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Abstract

Various datasets have been proposed to pro-001
mote the development of Table Question An-002
swering (TQA) technique. However, the prob-003
lem setting of existing TQA benchmarks suf-004
fers from two limitations. First, they directly005
provide TQA models with explicit table struc-006
tures where row headers and column headers007
of the table are explicitly annotated during in-008
ference. Second, they only consider tables of009
limited types and ignore other tables especially010
complex tables. Such simplified problem set-011
ting cannot cover practical scenarios where012
TQA models need to process tables without013
header annotations in the inference phase or ta-014
bles of different types. To address this issue, we015
construct a new TQA dataset with implicit and016
multi-type table structures, named IM-TQA,017
which not only requires the model to answer018
questions without header annotations before-019
hand but also to handle multi-type tables includ-020
ing previously neglected complex tables. We021
investigate the performance of recent methods022
on our dataset and find that existing methods023
struggle in processing implicit and multi-type024
table structures. Correspondingly, we propose025
an RGCN-RCI framework outperforming re-026
cent baselines. We will release our dataset to027
facilitate future research.028

1 Introduction029

To gain useful information from tables, Table Ques-030

tion Answering (TQA) technique was developed031

and used to answer natural language questions032

about tables (Zheng et al., 2022; Hui et al., 2022;033

Herzig et al., 2020). Researchers also proposed034

various TQA datasets which aim at different sce-035

narios (Zhong et al., 2017; Iyyer et al., 2017; Chen036

et al., 2020). As the performance of TQA models037

continues to improve, they have been widely used038

in the intelligent data analysis tools, e.g., Power039

Figure 1: Different types of tables and their header cells:
Column Attribute (red), Column Index (green), Row
Attribute (yellow), Row Index (blue).

BI1, Tableau2 and Ideas3. 040

Though previous datasets have promoted the de- 041

velopment of TQA technique, the problem setting 042

of existing benchmarks suffers from two limita- 043

tions. First, in the depth of table structure un- 044

derstanding, existing benchmarks only evalu- 045

ate the performance of TQA models on tables 046

with explicit table structures, which means dur- 047

ing inference locations and directions of headers 048

are annotated and treated as model input. For exam- 049

ple, Text2SQL benchmarks offer annotated column 050

headers (Zhong et al., 2017; Yu et al., 2018) and 051

recent hierarchical table datasets also contain hi- 052

erarchical header annotations (Katsis et al., 2022; 053

Cheng et al., 2022), which are available at inference 054

time. This setting artificially lowers the difficulty 055

of the task. Nevertheless, in practical scenarios, 056

TQA model may encounter plenty of tables with- 057

out labeled headers. Manually annotating headers 058

for these tables is prohibitively expensive and time- 059

consuming. As a result, a benchmark is needed to 060

evaluate the performance of TQA models on tables 061

with implicit table structures. Here, “implicit table 062

structures” represents that the annotations of head- 063

ers in a table are not available during inference. 064

1https://powerbi.microsoft.com/en-us/
2https://www.tableau.com/
3https://support.microsoft.com/en-us/office/analyze-data-

in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
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Second, in the breadth of supported table065

types, existing TQA benchmarks only consider066

limited table types and ignore complex tables067

with flexible header locations. Previous datasets068

mainly focus on vertical or hierarchical tables069

whose header cells only locate on the top or left070

side (Pasupat and Liang, 2015; Wang et al., 2020b;071

Guo et al., 2021; Cheng et al., 2022), as shown in072

Figure 1 (a) and (c), but neglect the fact that TQA073

model may require handling multi-type tables, es-074

pecially complex tables whose header cells may075

appear at any position, as illustrated in Figure 1076

(d). Complex tables are prevalent in professional077

equipment specifications and record sheets, which078

are beyond the ability of current TQA systems.079

Above analyses show that the problem setting080

of previous TQA benchmarks restricts the appli-081

cation of TQA models. In this paper, we define082

a new problem, table question answering over im-083

plicit and multi-type table structures. In this prob-084

lem setting, annotations of table headers are not085

available during inference and models need to com-086

prehend implicit and multi-type table structures to087

answer questions. To facilitate the study on this088

problem, we build the first Chinese Table Question089

Answering dataset with Implicit and Multi-type ta-090

ble structures, named IM-TQA, which consists of091

1,200 tables and 5,000 questions (Section 3). Our092

dataset includes tables of four types from different093

domains, especially complex tables neglected by094

published studies. We annotate different tables not095

only with questions of various types and their an-096

swer cells, but also with row headers and column097

headers.098

IM-TQA presents a strong challenge to previ-099

ous TQA models. Because of the inability to un-100

derstand implicit and diverse table structures, the101

state-of-the-art baseline RCI (Katsis et al., 2022)102

only achieves 49.6% overall accuracy and 23.8%103

accuracy on complex tables. To improve the perfor-104

mance of RCI, we propose an RGCN-RCI frame-105

work (Section 4). Specifically, this framework106

solves the new problem in two stages: (1) Table107

is modeled as graph and an RGCN (Schlichtkrull108

et al., 2017) is used to comprehend table structure109

and predict table header cells. (2) Based on pre-110

dictions of RGCN, header information is merged111

into the text sequence representation of each row or112

column, which helps RCI model to predict whether113

a row or column contains the answer or not. Our114

framework shows high effectiveness and improves115

the accuracy on all tables and complex tables by 116

3.8% and 8.2% respectively, proving the signif- 117

icance of understanding implicit and multi-type 118

table structures. To summarize, we conclude our 119

contributions as follows: 120

• Based on the practical demand for answer- 121

ing questions over various tables under the 122

circumstance that header annotations are not 123

available during inference, we define a new 124

problem, table question answering over im- 125

plicit and multi-type table structures, which is 126

complementary to traditional TQA problem, 127

i.e., TQA over explicit and limited (usually 128

single-type) table structures. 129

• We construct and publicly release a new 130

dataset, IM-TQA, to promote the research on 131

this problem. Our dataset includes tables of 132

four different types with implicit structures, 133

especially complex tables ignored by former 134

benchmarks. 135

• We investigate the performance of existing 136

methods on our dataset and propose an RGCN- 137

RCI framework which outperforms state-of- 138

the-art baselines on all table types. 139

2 Problem Statement 140

In this section, we define the problem of table ques- 141

tion answering over implicit and multi-type table 142

structures. A table consists of multiple cells. A 143

table t can be defined as t .
= {P,R,V}, where P, 144

R and V represents the set of position information, 145

functional roles and values of cells in table t respec- 146

tively. Table cells can be categorized into different 147

types according to their functional roles, e.g., some 148

cells are column headers and others are data cells. 149

Under the setting of traditional TQA problem, ta- 150

ble headers are explicitly provided in the inference 151

phase (Zhong et al., 2017; Yu et al., 2018) or can 152

be easily obtained by heuristic methods designed 153

for specific table type (Cheng et al., 2022; Katsis 154

et al., 2022). In this setting, cell functional roles 155

R are directly provided for the model. Thus, the 156

model f(·) outputs answer y given a natural lan- 157

guage question q, i.e., y = f(q, t) = f(q,P,R,V). 158

However, in the setting of real applications where 159

the model may need process implicit and multi- 160

type table structures, functional roles R are not 161

available in advance. Thus, TQA over implicit and 162

multi-type table structures can be formalized as: 163
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y = f(q, t
′
) = f(q,P,V). This problem setting164

poses a great challenge to existing methods. Un-165

fortunately, none of previous benchmarks serves166

as testbed for this problem. To fill the gap, we167

build IM-TQA, which includes multi-type tables168

and requires understanding implicit table structures.169

Compared with previous benchmarks, the improve-170

ments of IM-TQA are demonstrated in Figure 2.171

Figure 2: The improvements of IM-TQA compared with
previous benchmarks.

3 Dataset Construction and Analysis172

In this section, we first introduce table types consid-173

ered in our dataset, and then elaborate the dataset174

construction procedure consisting of 4 steps. We175

recruit 10 professional annotators and provide them176

with sufficient instruction. The dataset construc-177

tion totally costs 1,200 working hours. The ethical178

considerations will be discussed in the Section 9.179

3.1 Considered Table Types180

As shown in Figure 1, we divide tables into 4181

types according to their layout and header loca-182

tions, which is in line with previous work (Wang183

et al., 2021; Ghasemi-Gol and Szekely, 2018) with184

complex table as an important complement. More185

complex table examples are shown in Appendix D.186

Vertical Table Table data is arranged in the vertical187

direction, with the first row as column headers and188

other rows as data tuples.189

Horizontal Table Table data is arranged in the190

horizontal direction, with the first column as row191

headers and other columns as data tuples.192

Hierarchical Table Table data is arranged in both193

vertical and horizontal directions, with headers ex-194

hibiting a multi-level hierarchical structure.195

Complex Table In tables of above 3 types, header196

cells locate on the top or left side. But in complex197

tables, headers may locate at any position and can198

be mixed with data cells, as depicted in Figure 1199

(d). Such tabular structures often appear in profes-200

sional equipment specifications and record sheets,201

presenting a great challenge to existing methods.202

Figure 3: An example of table storage format and anno-
tations. Cell IDs constitute the layout matrix in (a) and
are indices of cell value list in (b). Cells with same cell
IDs stand for merged cells.

3.2 Table Collection and Storage 203

To ensure the diversity of table data, we collect ta- 204

bles from open websites of different domains. Data 205

sources include company annual reports from dif- 206

ferent industries4 such as manufacturing, medicine 207

and education; entries from Baidu Encyclopedia5 208

on science, professional equipment, etc. Tables 209

in these web pages are extracted to Excel files by 210

annotators. We correct typos in the collected tables 211

and filter tables without meaningful data. Finally, 212

we preserve 300 tables for every table type. Figure 213

4 shows the distribution of domains. 214

In order to store various tables, we design a stor- 215

age method which separately stores table structure 216

and table content.To store table structure, a cell ID 217

is assigned to each table cell in the row-first order. 218

For a table including m rows and n columns, its 219

cell IDs constitute an m × n matrix representing 220

cell locations. This layout matrix contains table 221

structure information such as neighbouring rela- 222

tions between different cells. As for table content, 223

every cell value is put into a list in the same row- 224

first order. Figure 3 (a) and (b) demonstrate the 225

storage format of the complex table in Figure 1 (d). 226

The original table can be recovered based on the 227

layout matrix and the cell value list. Applicable to 228

4 table types, our storage method does not waste 229

extra space for merged cells and is also convenient 230

to annotate header cells and answer cells. 231

3.3 Cell Type Annotation 232

In our problem setting, models are required to 233

understand implicit and multi-type table struc- 234

tures and recognize functional roles of table cells, 235

i.e., conducting cell type classification (CTC) task. 236

4http://eid.csrc.gov.cn/101111/index.html
5https://baike.baidu.com/
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There are different taxonomies of cell types which237

focus on hierarchical tables and cannot be directly238

applied to complex tables (Ghasemi Gol et al.,239

2019; Dong et al., 2019; Zhang et al., 2021; Dong240

et al., 2020). To model different table structures,241

we design a new taxonomy of cell types with the242

concentration on header cells that are useful for243

TQA models to find correct answers. Specifically,244

table cells are categorized into 5 types based on245

their functional roles.246

Row Attribute and Column Attribute Row at-247

tribute and column attribute describes table cells248

in the same row and in the same column respec-249

tively, e.g., yellow cells and red cells in Figure 1.250

Attribute cells are only used to describe other cells251

and they themselves are not data.252

Row Index and Column Index Row index and253

column index are individual cells that can be used254

to index data records in the row or column orien-255

tation, e.g., blue cells and green cells in Figure 1.256

Index cells are also meaningful data. For instance,257

in vertical tables, cells in the primary key column258

are indices of each row.259

Pure Data Pure data cells are the core body of a260

table. They do not have the function of describing261

or indexing other cells and their meanings should262

be understood with the help of header cells.263

We instructed annotators in distinguishing five264

cell types and asked them to annotate the cell ID265

lists of four types of header cells, as shown in Fig-266

ure 3 (c). The rest of table cells are deemed pure267

data cells.268

3.4 QA Pairs Construction269

After identifying header cells, we asked annotators270

to raise questions about data cells and label answer271

cell IDs, as illustrated in Figure 3 (d). Note that at-272

tribute cells are not allowed to be answers as we do273

not consider them as data cells. To avoid the anno-274

tation artifacts from the homogeneous patterns of275

questions, e.g., always using the same question ex-276

pression, annotators were asked to use diverse lan-277

guage expressions to raise questions and answers’278

locations should change frequently. Annotators279

were also encouraged to paraphrase questions to280

increase difficulty.281

Questions about table are broadly classified into282

two types: Lookup and Aggregation (Glass et al.,283

2021). Lookup questions require selecting table284

cells as answers whereas Aggregation questions285

are answered by performing an arithmetic opera-286

tion over a subset of table cells, such as Sum(). In287

this paper, our primary focus is on Lookup ques- 288

tions. Besides single-cell answer, annotators were 289

also allowed to select one row or one column or 290

arbitrary table cells as answer. Figure 4 shows the 291

distribution of question types. Four questions were 292

raised for each vertical and horizontal table, and 293

five questions for every hierarchical and complex 294

table. 295

3.5 Data Review and Checking 296

In order to guarantee annotation quality, in each 297

annotation step, all annotators conducted a trial 298

annotation with 50 samples and the results were 299

checked. Feedback was given to corresponding 300

annotators until they fully comprehended the anno- 301

tation requirements. After all annotation tasks fin- 302

ished, we and two most experienced annotators per- 303

formed the final review to fix labeling errors. We in- 304

spected annotations for the correctness of cell type 305

annotations and answer cell annotations. We also 306

inspected the grammar and wording and filtered 307

questions with obvious mistakes. We checked for 308

offensive content and identifiers, and replaced iden- 309

tifying information with mono-directional hashes. 310

Finally, we preserve 1,200 tables and 5,000 ques- 311

tions. 312

3.6 Dataset Analysis and Comparison 313

Table 1 shows a comprehensive comparison of IM- 314

TQA to related TQA datasets. The advantages of 315

the proposed dataset are as follows: (1) It is the first 316

TQA dataset that contains implicit and multi-type 317

table structures, especially complex tables ignored 318

by former datasets. Though AIT-QA (Katsis et al., 319

2022) and HiTab (Cheng et al., 2022) include ver- 320

tical and hierarchical tables, they ignore the other 321

two table types. (2) It is annotated with cell func- 322

tional roles and QA pairs, which supports both 323

CTC and TQA task. Diverse table structures in 324

our dataset challenge existing CTC and TQA mod- 325

els. (3) Compared with single-domain datasets like 326

AIT-QA and WTQ, IM-TQA includes tables from 327

various domains. 328

We split dataset based on table structures. If 329

header cell locations of two tables are exactly same, 330

we consider they share the same table structure. Ta- 331

ble structures in the resulted train, valid and test 332

split do not overlap with each other. Questions of 333

the same table are assigned to its corresponding 334

split. Table 2 shows the table number and the ques- 335

tion number of each split. More basic statistics are 336

shown in Appendix A.1 337
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Dataset Language Table source #Tables #Questions Avg.
Q len Implicit Table type Task

Ver Hor Hie Com CTC TQA
NL2SQL (Sun et al., 2020) Chinese Reports, Spreadsheets 6,029 64,891 11 - ✓ - - - - ✓
Cspider (Min et al., 2019) Chinese Spider 876 9,691 11.9 - ✓ - - - - ✓
DuSQL (Wang et al., 2020b) Chinese Baidu Baike, Reports, Forums 813 28,762 19.3 - ✓ - - - - ✓
CHASE (Guo et al., 2021) Chinese DuSQL, SParC 1,280 17,940 13 - ✓ - - - - ✓
WTQ (Pasupat and Liang, 2015) English Wikipedia 2,108 22,033 10 - ✓ - - - - ✓
WikiSQL (Zhong et al., 2017) English Wikipedia 26,521 80,654 11.7 - ✓ - - - - ✓
Spider (Yu et al., 2018) English College data,WikiSQL 1,020 10,181 13.2 - ✓ - - - - ✓
ToTTo (Parikh et al., 2020) English Wikipedia 83,141 - - - ✓ - ✓ - - -
AIT-QA (Katsis et al., 2022) English Annual reports 116 515 12.9 - ✓ - ✓ - - ✓
HiTab (Cheng et al., 2022) English Stat. reports, Wiki 3,597 10,672 16.5 - ✓ - ✓ - - ✓

IM-TQA(ours) Chinese Reports, Baidu Encyclopedia,
Specification, Record Sheets

1200 5000 13.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of IM-TQA to related TQA datasets. Implicit represents implicit table structures. Ver, Hor,
Hie and Com denotes vertical, horizontal, hierarchical and complex table respectively.

Train Valid Split Total
# table structures 466 40 80 586
# tables 936 111 153 1,200
# questions 3,909 464 627 5,000
# vertical tables 224 31 45 300
# horizontal tables 230 34 36 300
# hierarchical tables 231 35 34 300
# complex tables 251 11 38 300

Table 2: Dataset split statistics

Figure 4: Distribution of domains and question types.

4 Method338

We proposed the RGCN-RCI framework for IM-339

TQA, shown in Figure 5. RGCN-RCI consists340

of an RGCN-based Cell Type Classification (CTC)341

module and an RCI-based table question answering342

(TQA) module. CTC module uses an RGCN to343

aggregate neighbour cell information and predict344

cell’s functional role. Based on the predictions of345

CTC module, TQA module adopts an improved346

RCI model to predict whether a row or column347

contains the answer or not. The final answer cells348

are selected from intersections of positive rows and349

positive columns.350

4.1 Cell Type Classification Module351

We convert the table into a graph, where nodes352

are table cells, and neighbouring relations between353

cells are edges. The resulted graph is processed by354

an RGCN to predict cell types.355

Cell Features The initial node representation356

vector consists of two parts: hand-crafted feature357

and semantic feature extracted from the pre-trained358

language model. We select 24 available manual359

features from Koci et al. (2016) such as the cell360

text length (listed in Appendix A.4). The 24-dim361

integer vectors are transformed into 32-dim contin- 362

uous numerical vectors by a trained auto encoder. 363

We input cell text to the pre-trained BERT (Devlin 364

et al., 2019) and take the 768-dim output vector 365

of the special [CLS] token as semantic feature of 366

the whole cell. In the end, hand-crafted feature 367

and semantic feature are concatenated to produce 368

800-dim initial node representation. 369

Edges We design four directed edges which 370

point from each cell to its surrounding neighbour 371

cells: top to down, left to right, down to top, right 372

to left. We argue that neighbour cell information is 373

important for predicting cell functional roles. For 374

example, most data cells are surrounded by other 375

data cells. As the table is converted to a heteroge- 376

neous graph, a relational graph convolutional net- 377

work (RGCN) (Schlichtkrull et al., 2017) is used to 378

aggregate neighbour cell information in different 379

orientations and update node representations. The 380

updated node representations are input to the final 381

linear layer to predict cell types. 382

4.2 Table Question Answering Module 383

RCI (Glass et al., 2021) is a state-of-the-art TQA 384

model for Lookup questions. It concatenates a text 385

sequence representation of each row (or column) to 386

the question text, and uses a pre-trained language 387

model like ALBERT (Lan et al., 2020) to predict 388

whether the row/column contains the answer or not. 389

Cells on the intersection of positive rows and posi- 390

tive columns are final answers. When constructing 391

the textual representation of each row (or column), 392

RCI incorporates the structure of vertical table. The 393

row textual representation is the concatenation of 394

“column header : cell text”, and the column tex- 395

tual representation is the concatenation of column 396

header and all cell texts in this column. 397

However, this representation method does not 398

fit other types of tables. Due to the inability to 399

understand implicit and diverse table structures, 400

this method may include irrelevant headers or miss 401
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Figure 5: Overview of the proposed framework, with the table of Figure 1 (d) as a running example.

useful header information. For example, when con-402

structing the representation of the third row in Fig-403

ure 1 (b), RCI treats all cells in the first row as404

column headers and gives wrong textual represen-405

tation:406

Name : Listed height | Tim Duncan : 6 ft 11 in407
(2.11 m) |408

where “:” is a delimiter token between column409

header and cell text, and “|” is a delimiter token be-410

tween different cells. Any distinctive tokens in the411

model vocabulary can serve as delimiters. When412

building the representation of the fourth column413

in Figure 1 (d), it will lose relevant headers in the414

third column and output representation without nec-415

essary information:416

Major Parameter | 37 | 120±23 V | 700A | 624kV |417

To overcome the defect of RCI’s original textual418

representation method, we propose a new represen-419

tation method with the help of predicted cell types420

from CTC module and table layout matrix. Specifi-421

cally, when constructing row textual representation,422

we locate the nearest column attribute and column423

index for every data cell in this row. These col-424

umn headers are regarded as relevant headers and425

will be concatenated with the corresponding data426

cell. Similarly, when constructing column textual427

representation, the nearest row attribute and row428

index will be concatenated with the corresponding429

data cell in this column. Again, let’s take the third430

row in Figure 1 (b) as an example. Based on CTC431

module’s predicted results and layout matrix, “Tim432

Duncan” is the nearest column index to the data433

cell “6 ft 11 in (2.11 m)”, and “Name” is a row434

attribute irrelevant to cells in the third row. The435

new row textual representation is:436

Listed height | Tim Duncan : 6 ft 11 in (2.11 m) | 437

For the fourth column in Figure 1 (d), its new 438

column representation is: 439

Major Parameter | On-Load Tap Changer of #1 440
Transformer - Tap number : 37 | On-Load Tap 441
Changer of #1 Transformer - Voltage regulation 442
range : 120±23 V |. . . | 443

where “-” is a delimiter token between index cell 444

and attribute cell. Compared with original textual 445

representation method, our proposed method helps 446

RCI to exclude irrelevant headers and include use- 447

ful header, which contributes to final predictions. 448

449
5 Experiments 450

5.1 Cell Type Classification 451

5.1.1 Experimental Setup 452

Considered baselines are as follows. Random For- 453

est (Koci et al., 2016): A random forest classi- 454

fier is used to conduct CTC task based on man- 455

ual features. CNN-BERT (Dong et al., 2019): A 456

method using BERT to extract semantic features 457

and a CNN to learn spatial correlations between 458

cells. Bi-LSTM (Ghasemi Gol et al., 2019): Two 459

bidirectional LSTM are used to capture dependen- 460

cies between different cells, one observing the se- 461

quence of cells in each row, and the other observing 462

the sequence of cells in each column. MLP: Di- 463

rectly applying a two-layer neural network to all 464

cell features to predict cell types without neigh- 465

bour information. RAT (Shaw et al., 2018): The 466

Relation-Aware-Transformer whose self-attention 467

mechanism is extended to consider the edge label 468

between each pair of nodes. In this setting, the ta- 469

ble can be seen as a directed complete graph where 470
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Model
All tables Complex tables

Gap(%)↓Per-class F1(%)↑ Macro
F1(%)↑

Macro F1-
header(%)↑

Per-class F1(%)↑ Macro
F1(%)↑

Macro F1-
header(%)↑PD CA RA CI RI PD CA RA CI RI

RF 95.0 80.4 69.4 78.6 65.2 77.7±0.2 73.4 92.0 67.2 64.4 29.8 53.6 61.4±1.4 53.8 16.3
MLP 95.8 79.8 76.2 78.3 72.3 80.5±0.4 76.7 91.8 64.8 80.0 43.8 54.3 66.9±0.5 60.7 13.6
CNN-BERT† 96.6 87.4 84.4 71.0 75.8 83.0±0.8 79.7 93.8 81.0 86.6 33.4 58.8 70.7±1.2 65.0 12.3
Bi-LSTM 97.2 91.4 87.4 79.0 79.4 86.9±0.3 84.3 93.8 86.6 90.2 60.4 72.2 80.6±0.7 77.4 6.30
RAT 96.0 85.3 82.5 82.0 78.3 84.8±0.3 82.0 92.3 73.0 85.0 69.5 61.0 76.2±0.5 72.1 8.60
RGCN (ours) 98.8 92.4 89.6 85.6 85.4 90.4±0.5 88.3 97.2 89.4 93.0 69.6 79.4 85.7±0.6 82.9 4.70

Table 3: CTC results on all tables and complex tables. PD, CA, RA, CI and RI are acronyms of five cell types,
e.g., PD denotes Pure Data. † represents our implementation. RF stands for random forest. ± stands for standard
deviation over 5 repeated experiments. CTC results on vertical, horizontal and hierarchical tables are shown in
Table 9, Table 10 and Table 11 in Appendix B.1 due to space limitation.

Model Exact Match Acc(%)
All Ver Hor Hie Com

RAT† 18.5±0.9 34.5 33.6 5.03 4.07
TAPAS 33.2±0.8 58.0 31.1 26.4 15.7
RCI 47.2±0.3 68.4 45.1 56.0 19.2
RCI-AIT 49.6±0.4 69.5 43.4 60.4 23.8
RGCN-RCI (ours) 53.4±0.4 70.7 45.9 62.9 32.0
RGCN-RCI (ours)
+ Oracle headers 55.3±0.3 73.0 46.7 66.7 33.1

Table 4: TQA results on our dataset. † represents our
implementation. Ver, Hor, Hie and Com denotes four
table types, respectively. ± stands for standard deviation
over 5 repeated experiments.

each table cell can communicate with all the other471

cells. We replace the RGCN with RAT to update472

node representations. Implementation details can473

be found in Appendix A.2.474

5.1.2 Experimental Results475

Table 3 shows CTC results on all tables and com-476

plex tables, averaged over 5 repeated experiments.477

Models are evaluated with F1 score. Macro F1-478

header represents the macro F1 on four header479

types. Gap represents the Macro F1 difference480

between all tables and complex tables.481

From the results shown in Table 3, we can ob-482

serve that: (1) RGCN achieves the best macro F1483

on all tables and complex tables, beating the best-484

performing baseline Bi-LSTM by 3.5% and 5.1%485

respectively, which demonstrates the effectiveness486

of our proposed graph-based CTC model over vari-487

ous table types, especially complex table. (2) CNN-488

BERT, Bi-LSTM, RAT and RGCN aggregates in-489

formation from different neighbour cells. The best490

performance of RGCN indicates that neighbour491

information in a local area is most important for492

CTC task. This is consistent with the intuition that493

human can determine cell types based on a small494

part of the table and do not need to read the whole495

table. (3) Performance on complex tables is worse496

than overall performance, showing that CTC mod-497

els struggle in comprehending diverse and complex498

table structures with flexible header locations.499

5.2 Table Question Answering 500

5.2.1 Experimental Setup 501

We include following TQA baselines. RCI (Glass 502

et al., 2021): A state-of-the-art TQA model with 503

its original textual representation method. RCI- 504

AIT (Katsis et al., 2022): A variant of RCI for AIT- 505

QA dataset with the textual representation method 506

designed for hierarchical tables. TAPAS (Herzig 507

et al., 2020): A table pre-training based TQA 508

model which takes the linearization of question 509

and table cells as input and outputs token represen- 510

tations. We pre-train a TAPAS model on 6 million 511

Chinese tables collected from Baidu Encyclope- 512

dia. In fine-tuning stage, we concatenate output 513

representations of the first character and last char- 514

acter in the cell text as cell representation and use 515

a linear layer to predict the probability of selecting 516

the cell as answer. RAT: Table cells and question 517

are converted to a graph. We follow Mueller et al. 518

(2019) to use cell-level relations such as question- 519

node to column-header, and use RAT to update cell 520

representations. The final cell representations are 521

used to predict answers. Implementation details 522

are shown in Appendix A.3. 523

5.2.2 Experimental Results 524

Table 4 shows performance on IM-TQA dataset, 525

averaged over 5 repeated experiments. We evalu- 526

ate model’s performance with exact match accu- 527

racy. “RGCN-RCI” denotes our proposed frame- 528

work. “RGCN-RCI + Oracle headers” represents 529

we use annotated headers to build new textual rep- 530

resentation of each row or column. 531

From the results shown in Table 4, we can find 532

that: (1) Existing TQA models struggle on our 533

dataset. For example, the best baseline RCI-AIT 534

achieves an overall accuracy of 49.6%, and its accu- 535

racy on complex tables is only 23.8%. This shows 536

that previous TQA models cannot achieve a great 537

generalization on multi-type tables, especially com- 538
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plex tables whose structure is most complicated.539

(2) Compared with baselines which lack the abil-540

ity to comprehend diverse table structures, RGCN-541

RCI framework achieves better performance and542

improves the accuracy of RCI-AIT on all tables543

and complex tables by 3.8% and 8.2% respectively,544

which demonstrates the effectiveness of our pro-545

posed textual representation method. RGCN-RCI546

+ Oracle headers can achieve more performance547

boost. This further proves that table structure under-548

standing is beneficial to question answering over549

implicit and multi-type tables. A case study is550

shown in Appendix B.3. (3) As a table pre-training551

model, TAPAS still cannot generalize well on all552

table types. We suppose that this is because TAPAS553

is originally designed and pre-trained on vertical554

tables. Considering more diverse table types in555

pre-training stage may improve its performance556

on multi-type tables. (4) Even with an oracle pro-557

viding correct headers, RGCN-RCI only achieves558

33.1% accuracy on complex tables. This shows that559

there is a long way to go for TQA models to find560

correct answers in complicated table structures.561

We randomly select 100 error cases of RGCN-562

RCI framework to conduct error analysis. Er-563

ror cases fall into four categories: (1) Row mis-564

takes(40%): model fails to select the correct row565

which contains answer. (2) Column mistakes(28%):566

model fails to select the correct column. This567

shows that predicting the correct column is usu-568

ally easier than predicting the correct row. (3) Row569

and column mistakes(14%): model selects wrong570

row and wrong column at the same time, which is571

common in complex tables(57%). (4) Missing rows572

or columns(18%): model mistakenly predicted that573

none of rows or columns contains answer, which574

often results from the paraphrased question expres-575

sion such as synonyms.576

6 Related Work577

Table QA methods can be categorized into two578

types: semantic-parsing-based methods and non-579

semantic-parsing methods. The semantic-parsing-580

based methods first transform the natural language581

question into a logical form such as SQL and then582

execute the logical form against tables to output583

the final answer (Wang et al., 2020a; Hui et al.,584

2022; Guo et al., 2019). Non-semantic-parsing585

methods often adopt heuristic designs to extract586

final answer from tables without generating logi-587

cal forms (Yang et al., 2022; Zayats et al., 2021;588

Glass et al., 2021). Researchers also proposed vari-589

ous TQA datasets (Zhong et al., 2017; Iyyer et al., 590

2017; Chen et al., 2020). Most of previous datasets 591

consist of vertical tables with regular structure ex- 592

cept HiTab (Cheng et al., 2022) and AIT-QA (Kat- 593

sis et al., 2022), which also considers hierarchical 594

tables. By contrast, our proposed IM-TQA bench- 595

mark is the first TQA dataset that include tables 596

with implicit and multi-type structures. 597

Cell type classification is a crucial task for table 598

structure understanding, which aims at recognizing 599

table cells’ functional roles. Previous work pro- 600

posed different taxonomies of cell types, which 601

mainly focus on spreadsheet tables (Dong et al., 602

2019; Zhang et al., 2021; Koci et al., 2016). Coarse- 603

grained taxonomies classify table cells according to 604

their roles in basic table structure (Sun et al., 2021), 605

e.g., header, attribute, metadata, data. Fine-grained 606

taxonomies will subdivide header cells or data cells 607

according to more specific functions (Zhang et al., 608

2021), e.g., dividing headers into value name, in- 609

dex, index name, aggregation and others. Our 610

proposed cell type taxonomy belongs to coarse- 611

grained taxonomies and we focus on header cells 612

that are useful for TQA models to locate answers. 613

7 Limitations 614

Our proposed dataset is in Chinese. We plan to 615

construct the corresponding English dataset and 616

enlarge the dataset scale in future work. As an 617

exploration of table question answering over im- 618

plicit and multi-type structures, this paper focuses 619

on Lookup questions and we leave annotations of 620

Aggregation questions in the future work. In addi- 621

tion, our proposed RGCN-RCI framework is not 622

an end-to-end model. We look forward to seeing 623

more end-to-end models which can simultaneously 624

learn table structures and question answering with 625

the help of our dataset. 626

8 Conclusion 627

We propose a new problem, table question answer- 628

ing over implicit and multi-type table structures, 629

and construct the corresponding dataset named IM- 630

TQA. Our dataset includes tables of four types, 631

which are collected from various domains. Besides 632

QA pairs, we also annotate functional roles of ta- 633

ble cells to promote understanding of implicit table 634

structures. In experiments, we benchmark recent 635

methods on CTC and TQA tasks on our dataset, 636

and propose a framework that outperforms exist- 637

ing methods. Experimental results shows that IM- 638

TQA can provide a challenging and comprehensive 639

testbed for future research. 640
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9 Ethical Considerations641

Our proposed benchmark is a free and open re-642

source for the community to study table ques-643

tion answering over implicit and multi-type ta-644

bles. Tables are collected from the public organiza-645

tion China Securities Regulatory Commission and646

Baidu Encyclopedia, which allow sharing and redis-647

tribution for non-commercial use. Tables in these648

web pages are open to public so there is no privacy649

risk. In the annotation process, we asked annota-650

tors to check if there exist any offensive content651

such as insulting or discriminatory speech. They652

did not find any such content in our benchmark.653

We also checked for identifiers and replaced iden-654

tifying information with mono-directional hashes.655

We recruit 10 professional annotators and pay them656

at a price of 6.5 dollars per hour (above the average657

local payment of similar jobs). The total time cost658

for annotation is 1,200 working hours. Annotators659

were informed that these labeled data would be660

used as a table question answering dataset. Main661

experiments in this paper can be run on a single662

NVIDIA GeForce RTX 3090 GPU. We will release663

our benchmark and code for future research along664

with the paper. Our dataset follows the Computa-665

tional Use of Data Agreement v1.0.666
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A Dataset Statistics and Implementation 889

Details 890

A.1 Dataset Statistics 891

Table 5 shows IM-TQA’s basic statistical informa- 892

tion such as average question number, row number, 893

column number per table. We count the number of 894

distinct table structures. If header cell locations of 895

two tables are exactly same, we consider they share 896

the same table structure. As expected, structure 897

number of complex tables (241) and hierarchical 898

tables (153) are larger than that of vertical tables 899

(103) and horizontal tables (89). Table 6 shows 900

number of different table headers. 901

Characteristic Value
Avg. question number per table 4.1
Row number per table (median/mean) 6/7.3
Column number per table (median/mean) 5/5.2
Cell number per table (median/mean) 23/31.6
Header cell number per table (median/mean) 10/12.7
Avg. answer num per question 1.68

Table 5: Dataset basic statistics

Ver Hor Hie Com Total
# table structures 103 89 153 241 586
# Column Attribute 1,158 99 2,185 1,434 4,876
# Row Attribute 145 1,445 831 3,649 6,070
# Column Index 0 1,092 16 268 1,376
# Row Index 1,355 0 872 781 3,008

Table 6: Different header number.

A.2 Implementation Details for CTC 902

Experiments 903

In this paper, we use PaddlePaddle6 to implement 904

our model. We use valid set for model selection and 905

hyper-parameter tuning, and then evaluate the best 906

model on test set. We use bert-base-chinese to ex- 907

tract cell semantic features. For the RGCN model, 908

the GNN layer number is 4, the dimension of hid- 909

den layers is 800, and the ReLu activation is used 910

between adjacent GNN layers. We train RGCN 911

for 20 epochs. The Adam optimizer is adopted 912

with learning rate of 1e-4. To mitigate the class- 913

imbalance in the CTC task, we follow Ghasemi Gol 914

et al. (2019) and use a weighted Cross Entropy Loss 915

as our loss function. We set the weight wk of cell 916

type k to be inversely proportional to the number 917

of cells with class type k in train set ntrain
k , i.e., 918

wk = 1− ntrain
k∑5

k′=1
ntrain
k′

. 919

6https://www.paddlepaddle.org.cn/
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Model Number of
Parameters

Training
Time

Pretrained BERT 110M -
Auto Encoder 0.01M 10.5 minutes
Random Forest n_estimators=100 2 minutes
MLP 6M 1.5 minutes
CNN-BERT 0.1M 3 minutes
Bi-LSTM 1.5M 10 minutes
RAT 80M 1 hour
RGCN 30M 7 minutes

TAPAS 110 M pre-training: 1 week
finetune: 1 hour

RCI 110 M×2 1 hour

Table 7: Model parameter number and training time.

For RAT baseline, we follow the implementation920

in Wang et al. (2020a). The RAT layer number921

and the attention head number is 8. The probabil-922

ity for dropout layers is set to 0.1. The AdamW923

optimizer is adopted with learning rate of 2e-5,924

warmup fraction of 0.1 and weight decay of 0.01.925

We train RAT for 50 epochs with batch size of926

16. For MLP baseline, we adopt a multilayer per-927

ceptron of one hidden layer with hidden size 800928

and ReLu activation. For CNN-BERT baseline,929

we adopt a text CNN (Kim, 2014) on cell feature930

matrix along the row direction. For other base-931

lines, we follow the original experimental setup in932

their papers. PSLRF (Sun et al., 2021) is a very933

recent CTC model, but the code has not been pub-934

licly available. Thus, we do not compare with this935

method.936

A.3 Implementation Details for TQA937

Experiments938

We follow the original paper to train RCI model939

with our proposed textual representation method.940

We use bert-base-chinese as the sequence-pair clas-941

sifier, which is trained for 3 epochs with batch size942

of 64. The AdamW optimizer is adopted with learn-943

ing rate of 2e-5, warmup fraction of 0.1 and weight944

decay of 0.01. The probability of dropout layers945

is set to 0.1. The max grad norm is set to 1.0. To946

achieve better performance in multi-turn TQA task,947

Mueller et al. (2019) also introduced a node rep-948

resenting the answer of last question. We do not949

use these unnecessary designs. All model param-950

eter number and training time are listed in Table951

7. Main experiments in this paper can be run on952

a single NVIDIA GeForce RTX 3090 GPU. The953

pretraining of TAPAS was ran on four Tesla V100954

GPU for about one week. Note that out of resource955

limitation, we only pretrain TAPAS for once.956

A.4 Complete Manual Features 957

We list all manual features in Table 8. We consider 958

15 content features and 9 spatial features. We fol- 959

low Ghasemi Gol et al. (2019) and train an auto 960

encoder to transform 24-dim integer vectors into 961

32-dim continuous numerical vectors. We train the 962

auto encoder by an vector reconstruct task. The 963

auto encoder tries to reconstruct the input integer 964

vector at its output, and generates continuous vector 965

representations at the output of the encoder layer. 966

Mean square error is used as loss function. At test 967

time, we feed the 24-dim integer manual vectors 968

into the trained auto encoder and gain the 32-dim 969

continuous vector from the encoder output. 970

Manual Cell Features
LENGTH#(character-level)
NUM OF TOKENS#(word-level)
LEADING SPACES#
IS NUMERIC?
STARTS WITH NUMBER?
STARTS WITH SPECIAL?
IS CAPITALIZED?
IS UPPER CASE?
IS ALPHABETIC?
CONTAINS SPECIAL CHARS?
CONTAINS PUNCTUATIONS?
CONTAINS COLON?
WORDS LIKE TOTAL?
WORDS LIKE TABLE?
IN YEAR RANGE?
ROW NUMBER#
COL NUMBER#
NEIGHBOUR CELL NUM#
HAS 0 NEIGHBORS?
HAS 1 NEIGHBORS?
HAS 2 NEIGHBORS?
HAS 3 NEIGHBORS?
HAS 4 NEIGHBORS?
IS MERGED CELL?

Table 8: Manual Feature List

B More Experimental Analysis 971

B.1 More CTC Experimental Analysis 972

(4) The performance of MLP baseline is the worst 973

among methods based on neural networks, which 974

proves that neighbour information is essential for 975

distinguishing divergent types of cells. (5) F1 976

scores on the column index (CI) and row index 977

(RI) are lower than that on the column attribute 978

(CA) and row attribute (RA). This indicates that, 979

compared with attribute cells that are not data, it is 980

more difficult for CTC models to distinguish index 981

cells from pure data cells. CTC results on vertical, 982

horizontal and hierarchical tables are shown in Ta- 983

ble 9, Table 10 and Table 11, which demonstrates 984
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that our graph-based method achieves a better gen-985

eralization on tables of diffierent types.986

B.2 More TQA Experimental Analysis987

(5) RCI-AIT achieves better performance than RCI988

especially on hierarchical tables, which shows989

the effectiveness of special textual representation990

method designed for hierarchical tables. However,991

it cannot help RCI-AIT to generalize well on multi-992

type tables as it essentially relies on explicit table993

structures with header annotations and are unable994

to comprehend unknown table structures. (6) The995

performance of RAT is the worst among baselines.996

We suppose the reason is that RAT adopts cell-997

level relations for vertical tables (Mueller et al.,998

2019) and is also not pre-trained. (7) As a non-999

table-pretrained model, RCI beats the TAPAS on1000

all model types, which is consistent with the results1001

in Glass et al. (2021). This shows that selecting1002

answer cells based on column and row information1003

is better than the way that directly predicts whether1004

a table cell is the answer or not.1005

B.3 TQA Case Study1006

Figure 6: A real case (translated to English) where RCI
fails but RGCN-RCI gives the correct answer.

Figure 6 shows an QA sample on a complex table1007

containing parameters of an air filter. In this case,1008

original RCI cannot correctly determine which col-1009

umn contains the answer as its representation of1010

the fourth column lacks necessary row header infor-1011

mation, such as “Operating Temperature Range”.1012

By contrast, RGCN-RCI with our new textual rep-1013

resentation method could incorporate useful row1014

header information into its column representation1015

and finally locates the correct answer.1016

C Instructions for Annotators 1017

Screenshots of original instructions for annotators 1018

have been saved and shown in this section. The 1019

instruction for CTC annotation task is shown in Fig- 1020

ure 9. And the instruction for TQA annotation task 1021

is shown in Figure 10. A real CTC annotation case 1022

of complex table is shown in Figure 11. Besides 1023

instructions, we also provided annotators with suf- 1024

ficient QAs to ensure that they fully comprehended 1025

the annotation requirements. 1026

Model
Vertical tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 93.5 92.3 35.2 - 78.7 74.9 68.7
MLP 98.5 87.5 40.5 - 86.3 78.2 71.4
CNN-BERT 98.0 93.8 56.6 - 87.8 84.1 79.4
Bi-LSTM 98.8 98.4 61.8 - 88.8 87.0 83.0
RAT 97.1 95.2 55.3 - 87.4 83.8 79.3
RGCN 99.3 96.3 62.7 - 94.6 88.2 84.5

Table 9: CTC results on vertical tables.

Model
Horizontal tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 94.0 8.20 79.3 90.1 - 67.9 59.2
MLP 95.0 16.0 88.5 81.5 - 70.3 62.0
CNN-BERT 97.2 18.0 94.8 81.4 - 72.9 64.7
Bi-LSTM 98.6 18.8 94.2 79.6 - 72.8 64.2
RAT 96.3 15.0 90.4 88.2 - 72.5 64.5
RGCN 99.4 20.4 95.6 92.4 - 77.0 69.5

Table 10: CTC results on horizontal tables.

Model
Hierarchical tables

per-class F1(%) Macro F1(%) Macro F1
-Header(%)PD CA RA CI RI

RF 93.3 92.6 50.7 - 64.4 75.3 69.2
MLP 98.6 95.1 51.6 - 73.0 79.6 73.2
CNN-BERT 98.8 95.8 55.6 - 75.6 81.4 75.7
Bi-LSTM 98.4 98.4 67.6 - 75.2 84.9 80.4
RAT 99.2 98.1 64.5 - 83.7 86.4 82.1
RGCN 99.6 98.0 68.4 - 82.0 87.0 82.8

Table 11: CTC results on hierarchical tables.

D More Complex Table Examples 1027

Figure 7 and Figure 8 depict two real complex ta- 1028

bles in Chinese and we translated them into English 1029

for reading convenience. As demonstrated in these 1030

examples, header cells in complex table can appear 1031

at any position and be mixed with other data cells. 1032

Such table structures have not been thoroughly in- 1033

vestigated and challenges existing TQA methods. 1034
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Figure 7: A complex table about an transformer where many row attributes are mixed with data cells.

Figure 8: A complex table about gas test requirements. A col attribute cell, a pure data cell, and three row indices
appear in sequence in the second column, and such mixed data arrangement increases difficulty for TQA models to
find the correct answer.

Figure 9: Instructions(in screenshot) for CTC annotation tasks.
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Figure 10: Instructions(in screenshot) for TQA annotation tasks.

Figure 11: A real annotation case(in screenshot).
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