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Figure 1: Unlike existing 3D Avatar methods that can only process fixed-length data, FastAvatar
achieves incremental reconstruction. It can strike a good balance between modeling quality and
inference speed based on available data volume, delivering high-quality models with sufficient data
while providing viable reconstruction results at high speed even with limited data.

ABSTRACT

Despite significant progress in 3D avatar reconstruction, it still faces challenges
such as high time complexity, sensitivity to data quality, and low data utilization.
We propose FastAvatar, a feedforward 3D avatar framework capable of flexibly
leveraging diverse daily recordings (e.g., a single image, multi-view observations,
or monocular video) to reconstruct a high-quality 3D Gaussian Splatting (3DGS)
model within seconds, using only a single unified model. The core of FastAvatar
is a Large Gaussian Reconstruction Transformer (LGRT) featuring three key de-
signs: First, a 3DGS transformer aggregating multi-frame cues while injecting
initial 3D prompt to predict the corresponding registered canonical 3DGS repre-
sentations; Second, multi-granular guidance encoding (camera pose, expression
coefficient, head pose) mitigating animation-induced misalignment for variable-
length inputs; Third, incremental Gaussian aggregation via landmark tracking and
sliced fusion losses. Integrating these features, FastAvatar enables incremental
reconstruction, i.e., improving quality with more observations without wasting in-
put data as in previous works. This yields a quality-speed-tunable paradigm for
highly usable 3D avatar modeling. Extensive experiments show that FastAvatar
has a higher quality and highly competitive speed compared to existing methods.

1 INTRODUCTION

Creating photorealistic 3D avatar reconstruction is one of the fundamental problems in computer
vision and graphics. Contemporary methods Kirschstein et al. (2025); He et al. (2025); Chen et al.
(2024b); Qian et al. (2024a); Pan et al. (2024); Wen et al. (2024); Qian et al. (2024b); Jiang et al.
(2024); Hu et al. (2024); Qiu et al. (2025) for 3D avatars have made significant advancements in 3D
representation and modeling quality. However, these approaches commonly suffer from drawbacks
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such as data sensitivity (e.g., requiring richly expressive data), high time complexity, and low data
utilization efficiency. These issues, pose severe challenges to the low-cost application of 3D avatars.

Three factors hinder existing 3D avatar methods from addressing the aforementioned challenges:
1) Inability to Leverage Prior Knowledge: Although contemporary 3D avatars have widely adopted
efficient representations like 3DGS Kerbl et al. (2023), they still primarily rely on per-scene op-
timization. This approach fails to utilize “experience” from similar scenes, preventing the acqui-
sition of good initial values to accelerate optimization. Furthermore, since all model information
stems solely from the input observations, missing data cannot be reconstructed, resulting in a heavy
dependence on complete 3D observations. Daily captures, however, often contain significant in-
formation gaps. 2) Low Accuracy in Observation Alignment: 3D avatar methods typically depend
entirely on parametric proxy models (e.g., 3DMM/FLAME Blanz & Vetter (1999); Li et al. (2017))
for coarse view alignment. The precision of this alignment is critical for effective modeling; For
instance, GaussianAvatars Qian et al. (2024a) even requires the proxy model to provide detailed
meshes for hair. However, these parametric models are susceptible to limitations in representational
capacity (e.g., blendshapes from 3D scan databases), lighting conditions, and data quality, often
failing to produce highly accurate proxy 3D models. Using this proxy without refinement leads to
poor robustness, hindering unified adaptation to diverse data sources (e.g., light fields, smartphones,
DSLR cameras). 3) Inadequate Handling of Variable-Length Data: Optimization-based 3D avatar
methods typically require input data of a minimum specific length (typically at least 30 seconds at
25fps). Insufficient data often leads to modeling failure, resulting in severely limited capability to
process few-shot data (e.g., 1 frame, 4 frames). Meanwhile, recently proposed feedforward-style
methods Kirschstein et al. (2025); He et al. (2025) are usually designed for fixed-length inputs for
training convenience. For instance, LAM He et al. (2025) can only process single-frame input, and
Avat3r Kirschstein et al. (2025) is fixed to handling exactly 4 frames. However, real-world data can
consist of any arbitrary number of frames. The inability to process inputs of variable lengths will
result in wasted valuable observation data, consequently limiting modeling quality.

To pursue data-efficient, high-quality, and fast 3D avatar reconstruction, we propose FastAvatar. It
enables direct feedforward reconstruction of animatable avatars within seconds from arbitrary-length
input frames and can incrementally leverage additional observation data. The core of FastAvatar is
a Large Gaussian Reconstruction Transformer (LGRT). It can align and aggregate variable-length
facial inputs based on head pose and camera pose, then generate high-quality Gaussian model groups
using coarse 3D positional prompts. Finally, these groups can be flexibly fused into a single 3DGS
avatar model according to quality requirements and computational resources. Notably, compared to
LAM He et al. (2025) and Avat3r Kirschstein et al. (2025), FastAvatar handles variable-length obser-
vation data with greater model flexibility and higher data utilization efficiency. Unlike VGGT Wang
et al. (2025a), FastAvatar is capable of directly generating 3DGS avatars and can achieve granular
3D model aggregation. Benefiting from the successful architecture of VGGT, LGRT is designed as
a variant of the VGGT structure. We replace the unstable Dense Prediction Transformer (DPT) Ran-
ftl et al. (2021) with an MLP that directly predicts canonical 3DGS models, while adopting 3D
parametric model (e.g., FLAME) mesh vertices as positional prompts for the output. These im-
provements maximize adaptability for the prediction of the 3DGS avatar. Instead of relying solely
on single camera pose encoding, 3D avatar reconstruction demands higher requirements for input
data alignment. Therefore, we additionally incorporate expression coefficients and head pose as
positional encoding for input observations, enabling more precise cross-frame information aggrega-
tion. Critically, we propose a landmark tracking loss and sliced fusion loss to efficiently supervise
the model for enhanced aggregation accuracy while enabling incremental 3DGS models fusion. In-
tegrating these key designs, our model pioneers incremental 3D avatar reconstruction, meaning it
can continuously ingest new observational data to progressively refine modeling quality.

Extensive experiments demonstrate that our model achieves highly competitive 3D reconstruction
quality compared to state-of-the-art methods. It uniquely accomplishes incremental 3D avatar recon-
struction, currently unattainable by existing approaches, and holds promise for delivering favorable
solutions in the quality-speed trade-off paradigm.
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2 RELATED WORK

2.1 3D-BASED HEAD AVATAR RECONSTRUCTION

FLAME-based Li et al. (2017); Feng et al. (2021); Daněček et al. (2022); Ma et al. (2024); Cudeiro
et al. (2019) techniques utilize a parametric model in head reconstruction, allowing for effective
expression control but struggle to represent details (e.g., eyes, teeth) and limited to single-view.
Since neural radiance fields have demonstrated strong ability to synthesis photo-realistic images,
some method Zielonka et al. (2023); Shao et al. (2023); Athar et al. (2023); Müller et al. (2022)
have adopted NeRF Mildenhall et al. (2021) for head reconstruction, which perform higher fidelity,
particularly in modeling fine-scale details like hair. However, NeRF-based approaches Athar et al.
(2022); Guo et al. (2021); Liu et al. (2022) often suffer from a significant issue with head rendering
speed limitations and extensive training data. Recently, 3DGS Kerbl et al. (2023) has demonstrated
superior performance surpassing NeRF in both novel view synthesis quality and rendering speed.
Approaches Qian et al. (2024a); Chen et al. (2024b); Xu et al. (2024); Wang et al. (2025b) gener-
ate photorealistic head avatars that allow full control over expressions and poses using multi-view
videos. Another line of research places explicit emphasis on identity preservation Gerogiannis et al.
(2025); Zheng et al. (2025); Zielonka et al. (2025). Despite 3DGS’s impressive performance, it
requires multi-frame data for identity-specific training and lacks flexibility, necessitating separate
models for single-view and multi-view scenarios. In contrast, our FastAvatar achieves ultra-fast 3D
head avatar reconstruction with a unified model.

2.2 FEED-FORWARD RECONSTRUCTION MODEL

Traditionally, 3D reconstruction and view synthesis, depending on optimization-based approaches
such as Structure-from-Motion Schonberger & Frahm (2016) and Multi-View Stereo Schönberger
et al. (2016), are often computationally intensive, slow to converge, and reliant on precisely cali-
brated dataset, limiting their applications in real-world scenarios. Recently, series of research Wang
et al. (2024); Chen et al. (2024a); Liu et al. (2024); Ye et al. (2024); Hong et al. (2023); Charatan
et al. (2024); Szymanowicz et al. (2024); Tang et al. (2024); Jin et al. (2024); Zhang et al. (2024a);
Jiang et al. (2025) initiate a new research paradigm termed Feed-forward 3D reconstruction model.
DUSt3R Wang et al. (2024) introduces a method for dense and unconstrained stereo 3D reconstruc-
tion, operating without prior camera calibration or viewpoint poses. VGGT Wang et al. (2025a)
uses a large feed-forward transformer to effectively predict all key 3D attributes from a single im-
age or multiple images. While feed-forward networks excel in generic 3D reconstruction, their
application to 3D head avatar reconstruction is still nascent and warrants systematic exploration.
LAM He et al. (2025) introduces a feed-forward framework that reconstructs an animatable gaus-
sian head from a single image, allowing animation and rendering without additional post-processing.
Avat3r Kirschstein et al. (2025) regresses animatable 3D head avatar from just a few input images,
reducing compute requirements during inference. A key challenge in Feed-forward Head Recon-
struction Model is the absence of a unified framework to handle diverse real-world inputs, includ-
ing monocular videos, sparse multi-view captures. To address this gap, we propose a VGGT-style
transformer architecture to jointly process different observation resource, achieving state-of-the-art
performance.

3 METHODOLOGY

Daily observations are diverse and varied, such as single selfies, multi-angle selfies, video vlogs, etc.
In summary, they are variable-length. Existing optimization-based 3D Avatar methods Kirschstein
et al. (2025); Chen et al. (2024b); Qian et al. (2024a) cannot effectively handle overly short data
(typically a single image). FastAvatar was specifically designed to address this scenario.

3.1 PROBLEM DEFINITION AND NOTATION

FastAvatar G(·) is a feed-forward avatar reconstruction framework designed to take any number of
input observations and output a high-quality animatable 3DGS avatar:

A ← G(I, π, zexp, zpose), (1)

3
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Figure 2: The core of FastAvatar is a Large Gaussian Reconstruction Transformer (LGRT), which
can flexibly process input data with varying expressions, poses, and camera angles, aggregating
them into a high-precision 3DGS avatar model. This capability is enabled by several key designs:
the interleaving of global attention and frame attention to register complex input data while encod-
ing 3D positional prompts; multi-granular positional information encoding; and the use of landmark
tracking loss and sliced fusion loss, allowing the model to smoothly and incrementally fuse addi-
tional input data.

where (Ii)
N
i=1 denotes an unordered sequence of N RGB observations, with each Ii ∈ R3×H×W .

N does not exceed the maximum GPU capacity, typically 1 ∼ 16 frames. The corresponding facial
expression and head pose are represented by zexp and zpose, respectively. π denotes the camera
parameters and poses. The output 3D Gaussian avatar representation g, including color c ∈ R3,
opacity o ∈ R, per-axis scale factors s ∈ R, rotation R ∈ R4, importance score m ∈ R, and points
offest O ∈ R3, can be driven by any desired expression and pose from an arbitrary viewpoint using
a differentiable rasterizer Ψ Kerbl et al. (2023).

3.2 LARGE GAUSSIAN RECONSTRUCTION TRANSFORMER

The core of FastAvatar is a Large Gaussian Reconstruction Transformer (LGRT). The LGRT is re-
designed specifically for 3D avatar tasks, which demand finer granularity compared to SLAM-based
environmental reconstruction. Moreover, the human subjects captured for 3D avatars cannot remain
perfectly static and often exhibit rich dynamic characteristics (i.e., expressions, poses, etc.). The
LGRT comprises 6 stages: facial feature extraction, face encoding, face aggregation and registra-
tion, 3DGS attribute generation, canonical 3DGS model fusion, and 3DGS rasterization.

Face Encoding FastAvatar encodes each face observation Ii to a set of token xi through DI-
NOv2 Oquab et al. (2023). These tokens vary from head poses, facial expressions to camera poses,
and undifferentiated aggregation would lead to over-smoothing and aliasing effects. Therefore, Fas-
tAvatar introduces three critical encodings to label distinct facial tokens, facilitating subsequent
aggregation. This process can be formulated as:

hi = U (xi,MLP([πi, z
exp
i , zposei ])) , (2)

where U(·) denotes concatenation along the dimensional axis. ht denotes the encoded face to-
kens. πi, z

pose
i , and zexpi represent the camera pose, head pose, and expression coefficients of xi

respectively. These are processed through a lightweight MLP layer for feature alignment and dimen-
sionality alignment. We obtain rough initial estimates of the three parameters through multi-view
FLAME tracking.

Face Aggregation and Registration The core enabling component for constructing a dense 3D
avatar from variable-length input data lies in the aggregation and registration of face tokens. The
purpose of aggregation is to extract intra-token features while incorporating initialized 3D positional

4
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prompts. These positional prompts provide the LGRT with initial 3DGS positions, thereby accel-
erating 3D reconstruction. As illustrated in Figure 2, aggregation is implemented through frame
attention, composed of dual-stream DiT blocks Labs et al. (2025); Labs (2024), which aggregates
intra-token information while fusing 3D positional prompts. Face token registration serves as the
fundamental operation for fusing multiple inputs. In Figure 2, this is achieved via global attention,
which aligns encoded face tokens to achieve 3D spatial registration and fusion. To enhance quality
and accelerate convergence, we initialize our frame attention using weights from LAM’s blocks.
Global attention and frame attention are interleaved in a cascaded architecture, with a total of L
pairs employed to process face tokens, ultimately yielding tokens suitable for generating the 3DGS
representation {ĥ0, · · · , ĥN}.

Canonical 3DGS Model Fusion Following the aggregation and registration through global atten-
tion and frame attention, we obtain processed tokens ĥi corresponding to each frame. These features
are then fed into a GS Head (i.e., a two-layer MLP with shared weights across tokens) to predict the
target 3DGS attributes gi. The point cloud gei derived by driving gi through Linear Blend Skinning
(LBS) expression deformation is then rendered via Gaussian splatting to obtain the reconstructed
face Îi. Our approach extends beyond gi; we further aggregate all g0, · · · , gN :

gf = U(g1, g2, · · · , gN ). (3)

The fused gf integrates unique information from all perspectives (e.g., multi-view observations, di-
verse expressions), achieving optimal reconstruction quality. However, naive fusion would cause
point cloud misalignment, ghosting artifacts, and color discrepancies. To address this, we intro-
duce Landmark Tracking Loss and Sliced Fusion Loss to explicitly encourage proper alignment of
Gaussian point clouds during aggregation and registration stages.

3DGS Pruning Although the 3DGS method achieves high-quality and real-time rendering, it of-
ten suffers from redundant memory consumption due to its explicit structure and tends to be more
prone to overfitting because of the lack of smoothness bias in the neural network. This is especially
problematic in our incremental reconstruction scenarios, where the number of GS points increases
linearly with the number of input frames, leading to inefficient resource usage and limiting render-
ing speed. To address this, inspired by LP-3DGS Zhang et al. (2024b) and MaskGaussian Liu et al.
(2025) we apply Gumbel-Softmax Jang et al. (2017) to sample one differentiable category, denoted
asMi ∈ {0, 1}. Then we integrate masks directly within the rasterization framework, effectively
decoupling Gaussian presence from attributes such as opacity and shape. This mechanism prunes
over 50% of the GS primitives without degrading reconstruction quality, further improving render-
ing efficiency. To prune redundant 3D Gaussian primitives, we apply an L1 regularization term to
the trainable mask, encouraging it to become sparse, formulated as Lmask = 1

N

∑N
i=1|m|.

3.3 TRAINING STRATEGY

Sliced Fusion Loss To enable the model to take advantage of the richer information provided by
multiple inputs, we introduce Sliced Fusion Loss, allowing G to handle arbitrary numbers of input
frames. Specifically, during training, we randomly sample one frame from the input to obtain a
single frame-wise Gaussian representation gi. In parallel, we randomly select Nsliced frames from
the input, where Nsliced is less than the total number of input frames for memory efficiency, and fuse
them to construct a multi-frame Gaussian representation gsliced. Both gi and gsliced are rendered into
RGB images using the camera parameters, expression coefficients, and head poses of all input and
target frames, and the corresponding losses are computed.

Îi = Ψ(gi, πi, z
exp
i , zposei ) , (4)

Îsliced = Ψ(gsliced, πi, z
exp
i , zposei ) . (5)

The overall loss function consists of two components: one supervises the rendering quality of the
constructed 3D Gaussian head, and the other supervises the combination of frame-wise Gaussian
representations to ensure consistency across frames.

5
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Method 1 View
PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ FPS ↑ Modeling Time (s) ↓

LAM 17.30 0.773 0.149 0.135 125 0.31
MonoGaussianAvata 11.83 0.631 0.620 0.432 <10 >100
GaussianAvatars 16.35 0.740 0.332 0.299 <10 >100
FastAvatar 20.08 0.860 0.143 0.116 240.17 1.33

Method 4 Views
PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ FPS ↑ Modeling Time (s) ↓

LAM* 16.69 0.743 0.204 0.167 45 0.39
MonoGaussianAvatar 12.71 0.798 0.437 0.368 <10 >100
GaussianAvatars 17.52 0.802 0.340 0.278 <10 >100
FastAvatar 22.12 0.880 0.094 0.098 101.62 4.22

Method 8 Views
PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ FPS ↑ Modeling Time (s) ↓

LAM* 16.59 0.718 0.235 0.206 24 0.43
MonoGaussianAvatar 13.11 0.650 0.493 0.298 <10 >100
GaussianAvatars 20.35 0.820 0.320 0.252 <10 >100
FastAvatar 22.19 0.880 0.093 0.097 52.28 8.56

Method 16 Views
PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ FPS ↑ Modeling Time (s) ↓

LAM* 16.49 0.697 0.265 0.238 13 0.69
MonoGaussianAvatar 15.81 0.721 0.406 0.202 <10 >100
GaussianAvatars 21.48 0.873 0.281 0.185 <10 >100
FastAvatar 22.29 0.881 0.092 0.095 17.65 26.06

Table 1: The quantitative comparison among FastAvatar, LAM He et al. (2025), MonoGaussianA-
vatar Chen et al. (2024b), and GaussianAvatars Qian et al. (2024a) includes 3 critical metrics: Re-
construction quality (PSNR, SSIM, LPIPS); Modeling time: Duration required to reconstruct the
3DGS model; Inference speed: Animation rendering FPS of the output 3DGS model.

Pixel Losses The rendered RGB images are supervised using photometric losses against the cor-
responding ground truth target images:

Lrgb =
∥∥∥Îi, Igt∥∥∥

1
+
∥∥∥Îsliced, I

gt
∥∥∥
1
, (6)

Lssim = SSIM(Îi, I
gt) + SSIM(Îsliced, I

gt), (7)
We also incorporate perceptual losses to encourage the emergence of more high-frequency details:

Llpips = LPIPS(Îi, I
gt) + LPIPS(Îsliced, I

gt). (8)

Landmark Tracking Loss Unlike novel view synthesis, canonical space registration is super-
vised directly on the input frames. The landmark tracking loss is introduced to encourage precise
localization of facial landmarks throughout the input images:

Ltrack =

M∑
j=1

N∑
i=1

∥yj,i − ŷj,i∥ . (9)

Our total loss is defined as follows:
L = λ1Lrgb + λ2Lssim + λ3Llpips + λ4Ltrack + λ5Lmask, (10)

with λ1 = 0.8, λ2 = 0.1, λ3 = 0.1, λ4 = 0.1 and λ5 = 0.0005.

4 EXPERIMENTS

4.1 TRAINING

We train FastAvatar on a multi-task dataset derived from NeRSemble Kirschstein et al. (2023), which
contains multi-person, multi-camera videos with a wide range of facial expressions. To encourage

6
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adaptability to diverse input settings, the dataset includes both monocular and multi-view subsets.
Input-output pairs are constructed by sampling 16 frames each, either from a single video or from 12
camera views of the same subject. For each pair, a random subset of 1 to 16 input frames is further
selected, enabling the model to robustly handle scenarios with sparse or varying numbers of input
frames—such as real-world recordings with incomplete or irregular camera captures.

4.2 EXPERIMENTAL SETUPS

Task. We evaluate the model’s ability to generate a 3D head avatar for unseen subjects from vari-
ous types of input, including a single image, an unordered and arbitrary number of monocular video
frames, and multi-view frames.

Metrics. We employ three paired-image metrics to measure the quality of individual rendered
images: Peak Signal-to-Noise (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS). We also evaluate identity preservation by computing similarity
using ArcFace Deng et al. (2019) features.

Baselines. We compare FastAvatar with recent state-of-the-art systems for 3D head avatar gener-
ation across various tasks, including reconstruction from a single image, monocular video frames
and multi-view frames. LAM He et al. (2025) A model that generates one-shot animatable Gaus-
sian heads using a canonical Transformer with point-cloud representation and multi-scale cross-
attention, enabling real-time, expression-consistent avatar animation and editing from a single im-
age. Avat3r Kirschstein et al. (2025) A system for regressing animatable 3D head avatars from
limited multi-view images by combining large reconstruction and foundation models with cross-
attention layers to effectively model 3D facial dynamics and generalize across diverse data. Mono-
GaussianAvatar Chen et al. (2024b) and GaussianAvatar Qian et al. (2024a) are two representative
optimization-based 3D Avatar methods, both of which use FLAME as a proxy 3D model, similar to
ours.

We conduct all comparison experiments on the same 48GB Nvidia RTX 4090 GPU. To ensure a
fair comparison, we slightly modify the LAM renderer for single-shot input, enabling it to fuse
information from multiple frames like FastAvatar, while keeping all other components consistent
with the official repository. We retain the original model weights and confirm that its performance
faithfully reflects the official version. We refer to this variant as LAM* in the following. Notably,
with only 1 input frame, LAM* automatically reverts to the official LAM, which is designed for
single-frame inputs, ensuring fair comparison.

4.3 QUALITATIVE COMPARISON

Comparative results against LAM, MonoGaussian, and GaussianAvatar are presented in Figure 3.
We evaluate 4 distinct input configurations (1, 4, 8, and 16 views) by progressively increasing the
number of input frames. Key observations indicate that while LAM yields performance roughly on
par under single-view conditions, it fails to benefit from additional input views due to the lack of
registration. Conversely, optimization-based methods exhibit significant performance degradation
with sparse inputs (e.g., 1 view), though their reconstruction quality improves progressively as more
views become available. FastAvatar consistently outperforms the baseline across all view settings
(1∼16 views), while further enhancing its ability to capture fine-grained details—such as teeth gaps,
wrinkles, and acne—as the number of views increases.

4.4 QUANTITATIVE COMPARISON

Table 1 presents a quantitative comparison of the four methods. All approaches demonstrate sub-
stantial improvements in reconstruction metrics with increasing input frames, with both MonoGaus-
sianAvatar and GaussianAvatar exhibiting gains in both subjective assessments (i.e., LPIPS) and
objective metrics (i.e., PSNR, SSIM). This reaffirms the critical importance of richer input data for
high-fidelity reconstruction. However, LAM shows an inverse relationship: as its input views in-
crease, quantitative performance degrades, which can also be illustrated in Figure 4. Although LAM
achieves impressive visual quality with single image (LPIPS: 0.149), its generative bias introduces
pose and expression artifacts that compromise objective measurements. FastAvatar achieves highly

7
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Figure 3: We benchmark FastAvatar against representative optimization-based methods (Mono-
Gaussian Avatar Chen et al. (2024b), GaussianAvatar Qian et al. (2024a)) and feedforward ap-
proaches (LAM He et al. (2025)). Our results demonstrate the performance evolution across meth-
ods as the number of input views (referring to input images number) increases. Please zoom in for a
better view.

competitive growth across both subjective and objective dimensions, validating our core hypothesis.
Through architectural and training innovations, FastAvatar establishes an optimal equilibrium be-
tween generative capability (hallucinating plausible details under sparse inputs) and reconstruction
fidelity (strict adherence to observed data given sufficient views).

4.5 INCREMENTAL RECONSTRUCTION

FastAvatar enables incremental improvement by accepting input sequences of any length and order.
As more observations are added, the reconstruction quality continues to improve. In contrast, exist-
ing methods often require a fixed number of input frames, which reduces flexibility and may result
in data loss. FastAvatar’s incremental design thus ensures both versatility and efficient data usage.

As illustrated in Figure 4, our method achieves superior expressiveness and rendering fidelity in
avatar generation compared to the baselines, and demonstrates robust performance even for subjects
wearing accessories.

Moreover, increasing the number of input views further improves the reconstruction of fine-grained
details, such as hair and teeth gaps. This incremental reconstruction allows the model to overcome
the limitations of restricted viewpoints by leveraging more informative input frames—a capability
that is difficult to achieve for models with fixed input forms. For example, in Figure 4, the character’s
left-ear earring is not sufficiently observed with a small number of input views, but it is reliably
reconstructed as the number of views increases.

Unlike the sparse and randomly sampled data used in our main experiments, real-world sequences
are highly continuous. Processing all frames with Global Attention imposes prohibitive computa-
tional and memory costs. A naive solution is to uniformly sample 16 frames, but this risks missing
important information present in the remaining frames. Inspired by FramePack Zhang et al. (2025),
we retain the 16 uniformly sampled frames as sparse inputs and compress all remaining frames into
an aggregated token representation, which is then treated as an additional input. This preserves com-
plementary details while keeping computation tractable, enabling FastAvatar to process hundreds of
frames in a single feed-forward pass. Figure 5 shows that adding the compressed frames improves
fine-grained details.
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Driver

1 View

4 View

9 View

16 View

FastAvatar LAM*

Figure 4: Reconstruction quality as the number of input observations increases. More observations
improve reconstruction quality.

GT 16 View 512 View

Figure 5: Performance on longer input sequences. Starting from strong reconstructions using only
the 16 sparse input frames, incorporating the compressed additional frames further enhances fine-
grained details (e.g., the oral cavity, which is absent in most frames). While uniform sampling fails
to achieve this improvement, feeding all frames leads to OOM.

4.6 MULTI-VIEW OBSERVATIONS RECONSTRUCTION

To further evaluate FastAvatar’s performance on the Multi-view Observations Reconstruction task,
we create multi-view few-shot 3D head avatars for subjects from the Ava256 Martinez et al. (2024)
dataset, which was not used during training. We compare our results with those of the state-of-
the-art method Avat3r Kirschstein et al. (2025) and use the results provided in its original paper to
ensure a fair comparison (since its implementation is not publicly available, we ensure fairness by
directly using results from the Avat3r paper). The qualitative results are shown in Figure 6. Note that
we only used images from Ava256 for tracking and to obtain FLAME parameters, without utilizing
the provided informed encodings. Nevertheless, FastAvatar still achieves highly competitive results
and benefits from additional multi-view inputs, producing more detailed reconstructions. Close
inspection reveals that Avat3r fails to preserve facial identity accurately, reconstructing consistently
wider facial structures than observed in source inputs.
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GPAvatar Avat3r Ours 16-in GTOurs 4-inOurs 1-in Ours 8-in

Figure 6: Visual comparison with Avat3r and GPAvatar Chu et al. (2024). Please zoom in for a
clearer view.

Method 1 View 4 View
L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ # GS (K) ↓ L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ # GS (K) ↓

w/o sliced fusion loss 0.0373 20.47 0.861 0.123 0.158 20.7 0.0345 21.69 0.857 0.131 0.138 82.8
w/o tracking loss 0.0372 20.93 0.863 0.140 0.172 13.0 0.0322 21.64 0.866 0.120 0.128 41.2
w/o global attention 0.0922 15.40 0.760 0.238 0.400 10.3 0.0462 19.49 0.828 0.162 0.270 40.1
w/o GS fusion 0.0379 20.31 0.857 0.136 0.138 12.8 0.0467 18.94 0.838 0.157 0.185 12.5
w/o GS pruning 0.0380 20.32 0.857 0.137 0.144 21.7 0.0322 21.67 0.868 0.112 0.130 86.7
Ours full 0.0379 20.31 0.857 0.136 0.148 12.8 0.0303 21.86 0.871 0.107 0.118 42.8

Method 8 View 16 View
L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ # GS (K) ↓ L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Identity ↓ # GS (K) ↓

w/o sliced fusion loss 0.0386 21.12 0.849 0.144 0.151 165.4 0.0417 20.62 0.839 0.159 0.180 330.5
w/o tracking loss 0.0320 21.61 0.867 0.119 0.124 78.6 0.0322 21.66 0.865 0.123 0.129 164.2
w/o global attention 0.0413 19.97 0.835 0.156 0.223 78.0 0.0405 20.06 0.830 0.167 0.210 155.7
w/o GS fusion 0.0574 17.44 0.823 0.179 0.227 12.5 0.0682 16.25 0.811 0.196 0.259 12.4
w/o GS pruning 0.0326 21.63 0.868 0.110 0.130 173.4 0.0327 21.61 0.867 0.110 0.136 346.8
Ours full 0.0297 21.95 0.871 0.103 0.118 77.0 0.0293 22.04 0.876 0.102 0.118 138.9

Table 2: Ablation studies on key components of FastAvatar. The appendix visualizations are strongly
recommended for better understanding.

4.7 ABLATION STUDY

To validate the effectiveness of each component in our method, we conduct both quantitative and
qualitative ablation studies. The qualitative visualizations are provided in the appendix for space
considerations. As shown in Table 2, Global Attention is crucial for coordinating inter-frame infor-
mation, while GS Fusion aggregates the GS points from each frame into a unified representation.
Sliced Fusion Loss and Tracking Loss supervise GS registration, enforcing structural consistency
and temporal coherence. Without these components, newly introduced frames fail to provide re-
liable information, leading to degraded registration and blurred outputs as the number of frames
increases. Meanwhile, Gaussian Pruning removes redundant primitives, slightly improving per-
formance while substantially accelerating rendering. Together, these mechanisms ensure effective
inter-frame coordination, accurate registration, and efficient rendering.

5 CONCLUSION

In this paper, we present FastAvatar, a feed-forward 3D avatar reconstruction framework capable
of constructing a high-quality animatable 3DGS avatar within seconds. Distinct from existing ap-
proaches, FastAvatar demonstrates a unique capability for incremental avatar reconstruction – flex-
ibly leveraging incoming observations to progressively enhance reconstruction quality. We contend
this represents a promising research trajectory. Three pivotal innovations enable this functional-
ity: Alternating Attention, augmented with fine-grained expression and pose encodings, achieves
high-precision registration of unordered data; The proposed Landmark Tracking Loss and Sliced
Fusion Loss facilitate robust fusion of multiple 3DGS representations for superior modeling fidelity.
Experimental validation confirms FastAvatar’s potential in these dimensions.
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A LLM USAGE

Large Language Models (LLMs) were used solely to assist in refining the manuscript’s language,
improving readability, and ensuring clarity, including sentence rephrasing and grammar checking.
The LLM did not contribute to the research ideas, methodology, experiments, or data analysis.
The authors take full responsibility for the scientific content and confirm that all LLM-assisted text
adheres to ethical guidelines, with no contribution to plagiarism or misconduct.

B ETHICS STATEMENT

The proposed FastAvatar framework follows the same data assumptions and usage boundaries as
existing 3D avatar reconstruction and neural rendering methods. It does not introduce new mecha-
nisms that lower the barrier to unauthorized identity reconstruction, nor does it relax requirements
on input data quality. In practice, the method still relies on clean and identity-consistent multi-frame
input, which inherently limits large-scale or covert misuse.

All experiments are conducted on publicly available datasets with appropriate licenses, and no pri-
vate or sensitive data are collected. The intended applications of FastAvatar lie in areas such as
AR/VR telepresence, digital content creation, and human–computer interaction, where user consent
is typically explicit. We emphasize that responsible deployment requires ensuring that the method
is not applied to reconstruct individuals without consent or to generate deceptive or impersonating
content.

C REPRODUCIBILITY

In this section, we provide more implementation details of FastAvatar, including data preparation
and model architecture. Furthermore, our code will be released after the paper is accepted.

C.1 DATA PREPARATION

Our training utilizes the Nersemble dataset. Initially, FLAME tracking is applied to extract FLAME
parameters and camera poses, which serve as inputs for subsequent training stages. From the original
Nersemble data, we extract 521 distinct video clips, and sample the frames at 15 FPS. Cameras
with poor face tracking quality were excluded, remaining 12 cameras. The processed data was
sampled twice to construct the final dataset: first, sampling frames within the same video sequence,
and second, performing random sampling across all shots of the same action sequence. These two
sampling strategies collectively support training the unified task. To enhance the stability of training
and testing, we randomly assign the processed figures’ backgrounds to black, white, or gray. Note
that, to enhance the model’s generative capability, all expression parameters, poses, and related data
used during inference differ from the input data.

Hyperparameter Value

E
nc

od
er

DINOv2 patch size 14× 14
#expression token MLP layers 2
#camera token MLP layers 2
Expression Token MLP activation GELU
Camera Token MLP activation GELU
Output dimension 1024
Input image resolution 504× 504

A
A

#Frame Attn Layers 10
#Global Attn Layers 10
Hidden dimension 1024
Order [Global, Frame]

Table 3: Hyperparameters. Where AA represents Alternation Attention
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Noise L1↓ PSNR↑ SSIM↑ LPIPS↓ Identity↓
1 px 0.0264 22.50 0.873 0.096 0.100
4 px 0.0268 22.38 0.872 0.098 0.099
8 px 0.0273 22.22 0.870 0.098 0.103
16 px 0.0277 22.10 0.869 0.099 0.102
32 px 0.0280 22.02 0.869 0.099 0.105
Ours 0.0263 22.50 0.872 0.096 0.099

Table 4: Ablation studies on FLAME tracking. We evaluate the robustness of FastAvatar under
varying levels of landmark perturbation during FLAME tracking.

The accuracy of FLAME tracking primarily depends on the precision of detected facial landmarks,
as the FLAME parameters are typically estimated by optimizing the model to fit these landmarks.
However, the reliability of such proxy models (e.g., FLAME and other 3DMMs) is inherently con-
strained by factors such as limited representational capacity and sensitivity to landmark quality. To
assess how these factors affect our method, we include an additional ablation experiment that in-
jects controlled noise into the facial landmarks. The results (Table 4) demonstrate that FastAvatar
remains robust under reasonable perturbations, indicating that strict accuracy in FLAME tracking is
not required.

C.2 TRAINING

In table 3, we present the most important hyperparameters for training FastAvatar. We train the
model by optimizing the training loss with the AdamW optimizer for 150K iterations. We use a
cosine learning rate scheduler with learning rate of 4e-5. The training runs on 8 H100 GPUs over
14 days. The substantial accumulation of Gaussian points across multiple input frames leads to
high GPU memory consumption during training. To address this, we adopt bfloat16 precision and
gradient checkpointing for improved memory and computational efficiency.

D MORE RESULTS

In this section, we present additional results of FastAvatar, including its performance on a broader
set of video sequences and its generalization to real-world daily-captured data.

FastAvatarGT Arc2Avatar LAMSynShot
Figure 7: Qualitative results on the INSTA dataset. LPIPS scores: Ours (0.1332), LAM (0.1479),
Arc2Avatar (0.4585), SynShot (0.1523). Identity scores: Ours (0.076), LAM (0.124), Arc2Avatar
(0.411), SynShot (0.115).

More Comparison We provide additional qualitative results comparing FastAvatar and baseline
models in both self-reenactment and cross-reenactment settings. As shown in Figure 15, Figure 16,
and Figure 14. FastAvatar outperforms the baselines. Optimization-based 3D avatar methods fail
to achieve satisfactory results with sparse inputs, while LAM often exhibits unrealistic details and
significant pose inaccuracies. The advantage of FastAvatar becomes even more evident in the cross-
reenactment setting, where the subject’s identity and camera pose exhibit large discrepancies. We
further evaluate FastAvatar against additional competitive methods. The results are presented in
Figure 7 and Figure 8.

Generalization to Wide-Range Viewpoints The Nersemble training set contains only 12 con-
strained camera views. To evaluate the robustness of our method, we test it on a much wider range
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GT HeadGap LAM FastAvatarArc2Avatar
Figure 8: Qualitative results on the Nersemble dataset. LPIPS scores: Ours (0.1267), LAM (0.1608),
Arc2Avatar (0.4665), HeadGap (0.1592). Identity scores: Ours (0.070), LAM (0.097), Arc2Avatar
(0.308), HeadGap (0.101).

GT Fullw/o sliced fusion loss w/o tracking loss w/o Global Attn w/o GS Fusion w/o GS Pruning

Figure 9: Comparison of visual effects of model reconstruction after removing the key components.

of viewpoints. As shown in Figure 12, the model maintains high-fidelity reconstruction across all
novel views, demonstrating strong wide-range generalization. For comparison, we include the re-
sults of LAM in Figure 13. The results demonstrate that FastAvatar outperforms the state-of-the-art
across a wide range of viewpoints.

Ablation Study We further highlight the role of the key components in incremental reconstruc-
tion. As illustrated in Figure 9, removing these components prevents fine details from being properly
aligned, leading to noticeable artifacts and blurred regions. Although the landmark tracking loss
only supervises 68 facial landmark points, it still provides strong guidance for Gaussian registration,
effectively assisting the model in aligning new frames during incremental updates. Together with
the Sliced Fusion Loss, it ensures that additional observations can be accurately fused, enabling
consistent refinement of the reconstructed avatar. Global Attention enables the model to leverage
inter-frame dependencies, integrating complementary features from multiple frames; without it, in-
formation remains localized, and cross-frame consistency cannot be achieved. GS Fusion consol-
idates per-frame Gaussians into a coherent representation, allowing the model to maintain consis-
tency across frames. Finally, Gaussian Pruning removes redundant primitives, slightly improving
performance while significantly accelerating rendering, enabling efficient incremental updates even
for long sequences.

Streaming Incremental Reconstruction FastAvatar is also capable of streaming incremental re-
construction, meaning the model continuously updates and refines the 3DGS representation as new
video frames are received. To achieve this, we adopt a sliding-window approach, where each win-
dow contains 16 frames with a 4-frame overlap for registering incoming frames. Thanks to the
Alternating Attention design, new frames can build upon the Gaussians predicted by the previous
model to produce more informative reconstructions. Figure11 demonstrates this: starting from a
single-view image, as additional views are provided (excluding the test view), reconstruction qual-
ity improves overall, including at previously unseen angles, thus realizing streaming incremental
reconstruction.

Limitations First, our method relies on LBS and FLAME-based encodings to drive 3D head avatar
motion, which limits the representation of complex facial muscle dynamics. As a result, the model
has difficulty reproducing fine-grained muscle-dependent details such as wrinkles and also cannot
accurately capture eye-gaze movements, often defaulting to an average direction. Furthermore,
because the Gaussians are anchored to FLAME vertices, the model is unable to represent structures
outside the FLAME topology, including the tongue. Figure 10 presents representative failure cases.
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Figure 10: Typical failure cases: FastAvatar relying on LBS and FLAME-based encodings, struggles
with complex facial muscle dynamics, fine-grained details (e.g., wrinkles), eye-gaze movements,
and structures outside the FLAME topology such as the tongue.

GT +1 Chunk +2 Chunk +3 Chunk +4 Chunk +5 Chunk

Figure 11: As the streaming input is progressively incorporated, the reconstruction of the oral cav-
ity—largely invisible in most chunks—gradually improves while structural consistency is main-
tained in other regions, enabling incremental reconstruction.

0° +15° +30° +45°-15°-30°-45°

0°

-10°

+10°

Figure 12: Generalization to wide-range viewpoints. FastAvatar achieves high-fidelity reconstruc-
tion across 14 novel viewpoints that are entirely outside the training set.
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Figure 13: The performance of LAM on wide-range viewpoints.

FastAvatar
1 View

Input/
Driver

MonoGaussian
Avatar

FastAvatar
4 View

FastAvatar
8 View

FastAvatar
16 View

LAM

Figure 14: Additional Comparisons with Baseline Methods (cross-reenactment).
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LAM

MonoGaussianAvatar

GaussianAvatars

FastAvatar

GT

Figure 15: Additional Comparisons with Baseline Methods (self-reenactment part 1).
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LAM

MonoGaussianAvatar

GaussianAvatars

FastAvatar

GT

Figure 16: Additional Comparisons with Baseline Methods (self-reenactment part 2).
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