
Under review as a conference paper at ICLR 2021

REPAINT: KNOWLEDGE TRANSFER IN DEEP ACTOR-
CRITIC REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Accelerating the learning processes for complex tasks by leveraging previously
learned tasks has been one of the most challenging problems in reinforcement
learning, especially when the similarity between source and target tasks is low
or unknown. In this work, we propose a REPresentation-And-INstance Transfer
algorithm (REPAINT) for deep actor-critic reinforcement learning paradigm. In
representation transfer, we adopt a kickstarted training method using a pre-trained
teacher policy by introducing an auxiliary cross-entropy loss. In instance transfer,
we develop a sampling approach, i.e., advantage-based experience replay, on tran-
sitions collected following the teacher policy, where only the samples with high
advantage estimates are retained for policy update. We consider both learning an
unseen target task by transferring from previously learned teacher tasks and learn-
ing a partially unseen task composed of multiple sub-tasks by transferring from a
pre-learned teacher sub-task. In several benchmark experiments, REPAINT signif-
icantly reduces the total training time and improves the asymptotic performance
compared to training with no prior knowledge and other baselines.

1 INTRODUCTION

Most reinforcement learning methods train an agent from scratch, typically requiring a huge amount
of time and computing resources. Accelerating the learning processes for complex tasks has been
one of the most challenging problems in reinforcement learning (Kaelbling et al., 1996; Sutton &
Barto, 2018). In the past few years, deep reinforcement learning has become more ubiquitous to
solve sequential decision-making problems in many real-world applications, such as game playing
(OpenAI et al., 2019; Silver et al., 2016), robotics (Kober et al., 2013; OpenAI et al., 2018), and
autonomous driving (Sallab et al., 2017). The computational cost of learning grows as the task
complexity increases in the real-world applications. Therefore, it is desirable for a learning algorithm
to leverage knowledge acquired in one task to improve performance on other tasks.

Transfer learning has achieved significant success in computer vision, natural language processing,
and other knowledge engineering areas (Pan & Yang, 2009). In transfer learning, the teacher (source)
and student (target) tasks are not necessarily drawn from the same distribution (Taylor et al., 2008a).
The unseen student task may be a simple task which is similar to the previously trained tasks, or a
complex task with traits borrowed from significantly different teacher tasks. Despite the prevalence of
direct weight transfer, knowledge transfer from previously trained agents for reinforcement learning
tasks has not been gaining much attention until recently (Barreto et al., 2019; Ma et al., 2018; Schmitt
et al., 2018; Lazaric, 2012; Taylor & Stone, 2009).

In this work, we propose a knowledge transfer algorithm for deep actor-critic reinforcement learn-
ing, i.e., REPresentation And INstance Transfer (REPAINT). The algorithm can be categorized
as a representation-instance transfer approach. Specifically, in representation transfer, we adopt a
kickstarted training method (Schmitt et al., 2018) using a previously trained teacher policy, where
the teacher policy is used for computing the auxiliary loss during training. In instance transfer, we
develop a new sampling algorithm for the replay buffer collected from the teacher policy, where we
only keep the transitions that have advantage estimates greater than a threshold. The experimental
results across several transfer learning tasks show that, regardless of the similarity between source
and target tasks, by introducing knowledge transfer with REPAINT, the number of training iterations
needed by the agent to achieve some reward target can be significantly reduced when compared to

1

Under review as a conference paper at ICLR 2021

training from scratch and training with only representation transfer or instance transfer. Additionally,
the agent’s asymptotic performance is also improved by REPAINT in comparison with the baselines.

2 RELATED WORK: TRANSFER REINFORCEMENT LEARNING

Transfer learning algorithms in reinforcement learning can be characterized by the definition of
transferred knowledge, which contains the parameters of the reinforcement learning algorithm, the
representation of the trained policy, and the instances collected from the environment (Lazaric, 2012).
When the teacher and student tasks share the same state-action space and they are similar enough
(Ferns et al., 2004; Phillips, 2006), parameter transfer is the most straightforward approach, namely,
one can initialize the policy or value network in the student tasks by that from teacher tasks (Mehta
et al., 2008; Rajendran et al., 2015). Parameter transfer with different state-action variables is more
complex, where the crucial aspect is to find a suitable mapping from the teacher state-action space to
the student state-action space (Gupta et al., 2017; Talvitie & Singh, 2007; Taylor et al., 2008b).

Most of the transfer learning algorithms fall into the category of representation transfer, where the
reinforcement learning algorithm learns a specific representation of the task or the solution, and
the transfer algorithm performs an abstraction process to fit it into the student task. Konidaris et al.
(2012) uses the reward shaping approach to learn a portable shaping function for knowledge transfer,
while some other works use neural networks for feature abstraction (Duan et al., 2016; Parisotto
et al., 2015; Zhang et al., 2018). Policy distillation (Rusu et al., 2015) or its variants is another
popular choice for learning the teacher task representation, where the student policy aims to mimic
the behavior of pre-trained teacher policies during its own learning process (Schmitt et al., 2018; Yin
& Pan, 2017). Recently, successor representation has been widely used in transfer reinforcement
learning, in which the rewards are assumed to share some common features, so that the value function
can be simply written as a linear combination of the successor features (SF) (Barreto et al., 2017;
Madarasz & Behrens, 2019). Barreto et al. (2019) extends the method of using SF and generalised
policy improvement in Q-learning (Sutton & Barto, 2018) to more general environments. Borsa et al.
(2018), Ma et al. (2018), and Schaul et al. (2015a) learn a universal SF approximator for transfer.

The basic idea of instance transfer algorithms is that the transfer of teacher samples may improve the
learning on student tasks. Lazaric et al. (2008) and Tirinzoni et al. (2018) selectively transfer samples
on the basis of the compliance between tasks in a model-free algorithm, while Taylor et al. (2008a)
studies how a model-based algorithm can benefit from samples coming from the teacher task.

However, most of the aforementioned algorithms either assume specific forms of reward functions or
perform well only when the teacher and student tasks are similar. Additionally, very few algorithms
are designated to actor-critic reinforcement learning. In this work, we propose a representation-
instance transfer algorithm to handle the generic cases of task similarity, which is also naturally fitted
for actor-critic algorithms and can be easily extended to other policy gradient based algorithms.

3 BACKGROUND: ACTOR-CRITIC REINFORCEMENT LEARNING

A general reinforcement learning (RL) agent interacting with environment can be modeled in a
Markov decision process (MDP), which is defined by a tuple M = (S,A, p, r, γ), where S and A are
sets of states and actions, respectively. The state transfer function p(·|s, a) maps a state and action
pair to a probability distribution over states. r : S × A× S → R denotes the reward function that
determines a reward received by the agent for a transition from (s, a) to s′. The discount factor,
γ ∈ [0, 1], provides means to obtain a long-term objective. Specifically, the goal of an RL agent is to
learn a policy π that maps a state to a probability distribution over actions at each time step t, so that
at ∼ π(·|st) maximizes the accumulated discounted return

∑
t≥0 γ

tr(st, at, st+1).

To address this problem, a popular choice to adopt is the model-free actor-critic architecture, e.g.,
Konda & Tsitsiklis (2000); Degris et al. (2012); Mnih et al. (2016); Schulman et al. (2015a; 2017),
where the critic estimates the value function and the actor updates the policy distribution in the
direction suggested by the critic. The state value function at time t is defined as

V π(s) = Eai∼π(·|si)

∑
i≥t

γi−tr(si, ai, si+1)

∣∣∣∣st = s

 . (3.1)

2

Under review as a conference paper at ICLR 2021

Similarly, the action value function (also called Q function) is defined by

Qπ(s, a) = Eai∼π(·|si)

∑
i≥t

γi−tr(si, ai, si+1)

∣∣∣∣st = s, at = a

 . (3.2)

The actor-critic methods usually rely on the advantage function, which is computed as

Aπ(s, a) = Qπ(s, a)− V π(s) . (3.3)

Intuitively, the advantage can be taken as the extra reward that could be obtained by taking a
particular action a. The advantage is usually approximated by generalized advantage estimator
(GAE) (Schulman et al., 2015b), which is defined as the exponentially-weighted average of the k-step
discounted advantage, namely,

Ât = Â
GAE(γ,λ)
t :=

∞∑
l=0

(γλ)l (rt+l + γV π(st+l+1)− V π(st+l)) , (3.4)

where the parameter 0 ≤ λ ≤ 1 allows a trade-off of the bias and variance.

In deep RL, the critic and actor functions are usually parameterized by neural networks. Then
the policy gradient methods can be used to update the actor network. For example, in the clipped
proximal policy optimization (Clipped PPO) (Schulman et al., 2017), the policy’s objective function
is defined to be the minimum between the standard surrogate objective and an ε clipped objective:

Lclip(θ) = Êt
[
min

(
rt(θ) · Ât, clip (rt(θ), 1− ε, 1 + ε) · Ât

)]
, (3.5)

where the policy π is parameterized by θ, and rt(θ) is the likelihood ratio that

rt(θ) =
πθ(at|st)
πθold(at|st)

. (3.6)

Moreover, the clip function truncates rt(θ) to the range of (1− ε, 1 + ε).

4 REPRESENTATION AND INSTANCE TRANSFER IN ACTOR-CRITIC RL

In this section, we describe our knowledge transfer algorithm, REPAINT, for actor-critic RL frame-
work. There are two core concepts underlying our approach, i.e., representation transfer and instance
transfer. In the representation transfer, we employ a kickstarted training approach (Schmitt et al.,
2018) based on the policy distillation. Then, in the next iteration following the kickstarting, we
update the student policy using an advantage-based experience replay. We do not assume that the
teacher and student tasks are similar or drawn from the same distribution.

The REPAINT algorithm is provided in Algorithm 1, where the value function and policy function
are parameterized by ν and θ, respectively. Without loss of generality, we demonstrate the policy
update using the Clipped PPO loss stated in equation 3.5, and use a single teacher policy in both
representation and instance transfers. In practice, it can be directly applied to any advantage-based
policy gradient RL algorithms, and it is straightforward to have different and multiple teacher policies
in each transfer step. The more general algorithm and several variants are presented in Section A.

4.1 REPRESENTATION TRANSFER: KICKSTARTED TRAINING

In representation transfer, we use a kickstarting training pipeline (Schmitt et al., 2018), which can
be viewed as a combination of policy distillation (Rusu et al., 2015) and population based training
(Jaderberg et al., 2017). The main idea is to employ an auxiliary loss function which encourages the
student policy to be close to the teacher policy on the trajectories sampled by the student. Given a
teacher policy πteacher, we introduce the auxiliary loss as

Ldistill(θ) = H (πteacher(a|s)‖πθ(a|s)) , (4.1)

where H(·‖·) is the cross-entropy. In order for the agent to maximize its own future rewards,
kickstarting adds the above loss to the Clipped PPO objective function, i.e., equation 3.5, weighted at
optimization iteration k by the scaling βk ≥ 0:

LkRL(θ) = Lclip(θ)− βkLdistill(θ) . (4.2)

3

Under review as a conference paper at ICLR 2021

Algorithm 1 REPAINT algorithm with Clipped PPO

for iteration k = 1, 2, . . . do
if k is odd then

Collect trajectories S = {(s, a, s′, r)} following πθold(s)
Fit state value network Vν using S to update ν
Compute advantage estimates Â1, . . . , ÂT using equation 3.4
Perform gradient optimization on LkRL(θ) defined in equation 4.2 // representation transfer

else
Collect trajectories S ′ = {(s, a, s′)} following πteacher(s) // instance transfer
Compute r for each transition using current reward function and add to S ′
Compute advantage estimates Â′1, . . . , Â

′
T ′ using equation 3.4

for t=1,. . . ,T ′ do
if Â′t < ζ then

Remove Â′t and the corresponding transition (st, at, st+1, rt) from S ′
Perform gradient optimization on Lclip(θ) defined in equation 3.5

In our experiments, the weighting parameter βk is relatively large at early iterations, and vanishes
as k increases, which is expected to improve the initial performance of the agent while keeping it
focused on the current task in later iterations.

4.2 INSTANCE TRANSFER: ADVANTAGE-BASED EXPERIENCE REPLAY

In the instance transfer iteration, we collect training samples following the teacher policy πteacher, but
compute the rewards using current reward function from the target task. Since the transitions are
obtained from a different distribution, we do not update the value network in this iteration. When
updating policy network, we prioritize the transitions based on the advantage values and only use the
samples that have advantages greater than a given threshold ζ . Moreover, since the teacher policy has
been used in collecting roll-outs, we compute the loss without the auxiliary cross-entropy, but replace
πθold with πteacher in equation 3.5.

The idea of prioritizing and filtering transitions is simple but intuitively effective. As mentioned
in Section 3, the advantage can be viewed as the extra reward that could be obtained by taking a
particular action. Therefore, by retaining only the “good” samples from the teacher policy, the agent
can focus on learning useful behavior under current reward function. We note that our filtering
approach is related to, but different from, the prioritized experience replay (Schaul et al., 2015b),
which prioritizes the transitions in replay buffer by the temporal-difference error (TD error), and
utilizes importance sampling for the off-policy evaluation. In comparison, our method uses experience
replay in actor-critic framework, where the replay buffer is erased after each training iteration. Unlike
the stochastic prioritization which imposes the probability of sampling on each transition, our method
directly filters out most of the transitions from replay buffer and equally prioritizes the remaining data,
which reduces the training iteration time. In addition, our method performs policy update without
importance sampling. All transitions in a batch have the same weight, since the importance can be
reflected by their advantage values. The experimental comparison can be found in Section 5.1.

The concept of advantage-based prioritizing has also been used in offline RL most recently (Peng
et al., 2019; Siegel et al., 2020; Wang et al., 2020), in order to better leverage the off-policy data. In
offline RL, the “advantage weighting” can be regarded as a regularization to either critic or actor,
where the model can focus on learning “good” actions while ignoring poor ones. Again, we want
to remark that our proposed advantage-based experience replay has a different formulation. To the
best of our knowledge, this is the first time that the advantage-based filtering is applied to instance
transfer learning. In Figure 2(b), we will compare the performance of several prioritization rules. The
discussion is presented in Section 5.1.

We also consider how the sampling experiences from the teacher policy impact the policy gradient
update. Our incremental update fits into the framework of the off-policy actor-critic (Degris et al.,
2012; Zhang et al., 2019). We ignore the clip function in equation 3.5 for simplicity and replace πθold

4

Under review as a conference paper at ICLR 2021

with πteacher, which leads to

∇θLclip(θ) = Ês∼dteacher,a∼πteacher

[
ρ(s, a)∇θ log πθ(a|s)Âπθold

]
, (4.3)

where ρ(s, a) = πθ(a|s)/πteacher(a|s), and the advantage estimator is from last kickstarted training
iteration. With the new term ρ(s, a), equation 4.3 can be viewed as a weighted sample expectation.
Since the samples are drawn from the teacher policy, πteacher(a|s) usually has large values. At the
early learning stage, our advantage-based filtering results in a large step size (due to large Âπ).
Therefore, a small ρ serves as the compensation to the training, which can prevent the system from
over-fitting. In later iterations when the student policy is closer to the teacher, the update is close
to traditional actor update except the filtering approach, which introduces bias because it changes
the distribution in an uncontrolled fashion. In practice, we can adopt REPAINT in the early training
stage, and then reduce to traditional actor-critic algorithms. As a consequence, the agent first learns
useful teacher behavior to achieve good initial performance, and focuses on the target task afterwards.

4.3 DISCUSSION

A critical question in knowledge transfer for RL is how to characterize the similarity between source
and target tasks, since most of the transfer learning algorithms perform well when the two are similar.
If samples from the two MDPs are given, some metrics can be defined to compute or learn the task
similarity, e.g., the Kantorovich distance based metric (Song et al., 2016), the restricted Boltzmann
machine distance measure (Ammar et al., 2014), the policy overlap (Carroll & Seppi, 2005), and
the task compliance defined in Lazaric et al. (2008). However, in general, the similarity is usually
unknown before getting any samples, unless other specific information is given. For example, the
methods using successor representation (Barreto et al., 2019; Borsa et al., 2018; Schaul et al., 2015a)
assume that the reward functions among tasks are a linear combination of some common features,
and they only differ in the feature weights, namely, r(s, a, s′) =

∑
i wiφi(s, a, s

′) with fixed φi’s.
Then the similarity can be characterized as the distance of the weight vectors.

In this paper, we aim to show that the proposed REPAINT algorithm handles generic cases in task
similarity. To demonstrate that, for simplicity, we assume in the experiments that the state and action
spaces stay the same between teacher and student tasks, and the reward functions have the form of
linear combination of common features. However, we use the cosine distance function to define
the task similarity in this paper, namely, the similarity between two tasks with reward functions
r1(s, a, s

′) = φ(s, a, s′)>w1 and r2(s, a, s′) = φ(s, a, s′)>w2 can be computed as

sim(r1, r2) =
w1 ·w2

‖w1‖‖w2‖
. (4.4)

We say the two tasks are similar if sim(r1, r2) > 0. Otherwise, they are considered to be different.

In regards to the proposed REPAINT algorithm, we also want to remark that the policy distillation
weight βk and advantage filtering threshold ζ are task specific, which are dependent with the one-step
rewards. To this end, one can consider to normalize different reward functions in practice, so that the
one-step rewards are in the same scale. In general, larger βk encourages the agent to better match
the teacher policy, and larger ζ leads to that fewer samples are kept for policy update, which in
result makes current learning concentrate more on the high-advantage state-action transitions. More
investigations on the two parameters can be found in the experiments.

5 EXPERIMENTS

In this section, we use two platforms across multiple bench-marking tasks for assessing the REPAINT
algorithm (see Figure 1). We first perform experiments on two continuous control tasks, i.e., Ant
and Reacher, in MuJoCo simulator (Todorov, 2016). We compare the performance of REPAINT
with training from scratch and training with only kickstarting or instance transfer. Note that since
the value network cannot be updated in the instance transfer iteration, we implement training with
only instance transfer by alternately applying Clipped PPO and instance transfer (namely, setting
βk = 0 in Algorithm 1). For discrete control tasks, we use the AWS DeepRacer simulator (Balaji
et al., 2019) to evaluate different algorithms on complex tasks, such as single-car time-trial race and
multi-car racing against bot cars. The detail of our experimental setup is presented in Section B.

5

Under review as a conference paper at ICLR 2021

(a) MuJoCo-Reacher (b) MuJoCo-Ant (c) Single-car time trial (d) Racing with bot cars

Figure 1: The simulation environments used in the experiments. Note that the racing car in (c) only
has a monocular camera, while in (d) it is equipped by a stereo camera and a Lidar.

0 50 100 150 200
evaluation iteration

20

15

10

5

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 50 100 150 200
evaluation iteration

20

15

10

5

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Comparison against baselines

0 50 100 150 200
evaluation iteration

14

12

10

8

6

4

m
ea

n
re

wa
rd

| | >
top 20%
>

PER

0 50 100 150 200
evaluation iteration

20

15

10

5

m
ea

n
re

wa
rd

| | >
top 20%
>

PER

(b) Comparison of different instance prioritization rules

Figure 2: Evaluation performance for MuJoCo-Reacher, averaged across five runs. In each of (a) and
(b), we consider both teacher task is similar to (left) and different from (right) the target task.

We consider three different types of task similarities in the experiments based on the cosine similarity
(equation 4.4), i.e., the teacher (source) task is a similar task, different task, or a sub-task of the target
task (some feature weights are zero in the reward function). We also evaluate the effectiveness of
using different teacher policies, cross-entropy weights, and advantage thresholds. Moreover, several
prioritization (filtering) approaches in the instance transfer are investigated. More extensive results
and discussion on the properties of REPAINT are presented in Section C for completeness.

5.1 CONTINUOUS ACTION CONTROL IN MUJOCO PHYSICS SIMULATOR

MuJoCo-Reacher. In the target task, the agent is rewarded by getting close to the goal point
(distance reward) with less movement (control reward). We first compare our REPAINT algorithm
against training with only kickstarting or instance transfer and with no prior knowledge (baseline),
based on two different teacher tasks. The first teacher policy is trained with similar reward function
but a higher weight on the control reward, where we set it to be 3 as an example, so that the cosine
similarity is positive and the learning is transferred from a similar task. Another teacher policy is
trained in a different task, where the agent is penalized when it is close to the goal. In this case,
the cosine similarity is zero. After each training iteration, we evaluate the policy for another 20
episodes. The evaluation performance is presented in Figure 2(a). We remark that same trends can
be observed from figures of training performance against steps. REPAINT outperforms baseline
algorithm and instance transfer in both cases of task similarities, regarding the training convergence
time, the asymptotic performance, and the initial performance boosting. Although kickstarted training
can improve the initial performance, it has no performance gain in convergence when the teacher
behavior is opposed to the expected target behavior. On the other hand, while instance transfer does
not boost the initial performance, it surpasses the baseline performance asymptotically in both cases.

We also compare the performance of several advantage prioritization (filtering) rules in the instance
transfer of REPAINT, which includes keeping transitions with high absolute values of advantages
(| · | > ζ), keeping top 20% of transitions in the advantage value ranking (top 20%), our proposed
filtering rule (· > ζ), and prioritized experience replay described in Schaul et al. (2015b) (PER).
For PER, we used the advantage estimates to compute the prioritization instead of TD errors for
a fair comparison, and slightly tuned the α and β parameters in the probability computation and
importance-sampling weights, respectively. From Figure 2(b), we can observe that the proposed
filtering rule and top 20% rule perform better than others on the initial performance, where most of

6

Under review as a conference paper at ICLR 2021

Table 1: Evaluation performance for MuJoCo-Ant, averaged across three runs. In this experiment,
teacher task is similar to the target task.

Model Average return score of num iterations±50
100 200 300 400 600 800 1000

Baseline 37 202 653 1072 1958 2541 3418
Kickstarting (teacher coef.= 3) 1686 2657 2446 3688 4233 4744 4924

Instance transfer (ζ = 1.2, teacher coef.= 3) 338 1058 1618 1973 3117 4163 4432
REPAINT (ζ = 1.2, teacher coef.= 3) 1782 2663 3150 3789 4698 4996 5173

REPAINT (ζ = 0, teacher coef.= 3) 1747 1932 2665 3245 4250 4561 4809
REPAINT (ζ = 0.8, teacher coef.= 3) 2004 2593 2987 3638 4299 4847 5074
REPAINT (ζ = 1.5, teacher coef.= 3) 2009 2605 2764 3309 4061 4838 5116

REPAINT (ζ = 1.2, teacher coef.= 5) 1034 2515 2998 3492 4621 4855 5028
REPAINT (ζ = 1.2, teacher coef.= 10) 267 1423 1785 2019 2504 2914 3420

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 5 10 15
evaluation iteration

20

40

60

80

100

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Outer-lane reward task with inner-lane teacher

0 5 10 15 20
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 5 10 15 20
evaluation iteration

20

40

60

80

100

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Inner-lane reward task with outer-lane teacher

Figure 3: Evaluation performance for DeepRacer single-car time-trial race, including mean accumu-
lated rewards and mean progress (lap completion percentage), averaged across five runs.

the samples are removed for policy update. Moreover, PER does not work as well as other approaches
when task similarity is low, since it includes all low-advantage teacher samples which have no merits
for the student policy to learn. Therefore, we suggest to use the proposed filtering rule with a threshold
ζ or the ranking-based filtering rule with a percentage threshold in the instance transfer.

MuJoCo-Ant. Other than the comparison against baselines, we also assess our REPAINT algorithm
with different filtering thresholds here, i.e., the parameter ζ in Algorithm 1. In this target task, the
agent is rewarded by survival and moving forward, and penalized by control and contact cost. The
teacher task is a similar task, which has the reward function with a higher weight on moving forward.
In the experiments, we train each model for 1100 iterations, and evaluate each training iteration
for another 5 episodes. The evaluation results are shown in Table 1. We can again observe that,
when task similarity is high, training with REPAINT or kickstarting significantly improves the
initial performance, reduces the learning cost of achieving a certain performance level, and improves
the asymptotic performance. The table also indicates that our algorithm is robust to the threshold
parameter. Similar learning progresses are observed from training with different ζ values. In addition,
we evaluate the transfer performance from the source tasks with different levels of cosine similarities.
We set the forward coefficients in the reward function of teacher task to be 3, 5, and 10, corresponding
to the cosine similarities of 0.87, 0.76, and 0.64. By comparing the performance of REPAINT with
ζ = 1.2 and different teacher coefficients, we can see that task similarity impacts the overall training,
even when they are all related.

5.2 AUTONOMOUS RACING IN AWS DEEPRACER SIMULATOR

Single-car time trial. In this experiment, we use two different reward functions, one of which
encourages the agent to stick to the inner lane (left of the yellow center-line) and the other rewards the
agent when it is in the outer lane. When we use one reward function in the student task, we provide
the teacher policy that is trained with the other reward. Therefore, the cosine similarity of teacher
and target task is zero. We evaluate the policy for 5 episodes after each iteration. The evaluation
performance is presented in Figure 3, where both average return and progress (percentage of a lap the

7

Under review as a conference paper at ICLR 2021

0 25 50 75 100
evaluation iteration

500

1000

1500

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 25 50 75 100
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Task with advanced reward

0 25 50 75 100
evaluation iteration

15

10

5

0

5

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 25 50 75 100
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Task with progress-based reward

Figure 4: Evaluation performance for DeepRacer multi-car racing against bot cars, averaged across
three runs. The value at each iteration is smoothed by the mean value of nearest 3 iterations.

Table 2: Summary of the experimental results.

Env. Teacher Target
KBaseline

KKS (pct. KIT (pct. KREP (pct. Best scores
type score reduced) reduced) reduced) (KS, IT, REP)

Reacher similar -7.4 173 51 (71%) 97 (44%) 42 (76%) -5.3,-5.9,-5.4
different 73 (58%) 127 (27%) 51 (71%) -6.9,-6.4,-5.2

Ant similar 3685 997 363 (64%) 623 (38%) 334 (66%) 5464,5172,5540

Single-car different 394 18 – – 13 (28%) 331,388,396
different 345 22 – – 15 (32%) 300,319,354

Multi-car sub-task 1481 100 34 (66%) 75 (25%) 29 (71%) 1542,1610,1623
sub-task 2.7 77 66 (14%) 53 (31%) 25 (68%) 4.9,4.2,6.1

agent accomplished when it went out of track) are given. Although upon convergence, all models can
finish a lap without going off-track, REPAINT and kickstarting again significantly boost the initial
performance. However, when the teacher task is very different from the target task, training with
kickstarting cannot improve the final performance via transfer. In contrast, instance transfer can still
reduce the training convergence time with a final performance better than kickstarting.

In Section C, we also compare the REPAINT algorithm with a commonly used parameter transfer
approach, i.e., warm start, when the task similarity is low. Furthermore, the effect of different cross-
entropy weights βk or instance filtering thresholds ζ is studied, which is presented in Section C.3.

Racing against bot cars. The REPAINT algorithm is still helpful when the RL agent needs to
learn multiple skills in a task. In the environment of racing against bot cars, the agent has to keep
on the track while avoiding slow-moving cars in order to obtain a high return score. Therefore,
we first train a teacher policy which is good at object avoidance, namely, the agent is rewarded
when it keeps away from all bot cars and gets a penalty when the agent is too close to a bot car and
heads towards to it. Then in the target tasks, we use two different reward functions to assess the
models. First, we use an advanced reward where other than keeping on track and object avoidance,
it also penalizes the agent when it detects some bot car from the stereo camera and is in the same
lane with the bot. The evaluation performance is shown in Figure 4(a). Since the environment has
high randomness, such as agent and bot car initial locations and bot car lane changing, we only
report average results across three runs but omit the error bars. One can observe that REPAINT
outperforms other baselines regarding the training time needed for some certain performance level
and the asymptotic performance. Moreover, another target task with a progress-based reward is also
investigated, where the agent is only rewarded based on its completion progress, but gets large penalty
when it goes off-track or crashes with bot cars. The evaluation performance is provided in Figure 4(b).
When the target task is complex and the reward is simple as in this case, it is sometimes difficult
for the agent to learn a good policy as it lacks guidance from the reward on its actions. However, a
teacher policy can provide guidance for the agent to achieve high accumulated rewards at the early
stage of training. From the figure, we can again see that training with REPAINT not only reduces the
convergence time, but also largely improves the asymptotic performance compared to other models.

8

Under review as a conference paper at ICLR 2021

6 SUMMARY AND FUTURE WORK

In this work, we have proposed a knowledge transfer algorithm for deep actor-critic reinforcement
learning. The REPAINT algorithm performs representation transfer and instance transfer alternately,
and uses a simple yet effective method to supplement the kickstarted training, i.e., the advantage-based
experience replay. The experiments across several tasks with continuous and discrete state-action
spaces have demonstrated that REPAINT significantly reduces the training time needed by an agent
to reach a specified performance level, and also improves the asymptotic performance of the agent,
when compared to training with no prior knowledge and only kickstarting or instance transfer.

We provide a summary of the transfer performance on the experiments we have conducted, which is
given in Table 2. The teacher type indicates whether the teacher task is a sub-task of or similar to the
target task, based on the cosine similarity in equation 4.4. The target score is the best return that can
be obtained by training from scratch. Then we provide the number of training iterations needed by
each model to achieve the target score. The models include training with baseline, kickstarting (KS),
instance transfer (IT), and REPAINT (REP). In Section C.5, we also provide the data of wall-clock
time. Finally, in the last column, we present the best scores that each knowledge transfer model can
achieve in the evaluation. Unlike other baseline algorithms, the superior performance of REPAINT is
observed regardless of the task similarity. In contrast, for example, the kickstarted training provides
71% and 58% reduction on MuJoCo-Reacher, when the teacher task is similar versus different.
The difference of performance is even larger on DeepRacer multi-car racing when different reward
functions are used in the target task. For the DeepRacer single-car time trial, where the teacher task is
significantly different from the target task, although the improvement of REPAINT is not as notable
as in other tasks, it still outperforms the baseline algorithms. In this case, the kickstarting and instance
transfer models are not able to reach the performance level of baseline upon convergence.

In future work, we aim to study how our proposed algorithm can automatically learn the task
similarity if unknown, and spontaneously determine the best βk and ζ values in the training based
on the similarity. Our preliminary results in Section C.3 indicate that when the task similarity is
low, larger βk values may reduce the asymptotic performance of the agent. Moreover, we are also
interested in the dependency of transfer performance on the neural network architectures. We provide
some preliminary experimental results in Section C.4.

REFERENCES

Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt Driessens,
Gerhard Weiss, and Karl Tuyls. An automated measure of mdp similarity for transfer in reinforce-
ment learning. In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet Khare, Gourav Roy,
Tao Sun, Yunzhe Tao, Brian Townsend, et al. Deepracer: Educational autonomous racing platform
for experimentation with sim2real reinforcement learning. arXiv preprint arXiv:1911.01562, 2019.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017.

André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Žı́dek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. arXiv preprint arXiv:1901.10964, 2019.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

James L Carroll and Kevin Seppi. Task similarity measures for transfer in reinforcement learning
task libraries. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 803–808. IEEE, 2005.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. CoRR, abs/1205.4839,
2012. URL http://arxiv.org/abs/1205.4839.

9

http://arxiv.org/abs/1205.4839

Under review as a conference paper at ICLR 2021

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

George Konidaris, Ilya Scheidwasser, and Andrew Barto. Transfer in reinforcement learning via
shared features. Journal of Machine Learning Research, 13(May):1333–1371, 2012.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pp. 143–173. Springer, 2012.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch rein-
forcement learning. In Proceedings of the 25th international conference on Machine learning, pp.
544–551, 2008.

Chen Ma, Junfeng Wen, and Yoshua Bengio. Universal successor representations for transfer
reinforcement learning. arXiv preprint arXiv:1804.03758, 2018.

Tamas Madarasz and Tim Behrens. Better transfer learning with inferred successor maps. In Advances
in Neural Information Processing Systems, pp. 9026–9037, 2019.

Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern. Transfer in variable-reward
hierarchical reinforcement learning. Machine Learning, 73(3):289, 2008.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafał Józefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szy-
mon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. CoRR, 2018. URL http://arxiv.org/abs/1808.00177.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
2019. URL https://arxiv.org/abs/1912.06680.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

10

http://arxiv.org/abs/1808.00177
https://arxiv.org/abs/1912.06680

Under review as a conference paper at ICLR 2021

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Caitlin Phillips. Knowledge transfer in markov decision processes. Technical report, Technical report,
McGill University, School of Computer Science, 2006. URL . . . , 2006.

Janarthanan Rajendran, Aravind S Lakshminarayanan, Mitesh M Khapra, P Prasanna, and Balaraman
Ravindran. Attend, adapt and transfer: Attentive deep architecture for adaptive transfer from
multiple sources in the same domain. arXiv preprint arXiv:1510.02879, 2015.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation, 2015.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 2017(19):70–76, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning, pp. 1312–1320, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015b.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Jinhua Song, Yang Gao, Hao Wang, and Bo An. Measuring the distance between finite markov
decision processes. In Proceedings of the 2016 international conference on autonomous agents &
multiagent systems, pp. 468–476, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Erik Talvitie and Satinder P Singh. An experts algorithm for transfer learning. In IJCAI, pp.
1065–1070, 2007.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based
reinforcement learning. In Joint European conference on machine learning and knowledge
discovery in databases, pp. 488–505. Springer, 2008a.

Matthew E Taylor, Gregory Kuhlmann, and Peter Stone. Autonomous transfer for reinforcement
learning. In AAMAS (1), pp. 283–290. Citeseer, 2008b.

11

Under review as a conference paper at ICLR 2021

Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted transfer
of samples in reinforcement learning. arXiv preprint arXiv:1805.10886, 2018.

Emo Todorov. Mujoco: Modeling, simulation and visualization of multi-joint dynamics with contact.
Seattle WA: Roboti Publishing, 2016.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33, 2020.

Haiyan Yin and Sinno Jialin Pan. Knowledge transfer for deep reinforcement learning with hierarchi-
cal experience replay. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
arXiv preprint arXiv:1804.10689, 2018.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Generalized off-policy
actor-critic. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
2001–2011. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8474-generalized-off-policy-actor-critic.pdf.

12

http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf
http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf

Under review as a conference paper at ICLR 2021

A ALGORITHM

In order to directly compare with the baseline algorithms regarding the reduction of number of
training iterations, we adopt representation transfer and instance transfer alternately in Algorithm 1,
so that the REPAINT performs policy update one time per iteration. Indeed, Algorithm 1 can be
easily extended with different alternating ratios other than 1:1 alternating. The corresponding results
and discussion can be found in Section C.1. More generically, we can integrate the two transfer steps
in one iteration, which is shown in the following integrated REPAINT algorithm with Clipped PPO.

Algorithm 2 Integrated REPAINT algorithm with Clipped PPO

for iteration k = 1, 2, . . . do
Collect samples S = {(s, a, s′)} by πθold(s), and S ′ = {(s, a, s′)} by πteacher(s)
Compute r for each transition using current reward function and add to S and S ′, respectively
Fit state value network Vν using only S to update ν
Compute advantage estimates Â1, . . . , ÂT for S and Â′1, . . . , Â

′
T ′ for S ′ by equation 3.4

for t=1,. . . ,T ′ do
if Â′t < ζ then

Remove Â′t and the corresponding transition (st, at, st+1, rt) from S ′
Compute sample gradient of LkRL(θ) defined in equation 4.2 using S
Compute sample gradient of Lclip(θ) defined in equation 3.5 using S ′
Update policy network by θ ← θ + α1∇θLkRL(θ) + α2∇θLclip(θ)

Note that in Algorithm 2, we can use different learning rates α1 and α2 to control the update from
representation transfer and instance transfer, respectively.

So far, we have only used a single teacher policy in the knowledge transfer, and adopt the objective
function from only Clipped PPO algorithm. However, it is straightforward to using multiple teacher
policies in each transfer step, and our algorithm can be directly applied to any advantage-based policy
gradient RL algorithms. Assume there are m previously trained teacher policies π1, . . . , πm. In the
instance transfer, we can form the replay buffer S ′ by collecting samples from all teacher policies.
Then in the representation transfer, the objective function can be written in a more general way:

LkRL(θ) = Lclip(θ)−
m∑
i=1

βki H (πi(a|s)‖πθ(a|s)) , (A.1)

where we can impose different weighting parameters for different teacher policies.

In addition, the first term in equation A.1, i.e., Lclip(θ), can be replaced by the objective of other RL
algorithms, e.g., A2C (classical gradient policy):

LA2C(θ) = Êt
[
log πθ(a|s)Ât

]
, (A.2)

and TRPO (Schulman et al., 2015a):

LTRPO(θ) = Êt
[
πθ(a|s)
πθold(a|s)

Ât − βKL[πθold(·|s), πθ(·|s)]
]

(A.3)

for some coefficient β of the maximum KL divergence computed over states.

B EXPERIMENTAL SETUP

B.1 ENVIRONMENTS

We now provide the details of our experimental setup. MuJoCo is a well-known physics simulator
for evaluating agents on continuous motor control tasks with contact dynamics. In AWS DeepRacer
simulator1, the RL agent, i.e., an autonomous car, learns to drive by interacting with its environment,

1https://github.com/awslabs/amazon-sagemaker-examples/tree/master/
reinforcement_learning/rl_deepracer_robomaker_coach_gazebo

13

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo

Under review as a conference paper at ICLR 2021

e.g., the track with moving bot cars, by taking an action in a given state to maximize the expected
reward. Figures 1(c) and 1(d) present two environmental settings investigated in this work, i.e.,
single-car time-trial race, where the goal is to finish a lap in the shortest time, and racing against
moving bot cars, where four bot cars are generated randomly on the track and the RL agent learns to
finish the lap with overtaking bot cars.

In single-car racing, we only install a front-facing camera on the RL agent, which obtains an RGB
image with size 120× 160× 3. The image is then transformed to gray scale and fed into an input
embedder. For simplicity, the input embedder is set to be a three-layer convolutional neural network
(CNN) (Goodfellow et al., 2016). For the RL agent in racing against bot cars, we use a stereo camera
and a Lidar as sensors. The stereo camera obtains two images simultaneously, transformed to gray
scale, and concatenates the two images as the input, which leads to a 120× 160× 2 input tensor. The
input embedder for stereo camera is also a three-layer CNN by default. The stereo camera is used
to detect bot cars in the front of learner car, while the Lidar is used to detect any car behind. The
backward-facing Lidar has an angle range of 300 degree and a 64 dimensional signal. Each laser can
detect a distance from 12cm to 1 meter. The input embedder for Lidar sensor is set to be a two-layer
dense network. In both environments, the output has two heads, V head for state value function
output and policy head for the policy function output, each of which is set to be a two-layer dense
networks but with different output dimensions. The action space consists of a combination of five
different steering angles and two different throttle degrees, which forms a 10-action discrete space.
In the evaluation of DeepRacer experiments, the generalization around nearby states and actions is
also considered (Balaji et al., 2019), where we add small noises to the observations and actions.

B.2 HYPERPARAMETERS

We have implemented our algorithms based on Intel Coach2. The MuJoCo environments are from
OpenAI Gym3. If not specified explicitly in the paper, we always use Adam as the optimizer
with a learning rate of 3 × 10−4, minibatch size as 64, clipping parameter ε as 0.2, β0 = 0.2 and
βk+1 = 0.95βk throughout the experiments. The other hyperparameters are presented below.

Table 3: Hyperparameters used in the MuJoCo simulations.

Hyperparameter Value
Num. of rollout steps 2048
Num. training epochs 10

Discount (γ) 0.99
GAE parameter (λ) 0.95

Beta entropy 0.0001
Reacher - Advantage Threshold (ζ) 0.8

Reacher - Num. REPAINT iterations 15
Ant - Num. REPAINT iterations 50

Table 4: Hyperparameters used in the DeepRacer simulations.

Hyperparameter Value
Num. of rollout episodes 20

Num. of rollout episodes when using πteacher 2
Num. training epochs 8

Discount (γ) 0.999
GAE parameter (λ) 0.95

Beta entropy 0.001
Advantage Threshold (ζ) 0.2

Single-car - Num. REPAINT iterations 4
Multi-car - Num. REPAINT iterations 20

2https://github.com/NervanaSystems/coach
3https://gym.openai.com/envs/#mujoco

14

https://github.com/NervanaSystems/coach
https://gym.openai.com/envs/##mujoco

Under review as a conference paper at ICLR 2021

C EXTENSIVE EXPERIMENTAL RESULTS

C.1 MORE RESULTS ON MUJOCO-REACHER

Alternating ratios. In Algorithm 1, we alternate representation transfer and instance transfer
after each iteration. Here, we aim to illustrate the effect of using different alternating ratios by
the MuJoCo-Reacher environment. We compare the 1:1 alternating with a 2:1 ratio, namely, two
representation transfer (kickstarting) iterations before and after an instance transfer iteration. The
evaluation performance is shown in Figure 5. When the teacher task is similar to the target task,
adopting more kickstarted training iterations leads to faster convergence, due to the policy distillation
term in the loss function. On the other hand, when the task similarity is low, instance transfer
contributes more to the knowledge transfer due to the advantage-based experience replay. Therefore,
we suggest to set the alternating ratio in Algorithm 1, or the α1 and α2 parameters in Algorithm 2,
according to the task similarity between source and target tasks. However, the task similarity is
usually unknown in most of the real-world applications, or the similarities are mixed when using
multiple teacher policies. It is interesting to automatically learn the task similarity and determine the
best ratio/parameters before actually starting the transfer learning. We leave the investigation of this
topic as a future work.

0 50 100 150 200
evaluation iteration

12

10

8

6

4

m
ea

n
re

wa
rd

1:1
2:1

0 50 100 150 200
evaluation iteration

14

12

10

8

6

4

m
ea

n
re

wa
rd

1:1
2:1

Figure 5: Evaluation performance for MuJoCo-Reacher, averaged across five runs. Left: Teacher task
is similar to the target task. Right: Teacher task is different from the target task.

REPAINT vs. Relevance-Based Transfer Learning. In order to showcase our contribution of
the advantage-based experience replay in the instance transfer, it is also of interest to compare our
proposed instance transfer algorithm with other existing methods. In this experiment, we incorporate
the kickstarting with the relevance-based instance transfer (Lazaric et al., 2008), and compare its
performance with REPAINT in the MuJoCo-Reacher environment. In the relevance-based transfer
(RBT), the agent first collects samples from both source and target tasks. For each sample from
the source task, RBT computes its relevance to the target samples. Then the source samples are
prioritized by the relevance and RBT transfers the samples according to it. Figure 6 shows the
evaluation performance of RBT and REPAINT on MuJoCo-Reacher with either a similar source task
or a different source task. When a similar task is used in knowledge transfer, as most of other transfer
learning methods, RBT works well. However, when the source task is different from the target task,
although RBT attempts to transfer the most relevant samples, it has no performance gain over the
baseline training. The performance of REPAINT is significantly better than RBT in this case.

0 25 50 75 100 125 150 175 200
evaluation iteration

20.0

17.5

15.0

12.5

10.0

7.5

5.0

m
ea

n
re

wa
rd

Baseline
RBT
REPAINT

0 25 50 75 100 125 150 175 200
evaluation iteration

20.0

17.5

15.0

12.5

10.0

7.5

5.0

m
ea

n
re

wa
rd

Baseline
RBT
REPAINT

Figure 6: Comparison of relevance-based transfer (RBT) and REPAINT on MuJoCo-Reacher,
averaged across five runs. Left: Teacher task is similar to the target task. Right: Teacher task is
different from the target task.

15

Under review as a conference paper at ICLR 2021

C.2 REPAINT vs. WARM-START

We also want to compare our hybrid representation-instance transfer algorithm with a widely-used
parameter transfer approach, i.e., warm-start. In warm-start, the agent initializes with parameters
from the teacher policy and conducts the RL algorithm after that. When the target task is similar to the
teacher task, it usually works well. But here we compare the two algorithms in the DeepRacer single-
car experiment, where the two tasks are significantly different. Figure 7 visualizes the trajectories
of the agent on the track during evaluations. Each model is trained for two hours and evaluated for
another 20 episodes. From both cases, we can see that although the two reward functions encode
totally different behaviors, REPAINT can still focus on current task while learning from the teacher
policy. This again indicates the effectiveness of the advantage-based experience replay in the instance
transfer. In comparison, training with warm start cannot get rid of the unexpected behavior at
convergence due to the reason that it may be stuck at some local optimum. Therefore, initialization
with previously trained policies can sometimes jump-start the training with good initial performance,
but the method contributes to the final performance only when two tasks are highly related.

0 200 400 600 800

0

100

200

300

400

500

600

700

0 200 400 600 800

0

100

200

300

400

500

600

700

(a) Outer-lane task: REPAINT vs. warm-start
0 200 400 600 800

0

100

200

300

400

500

600

700

0 200 400 600 800

0

100

200

300

400

500

600

700

(b) Inner-lane task: REPAINT vs. warm-start

Figure 7: Trajectories of policy evaluations. In each of (a) and (b), evaluation of the models trained
from REPAINT is visualized on the left and that trained with warm-start is on the right.

C.3 MORE RESULTS ON DEEPRACER SINGLE-CAR TIME TRIAL

In the DeepRacer single-car time-trial task, we also study the effect of different cross-entropy weights
βk and instance filtering thresholds ζ, as mentioned in the paper. We first present the results of
instance transfer learning with different ζ values in Figure 8, where we can see that our proposed
advantage-based experience replay is robust to the threshold parameter.

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
=0
=0.2
=0.4

(a) Outer-lane task with inner-lane teacher

0 5 10 15 20
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
=0
=0.2
=0.4

(b) Inner-lane task with outer-lane teacher

Figure 8: Evaluation performance with respect to different ζ’s, averaged across five runs.

We then study the performance of training with different cross-entropy loss weights βk. First, we fix
the diminishing factor to be 0.95, namely, βk+1 = 0.95βk, and test different β0’s. From Figure 9,
we can see that training with all β0 values can improve the initial performance compared to the
baseline. However, when the teacher task is different from the target task, larger β0 values, like 0.3,
may reduce the agent’s asymptotic performance since the agent overshoots learning from teacher
policy. In addition, we then fix β0 = 0.2 and test different βk schedules. The results are shown in
Figure 10. We can observe some trade-offs between training convergence time and final performance.
By reducing the β values faster, one can improve the final performance but increase the training time
that needed to achieve some certain performance level. It is of interest to automatically determine the
best βk values during training, which needs further investigation. We leave it as another future work.

16

Under review as a conference paper at ICLR 2021

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
0=0.1
0=0.2
0=0.3

(a) Outer-lane task with inner-lane teacher

0 5 10 15
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
0=0.1
0=0.2
0=0.3

(b) Inner-lane task with outer-lane teacher

Figure 9: Evaluation performance with respect to different initial β0’s, averaged across five runs.
Here we fix the β update to be βk+1 = 0.95βk.

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
k + 1 = 0.95 k

k + 1 = 0.9 k

k + 1 = 0.8 k

(a) Outer-lane task with inner-lane teacher

0 5 10 15
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
k + 1 = 0.95 k

k + 1 = 0.9 k

k + 1 = 0.8 k

(b) Inner-lane task with outer-lane teacher

Figure 10: Evaluation performance with respect to different β schedules, averaged across five runs.

C.4 NEURAL NETWORK ARCHITECTURES

For completeness of the experiments, we also provide some results regarding different neural network
architectures in this section. Take the DeepRacer task of multi-car racing against bot cars as an
example, we have used three-layer CNN as the default architecture in experiments. Here, we present
the comparison of REPAINT against other baselines with the evaluation performance using four-layer
CNN (Figure 11) and five-layer CNN (Figure 12).

20 40 60 80
evaluation iteration

200

400

600

800

1000

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

20 40 60 80
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Task with advanced reward

20 40 60 80
evaluation iteration

15

10

5

0

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

20 40 60 80
evaluation iteration

20

40

60

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Task with progress-based reward

Figure 11: Evaluation performance for DeepRacer multi-car racing against bot cars, using 4-layer
CNN. The value at each iteration is smoothed by the mean value of nearest 3 iterations.

C.5 SUMMARY OF WALL-CLOCK TRAINING TIME

In addition to the summary of reduction performance with respect to number of training iterations
presented in Table 2, we also provide the data of wall-clock time in Table 5 below. Again, we can see
a significant reduction by training with REPAINT, which reaches at least 60% besides the DeepRacer
single-car time trial. The kickstarted training performs well when a similar teacher policy is used.
Although training with only instance transfer cannot boost the initial performance, it still reduces the
training cost to achieve some specified performance level.

17

Under review as a conference paper at ICLR 2021

0 25 50 75 100
evaluation iteration

200

400

600

800

1000

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 25 50 75 100
evaluation iteration

20

40

60

m
ea

n
pr

og
re

ss
 (%

)
Baseline
Kickstarting
Instance transfer
REPAINT

(a) Task with advanced reward

0 20 40 60 80
evaluation iteration

15

10

5

0

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 20 40 60 80
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Task with progress-based reward

Figure 12: Evaluation performance for DeepRacer multi-car racing against bot cars, using 5-layer
CNN. The value at each iteration is smoothed by the mean value of nearest 3 iterations.

Table 5: Summary of wall-clock time of experiments.

Env. Training Teacher Target TBaseline TKS (pct. TIT (pct. TREP (pct.
hardware type score (hrs) reduced) reduced) reduced)

Reacher laptop similar -7.4 2.1
0.6 (71.4%) 1.1 (47.6%) 0.4 (81.0%)

different 0.9 (57.1%) 1.4 (33.3%) 0.6 (71.4%)

Ant laptop similar 3685 19.1 8.0 (58.1%) 12.8 (33.0%) 7.5 (60.7%)

Single-car AWS, p2 different 394 2.2 – – 1.5 (31.8%)
AWS, p2 different 345 2.3 – – 1.5 (34.8%)

Multi-car AWS, p2 sub-task 1481 16.4 4.8 (70.7%) 12.6 (23.2%) 4.5 (72.6%)
AWS, p2 sub-task 2.7 9.6 9.3 (3.1%) 8.3 (13.5%) 3.7 (61.5%)

18

	Introduction
	Related Work: Transfer Reinforcement Learning
	Background: Actor-Critic Reinforcement Learning
	Representation and Instance Transfer in Actor-Critic RL
	Representation Transfer: Kickstarted Training
	Instance Transfer: Advantage-Based Experience Replay
	Discussion

	Experiments
	Continuous Action Control in MuJoCo Physics Simulator
	Autonomous Racing in AWS DeepRacer Simulator

	Summary and Future Work
	Algorithm
	Experimental Setup
	Environments
	Hyperparameters

	Extensive Experimental Results
	More Results on MuJoCo-Reacher
	REPAINT vs. Warm-Start
	More Results on DeepRacer Single-Car Time Trial
	Neural Network Architectures
	Summary of Wall-Clock Training Time

