.14 0.7073 0.3031
Imf 4779 6490 73.88 0.5569 0.3672
mfn 54.53 73.66 81.19 0.7266 0.2954
graph_mfn 45.78 67.18 72.60 0.5743 0.3787
mult 54.81 73.19 80.73 0.7378 0.2905
mlf_dnn 49.67 68.47 76.62 0.6395 0.3352
mlmf 5122 6998 77.30 0.6703 0.3222
ours 55.03 7321 8046 0.7247 0.3006

Table 1: Performance comparison between our method
and baselines on SIMS Dataset.

4.5 Ablation Study

We conduct ablation studies on the proposed model,
comprising two key parts: First, we investigate
the effect of two critical hyperparameters, scaleq,
and the inter-neuron connection strength within
CMHSGSA, on the stability and performance of
the SNN. Second, we evaluate the model’s ability to
utilize multi-modal information by systematically
reducing the number of input modalities.

Connected Couple Strength and Scaling Fac-
tors. In our experiments, the w in CMHSGSA is
generated from a normal distribution with mean 0
and variance 1 (corresponding to the case where

Model Acc-7 Acc-2 F1 MAE
ef_Istm 49.3 80.3 81.0 0.603
If dnn 52.1 823 822 0.561
tfn 50.2 82.5 82.1 0.593
Imf 48.0 82.0 82.1 0.623
mfn 51.3 82.8 82.8 0.573
graph_mfn  51.9 84.0 83.8 0.569
mult 51.8 82.5 823 0.580
mmim 51.9 83.8 83.6 0.599
ours 52.2 83.5 834 0.569

Table 2: Performance comparison between our method
and baselines on MOSEI Dataset.
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Figure 3: Detail results of our method in four test sam-
ples of SIMS dataset. left is the strength sample, and
right is the scale curve.

the connection probability is 1 in (Nicola and
Clopath, 2017)), and then scaled by a factor called
strength, which is used to control the magnitude
of the coupling strength. We performed a grid
search over both scale; and strength, and the de-
tailed results can be found in Appendix D. The
best results were obtained when scale; = 0.5 and
strength = 0.01.

We plotted line charts for the corresponding row
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Figure 4: Detail results of our method in two test samples of SIMS dataset. (a) a sample with a positive sentiment

type, and (b) a sample with a negative sentiment type.

and column of the best result, as shown in Fig-
ure 3. The figure shows that the model maintains
strong performance across a relatively wide range
of values. However, once these parameters exceed
this range, the model’s performance deteriorates
sharply, which aligns with the inherent requirement
for dynamical stability in spiking neural networks.
Multimodal Feature. We slightly modify the
model architecture to accept inputs from only two
modalities. Specifically, we remove the spatial
module corresponding to the excluded modality
and, before feeding into the fusion network, only
merge the results from the remaining two modali-
ties. In the loss function, we remove the loss com-
ponent associated with the excluded modality; all
other aspects remain unchanged. Using the opti-
mal hyperparameter settings, we conduct experi-
ments by removing each of the Text (T), Audio
(A), and Visual (V) modalities individually. The
results show that utilizing all three modalities out-
performs using any combination of two modalities,
indicating that our fusion network module effec-
tively leverages information from all modalities.

4.6 Case Study

To better illustrate the performance of our model,
we selected representative samples from the SIMS
test set and examined the sentiment predictions for
each modality in detail. The SIMS dataset was
chosen because it provides ground-truth sentiment
labels for each modality, allowing for a more com-
prehensive and modality-specific evaluation. Fig-
ure 4 shows these samples with the sentiment types
of positive and negative.

Our analysis reveals that the model performs

modal Acc-5 Acc-3 Acc-2 F1 MAE
A+V 48.55 66.83 73.60 73.51 0.3872
T+V 50.77 73.02 80.56 80.68 0.3209
T+A 50.97 67.99 7524 7532 0.3317
T+A+V 55.03 73.21 80.56 80.68 0.3006

Table 3: The result of multimodal feature ablation study
on MOSEI Dataset.

consistently well across different modalities. In all
cases except when the true label is exactly zero,
the predicted sentiment polarity (positive or nega-
tive) matches the ground-truth label, demonstrat-
ing that our multi-task training strategy effectively
enhances the model’s performance. More details
about the neutral and cases with inconsistent sen-
timent across modalities (e.g., one modality being
positive while another is negative) can be found in
Appendix E.

5 Conclusion

We propose a novel class of techniques that
combine Spiking Neural Networks with the self-
attention mechanism, referred to as (Connected)
Multi-Head  Spike-Generated  Self-Attention
((C)MHSGSA), which are tailored for single-
modal processing and multimodal fusion. To
enhance stability and control expressiveness, we in-
troduce input and output scaling strategies. Based
on this, we develop the Single-Modal Network
and the Fusion Network, which are further unified
into a Spiking-Generated Multimodal Transformer.
Extensive experiments validate the effectiveness
of our approach, achieving strong performance on
multimodal sentiment analysis tasks.



Limitations

Despite its promising performance, our SNN-
Transformer framework also presents certain lim-
itations. First, training spiking neural networks
remains computationally challenging due to the
non-differentiable nature of spike events, requir-
ing surrogate gradient methods that may introduce
approximation errors. Second, achieving optimal
results may require manual design of the neuron
connection matrix; in particular, the relationship
between the hyperparameters scale; and strength
necessary for proper model function remains in-
sufficiently explored. Third, the development of
more advanced fusion mechanisms and modality-
adaptive spiking encoders is needed. Extending
the framework to effectively handle noisy or asyn-
chronous multimodal data remains an open and
important challenge.
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A Simplification of the
Conductance-Based LIF Model

The conductance-based Leaky Integrate-and-Fire
(LIF) model is a more biologically interpretable
model. Multi-channel versions of this model have
been used in previous studies. In this work, we
adopt the single-channel version:

dl_West_V

dt + (‘/7“61) -

= V)gG,

where V.5 represents the resting potential, and
T is the membrane time constant. The first term
is the leaky current, which causes the membrane
potential to decay toward the resting potential at
a rate controlled by the membrane time constant.
Vrev denotes the reversal potential, g represents the
synaptic strength of the conductance, and G is the
input conductance. The second term is the inte-
grated term, indicating how the input conductance
drives the membrane potential upward.

In most numerical implementations of the model,
the variation of Vst —V is relatively small. Empir-
ical studies on excitatory neurons indicate a resting
potential of V.. = —70 mV, a reversal poten-
tial of Ve, = 0 mV, and a firing threshold of
Vi = —50 mV'. These values constrain V.., — V'
to the range [50, 70], resulting in only a 1.4-fold
difference between its maximum and minimum val-
ues. Therefore, V.., — V can be approximated as
a constant and combined with the synaptic conduc-
tance strength into a single constant «, simplifying
the original equation to:

dl_%est_v

dt

Assuming the input conductance G is propor-
tional to the input current Iyy;g,, We define G =
B1origin- Substituting this relationship and com-
bining it with the membrane time constant 7, we
obtain:

+ aG
-

ﬂ . Viest =V + aﬁTIom'gm
dt

Letting a7 = scaley, we define a scaled input
current I = scaleilorigin, corresponding to our
scaling operation. Assuming a discretized time
step dt = 1, we arrive at a simplified differential
form of the LIF model:

T

dl_l—(V_West)
dt

T
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After discretizations, considering the spiking be-
havior and introducing a buffer variable, the mem-
brane potential update is given by:

VI + S (1] — (VI -

r V;"est))

All other components of the model remain un-
changed.

B Derivation of scale,

Theorem 1 Suppose X e € RTxdm jg g spike
sequence with firing rate f, and Wg, Wi are
matrices € R4* with zero mean and variances
02,03, respectively. Assume that the elements
in Xgpikes Wq, and W i are mutually indepen-
dent. Then, according to the computation of Spike-
generated Multi-Head Attention, the mean of each
element (QKT)item is zero, and we have the vari-
ance

T-1
Var[(QKT)item] = Tddfn fPo?oi+

[f20102 m(dm — 1) + foioiddy,]

The second part can be neglected since 7' is rela-
tively large in our setting (e.g., T' = 50). Therefore,
we approximate: Var[(QKT);iem| = dd2, f20%03.
To ensure numerical stability, we normalize the
result obtained from Spike-generated Multi-Head
Attention by scales = \/oio3dd2, f2, yielding a
variance of 1 for the output.

We now proceed to prove this result by introduc-

ing two supporting lemmas.

Lemma 1 (Law of Total Variance): Suppose X
and Y are measurable random variables on the
same probability space (0, F, P). Then, the vari-
ance of X satisfies:

Var[X] = Vary [E[X|Y]] + Ey [Var[ X Y]]

Proof of Lemma 1: Notice that Ey [E[X|Y]] =
E[X], we can expand the variance as:

Var[X] =E[X?] — (E[X])?
=Ey [E[X?[Y]

] - (Ey[E[X]Y]))*
=Ey [Var[X|Y]]

+ Vary [E[X |Y]]

Lemma 2 Suppose a random variable X is sam-
pled from a distribution with mean 0 and variance
08 with probability of p. Then, the variance of X
is po3 + (1 — p)oi.



Proof of Lemma 2: Let Y be a Bernoulli random
variable indicating which distribution X is sampled
from. Applying Lemma 1 (Law of Total Variance),
we have

Var[X] = Vary [E[X|Y]] + Ey[Var[X|Y]]

Since:
r

Val
Var

[
X
E[X
X

5
~
Il

||
= =)
=N O

H
I
© o 9 9

E

Combining them, we get:

Var[X] = 0 + pog + (1 — p)oi

Returning to the original problem, we have the
following expression:

(QKT)z'j
o dom

3>

n=1m=1 [=1

spzke im WQ)mn(Xspike)jl(WK)ln

Due to independence and zero-mean assump-
tions, we immediately have:

E[(QK");] =0

The distribution of the spike sequence can be
considered completely random when only the firing
rate is known. Since (Xpike)im only takes values
0 or 1, it follows a Bernoulli distribution, and thus
we have P((Xspike)im = 1) = f? P((Xspike)im =
0) = 1 — f. Thus, its variance can be computed as
Var[(Xspike)im] = f(1 = f).

For simplicity, we omit the detailed derivation.
The variance of (QKT);; is as follows:

When ¢ # j:

Var[(QKT);; = dd?, %03 f?
When ¢ = j:
Var[(QK"); = [d(d}, — dim) f* + ddy flotos

Applying Lemma 2 to compute the average vari-
ance across all elements in the attention matrix, we
obtain:

T

-1
item} = Tddgnf20%0-§+

1
Tl ot odddp (dn

Var[(QKT)

—1) + foiosdd,,]

C The metrics our experiments use

Assuming the true label of a sample is y,,, and the
model’s prediction is ¢, our metrics are described
as follows:

Acc-x is used to evaluate whether the model
can divide the data into corresponding sentiment
intervals, expressed as:

N

3 1 € 130,

=1

Acc-x =

where N represents the number of samples in-
volved in model evaluation, 1(-) is an indicator
function. When the model prediction value ¢, is
within the sentiment interval of ground truth I(y,,),
it outputs 1, otherwise 0. x in Acc-x represents
the number of sentiment classifications. As z in-
creases, there are more sentiment intervals 1(), and
the sentiment analysis becomes more detailed.

F1-score is used to evaluate the model’s perfor-
mance under data imbalance conditions. It com-
bines precision P, and recall R., which can be
expressed as:

1 2P.R,
P.+ R,
TP
¢ TP+ FP
TP
© TP+ FN

MAE is used to measure the accuracy of model
regression and is expressed as:

1 N
MAE = N;‘yn _gn‘

Corr is used to measure the linear correlation
between two variables. It is commonly applied in
regression tasks to assess how well the predicted
values align linearly with the ground truth. The
formula is defined as:

S i~ )i~ )
VEN - 9N G- 3

where 7 and ¢ are means of y; and ¢;. The closer
the Corr value is to 1, the stronger the linear rela-
tionship between the predictions and the ground
truth.

For all metrics except MAE, higher values indi-
cate better performance.

Corr =




Strength Scale | Acc-5 Acc-3 Acc-2 F1 Corr MAE | Spiking Rate
0.5 | 55.03 7215 80.27 80.36 0.7244 0.2976 | 0.03
0 1 52.80 70.70 78.92 79.03 0.6905 0.3156 | 0.07
2 5193 71.37 78.63 78.66 0.6917 0.3172 | 0.10
3 5193 71.76 77.85 77.90 0.6809 0.3212 | 0.11
0.5 | 55.03 7321 8037 8046 0.7247 0.3006 | 0.03
0.01 1 53.19 72.05 78.34 78.40 0.6925 0.3097 | 0.08
’ 2 53.19 7195 78.34 78.37 0.6887 0.3170 | 0.10
3 5348 7195 77.85 7790 0.6865 0.3177 | 0.11
0.5 | 5493 7195 7998 80.10 0.7191 0.3085 | 0.03
0.025 1 52.61 7214 7921 79.26 0.6691 0.3156 | 0.08
’ 2 53.19 71.86 78.34 78.45 0.6884 0.3140 | 0.10
3 51.74 7137 7834 7842 0.6736 0.329 | 0.11
0.5 | 54.06 72.15 80.56 80.57 0.7170 0.2992 | 0.03
0.05 1 53.68 7273 78.92 78.67 0.7145 0.3032 | 0.09
’ 2 54.06 72.24 79.11 79.23 0.6984 0.3108 | 0.11
3 5271 70.79 77.76 77.85 0.6773 0.3207 | 0.11
0.5 | 28.82 4149 57.16 5049 0.1199 0.5051 | 0.03
01 1 4749 71.37 7631 7645 0.6540 0.3397 | 0.12
' 2 53.29 71.08 79.30 79.32 0.6548 0.3288 | 0.16
3 53.09 70.79 77.85 7797 0.6663 0.3229 | 0.14

Table 4: The grid search results on SIMS Dataset
group and the overall best result in the table, respectively.

D Summary of Grid Search Results

. The bold and red bold values indicate the best results within each

We conducted a grid search experiment using input
scaling factors scalea = 0 (blank control), 0.5, 1,
2, 3, and connection strengths of the connected
LIF set to 0, 0.01, 0.025, 0.05, and 0.1. The final

results are shown in Table 4.

E Details of Case Study

Figure 5 illustrates the detailed results of our
method in two test samples from the SIMS dataset.
Figure 5(a) shows a sample with natural senti-
ment type, and Figure 5(b) presents a difficult sam-
ple with inconsistent sentiment across modalities,
where one modality is positive and the other is

negative.
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! Vision Information

=

Ground Truth

M:-02 V:0.0
A:00 T:-0.2

Our Model

M:-025 V:-0.12
A:0.02 T:-0.16

i Text Information

i Chinese: .. H{1&H KX MU LEMTRRENER. i
i English: ...We have not received any communication from i
| the pilots on this flight. !

Ground Truth

M:08 V:0.8
A:-02 T:06

Audio Information Our Model

M:0.86 V:0.71
A:-0.67 T:0.65

Text Information

Chinese: HIEARBAILERET,
English: I'm treating everyone to Dali Haitang Juice.

(b) Detail results in difficult sample.

Figure 5: Detail results of our method in two test sam-
ples of SIMS dataset.
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