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Abstract

Various datasets have been proposed to pro-
mote the development of Table Question An-
swering (TQA) technique. However, the prob-
lem setting of existing TQA benchmarks suf-
fers from two limitations. First, they directly
provide TQA models with explicit table struc-
tures where row headers and column headers
of the table are explicitly annotated during in-
ference. Second, they only consider tables of
limited types and ignore other tables especially
complex tables. Such simplified problem set-
ting cannot cover practical scenarios where
TQA models need to process tables without
header annotations in the inference phase or ta-
bles of different types. To address this issue, we
construct a new TQA dataset with implicit and
multi-type table structures, named IM-TQA,
which not only requires the model to answer
questions without header annotations before-
hand but also to handle multi-type tables includ-
ing previously neglected complex tables. We
investigate the performance of recent methods
on our dataset and find that existing methods
struggle in processing implicit and multi-type
table structures. Correspondingly, we propose
an RGCN-RCI framework outperforming re-
cent baselines. We will release our dataset to
facilitate future research.

1 Introduction

To gain useful information from tables, Table Ques-
tion Answering (TQA) technique was developed
and used to answer natural language questions
about tables (Zheng et al., 2022; Hui et al., 2022;
Herzig et al., 2020). Researchers also proposed
various TQA datasets which aim at different sce-
narios (Zhong et al., 2017; Iyyer et al., 2017; Chen
et al., 2020). As the performance of TQA models
continues to improve, they have been widely used
in the intelligent data analysis tools, e.g., Power
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Though previous datasets have promoted the de-
velopment of TQA technique, the problem setting
of existing benchmarks suffers from two limita-
tions. First, in the depth of table structure un-
derstanding, existing benchmarks only evalu-
ate the performance of TQA models on tables
with explicit table structures, which means dur-
ing inference locations and directions of headers
are annotated and treated as model input. For exam-
ple, Text2SQL benchmarks offer annotated column
headers (Zhong et al., 2017; Yu et al., 2018) and
recent hierarchical table datasets also contain hi-
erarchical header annotations (Katsis et al., 2022;
Cheng et al., 2022), which are available at inference
time. This setting artificially lowers the difficulty
of the task. Nevertheless, in practical scenarios,
TQA model may encounter plenty of tables with-
out labeled headers. Manually annotating headers
for these tables is prohibitively expensive and time-
consuming. As a result, a benchmark is needed to
evaluate the performance of TQA models on tables
with implicit table structures. Here, “implicit table
structures” represents that the annotations of head-
ers in a table are not available during inference.

"https://powerbi.microsoft.com/en-us/
Zhttps://www.tableau.com/
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Second, in the breadth of supported table
types, existing TQA benchmarks only consider
limited table types and ignore complex tables
with flexible header locations. Previous datasets
mainly focus on vertical or hierarchical tables
whose header cells only locate on the top or left
side (Pasupat and Liang, 2015; Wang et al., 2020b;
Guo et al., 2021; Cheng et al., 2022), as shown in
Figure 1 (a) and (c), but neglect the fact that TQA
model may require handling multi-type tables, es-
pecially complex tables whose header cells may
appear at any position, as illustrated in Figure 1
(d). Complex tables are prevalent in professional
equipment specifications and record sheets, which
are beyond the ability of current TQA systems.

Above analyses show that the problem setting
of previous TQA benchmarks restricts the appli-
cation of TQA models. In this paper, we define
a new problem, table question answering over im-
plicit and multi-type table structures. In this prob-
lem setting, annotations of table headers are not
available during inference and models need to com-
prehend implicit and multi-type table structures to
answer questions. To facilitate the study on this
problem, we build the first Chinese Table Question
Answering dataset with Implicit and Multi-type ta-
ble structures, named IM-TQA, which consists of
1,200 tables and 5,000 questions (Section 3). Our
dataset includes tables of four types from different
domains, especially complex tables neglected by
published studies. We annotate different tables not
only with questions of various types and their an-
swer cells, but also with row headers and column
headers.

IM-TQA presents a strong challenge to previ-
ous TQA models. Because of the inability to un-
derstand implicit and diverse table structures, the
state-of-the-art baseline RCI (Katsis et al., 2022)
only achieves 49.6% overall accuracy and 23.8%
accuracy on complex tables. To improve the perfor-
mance of RCI, we propose an RGCN-RCI frame-
work (Section 4). Specifically, this framework
solves the new problem in two stages: (1) Table
is modeled as graph and an RGCN (Schlichtkrull
et al., 2017) is used to comprehend table structure
and predict table header cells. (2) Based on pre-
dictions of RGCN, header information is merged
into the text sequence representation of each row or
column, which helps RCI model to predict whether
a row or column contains the answer or not. Our
framework shows high effectiveness and improves

the accuracy on all tables and complex tables by
3.8% and 8.2% respectively, proving the signif-
icance of understanding implicit and multi-type
table structures. To summarize, we conclude our
contributions as follows:

* Based on the practical demand for answer-
ing questions over various tables under the
circumstance that header annotations are not
available during inference, we define a new
problem, table question answering over im-
plicit and multi-type table structures, which is
complementary to traditional TQA problem,
i.e., TQA over explicit and limited (usually
single-type) table structures.

* We construct and publicly release a new
dataset, IM-TQA, to promote the research on
this problem. Our dataset includes tables of
four different types with implicit structures,
especially complex tables ignored by former
benchmarks.

* We investigate the performance of existing
methods on our dataset and propose an RGCN-
RCI framework which outperforms state-of-
the-art baselines on all table types.

2 Problem Statement

In this section, we define the problem of table ques-
tion answering over implicit and multi-type table
structures. A table consists of multiple cells. A
table ¢ can be defined as t = {P, R, V}, where P,
R and V represents the set of position information,
functional roles and values of cells in table ¢ respec-
tively. Table cells can be categorized into different
types according to their functional roles, e.g., some
cells are column headers and others are data cells.

Under the setting of traditional TQA problem, ta-
ble headers are explicitly provided in the inference
phase (Zhong et al., 2017; Yu et al., 2018) or can
be easily obtained by heuristic methods designed
for specific table type (Cheng et al., 2022; Katsis
et al., 2022). In this setting, cell functional roles
R are directly provided for the model. Thus, the
model f(-) outputs answer y given a natural lan-
guage question ¢, i.e., y = f(q,t) = f(¢,P,R, V).
However, in the setting of real applications where
the model may need process implicit and multi-
type table structures, functional roles R are not
available in advance. Thus, TQA over implicit and
multi-type table structures can be formalized as:



y = f(g,t) = f(¢q,P, V). This problem setting
poses a great challenge to existing methods. Un-
fortunately, none of previous benchmarks serves
as testbed for this problem. To fill the gap, we
build IM-TQA, which includes multi-type tables
and requires understanding implicit table structures.
Compared with previous benchmarks, the improve-
ments of IM-TQA are demonstrated in Figure 2.
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Figure 2: The improvements of IM-TQA compared with
previous benchmarks.

3 Dataset Construction and Analysis

In this section, we first introduce table types consid-
ered in our dataset, and then elaborate the dataset
construction procedure consisting of 4 steps. We
recruit 10 professional annotators and provide them
with sufficient instruction. The dataset construc-
tion totally costs 1,200 working hours. The ethical
considerations will be discussed in the Section 9.

3.1 Considered Table Types

As shown in Figure 1, we divide tables into 4
types according to their layout and header loca-
tions, which is in line with previous work (Wang
et al., 2021; Ghasemi-Gol and Szekely, 2018) with
complex table as an important complement. More
complex table examples are shown in Appendix D.
Vertical Table Table data is arranged in the vertical
direction, with the first row as column headers and
other rows as data tuples.

Horizontal Table Table data is arranged in the
horizontal direction, with the first column as row
headers and other columns as data tuples.
Hierarchical Table Table data is arranged in both
vertical and horizontal directions, with headers ex-
hibiting a multi-level hierarchical structure.
Complex Table In tables of above 3 types, header
cells locate on the top or left side. But in complex
tables, headers may locate at any position and can
be mixed with data cells, as depicted in Figure 1
(d). Such tabular structures often appear in profes-
sional equipment specifications and record sheets,
presenting a great challenge to existing methods.
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Figure 3: An example of table storage format and anno-
tations. Cell IDs constitute the layout matrix in (a) and
are indices of cell value list in (b). Cells with same cell
IDs stand for merged cells.

3.2 Table Collection and Storage

To ensure the diversity of table data, we collect ta-
bles from open websites of different domains. Data
sources include company annual reports from dif-
ferent industries* such as manufacturing, medicine
and education; entries from Baidu Encyclopedia®
on science, professional equipment, etc. Tables
in these web pages are extracted to Excel files by
annotators. We correct typos in the collected tables
and filter tables without meaningful data. Finally,
we preserve 300 tables for every table type. Figure
4 shows the distribution of domains.

In order to store various tables, we design a stor-
age method which separately stores table structure
and table content.To store table structure, a cell ID
is assigned to each table cell in the row-first order.
For a table including m rows and n columns, its
cell IDs constitute an m X m matrix representing
cell locations. This layout matrix contains table
structure information such as neighbouring rela-
tions between different cells. As for table content,
every cell value is put into a list in the same row-
first order. Figure 3 (a) and (b) demonstrate the
storage format of the complex table in Figure 1 (d).
The original table can be recovered based on the
layout matrix and the cell value list. Applicable to
4 table types, our storage method does not waste
extra space for merged cells and is also convenient
to annotate header cells and answer cells.

3.3 Cell Type Annotation

In our problem setting, models are required to
understand implicit and multi-type table struc-
tures and recognize functional roles of table cells,
i.e., conducting cell type classification (CTC) task.

*http://eid.csrc.gov.cn/101111/index.html
Shttps://baike.baidu.com/



There are different taxonomies of cell types which
focus on hierarchical tables and cannot be directly
applied to complex tables (Ghasemi Gol et al.,
2019; Dong et al., 2019; Zhang et al., 2021; Dong
et al., 2020). To model different table structures,
we design a new taxonomy of cell types with the
concentration on header cells that are useful for
TQA models to find correct answers. Specifically,
table cells are categorized into 5 types based on
their functional roles.

Row Attribute and Column Attribute Row at-
tribute and column attribute describes table cells
in the same row and in the same column respec-
tively, e.g., yellow cells and red cells in Figure 1.
Attribute cells are only used to describe other cells
and they themselves are not data.

Row Index and Column Index Row index and
column index are individual cells that can be used
to index data records in the row or column orien-
tation, e.g., blue cells and green cells in Figure 1.
Index cells are also meaningful data. For instance,
in vertical tables, cells in the primary key column
are indices of each row.

Pure Data Pure data cells are the core body of a
table. They do not have the function of describing
or indexing other cells and their meanings should
be understood with the help of header cells.

We instructed annotators in distinguishing five
cell types and asked them to annotate the cell ID
lists of four types of header cells, as shown in Fig-
ure 3 (c). The rest of table cells are deemed pure
data cells.

3.4 QA Pairs Construction

After identifying header cells, we asked annotators
to raise questions about data cells and label answer
cell IDs, as illustrated in Figure 3 (d). Note that at-
tribute cells are not allowed to be answers as we do
not consider them as data cells. To avoid the anno-
tation artifacts from the homogeneous patterns of
questions, e.g., always using the same question ex-
pression, annotators were asked to use diverse lan-
guage expressions to raise questions and answers’
locations should change frequently. Annotators
were also encouraged to paraphrase questions to
increase difficulty.

Questions about table are broadly classified into
two types: Lookup and Aggregation (Glass et al.,
2021). Lookup questions require selecting table
cells as answers whereas Aggregation questions
are answered by performing an arithmetic opera-
tion over a subset of table cells, such as Sum(). In

this paper, our primary focus is on Lookup ques-
tions. Besides single-cell answer, annotators were
also allowed to select one row or one column or
arbitrary table cells as answer. Figure 4 shows the
distribution of question types. Four questions were
raised for each vertical and horizontal table, and
five questions for every hierarchical and complex
table.

3.5 Data Review and Checking

In order to guarantee annotation quality, in each
annotation step, all annotators conducted a trial
annotation with 50 samples and the results were
checked. Feedback was given to corresponding
annotators until they fully comprehended the anno-
tation requirements. After all annotation tasks fin-
ished, we and two most experienced annotators per-
formed the final review to fix labeling errors. We in-
spected annotations for the correctness of cell type
annotations and answer cell annotations. We also
inspected the grammar and wording and filtered
questions with obvious mistakes. We checked for
offensive content and identifiers, and replaced iden-
tifying information with mono-directional hashes.
Finally, we preserve 1,200 tables and 5,000 ques-
tions.

3.6 Dataset Analysis and Comparison

Table 1 shows a comprehensive comparison of IM-
TQA to related TQA datasets. The advantages of
the proposed dataset are as follows: (1) It is the first
TQA dataset that contains implicit and multi-type
table structures, especially complex tables ignored
by former datasets. Though AIT-QA (Katsis et al.,
2022) and HiTab (Cheng et al., 2022) include ver-
tical and hierarchical tables, they ignore the other
two table types. (2) It is annotated with cell func-
tional roles and QA pairs, which supports both
CTC and TQA task. Diverse table structures in
our dataset challenge existing CTC and TQA mod-
els. (3) Compared with single-domain datasets like
AIT-QA and WTQ, IM-TQA includes tables from
various domains.

We split dataset based on table structures. If
header cell locations of two tables are exactly same,
we consider they share the same table structure. Ta-
ble structures in the resulted train, valid and test
split do not overlap with each other. Questions of
the same table are assigned to its corresponding
split. Table 2 shows the table number and the ques-
tion number of each split. More basic statistics are
shown in Appendix A.1



Dataset Language | Table source #Tables | #Questions 8 ‘lfn Implicit Ver [’IIL‘;‘(:)rl[eFtI)i,;)[eCom CTg“[s’:fQ YN
NL2SQL (Sun et al., 2020) Chinese |Reports, Spreadsheets 6,029 64,891 11 v - - - - v
Cspider (Min et al., 2019) Chinese | Spider 876 9,691 119 v - - v
DuSQL (Wang et al., 2020b) Chinese | Baidu Baike, Reports, Forums 813 28,762 19.3 v - - v
CHASE (Guo et al., 2021) Chinese |DuSQL, SParC 1,280 17,940 13 v - - v
WTQ (Pasupat and Liang, 2015)  English | Wikipedia 2,108 22,033 10 v - - v
WikiSQL (Zhong et al., 2017) English | Wikipedia 26,521 80,654 11.7 v oo- - v
Spider (Yu et al., 2018) English | College data,WikiSQL 1,020 10,181 13.2 v oo- - v
ToTTo (Parikh et al., 2020) English | Wikipedia 83,141 - - v o o- Vv -
AIT-QA (Katsis et al., 2022) English | Annual reports 116 515 12.9 v o o- v v
HiTab (Cheng et al., 2022) English | Stat. reports, Wiki 3,597 10,672 16.5 - v o - v - - v
IM-TQA (ours) Chinese |Reports, Baidu Encyclopedia, | 1299 500 (131 v |v v v V|V oV
Specification, Record Sheets

Table 1: Comparison of IM-TQA to related TQA datasets. Implicit represents implicit table structures. Ver, Hor,
Hie and Com denotes vertical, horizontal, hierarchical and complex table respectively.

Train Valid Split Total
# table structures 466 40 80 586
# tables 936 111 153 1,200
# questions 3,909 464 627 5,000
# vertical tables 224 31 45 300
# horizontal tables 230 34 36 300
# hierarchical tables 231 35 34 300
# complex tables 251 11 38 300

Table 2: Dataset split statistics

Medicine  Education Environment Professional Equipment Others
11.2% 3.1% 7.8% 11.6% 4.6%

Manufacturing Construction IT Record Sheet
30.7% 4.7% 9.6% 6.8%

q

Single cell One row One column
55.3% 4% 3.2%

Science
9.9%

Several cells
37.5%

Figure 4: Distribution of domains and question types.

4 Method

We proposed the RGCN-RCI framework for IM-
TQA, shown in Figure 5. RGCN-RCI consists
of an RGCN-based Cell Type Classification (CTC)
module and an RCI-based table question answering
(TQA) module. CTC module uses an RGCN to
aggregate neighbour cell information and predict
cell’s functional role. Based on the predictions of
CTC module, TQA module adopts an improved
RCI model to predict whether a row or column
contains the answer or not. The final answer cells
are selected from intersections of positive rows and
positive columns.

4.1 Cell Type Classification Module

We convert the table into a graph, where nodes
are table cells, and neighbouring relations between
cells are edges. The resulted graph is processed by
an RGCN to predict cell types.

Cell Features The initial node representation
vector consists of two parts: hand-crafted feature
and semantic feature extracted from the pre-trained
language model. We select 24 available manual
features from Koci et al. (2016) such as the cell
text length (listed in Appendix A.4). The 24-dim

integer vectors are transformed into 32-dim contin-
uous numerical vectors by a trained auto encoder.
We input cell text to the pre-trained BERT (Devlin
et al., 2019) and take the 768-dim output vector
of the special [CLS| token as semantic feature of
the whole cell. In the end, hand-crafted feature
and semantic feature are concatenated to produce
800-dim initial node representation.

Edges We design four directed edges which
point from each cell to its surrounding neighbour
cells: top to down, left to right, down to top, right
to left. We argue that neighbour cell information is
important for predicting cell functional roles. For
example, most data cells are surrounded by other
data cells. As the table is converted to a heteroge-
neous graph, a relational graph convolutional net-
work (RGCN) (Schlichtkrull et al., 2017) is used to
aggregate neighbour cell information in different
orientations and update node representations. The
updated node representations are input to the final
linear layer to predict cell types.

4.2 Table Question Answering Module

RCI (Glass et al., 2021) is a state-of-the-art TQA
model for Lookup questions. It concatenates a text
sequence representation of each row (or column) to
the question text, and uses a pre-trained language
model like ALBERT (Lan et al., 2020) to predict
whether the row/column contains the answer or not.
Cells on the intersection of positive rows and posi-
tive columns are final answers. When constructing
the textual representation of each row (or column),
RCl incorporates the structure of vertical table. The
row textual representation is the concatenation of
“column header : cell text”, and the column tex-
tual representation is the concatenation of column
header and all cell texts in this column.

However, this representation method does not
fit other types of tables. Due to the inability to
understand implicit and diverse table structures,
this method may include irrelevant headers or miss
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Figure 5: Overview of the proposed framework, with the table of Figure 1 (d) as a running example.

useful header information. For example, when con-
structing the representation of the third row in Fig-
ure 1 (b), RCI treats all cells in the first row as
column headers and gives wrong textual represen-
tation:

Name : Listed height | Tim Duncan : 6 ft 11 in
2.11m) |

T3]

where “:” is a delimiter token between column
header and cell text, and “I” is a delimiter token be-
tween different cells. Any distinctive tokens in the
model vocabulary can serve as delimiters. When
building the representation of the fourth column
in Figure 1 (d), it will lose relevant headers in the
third column and output representation without nec-
essary information:
Major Parameter | 37 | 120+23 V | 700A | 624kV |

To overcome the defect of RCI’s original textual
representation method, we propose a new represen-
tation method with the help of predicted cell types
from CTC module and table layout matrix. Specifi-
cally, when constructing row textual representation,
we locate the nearest column attribute and column
index for every data cell in this row. These col-
umn headers are regarded as relevant headers and
will be concatenated with the corresponding data
cell. Similarly, when constructing column textual
representation, the nearest row attribute and row
index will be concatenated with the corresponding
data cell in this column. Again, let’s take the third
row in Figure 1 (b) as an example. Based on CTC
module’s predicted results and layout matrix, “Tim
Duncan” is the nearest column index to the data
cell “6 ft 11 in (2.11 m)”, and “Name” is a row
attribute irrelevant to cells in the third row. The
new row textual representation is:

Listed height | Tim Duncan : 6 ft 11 in (2.11 m) |

For the fourth column in Figure 1 (d), its new
column representation is:
Major Parameter | On-Load Tap Changer of #1
Transformer - Tap number : 37 | On-Load Tap

Changer of #1 Transformer - Voltage regulation
range : 12023 V |...|

6 9

where is a delimiter token between index cell
and attribute cell. Compared with original textual
representation method, our proposed method helps
RCI to exclude irrelevant headers and include use-
ful header, which contributes to final predictions.

S Experiments

5.1 Cell Type Classification

5.1.1 Experimental Setup

Considered baselines are as follows. Random For-
est (Koci et al., 2016): A random forest classi-
fier is used to conduct CTC task based on man-
ual features. CNN-BERT (Dong et al., 2019): A
method using BERT to extract semantic features
and a CNN to learn spatial correlations between
cells. Bi-LSTM (Ghasemi Gol et al., 2019): Two
bidirectional LSTM are used to capture dependen-
cies between different cells, one observing the se-
quence of cells in each row, and the other observing
the sequence of cells in each column. MLP: Di-
rectly applying a two-layer neural network to all
cell features to predict cell types without neigh-
bour information. RAT (Shaw et al., 2018): The
Relation-Aware-Transformer whose self-attention
mechanism is extended to consider the edge label
between each pair of nodes. In this setting, the ta-
ble can be seen as a directed complete graph where



All tables Complex tables
Model Per-class F1(%)1 Macro | Macro F1- Per-class F1(%)T Macro | Macro F1- | Gap(%)]
PD CA RA CI RI | F1(%)! |header(%)t| PD CA RA CI RI | F1(%)1 | header(%)t
RF 95.0 804 69.4 78.6 65.2|77.7+0.2 73.4 92.0 67.2 64.4 298 53.6|61.4+t14 53.8 16.3
MLP 95.8 79.8 76.2 78.3 72.3]|80.5+0.4 76.7 91.8 64.8 80.0 43.8 54.3|66.9+0.5 60.7 13.6
CNN-BERTY [96.6 87.4 84.4 71.0 75.883.0+£0.8 79.7 93.8 81.0 86.6 33.4 58.8(70.7t1.2 65.0 12.3
Bi-LSTM 97.2 914 874 79.0 79.4|86.9+0.3 84.3 93.8 86.6 90.2 60.4 72.2(80.6+0.7 77.4 6.30
RAT 96.0 85.3 82.5 82.0 78.3(84.8+0.3 82.0 92.3 73.0 85.0 69.5 61.0|76.2+0.5 72.1 8.60
RGCN (ours) | 98.8 92.4 89.6 85.6 85.4|90.4+0.5 88.3 97.2 89.4 93.0 69.6 79.4|85.7+0.6 82.9 4.70

Table 3: CTC results on all tables and complex tables. PD, CA, RA, CI and RI are acronyms of five cell types,
e.g., PD denotes Pure Data.  represents our implementation. RF stands for random forest. + stands for standard
deviation over 5 repeated experiments. CTC results on vertical, horizontal and hierarchical tables are shown in
Table 9, Table 10 and Table 11 in Appendix B.1 due to space limitation.

Exact Match Acc(%)

Model All Ver Hor Hie Com
RATY 18.5+0.9 345 33.6 5.03 4.07
TAPAS 33.2+0.8 58.0 31.1 264 15.7
RCI 47.2+0.3 684 45.1 56.0 19.2
RCI-AIT 49.6+0.4 69.5 434 60.4 23.8
RGCN-RCI (ours) | 53.4+0.4 70.7 459 629 32.0
RGCN-RCI (ours)

+ Oracle headers 55.3+0.3 73.0 46.7 66.7 33.1

Table 4: TQA results on our dataset. T represents our
implementation. Ver, Hor, Hie and Com denotes four
table types, respectively. =+ stands for standard deviation
over 5 repeated experiments.

each table cell can communicate with all the other
cells. We replace the RGCN with RAT to update
node representations. Implementation details can
be found in Appendix A.2.

5.1.2 Experimental Results

Table 3 shows CTC results on all tables and com-
plex tables, averaged over 5 repeated experiments.
Models are evaluated with F1 score. Macro F1-
header represents the macro F1 on four header
types. Gap represents the Macro F1 difference
between all tables and complex tables.

From the results shown in Table 3, we can ob-
serve that: (1) RGCN achieves the best macro F1
on all tables and complex tables, beating the best-
performing baseline Bi-LSTM by 3.5% and 5.1%
respectively, which demonstrates the effectiveness
of our proposed graph-based CTC model over vari-
ous table types, especially complex table. (2) CNN-
BERT, Bi-LSTM, RAT and RGCN aggregates in-
formation from different neighbour cells. The best
performance of RGCN indicates that neighbour
information in a local area is most important for
CTC task. This is consistent with the intuition that
human can determine cell types based on a small
part of the table and do not need to read the whole
table. (3) Performance on complex tables is worse
than overall performance, showing that CTC mod-
els struggle in comprehending diverse and complex
table structures with flexible header locations.

5.2 Table Question Answering

5.2.1 Experimental Setup

We include following TQA baselines. RCI (Glass
et al., 2021): A state-of-the-art TQA model with
its original textual representation method. RCI-
AIT (Katsis et al., 2022): A variant of RCI for AIT-
QA dataset with the textual representation method
designed for hierarchical tables. TAPAS (Herzig
et al.,, 2020): A table pre-training based TQA
model which takes the linearization of question
and table cells as input and outputs token represen-
tations. We pre-train a TAPAS model on 6 million
Chinese tables collected from Baidu Encyclope-
dia. In fine-tuning stage, we concatenate output
representations of the first character and last char-
acter in the cell text as cell representation and use
a linear layer to predict the probability of selecting
the cell as answer. RAT: Table cells and question
are converted to a graph. We follow Mueller et al.
(2019) to use cell-level relations such as question-
node to column-header, and use RAT to update cell
representations. The final cell representations are
used to predict answers. Implementation details
are shown in Appendix A.3.

5.2.2 Experimental Results

Table 4 shows performance on IM-TQA dataset,
averaged over 5 repeated experiments. We evalu-
ate model’s performance with exact match accu-
racy. “RGCN-RCI” denotes our proposed frame-
work. “RGCN-RCI + Oracle headers” represents
we use annotated headers to build new textual rep-
resentation of each row or column.

From the results shown in Table 4, we can find
that: (1) Existing TQA models struggle on our
dataset. For example, the best baseline RCI-AIT
achieves an overall accuracy of 49.6%, and its accu-
racy on complex tables is only 23.8%. This shows
that previous TQA models cannot achieve a great
generalization on multi-type tables, especially com-



plex tables whose structure is most complicated.
(2) Compared with baselines which lack the abil-
ity to comprehend diverse table structures, RGCN-
RCI framework achieves better performance and
improves the accuracy of RCI-AIT on all tables
and complex tables by 3.8% and 8.2% respectively,
which demonstrates the effectiveness of our pro-
posed textual representation method. RGCN-RCI
+ Oracle headers can achieve more performance
boost. This further proves that table structure under-
standing is beneficial to question answering over
implicit and multi-type tables. A case study is
shown in Appendix B.3. (3) As a table pre-training
model, TAPAS still cannot generalize well on all
table types. We suppose that this is because TAPAS
is originally designed and pre-trained on vertical
tables. Considering more diverse table types in
pre-training stage may improve its performance
on multi-type tables. (4) Even with an oracle pro-
viding correct headers, RGCN-RCI only achieves
33.1% accuracy on complex tables. This shows that
there is a long way to go for TQA models to find
correct answers in complicated table structures.

We randomly select 100 error cases of RGCN-
RCI framework to conduct error analysis. Er-
ror cases fall into four categories: (1) Row mis-
takes(40%): model fails to select the correct row
which contains answer. (2) Column mistakes(28%):
model fails to select the correct column. This
shows that predicting the correct column is usu-
ally easier than predicting the correct row. (3) Row
and column mistakes(14%): model selects wrong
row and wrong column at the same time, which is
common in complex tables(57%). (4) Missing rows
or columns(18%): model mistakenly predicted that
none of rows or columns contains answer, which
often results from the paraphrased question expres-
sion such as synonyms.

6 Related Work

Table QA methods can be categorized into two
types: semantic-parsing-based methods and non-
semantic-parsing methods. The semantic-parsing-
based methods first transform the natural language
question into a logical form such as SQL and then
execute the logical form against tables to output
the final answer (Wang et al., 2020a; Hui et al.,
2022; Guo et al., 2019). Non-semantic-parsing
methods often adopt heuristic designs to extract
final answer from tables without generating logi-
cal forms (Yang et al., 2022; Zayats et al., 2021;
Glass et al., 2021). Researchers also proposed vari-

ous TQA datasets (Zhong et al., 2017; Iyyer et al.,
2017; Chen et al., 2020). Most of previous datasets
consist of vertical tables with regular structure ex-
cept HiTab (Cheng et al., 2022) and AIT-QA (Kat-
sis et al., 2022), which also considers hierarchical
tables. By contrast, our proposed IM-TQA bench-
mark is the first TQA dataset that include tables
with implicit and multi-type structures.

Cell type classification is a crucial task for table
structure understanding, which aims at recognizing
table cells’ functional roles. Previous work pro-
posed different taxonomies of cell types, which
mainly focus on spreadsheet tables (Dong et al.,
2019; Zhang et al., 2021; Koci et al., 2016). Coarse-
grained taxonomies classify table cells according to
their roles in basic table structure (Sun et al., 2021),
e.g., header, attribute, metadata, data. Fine-grained
taxonomies will subdivide header cells or data cells
according to more specific functions (Zhang et al.,
2021), e.g., dividing headers into value name, in-
dex, index name, aggregation and others. Our
proposed cell type taxonomy belongs to coarse-
grained taxonomies and we focus on header cells
that are useful for TQA models to locate answers.

7 Limitations

Our proposed dataset is in Chinese. We plan to
construct the corresponding English dataset and
enlarge the dataset scale in future work. As an
exploration of table question answering over im-
plicit and multi-type structures, this paper focuses
on Lookup questions and we leave annotations of
Aggregation questions in the future work. In addi-
tion, our proposed RGCN-RCI framework is not
an end-to-end model. We look forward to seeing
more end-to-end models which can simultaneously
learn table structures and question answering with
the help of our dataset.

8 Conclusion

We propose a new problem, table question answer-
ing over implicit and multi-type table structures,
and construct the corresponding dataset named IM-
TQA. Our dataset includes tables of four types,
which are collected from various domains. Besides
QA pairs, we also annotate functional roles of ta-
ble cells to promote understanding of implicit table
structures. In experiments, we benchmark recent
methods on CTC and TQA tasks on our dataset,
and propose a framework that outperforms exist-
ing methods. Experimental results shows that IM-
TQA can provide a challenging and comprehensive
testbed for future research.



9 Ethical Considerations

Our proposed benchmark is a free and open re-
source for the community to study table ques-
tion answering over implicit and multi-type ta-
bles. Tables are collected from the public organiza-
tion China Securities Regulatory Commission and
Baidu Encyclopedia, which allow sharing and redis-
tribution for non-commercial use. Tables in these
web pages are open to public so there is no privacy
risk. In the annotation process, we asked annota-
tors to check if there exist any offensive content
such as insulting or discriminatory speech. They
did not find any such content in our benchmark.
We also checked for identifiers and replaced iden-
tifying information with mono-directional hashes.
We recruit 10 professional annotators and pay them
at a price of 6.5 dollars per hour (above the average
local payment of similar jobs). The total time cost
for annotation is 1,200 working hours. Annotators
were informed that these labeled data would be
used as a table question answering dataset. Main
experiments in this paper can be run on a single
NVIDIA GeForce RTX 3090 GPU. We will release
our benchmark and code for future research along
with the paper. Our dataset follows the Computa-
tional Use of Data Agreement v1.0.
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A Dataset Statistics and Implementation
Details

A.1 Dataset Statistics

Table 5 shows IM-TQA’s basic statistical informa-
tion such as average question number, row number,
column number per table. We count the number of
distinct table structures. If header cell locations of
two tables are exactly same, we consider they share
the same table structure. As expected, structure
number of complex tables (241) and hierarchical
tables (153) are larger than that of vertical tables
(103) and horizontal tables (89). Table 6 shows
number of different table headers.

Characteristic Value
Avg. question number per table 4.1
Row number per table (median/mean) 6/7.3
Column number per table (median/mean) 5/5.2
Cell number per table (median/mean) 23/31.6
Header cell number per table (median/mean)  10/12.7
Avg. answer num per question 1.68
Table 5: Dataset basic statistics
Ver Hor Hie Com  Total

# table structures 103 89 153 241 586

# Column Attribute 1,158 99 2,185 1,434 43876

# Row Attribute 145 1,445 831 3,649 6,070

# Column Index 0 1,092 16 268 1,376

# Row Index 1,355 0 872 781 3,008

Table 6: Different header number.

A.2 Implementation Details for CTC
Experiments

In this paper, we use PaddlePaddle® to implement
our model. We use valid set for model selection and
hyper-parameter tuning, and then evaluate the best
model on test set. We use bert-base-chinese to ex-
tract cell semantic features. For the RGCN model,
the GNN layer number is 4, the dimension of hid-
den layers is 800, and the ReLu activation is used
between adjacent GNN layers. We train RGCN
for 20 epochs. The Adam optimizer is adopted
with learning rate of le-4. To mitigate the class-
imbalance in the CTC task, we follow Ghasemi Gol
et al. (2019) and use a weighted Cross Entropy Loss
as our loss function. We set the weight wy, of cell
type k to be inversely proportional to the number

of cells with class type k in train set n?‘”", ie.,

train
U3

5 train
Zk’ =1 nk’

®https://www.paddlepaddle.org.cn/

w =1—


https://doi.org/10.18653/v1/2021.eacl-main.253
https://doi.org/10.18653/v1/2021.eacl-main.253
https://doi.org/10.18653/v1/2021.eacl-main.253
https://doi.org/10.1145/3460319.3464812
https://doi.org/10.1145/3460319.3464812
https://doi.org/10.1145/3460319.3464812
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

Model lI;Iumber of Trqining
arameters Time
Pretrained BERT 110M -
Auto Encoder 0.01M 10.5 minutes
Random Forest n_estimators=100 2 minutes
MLP 6M 1.5 minutes
CNN-BERT 0.1M 3 minutes
Bi-LSTM 1.5M 10 minutes
RAT 80M 1 hour
RGCN 30M 7 minutes
TAPAS 110 M pre-training: 1 week
finetune: 1 hour
RCI 110 Mx2 1 hour

Table 7: Model parameter number and training time.

For RAT baseline, we follow the implementation
in Wang et al. (2020a). The RAT layer number
and the attention head number is 8. The probabil-
ity for dropout layers is set to 0.1. The AdamW
optimizer is adopted with learning rate of 2e-5,
warmup fraction of 0.1 and weight decay of 0.01.
We train RAT for 50 epochs with batch size of
16. For MLP baseline, we adopt a multilayer per-
ceptron of one hidden layer with hidden size 800
and ReLu activation. For CNN-BERT baseline,
we adopt a text CNN (Kim, 2014) on cell feature
matrix along the row direction. For other base-
lines, we follow the original experimental setup in
their papers. PSLEE (Sun et al., 2021) is a very
recent CTC model, but the code has not been pub-
licly available. Thus, we do not compare with this
method.

A.3 Implementation Details for TQA
Experiments

We follow the original paper to train RCI model
with our proposed textual representation method.
We use bert-base-chinese as the sequence-pair clas-
sifier, which is trained for 3 epochs with batch size
of 64. The AdamW optimizer is adopted with learn-
ing rate of 2e-5, warmup fraction of 0.1 and weight
decay of 0.01. The probability of dropout layers
is set to 0.1. The max grad norm is set to 1.0. To
achieve better performance in multi-turn TQA task,
Mueller et al. (2019) also introduced a node rep-
resenting the answer of last question. We do not
use these unnecessary designs. All model param-
eter number and training time are listed in Table
7. Main experiments in this paper can be run on
a single NVIDIA GeForce RTX 3090 GPU. The
pretraining of TAPAS was ran on four Tesla V100
GPU for about one week. Note that out of resource
limitation, we only pretrain TAPAS for once.
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A.4 Complete Manual Features

We list all manual features in Table 8. We consider
15 content features and 9 spatial features. We fol-
low Ghasemi Gol et al. (2019) and train an auto
encoder to transform 24-dim integer vectors into
32-dim continuous numerical vectors. We train the
auto encoder by an vector reconstruct task. The
auto encoder tries to reconstruct the input integer
vector at its output, and generates continuous vector
representations at the output of the encoder layer.
Mean square error is used as loss function. At test
time, we feed the 24-dim integer manual vectors
into the trained auto encoder and gain the 32-dim
continuous vector from the encoder output.

Manual Cell Features
LENGTH#(character-level)
NUM OF TOKENS#(word-level)
LEADING SPACES#

IS NUMERIC?

STARTS WITH NUMBER?
STARTS WITH SPECIAL?

IS CAPITALIZED?

IS UPPER CASE?

IS ALPHABETIC?

CONTAINS SPECIAL CHARS?
CONTAINS PUNCTUATIONS?
CONTAINS COLON?

WORDS LIKE TOTAL?
WORDS LIKE TABLE?

IN YEAR RANGE?

ROW NUMBER#

COL NUMBER#
NEIGHBOUR CELL NUM#
HAS 0 NEIGHBORS?

HAS 1 NEIGHBORS?

HAS 2 NEIGHBORS?

HAS 3 NEIGHBORS?

HAS 4 NEIGHBORS?

IS MERGED CELL?

Table 8: Manual Feature List

B More Experimental Analysis

B.1 More CTC Experimental Analysis

(4) The performance of MLP baseline is the worst
among methods based on neural networks, which
proves that neighbour information is essential for
distinguishing divergent types of cells. (5) F1
scores on the column index (CI) and row index
(RI) are lower than that on the column attribute
(CA) and row attribute (RA). This indicates that,
compared with attribute cells that are not data, it is
more difficult for CTC models to distinguish index
cells from pure data cells. CTC results on vertical,
horizontal and hierarchical tables are shown in Ta-
ble 9, Table 10 and Table 11, which demonstrates



that our graph-based method achieves a better gen-
eralization on tables of diffierent types.

B.2 More TQA Experimental Analysis

(5) RCI-AIT achieves better performance than RCI
especially on hierarchical tables, which shows
the effectiveness of special textual representation
method designed for hierarchical tables. However,
it cannot help RCI-AIT to generalize well on multi-
type tables as it essentially relies on explicit table
structures with header annotations and are unable
to comprehend unknown table structures. (6) The
performance of RAT is the worst among baselines.
We suppose the reason is that RAT adopts cell-
level relations for vertical tables (Mueller et al.,
2019) and is also not pre-trained. (7) As a non-
table-pretrained model, RCI beats the TAPAS on
all model types, which is consistent with the results
in Glass et al. (2021). This shows that selecting
answer cells based on column and row information
is better than the way that directly predicts whether
a table cell is the answer or not.

B.3 TQA Case Study

Question: What is the operating temperature range of 8mm-Diameter air
filter?
Answer Cell ID List: [ 8]

Product i
Diameter (mm) e 8 10
Working Medium 6 compressed air
8 -25~+80 (under non-

freezing conditions)
10

Air filter
‘ 4

N o) N o

Operating Temperature Range (°C)

2 Max Inlet Pressure 10

" uprler;l;:re Bp?eggz:e 14 Air Flow (at standard
Flow condition) (dm*/min)
Characteristics| (bar) (bar)
B 25 16 237 17 450 18 760
19 4 20 38 21 720 22 1170

Figure 6: A real case (translated to English) where RCI
fails but RGCN-RCI gives the correct answer.

Figure 6 shows an QA sample on a complex table
containing parameters of an air filter. In this case,
original RCI cannot correctly determine which col-
umn contains the answer as its representation of
the fourth column lacks necessary row header infor-
mation, such as “Operating Temperature Range”.
By contrast, RGCN-RCI with our new textual rep-
resentation method could incorporate useful row
header information into its column representation
and finally locates the correct answer.
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C Instructions for Annotators

Screenshots of original instructions for annotators
have been saved and shown in this section. The
instruction for CTC annotation task is shown in Fig-
ure 9. And the instruction for TQA annotation task
is shown in Figure 10. A real CTC annotation case
of complex table is shown in Figure 11. Besides
instructions, we also provided annotators with suf-
ficient QAs to ensure that they fully comprehended
the annotation requirements.

Vertical tables

Model per-class F1(%) . Macro F1

PDCA RA CT Rl | MOFID)  peader(a)
RF 935 923 352 - 787 749 687
MLP 98.5 875 405 86.3 78.2 714
CNN-BERT | 980 938 56.6 87.8 84.1 79.4
Bi-LSTM 988 984 618 88.8 87.0 83.0
RAT 97.1 952 553 87.4 83.8 79.3
RGCN 993 963 627 94.6 88.2 84.5

Table 9: CTC results on vertical tables.
Horizontal tables

Model per-class F1(%) Macro FI

PO CA  RA CI Rr| MacroFI(%) | o der(%)
RF 940 820 793 901 - 679 592
MLP 950 160 885 815 70.3 62.0
CNN-BERT | 972 180 948 814 729 64.7
Bi-LSTM | 986 188 942 79.6 72.8 64.2
RAT 963 150 904 882 725 64.5
RGCN 994 204 956 924 71.0 69.5

Table 10: CTC results on horizontal tables.
Hierarchical tables

Model per-class F1(%) Macro F1

PO CA RA I R | MaroFl%)  poder)
RF 933 926 507 - 644 753 9.2
MLP 986 951 516 73.0 79.6 732
CNN-BERT | 988 958 556 75.6 81.4 75.7
Bi-LSTM | 984 984 676 752 84.9 80.4
RAT 992 981 645 837 86.4 82.1
RGCN 99.6 980 684 82.0 87.0 82.8

Table 11: CTC results on hierarchical tables.

D More Complex Table Examples

Figure 7 and Figure 8 depict two real complex ta-
bles in Chinese and we translated them into English
for reading convenience. As demonstrated in these
examples, header cells in complex table can appear
at any position and be mixed with other data cells.
Such table structures have not been thoroughly in-
vestigated and challenges existing TQA methods.



R LA 2%
7 b XXXXX [RER XXX
K 5E B
HiE AL 1000kVA HI%: 3 | 5;?” | 50Hz
i i E 10000V ysons piy o0 = E 57. 8A
BUERIE ek, Ta00/a0v | PV e 1445A
X 2% Pl iR B N . N
(PTG al B il IRTCICHN TS/ Gl AR
BHT L - 6% exiiEn] SRIE R
(a) Original Table
Copper wire power transformer
Product XXXXX Model: XXX
Standard:
. Phase Rated
Rated Capacity: 1000kVA Number: 3 Frequency 50Hz
high high
Nominal voltage: 10000v Rated voltage: ST8A
Voltage low 400/230V Current low 1445A
voltage: voltage:
. Winding Oil Level L
C‘Zﬁ;ﬁ‘[‘;ﬁ 1P20-Indoor| Temperature 105°C Temperatu annotatfi‘:)syf;);;;unersed
. Rise Re-rise
Impedance 6% Cooling forced air cooling
Voltage: Type

(b) Translated to English

Figure 7: A complex table about an transformer where many row attributes are mixed with data cells.

B H (56 )y i
AR AL 2 s THT 1
A AR DR ik
/= fohe B =
AR 3T WAL, LR RCKERIA
B 4R i - W 243 e, HphZAk, (il

(a) Original Table

Test item Test method

Gas Humidity electrochemical method or mirror method

air,carbon dioxide,carbon tetrafluoride stratography method

Gas Composition

Analysis hydrogen fluoride,acetaldehyde colorimetric tube method

sulfur dioxide, sulfuretted hydrogen,

colorimetric tube, electrochemical or
carbon monoxide

stratography method

(b) Translated to English

Figure 8: A complex table about gas test requirements. A col attribute cell, a pure data cell, and three row indices

appear in sequence in the second column, and such mixed data arrangement increases difficulty for TQA models to
find the correct answer.

—. TAIRNEEK

15 BE—NFERETETENFS (BHLeHF)  BERIARIREY FREEELSIMATE
FEAmLE"

» BAIEBEATIORIZRSLSEEY (four header types) :

1) FUREMH (Column Attribute) : EITFIEE, AR TAMNSRTE, BEASTREE.

2) {TBME (Row Attribute) : EAFNHE, HWARAHNSETE, BEASTREE.

3) FIZF| (Column Index) : [ETEHE, AFRSIZIINEIETE, BCASHEEIE.

4) 17%3| (Row Index) : MAINE, ATHRSIBUTALIETE, BCASHENR

© BT DIANIRERSL, HARETTIERHMIRETTE (Pure Data) , AESMIRSERS IRMSATIENER, BE
BB DA SIE AR SR ITIR I X

« ST Z BHIR R UNERR:

el U
SR
11531 1T/

Figure 9: Instructions(in screenshot) for CTC annotation tasks.
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—. EREREER

15 IRBERERTHEE, FERREHERATEINNES.

[FIRRZSEY:
(1) RER ERERE" W, i ARBDEFETEIRKTMESD?

(2) RERSRITEHRE, WRIR(FAYERE, thin "ARNEIAYB, C. DFEmEFMEFERSL? " (WRKM
B{F) | i "ARERIBARBRATEEFEAES? © (SRIRIRE)

(3) AVFHIEIRESEEY: 1. BERAR—RITIK, 2885, 38(T, 4ETHTE

EREI:

(1) FRNESRABRSHN, FAFRRRE—MIERERE, RUEBFEMESHTRR, SRERRX
TSR TR FIAGR,

(2) BERBTBUERREN, FRTFERPTRNVEZEES.,

(3) TREASIBER A HEABRETTISHTIRE.

ﬁg‘% ﬁ%’;;ﬁ;?%ﬂblﬁ%’h LIFIRFZWRERE, Hal "ART021EEFIF-mamLL? © , BRFIRT
6/ 149,900

Figure 10: Instructions(in screenshot) for TQA annotation tasks.

| 4 A B ® D
1 0] a0 H

2 2] TR 13] Fafb ik B o

3 131252, ik PusiLg 6] €k
[4] S s AT

RECE N 18] Fe s
] b Bifbs. ki | 10 k. mik itk
.
|## S k%
fe sl kR
1.5 f 01
IR 24
12 3EFH
3 4frEdl 57,9
|14 me i1 e P
= LR ORI o
flar
R SRR AT A

16 2 AT 6, 8, 1
| 45 B L Fi fe .1

Figure 11: A real annotation case(in screenshot).
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