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Abstract

Knowledge Distillation (KD) aims to train a lightweight student model by transfer-
ring knowledge from a large, high-capacity teacher. Recent studies have shown
that leveraging diverse teacher perspectives can significantly improve distillation
performance; however, achieving such diversity typically requires multiple teacher
networks, leading to high computational costs. In this work, we propose a novel
cost-efficient knowledge augmentation method for KD that generates diverse multi-
views by attaching multiple branches to a single teacher. To ensure meaningful
semantic variation across multi-views, we introduce two angular diversity objec-
tives: 1) constrained inter-angle diversify loss, which maximizes angles between
augmented views while preserving proximity to the original teacher output, and 2)
intra-angle diversify loss, which encourages an even distribution of views around
the original output. The ensembled knowledge from these angularly diverse views,
along with the original teacher, is distilled into the student. We further theoretically
demonstrate that our objectives increase the diversity among ensemble members
and thereby reduce the upper bound of the ensemble’s expected loss, leading to
more effective distillation. Experimental results show that our method surpasses an
existing knowledge augmentation method across diverse configurations. Moreover,
the proposed method is compatible with other KD frameworks in a plug-and-play
fashion, providing consistent improvements in generalization performance.

1 Introduction

Knowledge Distillation (KD) has emerged as a powerful paradigm for model compression, aiming
to transfer knowledge from a large, high-capacity teacher network to a compact student model. By
guiding the student not only through hard labels but also via richer supervisory signals, such as
softened class probabilities [19, 62, 22], intermediate features [6, 5, 15, 39], or attention maps [58],
KD enables the student to learn nuanced decision boundaries and fine-grained representations.
This approach significantly improves the performance of lightweight models, making it highly
suitable for deployment in resource-constrained environments, such as mobile devices [7], embedded
systems [63], and IoT platforms [1].

Building upon this foundation, recent studies have introduced multi-teacher distillation [3, 20, 45, 36],
where the student learns from the collective knowledge of multiple teachers, offering a richer and
more diverse supervisory signal. By aggregating complementary insights from distinct teacher
models, these approaches significantly enhance the student’s generalization capabilities. However, the
benefits of multi-teacher frameworks come with increased computational and memory costs due to the
need to train and maintain multiple large models. Moreover, the diversity in such frameworks often
arises from initializing identical model architectures with different random seeds (as in ensemble
distillation [3]), which inherently limits diversity due to shared structural biases [38].
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Figure 1: The illustration of our angularly diverse knowledge augmentation: (a) Multi-views are
generated from a single pre-trained teacher using multiple pathways, and (b) these augmented outputs
are then optimized with two complementary angular objectives to maximize their intra- and inter-
angular diversity.

Recently, TeKAP [20] was introduced as a knowledge augmentation strategy that simulates multi-
perspective supervision by adding multiple stochastic perturbations into features in a single teacher
model. This approach reduces the computational cost of multi-teacher distillation by avoiding the
need to train multiple teacher networks. However, the diversity it induces is entirely driven by random
noise, offering limited control over the semantic structure or informativeness of the augmented
outputs. This raises the question of whether more structured and controllable augmentation can lead
to more effective knowledge transfer, which is a direction we explore in this work.

In this work, we propose a lightweight knowledge augmentation approach that generates diverse
perspectives from a single teacher by attaching multiple pathways (Fig. 1a), thereby eliminating the
overhead of training multiple teacher networks. Unlike a noise-based method [20], our approach
enables explicit control over the diversity of augmented views while preserving semantic consistency.
To ensure attached linear branches produce complementary and informative knowledge, we introduce
two novel learning objectives (Fig. 1b) that maximize angular diversity among the augmented
outputs. First, the constrained inter-angle diversity loss maximizes the angular separation among
all augmented views while constraining them within a margin around the original teacher output to
maintain alignment with the source knowledge. Second, the intra-angle diversity loss encourages
an even spread of the augmented views centered on the teacher’s original view, promoting broad
coverage of the local knowledge space. Together, these objectives generate a set of semantically rich
and angularly diverse teacher views. These views are aggregated with the original teacher output to
provide a stronger and more informative supervisory signal for student distillation. In addition, it
significantly reduces computational cost by eliminating the need for training multiple teacher models.

Furthermore, we theoretically demonstrate that our proposed objectives increase ensemble diver-
sity [38], which in turn tightens the upper bound on the expected loss, an effect directly linked to
improved distillation performance [34]. Empirically, our approach achieves state-of-the-art perfor-
mance on standard knowledge distillation benchmarks under various teacher-student configurations.
Moreover, it consistently enhances student generalization when integrated as a plug-and-play module
into existing distillation frameworks.

Our contributions can be summarized as follows:

• We propose Angular-KD, a novel knowledge augmentation framework that generates multiple
diverse views from a single teacher by attaching lightweight, learnable linear branches. This
eliminates the need to train and store multi-teacher models.

• To explicitly control and enhance the diversity of the augmented views, we introduce two angular
objectives: 1) a constrained inter-angle diversity loss that encourages angular separation while
preserving alignment with the original teacher prediction, and 2) an intra-angle diversity loss that
enforces a uniform spread around the teacher output.

• We provide both theoretical analysis and empirical evidence that the proposed angular diversity
objectives lead to more diverse and structured augmented views, which consistently improve
student performance across a wide range of distillation settings.

2 Method

In this section, we present Angular-KD, a lightweight yet effective knowledge augmentation frame-
work that generates diverse supervisory signals from a single pre-trained teacher. The core idea is to
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append multiple lightweight linear branches to the teacher, each generating distinct logits or features
that serve as diverse views for distillation (Fig. 1a). To ensure these augmented outputs provide
complementary supervision, we optimize them by maximizing both inter- and intra-angular diversity,
while constraining their output within the target class boundaries (Fig. 1b). This encourages the
generation of rich knowledge without incurring the costs of training multiple teacher models.

We begin by describing the detailed design of single-teacher view augmentation heads, which generate
multiple augmented views from the original teacher knowledge (Sec. 2.1). We then introduce the
inter- and intra-angular diversity objectives, which explicitly optimize these views to achieve the
desired angular diversity (Sec. 2.2). Finally, we describe how the student is distilled with both the
augmented and original teacher knowledge in an end-to-end manner (Sec. 2.3).

2.1 Single-teacher View Augmentation Heads

To generate diverse views of the teacher’s knowledge using a single network, we attach multiple linear
transformation heads, referred to as view augmentation heads, to the teacher. To encourage structural
diversity at initialization, each head is initialized using orthogonal initialization [43], allowing them
to explore distinct representational directions. This reduces redundancy among learned features
and leads to more diverse and informative representations early in training. Additionally, we apply
dropout [46] with varying probabilities to the input features of each head, introducing stochastic
variation and further encouraging semantic diversity among the views. The architectural design of
the view augmentation heads is described in detail below.

Teacher Knowledge Extraction. We utilize two forms of teacher knowledge: the final feature
representation and the logit probability. To enable multi-view augmentation, we first extract the
teacher knowledge at both feature and logit levels using the teacher network. Given an input sample
x, the teacher network first produces the final feature vector FT = f(x; θT ) ∈ RdT , where f(·; θT )
denotes the teacher’s feature extractor, parameterized by θT , and dT is the dimensionality of the
feature representation. The corresponding logit probabilities ZT are then computed by applying
a classification layer WT ∈ RC×dT to the extracted features: ZT = σ(WTFT /τZ) ∈ RC , where
σ(·) is the softmax function, C is the number of classes, and τZ is a temperature scaling factor to
control the smoothness of the distribution.

View Augmentation Heads. To generate N diverse views from the extracted teacher knowledge,
we attach a set of N linear transformation heads to the teacher. These view augmentation heads
are independently applied at the feature and logit levels, producing alternative representations from
a single teacher source. We first attach N number of multiple feature-level augmentation heads
{ϕi}Ni=1 with orthogonal initialization [43] to promote diversity across views. To further encourage
semantic variation in views, we apply a dropout mask Mi with dropout probability mi to the input
feature before passing it through each head. The i-th augmented feature is then computed as:

FAi = ϕi(F
T ), where ϕi(FT ) = BN(Wϕi(Mi ⊙ FT )) ∈ RdT , i ∈ {1, . . . , N}, (1)

where BN(·) is a BatchNorm layer, Wϕi ∈ RdT×dT is a linear layer, and ⊙ denotes the element-
wise product. Augmented features FAi are derived from a unique pair of dropout masks Mi and
feature-level heads ϕi, enabling the generation of diverse views for distillation.

Each augmented feature is further transformed into a logit probability ZAi ∈ RC over C classes.
This is achieved by passing the augmented feature FAi through a logit-level augmentation head ψi,
consisting of a linear layer Wψi ∈ RC×dT , followed by a softmax σ(·) with a temperature τZ :

ZAi = ψi(F
A
i ), where ψi(FAi ) = σ(WψiFAi /τ

Z) ∈ RC , i ∈ {1, . . . , N}. (2)

The resulting augmented features {FAi }Ni=1 and logits {ZAi }Ni=1 are jointly optimized to maximize
angular diversity by updating the parameters of the view augmentation heads {ϕi}Ni=1 and {ψi}Ni=1
using our proposed angular diversity loss functions (see Sec. 2.2). These augmented view pairs
{FAi ,ZAi }Ni=1 are also distilled into the student model alongside the original teacher pair {FT ,ZT },
as detailed in Sec. 2.3.

2.2 Angular Losses for Learning Diverse Representations

While orthogonal initialization and dropout introduce initial diversity in the view augmentation heads,
they are insufficient to ensure meaningful separation between the generated views. To explicitly
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encourage representational diversity across views during training, we introduce two angular diversity
loss functions: Constrained inter-angle diversity loss and Intra-angle diversity loss.

Constrained Inter-angle Diversity Loss. The constrained inter-angular diversity loss Laug
inter is

designed to maximize the angular separation among the augmented knowledge by minimizing their
cosine similarity, thereby capturing the absolute deviation in representation space (Fig. 1b). We adopt
cosine similarity due to its numerical stability compared to directly optimizing the arccosine [11].
However, excessive angular deviation may cause augmented views to drift toward non-target class
boundaries. To mitigate this, we introduce a constraint that encourages each augmented view to
remain within a learnable angular margin from the teacher’s view. Once all augmented views satisfy
this constraint, a diversity term is activated to further maximize inter-view separation. Formally,

Laug
inter = −

N∑
i=1

log
exp

(
min(1, γ + sTi )/τ

C
)∑

k∈Ni
exp

(
sTk /τ

C
)︸ ︷︷ ︸

Constraint term

+1{∀i∈{1,...,N}:γ+sTi ≥1}
N∑
i=1

N∑
j ̸=i

sAij︸ ︷︷ ︸
Diversity term

(3)

where sTi =

{
cos(FT ,FAi ) (feature-level)
cos(ZT ,ZAi ) (logit-level),

sAij =

{
cos(FAi ,F

A
j ) (feature-level)

cos(ZAi ,Z
A
j ) (logit-level),

cos(u,v) = u ·v/∥u∥∥v∥, γ is a learnable angular margin, τC is a temperature parameter, Ni denotes
the set of negatives for the i-th augmented samples from other batches, and 1{·} is an indicator
function activated when the specified condition holds.
The loss can be applied either to augmented features FAi or to logits ZAi by computing their angular
similarity, encouraging diversity at the representational or predictive level, respectively. To prevent
semantic drift, the constraint term penalizes augmented views that fall outside the angular margin, ef-
fectively pulling them closer to the teacher representation. Incorporating negatives further encourages
discriminative alignment. Once all augmented views reside within the angular margins, the diversity
term maximizes inter-view angular discrepancy to enhance diversity across the augmented views.

Intra-angle Diversity Loss. While inter-angle loss encourages view separation in the absolute
representation space, it does not account for how each view deviates from the teacher. To ensure
that the augmented views are evenly distributed around the teacher’s knowledge, we introduce the
intra-angle diversity loss, Laug

intra. This objective minimizes the pairwise cosine similarity among the
offset vectors {∆T−A

i }Ni=1, which quantify the directional deviation of each augmented view from
the teacher representation. Specifically, each offset vector is computed as the difference between the
teacher representation and the corresponding augmented instance, i.e., ∆T -A

i = RT −RA
i , where

R ∈ {F,Z} denotes either the feature (F) or logit-level (Z) representation. Formally, it is defined as:

Laug
intra =

N∑
i=1

N∑
j ̸=i

s∆ij , where s∆ij = cos(∆T−A

i ,∆T−A

j ), ∆T−A

i =

{
FT − FAi (feature-level)
ZT − ZAi (logit-level).

(4)

Minimizing Laug
intra encourages structurally diverse offset directions, complementing the inter-angle

objective by shaping a more structurally balanced variation around the teacher and promoting diverse,
informative knowledge augmentation.

Overall Loss Function for View Augmentation In addition to two angular diversity objectives, we
supervise each augmented logit with the ground-truth one-hot labels y = {y1, . . . , yc} ∈ RC with
C classes, as follows: Laug

gt =
∑N
i=1 CrossEntropy(y,ZAi ). This supervision acts as a regularization

signal to prevent the augmented predictions from diverging too far from the true semantic target. The
overall loss function applied to the augmented knowledge is defined as: Laug = Laug

inter + Laug
intra + Laug

gt .
We refer to feature-level augmentation as the setting where the angular diversity loss Laug is applied
exclusively to the outputs of the feature-level augmentation heads, while logit-level augmentation
applies the loss solely to the outputs of the logit-level heads. Our full model incorporates both
logit- and feature-level augmentation, enforcing angular diversity at both the feature- and logit-level
representations. This encourages consistency and diversity across both the representational and
predictive spaces, leading to more robust and generalizable learning.
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2.3 Distillation with Augmented Knowledge

To distill the augmented teacher knowledge into the student, we construct a (N+1)-way ensemble
by averaging the original teacher output with its N augmented variants. The resulting ensemble
representation is denoted as FE or ZE , depending on whether feature- or logit-level outputs are
used. This combined representation serves as supervision for the student model. For feature-level
distillation, we employ a Contrastive Representation Distillation (CRD) [50] loss, Ldistill

feat. , to align the
student’s features with the ensembled teacher representation. For logit-level distillation, we employ
a Kullback-Leibler (KL) divergence loss [19], Ldistill

logit = KL(ZE ,ZS), to align the student’s logit
ZS with the ensembled logits aggregated from the teacher and augmented views. Additionally, we
apply a standard cross-entropy loss Ldistill

gt = CrossEntropy(y,ZS) to directly supervise the student
with ground-truth labels. The overall distillation loss is defined as Ldistill = Ldistill

feat. + Ldistill
logit + Ldistill

gt ,
where either or both of the feature- and logit-level terms can be included depending on the chosen
distillation setting. The augmentation and distillation losses are applied to the teacher and student,
respectively, enabling joint end-to-end training of the entire model.

3 Theoretical Analysis

To theoretically justify the performance benefits of our approach, we build upon existing analyzes
of ensemble diversity [38], which demonstrate that increased diversity among ensemble members
reduces the upper bound on the expected ensemble loss. In this section, we formally analyze (1)
how our inter- and intra-angle diversity losses relate to the ensemble diversity, and (2) how this
amplified diversity tightens the upper bound on the ensemble’s expected loss, thereby improving
student performance.

Effect of Intra-, Inter-angular Losses on Ensemble Diversity. Let {Zi}Ni=0 denote the set of
logits used in the ensemble, where Z0 := ZT is the original teacher output and Zi := ZAi are the
logits from the i-th augmented view for i = 1, . . . , N . The ensemble diversity metric D(·) [49, 37],
defined over the ensemble members {Zi}Ni=0 and dataset D, can be expressed in two equivalent
forms, depending on either the pairwise similarity sAij (defined in Eq. (3)) between normalized logits
or the angular similarity s∆ij (defined in Eq. (4)) between offset vectors, as follows:

D({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
=


E(x,y)∼D

[
ENi=1

[
∥Zi∥2

]
− ENi,j=1

[
∥Zi∥∥Zj∥sAij

]]
, (5a)

−E(x,y)∼D

[
ENi,j=1

[
∥∆T−A

i ∥∥∆T−A

j ∥s∆ij
]]
. (5b)

The full derivation is provided in the supplementary material. These two equations indicate that
ensemble diversity D grows as the cosine similarities sAij and s∆ij decrease. Notably, the inter-angle
diversity loss (Eq. (3)) explicitly minimizes sAij , while the intra-angle diversity loss (Eq. (4)) targets
s∆ij . Together, these losses reduce the similarity terms in the ensemble diversity metric D, thereby
increasing diversity and tightening the upper bound on the ensemble’s expected loss, as shown below.

Upper Bound on Expected Loss of Ensemble. Similar to the analysis in [38], the expected loss
E(x,y)∼D[L(·)] of the ensemble logit ZE over the dataset D is bounded by

E(x,y)∼D

[
L(ZE)

]
≤ E(x,y)∼D

[
ENi=0

[
L(Zi)

]]
−KD({Zi}Ni=0), (6)

where L is a cross-entropy loss and K > 0 is a constant. This bound shows that increasing the
ensemble diversity D lowers the upper bound on the ensemble’s expected loss. Furthermore, this
bound is also tightened by an improvement in the average quality of the individual views. By maxi-
mizing angular diversity, our method lowers this bound, strengthening the ensemble supervision and
improving the student performance [34]. The detailed derivation is also included in our supplementary.

4 Experiments

4.1 Experimental Setting

Dataset and Metric. We conduct experiments on various KD benchmark datasets: 1) CIFAR-
100 [24], a 100-class image classification dataset containing 50,000 training and 10,000 validation
images of size 32× 32, 2) ImageNet [10]: a large-scale classification dataset with 1,000 categories,
approximately 1.28 million training and 50,000 validation images, each of size 224×224, and 3)
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Table 1: Results on CIFAR-100. Top-1 test accuracy (%) of student models across various teacher-
student configurations compared with a SoTA augmentation method [20]. Augmentations are
applied at three different levels: logit-level augmentation with logit distillation (KD), feature-level
augmentation with feature distillation (CRD), and logit- and feature-level augmentation with logit
and feature distillation (KD + CRD).

Same Architecture Different Architecture

Arch. of Teacher
Student

RN32×4 VGG13 WideRN 40 2 RN32×4 RN32×4 WideRN 40 2
RN8×4 VGG8 WideRN 40 1 WideRN 40 2 WideRN 16 2 RN8×4

Acc. of Teacher
Student

79.42 74.64 75.61 79.42 79.42 75.61
72.50 70.36 71.98 75.61 73.26 72.50

Logit-level augmentation
Logit Distil. [19] w/o aug 73.33 72.98 73.54 77.70 74.70 73.97

w/ TeKAP [20] 74.79 74.00 73.80 77.97 75.08 75.09
w/ Angular-KD (ours) 76.08 74.57 74.86 78.68 76.22 76.27

Feature-level augmentation
Feat. Distil. [50] w/o aug 75.51 73.94 74.14 78.15 75.65 75.24

w/ TeKAP [20] 75.65 74.10 74.21 78.05 75.42 75.65
w/ Angular-KD (ours) 75.82 74.55 74.91 78.51 76.19 76.20

Logit- and feature-level augmentation
Combined Distil. w/o aug 75.46 74.29 74.38 78.01 75.86 75.57

w/ TeKAP [20] 75.98 74.42 74.41 78.68 75.62 75.90
w/ Angular-KD (ours) 76.46 74.76 75.00 78.94 76.42 76.29

Table 2: Plug-and-Play Results on CIFAR-100. Comparison with a SoTA augmentation method [20]
for KD. Three scenarios are reported: the original SoTA KD method without any augmentation,
augmented with TeKAP, and augmented with our Angular-KD.

Same Architecture Different Architecture

Arch. of Teacher
Student

RN32×4 VGG13 WideRN 40 2 RN32×4 RN32×4 WideRN 40 2
RN8×4 VGG8 WideRN 40 1 WideRN 40 2 WideRN 16 2 RN8×4

Acc. of Teacher
Student

79.42 74.64 75.61 79.42 79.42 75.61
72.50 70.36 71.98 75.61 73.26 72.50

DKD [62] w/o aug 76.32 74.68 74.81 78.46 75.70 75.56
w/ TeKAP [20] 76.65 74.55 73.83 78.64 75.28 76.22
w/ Angular-KD (ours) 76.51 74.76 74.89 78.99 76.05 76.14

ReviewKD [6] w/o aug 75.63 74.10 75.09 78.96 76.11 74.34
w/ TeKAP [20] 75.32 74.29 75.15 79.55 76.36 75.59
w/ Angular-KD (ours) 75.78 74.12 75.45 78.28 76.40 75.97

MLKD [22] w/o aug 77.08 75.18 75.35 79.26 76.52 77.33
w/ TeKAP [20] 77.04 75.37 75.31 78.72 76.46 77.28
w/ Angular-KD (ours) 77.28 75.63 75.37 79.52 76.60 77.45

Imbalanced CIFAR-100, following prior works [50, 20], where 43 classes out of 100 CIFAR classes
are selected, and each class is limited to 50 training samples. The imbalanced classes can be found
in our supplementary. 4) STL-10 [8], a 10-class image classification dataset with an image size of
96× 96, comprising 5,000 training images and 8,000 test images. 5) TinyImageNet [10], a 200-class
subset of ImageNet, with each class containing 500 training images, 50 validation images, and 50 test
images with a size of 64× 64. For the evaluation metric, we use top-1 classification accuracy (%).

Implementation Details. For view augmentation heads (Sec. 2.1), we generate N = 5 augmented
views, apply dropout with probabilities {0.2, 0.25,0.3, 0.35, 0.4}, and use a softmax temperature of
τZ = 4. For constrained inter-angle diversity loss (Sec. 2.2), the learnable margin γ is initialized
to 0.2, and the contrastive temperature is set to τC = 0.07. For the ensembling (Sec. 2.3), we use
uniform weights across all ensemble members. Training starts with a 30-epoch warm-up phase where
only the view augmentation heads are trained to ensure stability. Subsequently, the student model is
trained for 240 epochs on a single RTX 2080 Ti GPU using SGD optimizer, and a batch size of 64.
The learning rate starts at 0.01 and is decayed by a factor of 10 at epochs 150, 180, and 210.

4.2 Main Result

Results on CIFAR-100. Table 1 reports a comparison between the proposed Angular-KD and and
the prior augmentation method [20], on CIFAR-100. We evaluate three augmentation levels: (1)

6



Table 3: Results on ImageNet. The logit-level augmenta-
tions are applied for both Angular-KD and TeKAP under
a ResNet34 teacher and a ResNet18 student.

Metric Teacher Student w/o aug TeKAP Ours
Top-1 Acc. 73.31 69.75 70.41 70.67 71.07
Top-5 Acc. 91.42 89.07 89.88 89.92 90.39

Table 4: Results on Binary Segmen-
tation on the Carbana Image Masking
dataset.

Methods Dice Loss ↓ IoU
Naíve KD 0.0218 94.83
+ Ours 0.0208 95.72

Table 5: Results on imbalanced CIFAR-100.
“Imbalanced set" includes 43 under-sampled
classes, “Full set" indicates a total 100 classes
with extra balanced 57 categories.

Class type w/o aug TeKAP Ours
Imbalanced set 33.23 34.98 35.66
Full set 60.74 61.18 61.84

Table 6: Transferability Results. The distilled
knowledge on CIFAR-100 is transferred to STL-
10 and TinyImageNet. The classifier for each
dataset is trained on top of a frozen student.

Dataset w/o aug TeKAP Ours
STL-10 68.01 68.71 70.23
TinyImageNet 31.17 31.54 32.97

logit-level augmentation with logit distillation (KD [19]), (2) feature-level augmentation with feature
distillation (CRD [50]), and (3) their combination. Evaluations are conducted across multiple teacher-
student configurations under two scenarios: same-architecture, where both teacher and student use
the same network, and cross-architecture, where different backbones are employed. In the table, we
denote ResNet [17] and WideResNet [57] as RN and WideRN, respectively. Across all configurations,
Angular-KD consistently outperforms TeKAP by substantial margins, highlighting the effectiveness
of angular-diversity-based augmentations over TeKAP’s random noise perturbations.

Plug-and-Play Results on CIFAR-100. Table 2 presents the distillation performance of our
Angular-KD when integrated as a plug-and-play module on top of SoTA KD methods [62, 22, 6],
compared to TeKAP [20], under both same architecture and different architecture settings. For most
methods, adding Angular-KD yields consistent performance gains, and it outperforms TeKAP in
most settings, demonstrating its effectiveness and generalization in generating valuable supervisory
signals for the student through our angularly diverse augmentation.

Results on ImageNet. To validate the scalability, we evaluate Angular-KD on the ImageNet [10]
validation set using a ResNet34 teacher and a ResNet18 student. Table 3 reports Top-1 and Top-5
accuracies (%) for both Angular-KD and TeKAP under logit-level augmentations with naïve KD [19]
Our method achieves the best results compared to the unaugmented one and TeKAP, confirming its
robustness on large-scale datasets. The detailed implementations are presented in the supplementary.

Results on Binary Segmentation. To further validate that our approach is effective beyond the
image classification task, we conduct a binary segmentation task on the Carvana Image Masking
dataset [44], which includes 5,088 training images and 100,064 test images. Using a U-Net-32
teacher and a U-Net-16 student, we compare the augmented KD with our Angular-KD against the
unaugmented KD baseline. As shown in Table 4, our approach achieves substantial improvements
over the baseline across two metrics (Dice loss [35] and IoU), demonstrating its task generality
beyond image classification.

Results on Imbalanced CIFAR-100. We assess robustness on an imbalanced CIFAR-100 dataset,
where 43 of the 100 classes are undersampled to 50 training images (See supplementary for details).
The student is assessed on two test settings: (1) the 47-class imbalanced subset and (2) the full 100-
class set including 53 balanced classes. All models use a WideRN-40-2 teacher and a WideRN-16-2
student, with both feature- and logit-level augmentations. As shown in Table 5, Angular-KD achieves
the highest accuracy in both settings, highlighting strong robustness in imbalanced scenarios.

Transferability Results on STL-10 and TinyImageNet. To validate that our Angular-KD leads
a student to a more general model, we evaluate the CIFAR-100 distilled student (via unaugmented,
TeKAP, or Angular-KD) on STL-10 and TinyImageNet. For this experiment, we train a classifier
for each transferred dataset on top of the frozen student, and use a WideRN-40-2 teacher and a
WideRN-16-2 student. In Table 6, a trained student via Angular-KD achieves the best performance,
underscoring that angularly diversified distillation produces a more generalizable representation.
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Table 7: Advantages over multi-teacher approaches. The best results are highlighted in bold and
second best are underlined. † indicates Ensemble Distillation [3].

Metric
WideRN-40-2Teacher WideRN-16-2Student VGG13Teacher VGG8Student

Multi-teacher Methods Single-teacher Aug. Multi-teacher Methods Single-teacher Aug.
ED† [3] TAKD [36] DGKD [45] TeKAP Ours ED† [3] TAKD [36] DGKD [45] TeKAP Ours

Acc. 76.31 75.04 76.24 76.20 76.33 74.67 73.67 74.40 74.42 74.76
Params (M) 11.28 6.69 6.69 2.26 2.40 47.31 20.31 20.31 9.46 11.04
FLOPs (M) 1645 797 797 329 329 1427 497 497 285 287

Figure 2: Few-Shot Results.

Table 8: Ablation on each proposed method. We report accuracy
and the ensemble diversity metric (from our theoretical analysis)
to assess the impact of each objective.

Constrained Inter-angle
Diversity Loss

Intra-angle
Diversity Loss Acc. Ensemble

Diversity

75.46 -
✓ 76.16 11.522

✓ 76.28 11.617
✓ ✓ 76.46 11.633

Advantages over Multi-teacher Approach. To highlight our advantages over multi-teacher distil-
lation methods [3, 36, 45], we compare KD accuracy and resource efficiency in Table 7. We consider
two configurations: (1) WideRN setting, where Angular-KD and TeKAP employ a single WideRN-
40-2 teacher and a WideRN-16-2 student, while TAKD [36] and DGKD [45] each train four teachers
(WideRN-40-2, -34-2, -28-2, -22-2), and Ensemble Distillation [3] uses five WideRN-40-2 teachers;
and (2) VGG setting, where Angular-KD and TeKAP use a single VGG13 teacher and a VGG8
student, while TAKD [36] and DGKD [45] train two teachers (VGG13, VGG11), and Ensemble Dis-
tillation [3] uses five VGG13 teachers. We report the total number of teacher parameters and FLOPs,
which reveal the substantially higher resource cost of multi-teacher methods. Notably, Angular-KD
achieves higher accuracy than all baselines while requiring only a single teacher, demonstrating
superior efficiency.

Few-shot Results. We further evaluate Angular-KD under limited-data scenarios by randomly
sampling 25%, 50%, and 75% of the CIFAR-100 training set compared with unaugmented KD + CRD
and a SoTA augmentation method, namely TeKAP [20], as shown in Fig. 2. All compared methods
use a WideRN-40-2 teacher and a WideRN-16-2 student. Across all sampling ratios, Angular-KD
achieves the best average performance over three trials (error bars are shown in the figure). These
results indicate that our angular-diversity augmentations provide more informative supervisory signals
that help the student generalize even when training data are scarce.

4.3 Ablation Study

We conduct an ablation study on CIFAR-100 using ResNet32×4 and ResNet8×4 as the teacher and
the student, respectively.

Effect of Each Proposed Method. In Table 8, we analyze the contribution of each proposed method
in our Angular-KD by reporting accuracy and ensemble diversity (defined in Sec. 3). Beginning with
the unaugmented KD + CRD baseline, we then sequentially introduce our angular diversification
objectives with augmentation heads. The constrained inter-angle diversity loss alone increases both
accuracy and ensemble diversity, indicating that separating views from one another is beneficial. Our
intra-angle diversity loss also drives up ensemble diversity, thereby improving performance. When
combining both angular-diversity objectives, we achieve the best accuracy and diversity, confirming
that inter- and intra-angular objectives work together to strengthen distillation.

Effect of the Number of Augmentations. Table 9 explores the effect of varying the number
of augmentations (N ) on performance. Notably, even a single augmentation (N = 1) yields
improvement over the unaugmented KD + CRD baseline, denoted as “w/o” in the table. We obtain
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Table 9: Ablation study on the number of augmentations. “w/o aug” refers to a baseline with logit
(KD) and feature (CRD) distillation without augmentation. † denotes teacher’s Params and FLOPs.

Metric w/o aug
# of Augmentations (N )

1 2 3 4 5 6
Acc. 75.46 75.87 +0.39 75.85 +0.39 76.25 +0.79 76.44 +0.98 76.46 +1.00 76.37 +0.91

Params (M) 7.434† +0.092 +0.184 +0.276 +0.368 +0.460 +0.552
FLOPs (M) 1085.629† +0.092 +0.185 +0.277 +0.370 +0.462 +0.554

Table 10: Ablation study within view
augmentation head.

Orth. Init. Dropout Acc.
76.17

✓ 76.31
✓ 76.35

✓ ✓ 76.46

Table 11: Ablation study within the constrained inter-
angle diversify loss.

(a) Constraint, diversity terms

Constraint Diversity Acc.
✓ 76.25

✓ 76.29
✓ ✓ 76.46

(b) Margin γ

Margin γ Acc.
0.1 76.34
0.2 76.46
0.3 76.31

the best results at N = 5. Importantly, increasing N incurs marginal computational overhead, as
each augmentation adds only a lightweight head with negligible impact, espcially on overall FLOPs.

Ablation Study within View Augmentation Heads. We conduct an ablation to isolate the individ-
ual effects of orthogonal initialization [43] and input dropout [46] on our view augmentation heads, as
shown in Table 10. Initializing each head with orthogonal weights increases accuracy, demonstrating
that starting in distinct directions leads to more diverse views. Applying dropout before each head
further boosts the results. Combining both orthogonal initialization and dropout yields accuracy
gains, confirming that these techniques work synergistically to diversify the augmented knowledge.

Ablation Study within Constrained Inter-angle Diversity Loss. We analyze the effects of the
constraint and diversity terms, as well as the choice of angular margin γ in our constrained inter-angle
diversity loss. Table 11a shows that combining both constraint and diversity terms yields the highest
accuracy, confirming the effectiveness of our objective design. Table 11b further reveals that setting
an angular margin γ to 0.2 yields the highest results, offering the best trade-off between promoting
diversity and preserving class boundaries.

(a) Ours (b) TeKAP

Figure 3: The t-SNE visualization of teacher
(✖) and augmented logits (●) from Angular-KD
compared to TeKAP.

t-SNE Visualization. We visualize the t-SNE
embeddings of the original teacher logit and aug-
mented logits produced by our method (Fig. 3a)
compared to those from a SoTA augmentation
method [20] (Fig. 3b). For clarity, we randomly
sample 10 out of the 100 classes and assign
a unique color to each category. We observe
that our augmented views are more evenly dis-
persed, particularly for the gray and red classes,
while those of TeKAP are clustered. Furthermore,
TeKAP’s augmented views overlap heavily in the
purple and red class regions, unlike ours.

5 Related Work

Knowledge Distillation. Knoweldge Distillation (KD), first introduced by Hinton et al. [19], train
a compact student to mimic the softmax outputs of a large teacher. Since then, 1) logit-based
approaches [62, 29, 47, 59, 61, 28] have been developed by modifying logit probabilities, e.g. using
adaptive temperature [14], or predicting sample-wise temperature [29]. Parallel to this, 2) feature-
based approaches [2, 18, 30, 40, 32, 55, 5, 15] transfer intermediate representations directly, such
as feature maps [42], and spatial attention maps [58], enabling more fine-grained guidance. To
further boost knowledge transfer, multi-teacher distillations [56, 13, 54] aggregate diverse views
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from multiple independently trained teachers. While effective, these methods demand significant
computational resources. In this work, we replace the array of teachers with lightweight linear
branches, drastically reducing the overhead of acquiring diverse knowledge.

Diversity and Ensemble Learning. Ensemble methods boost performance by encouraging diversity
among their models. Classic Bagging [4] and Boosting [12] do so via resampling or reweighting, while
modern deep ensembles use random initializations [27, 52] or stochastic optimization [33, 60, 53]. In
contrast, we generate varied predictors through lightweight single-linear branches combined with
our angular diversity losses. Furthermore, a range of diversity metrics [37, 23] (i.e., ambiguity [25],
orthogonality [26], disagreement [25]) has been proposed. Especially, Ortega et al. [38] formalize
a generic diversity measure linked to the generalization error bound. We show that our objectives
increase this measure, thereby tightening the theoretical bound and enhancing distillation [34].

Teacher Knowledge Augmentation. TeKAP [20] first tackles the high cost of multi-teacher
distillation by augmenting single-teacher knowledge into diverse views via random perturbations.
While this reduces resource demands, its reliance on undirected, stochastic noise limits the overall
diversity. In contrast, our method explicitly maximizes angular separation among generated views
via two novel angular-diversity losses, ensuring more complementary, less-redundant augmentations.

Angle-based Learning Objective. A series of methods [48, 21, 51] have shown that imposing
angular margins on the classifier’s hypersphere largely boosts inter-class separation and enforces intra-
class compactness. SphereFace [31] replaces softmax logit with cos(mθ) to enforce a multiplicative
angular margin; CosFace [51] applies an additive margin m via cos(θ)−m; and ArcFace [11] directly
adds an angular offset cos(θ + m) to optimize geodesic separability. Unlike these methods, our
angular-diversity losses work on multiple augmented views of a single teacher, not on different classes,
to harness angular maximization for knowledge diversity rather than class-margin enforcement.

6 Discussions

Limitations. A key limitation of our approach is that the augmentations are inherently constrained
by the original teacher’s knowledge, making it difficult to introduce fundamentally new semantic
information. While we achieve multi-view diversity through inter- and intra-angular variations, our
method does not capture the broader semantic richness that could be offered by multiple distinct
teacher models. Moreover, although angular augmentation is computationally more efficient than
multi-teacher approaches, generating multiple views still incurs a non-negligible training-time over-
head. In future work, we plan to mitigate this limitation by incorporating novel semantic signals
beyond those of the original teacher, while keeping additional costs minimal.

Social Impacts. Our method, Angular-KD, improves the efficiency and accessibility of knowledge
distillation by eliminating the need for multiple large teacher models. This may facilitate the
deployment of compact, high-performing models in low-resource environments such as edge devices,
mobile platforms, and underserved regions. The reduced computational demand may also contribute
to lowering the environmental impact of large-scale training and reducing the overall carbon footprint.
However, there are also potential societal risks. As all augmentations are generated from a single
teacher, any biases or blind spots present in the teacher model may be transferred or even amplified
in the student. This raises concerns related to fairness and representational harm, particularly in
sensitive domains such as hiring, finance, healthcare, or surveillance. Furthermore, since angular
perturbations are not semantically grounded, the approach may limit interpretability and increase
susceptibility to adversarial manipulation.

7 Conclusion

In this paper, we present a novel KD augmentation method that generates angularly diverse views
from a single teacher using linear layers with two novel angular diversity learning objectives, where
valuable findings are provided: (1) Theoretically, angular diversity in augmented views leads to high
ensemble diversity, reducing student errors, and (2) empirically, our angularly diverse augmentation
achieves the best performance across various KD benchmarks, and delivers additional gains when
incorporated as a plug-and-play with existing KD approaches.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions we list in Sec. 1 introduction are detailed in Sec. 3 Theoretical
Analysis and Sec. 4 Experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Sec. 6 and the supplementary
material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide short, brief proofs in Sec. 3 and detailed explanations are offered
in the supplementary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain experimental settings in Sec. 4 and more detailed settings in the
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Codes are included in the supplementary material Zip file. We use datasets
that are publicly available. We will release our code on GitHub in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all necessary details to understand the results in Sec. 4 and the
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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• The answer NA means that there is no societal impact of the work performed.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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provided alongside the assets?
Answer: [Yes]
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• The answer NA means that the paper does not release new assets.
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Single-Teacher View Augmentation: Boosting Knowledge
Distillation via Angular Diversity

- Supplementary materials -

Overview of Supplementary Materials

We provide the table of contents for the supplementary materials below:

A. Additional Results

A.1. Additional Plug-and-Play Results with a Multi-teacher Method
A.2. Additional Transferability Results on STL-10 and TinyImageNet
A.3. Comparisons on Training Time
A.4. Experiments for Statistical Significance

B. Analysis on Augmented Views

B.1. Accuracy for each Augmented View
B.2. Effect of Inter- and Inter-angles in Ensemble Diversity and Accuracy
B.3. Correlation Matrix between Augmented Views

C. Additional Implementation Details

D. Data Augmentation v.s. Our View Augmentation

E. Additional Theoretical Analysis

E.1. Generalized Ensemble Diversity beyond a Single Class
E.2. Ensemble Diversity is Proportional to Logit Variance
E.3. Two Equivalent Forms of Ensemble Diversity
E.4. Better Teacher, Better Student

A Additional Results

A.1 Additional Plug-and-Play Results with a Multi-teacher Method

In Table 10, we report the KD performance when integrating our Angular-KD into the multi-
teacher approach, TAKD [36], compared with when adapting the SoTA KD augmentation method,
TeKAP [20]. In this setup, TAKD uses additional teacher assistants (WideRN-22-1 or WideRN-22-
2) with the primary teacher network (WideRN-40-2) for multi-teacher distillation. We apply our
Angular-KD to all transfer steps: 1) the primary teacher to the assistant, and 2) the assistant to the
student. The augmented TAKD with our methods shows superior performance over an unaugmented
TAKD and an augmented one with TeKAP, highlighting that introducing angularly diversified views
into each teacher assistant yields stronger distillation than random perturbations of TeKAP.

Table 10: Plug-and-Play Results with TAKD on CIFAR-100. The WideRN-40-2 teacher is used at
all assistant settings.

Teacher Assistant WideRN-22-2 WideRN-22-1
Student WideRN-16-2 WideRN-40-1 WideRN-16-2 WideRN-40-1
TAKD [36] 75.02 72.73 72.56 71.19
w/ TeKAP [20] 76.02 74.02 73.02 72.47
w/ Angular-KD (ours) 76.27 75.28 75.02 74.33

21



A.2 Additional Transferability Results on STL-10 and TinyImageNet

We extend our transferability experiments on both STL-10 and TinyImageNet using 1) a ResNet32×4
teacher and a ResNet8 × 4 student and 2) a VGG13 teacher and a VGG8 student (results for a
WideRN-40-2 teacher and a WideRN-16-2 student appear in Table 4 of the main paper). We adopt
augmentations at both feature and logit levels. For each method (the unaugmented one, the augmented
with TeKAP, and Angular-KD), we freeze the student model distilled from CIFAR-100 and train a
linear classifier on each downstream dataset. As shown in Table 11, Angular-KD again achieves the
highest accuracy, demonstrating that its benefits carry over to different model backbones, underscoring
its broad applicability.

Table 11: Transferability Results. The distilled knowledge on CIFAR-100 is transferred to STL-10
and TinyImageNet. The classifier for both datasets is trained on top of a frozen student. The “WRN”
indicates a WideResNet.

Dataset
RN32×4Teacher RN8×4Student VGG13Teacher VGG8Student WRN-40-2Teacher WRN-16-2Student

w/o aug TeKAP Ours w/o aug TeKAP Ours w/o aug TeKAP Ours
STL-10 70.66 71.70 73.25 67.11 67.53 68.43 68.01 68.71 70.23
TinyImageNet 33.37 34.46 36.71 31.72 31.96 32.43 31.17 31.54 32.97

A.3 Comparisons on Training Time

To validate the efficiency of our approach, we compare the training time of our methods with 1)
naíve KD + CRD without augmentation, 2) the augmented one by TeKAP, and 3) multi-teacher
methods (e.g., Ensemble distillation [3]), including computational demands (FLOPs and Params;
reported in Table 7) in Table. This experiment is conducted with a WideResNet40-2 teacher and a
WideResNet-16-2 student on a 2080 Ti GPU over 50,000 training images and a total of 240 epochs.
We observe that our multiple branches incur only a marginal increase in both training time and
computation cost (FLOPs and Params), since the branches are composed of lightweight linear heads.

Table 12: Comparisons on Training Time. We report training time during 1 epoch over 50,000
CIFAR training images with computational demands (Parameters and FLOPs).

w/o aug TeKAP Ours Ensemble Distillation [3]
Training Time (s) 27 32 35 47

Params (M) 2.26 2.26 2.40 11.28
FLOPs (M) 329.02 329.02 329.19 1645.10

A.4 Experiments for Statistical Significance

Table 13 presents the results of a 3-trial experiment to evaluate the stability of our methods on
CIFAR-100 under each of augmentation level (feature-, logit-, and their combined-levels), using
a ResNet32×4 teacher and a ResNet8×4 student (Table 13a) and a ResNet32×4 teacher and a
WideResNet40×2 student (Table 13b), compared to TeKAP. We report accuracy for each trial and
then compute the average (Avg.) and the standard deviation (Std.) across runs. Our methods
consistently outperform TeKAP in average performance across all settings. This consistency indicates
that the observed improvements are statistically significant and not a result of random variation.

Table 13: Experiments for Significal Significance. We report 3-trial results on CIFAR-100 with the
average (Avg.) and the standard deviation (Std.)

Metric
Logit-level Distill. Feature-level Distill. Logit, Feature-level Distill.

w/o aug TeKAP Ours w/o aug TeKAP Ours w/o aug TeKAP Ours
Acc. (Top-1) 73.33 75.84±0.16 76.08±0.22 75.51 75.82±0.15 75.94±0.11 75.46 75.89±0.06 76.39±0.17

(a) A ResNet32×4 teacher and a ResNet8×4 student.

Metric
Logit-level Distill. Feature-level Distill. Logit, Feature-level Distill.

w/o aug TeKAP Ours w/o aug TeKAP Ours w/o aug TeKAP Ours
Acc. (Top-1) 77.70 77.99±0.09 78.57±0.13 78.15 77.97±0.21 78.56±0.20 78.01 77.96±0.30 78.62±0.05

(b) A ResNet32×4 teacher and a WideResNet40×2 student.
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B Analysis on Augmented Views

B.1 Accuracy for each Augmented View

In Table 14, we report Top-1 accuracy (%) on CIFAR-100 for each augmented view and for the final
ensemble between the original teacher and all augmented views, with a WideRN-40-2 teacher and a
WideRN-16-2 student. In this experiment, we set N = 5 for both our method and TeKAP [20]. Each
of our five angularly diversified views performs worse than the original teacher and shows relatively
large performance variation. However, when ensembling all five augmented views with the teacher,
the overall accuracy improves beyond that of the teacher alone. In contrast, ensembling the teacher
with TeKAP’s five random perturbations actually lowers performance compared to using the teacher
by itself. In addition, our student model also achieves better accuracy than TeKAP. The result shows
that our views provide more complementary information, leading to the highest KD accuracy.

Table 14: Accuracy for each Augmented View. We report the accuracy of the final ensemble with
the original teacher and all augmented views (denoted as “Ensemble Acc.”). The ResNet32 × 4
teacher and a ResNet8× 4 student are used. “Student KD Acc." indicates the accuracy of the distilled
student model. † denotes the original score reported in the TeKAP paper, while other scores are our
reproduced results based on the authors’ code.

Methods Teacher
Augmented Views N Ensemble

Acc.
Student
KD Acc.1 2 3 4 5

TeKAP [20] 79.42 79.34 79.38 79.41 79.48 79.45 79.38 75.85 / 75.98†

Angular-KD (ours) 79.42 79.23 79.30 79.42 79.34 79.19 79.51 76.46

B.2 Effect of Inter- and Inter-angles in Ensemble Diversity, Expected Loss, and Accuracy

In this work, we claim that angular diversity directly leads to improved knowledge distillation, based
on the theoretical analysis presented in the main paper. This effect is achieved by (1) increasing
ensemble diversity and (2) consequently lowering the upper bound of the ensemble expected loss.
To support this key claim, we report the KD performance, average inter- and intra-angle statistics,
measured ensemble diversity, and ensemble expected loss between ensembled logits and a ground-
truth label in Table 15. As our angular diversity objectives are added, both the mean inter-angle and
intra-angle increase. This, in turn, raises the measured ensemble diversity and lowers the measured
ensemble’s expected loss. Consequently, the KD accuracy improves.

We further compare these results with those of the state-of-the-art KD augmentation method, TeKAP,
in Table 16. Notably, TeKAP achieves a higher intra-angle, but all other metrics are inferior to
ours. Although TeKAP’s random perturbation can boost intra-angle by scattering views randomly
around the teacher, it cannot safely scale up noise to increase inter-angle without risking drift into
non-target classes. As a result, its inter-angle, ensemble diversity, and expected-loss reductions all fall
short of ours. In contrast, our method simultaneously increases both inter- and intra-angle, tightens
the ensemble’s expected-loss bound, and improves KD accuracy, demonstrating a more robust and
effective augmentation strategy.

Table 15: Effect of Inter- and Intra-angles in Ensemble Diversity and Accuracy with each
component. The reported inter- and intra-angles are averaged value over all augmented views.

Constrained Inter-angle
Diversity Loss

Intra-angle
Diversity Loss

Student
KD Acc.

Angles Ensemble
Diversity

Ensemble
Loss ↓Inter Intra

75.46 - - - -
✓ 76.16 11.23◦ 11.40◦ 11.522 0.810

✓ 76.28 14.09◦ 16.85◦ 11.617 0.809
✓ ✓ 76.46 20.86◦ 25.38◦ 11.633 0.806
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Table 16: Effect of Inter- and Intra-angles in Ensemble Diversity and Accuracy compared to
TeKAP. The reported inter- and intra-angles are averaged value over all augmented views.

Methods Student
KD Acc.

Angles Ensemble
Diversity

Ensemble
Loss ↓Inter Intra

TeKAP [20] 75.98 4.35◦ 35.64◦ 6.65 0.853
Angular-KD (ours) 76.46 20.86◦ 25.38◦ 11.633 0.806

B.3 Correlation Matrix between Augmented Views

(a) Ours (b) TeKAP

Figure 4: Correlation Matrix between augmented
views (V1, . . . , V5) compared to TeKAP.

Fig. 4 shows a comparison of the pairwise co-
sine similarity matrices (i.e., correlation ma-
trices) between our angularly augmented log-
its and TeKAP’s perturbed logits. For clarity,
both methods use the same number of augmen-
tations (N = 5). For Angular-KD (Fig. 4a),
similarities range widely (e.g., 0.786 between
view 1 and view 5), revealing substantial di-
versity. In contrast, TeKAP’s randomly per-
turbed logits (Fig. 4b) are almost identical, with
all pairwise similarities around 0.997. These
results demonstrate our angular diversification
produces more varied soft logits, providing
richer, non-redundant supervision for the stu-
dent, thereby improving value for distillation.

C Additional Implementation Details

ImageNet Experiments. We elaborate on the dataset and implementation details for ImageNet
experiments, reported in Table 3. For the dataset, ImageNet [10] is a large-scale classification
dataset with 1,000 categories, approximately 1.28 million training and 50,000 validation images, each
of size 224×224. Its large-scale and high-diversity make ImageNet an ideal testbed for evaluating the
scalability and robustness of knowledge distillation methods. For the implementation details, we
first begin with a 10-epoch warm-up training, where only the view-augmentation heads are trained
for stability. Then, like previous KD approaches [20, 47], we follow the standard PyTorch training
schedule but extend it by 20 additional epochs, decay the learning rate by 0.1× at epochs 40, 70, and
100, and use a batch size of 512.

Play-and-Play Experiments. To integrate our Angular-KD into the SoTA KD methods, i.e.,
DKD [62] and MLKD [22], we follow their configurations and details of the official code of the
corresponding methods. We also perform an initial warm-up training exclusively on the view-
augmentation heads during 30 epochs. For the multi-teacher approach, TAKD, we follow a two-
stage procedure: first, we train the primary teacher network and distill its knowledge into a single
assistant network with augmentations; next, we distill the assistant’s knowledge to the student with
augmentations.

Imbalanced CIFAR-100 Experiments. To construct the imbalanced CIFAR-100 dataset, we
employ the same class selection protocol as TeKAP [20]. In detail, we select 43 classes as imbalanced
classes among a total of 100 classes. For each of these classes, we choose the first 50 training samples
in sequence (without shuffling) for reproducibility and discard the rest. The remaining 57 classes
keep their full set of 500 training images. This yields an imbalanced distribution for evaluating KD
methods under severe class imbalance.

Few-shot Experiments. To create the limited-data scenarios, we randomly sample 25%, 50%, and
75% of CIFAR-100 training data. For reproducibility, we select the first 25%, 50%, and 75% samples
in sequence (without shuffling). This deterministic selection ensures reproducibility while simulating
few-shot learning scenarios.
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D Data Augmentation v.s. Our View Augmentation

Traditional data augmentation methods are commonly used to generate positive views. To evaluate
our approach, which generates views via linear pathways, we compare it against the conventional
augmentation technique. For experiments, we apply standard data augmentations (random flip, color
jiterring, and random rotation) to generate multiple views and ensemble them for student distillation,
similar to our view augmentations. Table 17 shows the CIFAR-100 accuracy for our view-augmented
logits v.s. the data-augmented logits, where a ResNet32×4 teacher and a ResNet8×4 student are used.
We observe a substantial performance drop when multiple views are generated via data augmentation.
To analyze this degradation, we check the accuracy of each augmented view in Table 18. Each
augmented view by data augmentation shows significantly lower accuracy due to the noise caused by
the data perturbation, leading to a decline in overall performance. This highlights the effectiveness of
our approach in producing consistent and diverse representations without computational overhead.

Table 17: KD Performance.
Methods Acc.
Baseline 75.46
w/ Data aug. 66.91
w/ View aug. 76.46

Table 18: Accuracy for each Augmented View.

Methods
Augmented Views N Teacher

Acc.1 2 3 4 5
Data aug. 74.52 74.62 74.56 74.41 74.30

79.42
View aug. 79.23 79.30 79.42 79.34 79.19

Furthermore, our view-augmentation provides two major benefits over the data augmetnation: 1)
Efficiency (1 forward pass vs. N forward passes); our method produces multi-views with a single
forward pass, whereas data augmentation typically requires N forward passes for N augmented
inputs, leading to significantly higher computational cost, and 2) Evenly dispersed representations;
by explicitly maximizing the angular diversity in the representation space, our method ensures that
augmented views are evenly dispersed and exhibit minimal redundancy. In contrast, heuristic data
augmentation influences embeddings only indirectly, often resulting in redundant representations or
ones that drift away from the teacher’s original view, making it difficult to achieve consistent and
balanced dispersion in the representation space.

E Additional Theoretical Analysis

In this section, we supply the full derivations to support our theoretical claims in Sec. 3. Theoretical
Analysis of the main manuscript. We begin by deriving the upper bound of the expected ensemble
loss using the ensemble diversity measure [38] and then explicitly connect these to our inter- and
intra-angle diversity objectives.

Following the analysis in [38], we first show that the expected loss E(x,y)∼D[L(·)] of the ensemble
logit ZE (i.e., ENi=0[Zi] for all ensemble members {Zi}Ni=0) over the dataset D is bounded as follows:

E(x,y)∼D

[
L(ZE)

]
≤ E(x,y)∼D

[
ENi=0

[
L(Zi)

]]
−KDGeneralized({Zi}Ni=0), (13)

where L is a KL divergence loss and K > 0 is a constant. DGeneralized is the same as the ensemble
diversity D that appears in the main paper (the reason why we call this as generalized diversity
are present in Sec. E.1). This bound implies that increasing the generalized ensemble diversity D
DGeneralized lowers the upper bound of the expected ensemble loss. We also show that the generalized
ensemble diversity can be expressed in terms of the total variance of logits across classes (see Sec. E.1
for the full formulation):

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
. (14)

Here, we define the total variance by V over all C classes as V[z] = Vartotal[z] =
∑C
j=1 Var[zj ]

where z = [z1, · · · , zC ].
Furthermore, we show that this formulation is approximately proportional to the expected total
variance of the logits (see Sec. E.2 for detailed derivation):

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
∝ E(x,y)∼D

[
VNi=0

[
Zi

]]
. (15)
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This implies that increasing expected total variance raises the generalized ensemble diversity, resulting
in a decrease of the upper bound of the expected ensemble loss.

Based on the expected total variance of logits in Eq. (36), we derive two mathematically equivalent
formulations of ensemble diversity in terms of angular similarity. Specifically, we show that the
ensemble diversity measure DGeneralized(·) can be expressed in the following two equivalent forms:
1) Inter-angle form (Eq. (16a)) uses the pairwise cosine similarity sAij (defined in Eq. (3) as inter-
angle similarity) between each pair of augmented logits Zi; 2) Intra-angle form (Eq. (16b)) uses
the cosine similarity s∆ij (defined in Eq. (4) as intra-angle similarity) between the difference vectors
∆T−A

i = ZT − ZAi , as follows:

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
=



E(x,y)∼D

[
ENi=1

[
∥Zi∥2

]
− ENi,j=1

[
∥Zi∥∥Zj∥sAij

]]
,︸ ︷︷ ︸

Inter-angle Formulation

(16a)

−E(x,y)∼D

[
ENi,j=1

[
∥∆T−A

i ∥∥∆T−A

j ∥s∆ij
]]
,︸ ︷︷ ︸

Intra-angle Formulation

(16b)

where the detailed derivation is provided in Sec. E.3:

E.1 Generalized Ensemble Diversity beyond a Single Class

The original ensemble diversity metric in [38] measures diversity only on logit zyi for the ground-truth
class y. We generalize this to include allC logits Zi = [z1i , . . . , z

C
i ], computing diversity across every

class logit. This full-spectrum diversity measure appears in both our main paper and supplemental
proofs. Compared to the original single-class version [38], the generalized metric introduces a
constant scaling K because it sums over C classes instead of one target class. Below, we detail the
derivation of this generalized ensemble diversity.

Original Ensemble Diversity. The classic ensemble diversity [38] is defined as follows:

DOriginal({Zi}Ni=0) = E(x,y)∼D

[
Vari

[ zyi
maxk z

y
k

]]
, where zyi := [Zi]

y, (17)

and [Zi]
y is the logit of the target class y in the vector Zi among C classes. This diversity focuses

solely on the ground-truth class logit zyi .

Generalized Ensemble Diversity. We extend this to capture variability across all C classes as:

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
, (18)

where maxZi denotes the maximal logit value over all class indices j = 1, . . . , C. This formulation
captures diversity across every output logit rather than focusing solely on the target class. This
full-spectrum diversity metric underpins our theoretical analysis in both the main manuscript and the
supplementary. The complete derivation follows below.

Detailed derivation. The original diversity metric [38] is derived from the cross-entropy loss in
their paper, so it only measures variability in the ground-truth class logit. In contrast, our generalized
diversity is based on the KL-divergence loss between softmax distributions, capturing variability
across all C class logits rather than just the target class. For the derivation, we begin with the
Taylor expansion of the logarithmic function log(x) around a fixed point a > 0, incorporating the
second-order remainder term:

log x = log a+
1

a
(x− a)− 1

2ξ2
(x− a)2, ξ ∈ (x, a). (19)

Here, ξ lies between x and a. This expansion will allow us to approximate log terms arising in the

KL-divergence expressions. Applying Eq. (19) with x =
zji
yj centering at ENi=0[

zji
yj ] =

EN
i=0[z

j
i ]

yj > 0,
for an arbitrary ensemble member i, class index j, ground-truth label Y = [y1, . . . , yC ] with yj > 0
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and ensembling ENi=0[z
j
i ] with uniform weights over N ensemble units for specific j-th category

logit, we have:

log(
zji
yj

) = log(
ENi=0[z

j
i ]

yj
) +

1

ENi=0[z
j
i ]
(zji − ENi=0[z

j
i ])−

1

2ξ2(yj)2
(zji − ENi=0[z

j
i ])

2. (20)

By taking the expectation on both sides and multiplying through by yj , we obtain:

ENi=0[y
j log(

zji
yj

)] = yj log(
ENi=0[z

j
i ]

yj
)− ENi=0

[ 1

2ξ2zjGT
(zji − ENi=0[z

j
i ])

2
]
. (21)

Rearranging terms,

yj log(
yj

ENi=0[z
j
i ]
) = ENi=0[y

j log(
yj

zji
)]− ENi=0

[ 1

2ξ2yj
(zji − ENi=0[z

j
i ])

2
]
. (22)

Next, observe that since ξ ∈ (x, a), it follows that ξ ≤ maxx = maxi
zji
yj . Using this bound, we

derive the inequality:

yj log(
yj

ENi=0[z
j
i ]
) ≤ ENi=0[y

j log(
yj

zji
)]− ENi=0

[ yj

2(maxi z
j
i )

2
(zji − ENi=0[z

j
i ])

2
]
. (23)

Summing over all classes j ∈ {1, . . . , C}, we obtain:

C∑
j=1

yj log(
yj

ENi=0[z
j
i ]
) ≤ ENi=0[

C∑
j=1

yj log(
yj

zji
)]− ENi=0

[ C∑
j=1

yj

2(maxi z
j
i )

2
(zji − ENi=0[z

j
i ])

2
]
. (24)

Recalling the definition of KL-divergence KL(Y||Zi) =
∑C
j=1 y

j log yj

zji
, the above inequality can

be rewritten as:

KL(Y||ENi=0[Z]) ≤ ENi=0[KL(Y||Zi)]− ENi=0

[ C∑
j=1

yj

2(maxi z
j
i )

2
(zji − ENi=0[z

j
i ])

2
]
. (25)

Taking expectation over data distribution (x,y) ∼ D on both sides leads to:

E(x,y)∼D

[
KL(Y||ENi=0[Z])

]
≤ E(x,y)∼DENi=0[KL(Y||Zi)]− E(x,y)∼D

[
ENi=0

[ C∑
j=1

yj

2(maxi z
j
i )

2
(zji − ENi=0[z

j
i ])

2
]]
. (26)

We now recall the definition of the generalized diversity measure:

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
= E(x,y)∼D

[ C∑
j=1

Vari
[ zji
maxk z

j
k

]]
(27)

= E(x,y)∼D

[
ENi=0

[ C∑
j=1

1

(maxi z
j
i )

2
(zji − ENi=0[z

j
i ])

2
]]
. (28)

Since yj ≥ 0, the last term in Eq. (26) corresponds to the summation of the generalied diversity
measure DGeneralized({Zi}Ni=0) in Eq. (27) over all class indices ∀j ∈ {1, . . . , C}. (we insert this
constant sum into a constant factor K, resulting in DOriginal(·) = KDGeneralized(·)). Therefore,
maximizing the diversity DGeneralized({Zi}Ni=0) increases the negative term on the right-hand side of
Eq. (26), which tightens the upper bound and effectively reduces the expected KL-divergence loss of
the ensemble.
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Relations between Expected Ensemble Loss and Generalized Diversity. The original ensemble
diversity work [38] shows that the expected ensemble loss of the ensemble logit ENi=0[Zi] is bounded
by:

E(x,y)∼D

[
L(ENi=0[Zi])

]
≤ E(x,y)∼D

[
ENi=0

[
L(Zi)

]]
− DOriginal({Zi}Ni=0), (29)

where L is a cross-entropy loss. Because our generalized diversity DGeneralized differs from the original
one by a constant factor K, we can re-write this bound as:

E(x,y)∼D

[
L(ENi=0[Zi])

]
≤ E(x,y)∼D

[
ENi=0

[
L(Zi)

]]
−KDGeneralized({Zi}Ni=0), (30)

which is Eq. (6) in the main paper. It implies that increasing the ensemble diversity D tightens
the upper bound on the ensemble’s expected loss, thereby delivering a strong supervisory signal to
the student and improving KD performance, as demonstrated in [34]. Empirically, Table 16 and
Table 15 demonstrate that higher ensemble diversity indeed correlates with a lower measured expected
ensemble loss, confirming this theoretical relationship.

E.2 Ensemble Diversity is Proportional to Logit Variance

In Eq. (36), we demonstrate that the generalized ensemble diversity is a function of the total logit
variance. Below, we offer the detailed derivation, showing that the generalized ensemble diversity is
a scaled total logit variance. We start from the definition of the generalized diversity measure:

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
(31)

= E(x,y)∼D

[ C∑
j=1

Vari
[ zji
maxk z

j
k

]]
= E(x,y)∼D

[ C∑
j=1

Vari[z
j
i ]

(maxk z
j
k)

2

]
. (32)

To analyze the relationship between diversity and total logit variance, we model zji across all ensemble
units {i}Ni=0 as a Gaussian variable with mean µj = ENi=0[z

j
i ] and variance σ2

j . Since zji represents a
logit probability for a specific category j, it is bounded above by 1. Based on this assumption, we
approximate the maximum value over individual unit i as:

max
i
zji ≈ min(ENi=0[z

j
i ] + kjσj , 1) (33)

Which approximates the maximum values of zji across i by capturing deviations above the mean
under the Gaussian assumption, while the minimum operator ensures the value remains bounded by
1. Thus, we can rewrite the generalized diversity measure as:

D({Zi}Ni=0) = E(x,y)∼D

[ C∑
j=1

Vari[z
j
i ]

(maxk z
j
k)

2

]
= E(x,y)∼D

[ C∑
j=1

σ2
j

min(ENi=0[z
j
i ] + kjσj , 1)2

]
(34)

To show that diversity increases monotonically with variance, it suffices to prove that the following
function is monotonically increasing in σ.

f(δ) =
σ2

min(p+ kσ, 1)2
, where p ∈ [0, 1], k ≥ 0. (35)

We consider two cases:

Case 1: If min(p+ kσ, 1) = 1, then f(σ) = σ2, which is clearly increasing in σ.
Case 2: If min(p+ kσ, 1) = p+ kσ, then:

f(σ) =
σ2

(p+ kσ)2
, f ′(σ) =

2pσ

(p+ kσ)3
≥ 0

Since p ∈ [0, 1], σ ≥ 0 and the denominator is always non-negative, (p + kσ)3 ≥ 0, we have
f ′(σ) ≥ 0. Therefore, in both cases, f(σ) is a non-decreasing function of σ. Thus, increasing the
variance σ2

j results in an increased diversity measure D({Zi}Ni=0), thereby supporting our claim that
ensemble diversity is proportional to logit variance.
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E.3 Two Equivalent Forms of Ensemble Diversity

In this section, we show that the generalized ensemble diversity metric DGeneralized(·) can be written
in two mathematically equivalent forms: 1) Inter-angle form (Eq. (16a)) and 2) Intra-angle form
(Eq. (16b)). We start from the total variance of all ensemble logits {Zi}Ni=0 for two form derivations,
since the ensemble diversity is proportional to the total logit variance, as follows and proved in
Sec E.2:

DGeneralized({Zi}Ni=0) = E(x,y)∼D

[
VNi=0

[ Zi
maxZi

]]
∝ E(x,y)∼D

[
VNi=0

[
Zi

]︸ ︷︷ ︸
Start of derivation

]
. (36)

Inter-angle Formulation of Ensemble Diversity. To derive the inter-angle form (Eq. (16a)) of
diversity from the total logit variance, i.e., VNi=0[Zi], we focus solely on the augmented logits {Zi}Ni=1,
omitting the teacher (i = 0) since our angular objectives apply to these views. We then begin with a
definition of variance to derive the inter-angle form (Eq. (16a)) from the logit variance, i.e., VNi=1[Zi]:

VNi=1

[
Zi

]
= ENi=1

[
∥Zi∥2

]
− ∥ENi=1

[
Zi

]
∥2 (37)

=
1

N

N∑
i=1

∥Zi∥2 − ∥ 1

N

N∑
i=1

Zi∥2 (38)

=
1

N

N∑
i=1

∥Zi∥2 −
1

N2

N∑
i=1

N∑
j=1

Zi · Zj (39)

=
1

N

N∑
i=1

∥Zi∥2 −
1

N2

N∑
i=1

N∑
j=1

∥Zi∥∥Zj∥cos(Zi,Zj) (40)

=
1

N

N∑
i=1

∥Zi∥2 −
1

N2

N∑
i=1

N∑
j=1

∥Zi∥∥Zj∥sAij (41)

= ENi=1

[
∥Zi∥2

]
− ENi,j=1

[
∥Zi∥∥Zj∥sAij

]
,︸ ︷︷ ︸

Inter-angle Formulation in Eq (16a)

(42)

where sAij = cos(Zi,Zj), cos(u,v)= u ·v/∥u∥∥v∥, and V denotes a total variance over all C classes.
The inter-angle formulation of the ensemble diversity makes it clear that reducing each pairwise
similarity sAij increases the total variance of logits and therefore raises the ensemble diversity. Our
constrained inter-angle diversity loss explicitly minimizes sAij , so it naturally enhances the ensemble
diversity D. In Table 15, we empirically observe that adding the inter-angle diversity loss both raises
the average inter-angle (i.e., lowers sAij) and increases the ensemble diversity measure.

Intra-angle Formulation of Ensemble Diversity. We can express VNi=1[Zi] depending on s∆ij ,
using the property that

∑N
i=1 ∆

T−A

i = 0 (we assume that the average of augmented logits can
approximate the original teacher ZT = 1

N

∑N
i=1 Zi). We also start from the definition of variance

for the derivation of inter-angle formulation (Eq. (16b)):
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VNi=1

[
Zi

]
= ENi=1

[
∥Zi∥2

]
− ∥ENi=1

[
Zi

]
∥2 (43)

=
1

N

N∑
i=1

∥Zi∥2 − ∥ 1

N

N∑
i=1

Zi∥2 (44)

=
1

N

N∑
i=1

∥Zi∥2 −
1

N2

N∑
i=1

N∑
j=1

Zi · Zj (45)

=
1

N

N∑
i=1

∥Zi∥2 −
2

N2

N∑
i=1

N∑
j=1

Zi · Zj +
1

N2

N∑
i=1

N∑
j=1

Zi · Zj (46)

=
1

N

N∑
i=1

∥Zi − ZT ∥2 (∵ ZT =
1

N

N∑
i=1

Zi) (47)

=
1

N

N∑
i=1

∥∆T−A

i ∥2 (48)

=
1

N
[(

M∑
i=1

∆T−A

i ) · (
N∑
i=1

∆T−A

i )−
N∑
i=1

N∑
j=1

∆T−A

i ·∆T−A

j ] (49)

=
1

N
[0 · 0−

N∑
i=1

N∑
j=1

∆T−A

i ·∆T−A

j ] (50)

= − 1

N

N∑
i=1

N∑
j=1

∆T−A

i ·∆T−A

j (51)

= − 1

N

N∑
i=1

N∑
j=1

∥∆T−A

i ∥∥∆T−A

j ∥s∆ij . (52)

= −ENi,j=1

[
∥∆T−A

i ∥∥∆T−A

j ∥s∆ij
]
.︸ ︷︷ ︸

Intra-angle Formulation in Eq (16b)

(53)

Since lowering each s∆ij raises the variance of the logits, our intra-angle diversity loss, which
minimizes s∆ij , directly increases both variance and, consequently, the ensemble diversity. Table 15
empirically confirms this: adding intra-angle diversity loss not only boosts the mean intra-angle
between views but also elevates the measured ensemble diversity.

We validate our two core theoretical claims: 1) our angular-diversity objectives boost ensemble
diversity, as derived in Sec. E.3, and 2) increased diversity tightens the ensemble loss bound, as
proven in Sec. E.1. Empirically, Table 15 shows that our inter- and intra-angle diversity losses both
raise the measured ensemble diversity and lowers the measured ensemble expected loss, directly
translating into stronger KD performance.

E.4 Better Teacher, Better Student

In this section, we leverage prior theoretical results [34, 41, 9, 16] to connect improvements in
the teacher’s expected loss (in our case, the ensemble’s expected loss) directly to the reductions
in the student’s expected loss. Specifically, in [34], they derive the student’s generalization error
(measured as the discrepancy between its KD loss (LKD) and the KL loss (LKL) to a Bayes-optimal
soft label Y can be bounded by two terms: 1) the variance of the KD loss across the data, and
2) the teacher’s approximation error to the ideal soft label (captured by an MSE term). Formally,

E(x,y)∼D

[(
LKD(Z

T ,ZS)− LKL(Y,Z
S)
)2]︸ ︷︷ ︸

Student Generalization Error (KD loss - GT loss)

≤ 1

N
V(x,y)∼D

[
LKD(Z

T ,ZS)
]︸ ︷︷ ︸

Variance of Distillation Loss

+κ·E(x,y)∼D
[
LMSE(Z

T ,Y)
]2︸ ︷︷ ︸

Teacher Approximate Loss

,

where ZT and ZS are the output logits of the teacher and student, respectively, Y is a soft ideal
ground-truth label (the Bayes-optimal target distribution), and κ is a positive constant value.
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Employing knowledge distillation could reduce the first term by providing the student with a consistent
teacher signal, which lowers the variability of the KD loss across the dataset D. The second term
is decreased by using an ensemble: generating diverse views (i.e., ensemble) produces a closer
approximation to the ideal soft target (the Bayes-optimal target distribution), reducing the teacher’s
approximation error. Together, these effects tighten the upper bound on the student’s generalization
error, confirming that stronger teacher signals (via our angular-KD augmentations) directly improve
the student’s performance.
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