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Abstract

Real-world decision-making systems are often subject to uncertainties that have to
be resolved through observational data. Therefore, we are frequently confronted
with combinatorial optimization problems of which the objective function is un-
known and thus has to be debunked using empirical evidence. In contrast to the
common practice that relies on a learning-and-optimization strategy, we consider
the regression between combinatorial spaces, aiming to infer high-quality opti-
mization solutions from samples of input-solution pairs – without the need to learn
the objective function. Our main deliverable is a universal solver that is able to
handle abstract undetermined stochastic combinatorial optimization problems. For
learning foundations, we present learning-error analysis under the PAC-Bayesian
framework using a new margin-based analysis. In empirical studies, we demon-
strate our design using proof-of-concept experiments, and compare it with other
methods that are potentially applicable. Overall, we obtain highly encouraging
experimental results for several classic combinatorial problems on both synthetic
and real-world datasets.

1 Introduction

Combinatorial optimization problems are not only of great theoretical interest but also central to
enormous applications. Traditional research assumes that the problem settings (i.e., objective function)
are completely known [1], but the reality is that the underlying system is often very complicated
and only partial knowledge (from historical data) is provided. In a recommendation system, the
item-user similarities could be unknown [2], which makes it impossible to compute the optimal
recommendation scheme. In the study of wireless communications, the backbone network depends
on stochastic node connections [3], incurring extra difficulties in designing management strategies.
In the most general sense, we can formalize such scenarios by assuming that the objective function
is governed by a configuration space associated with an unknown distribution, where our goal is
to maximize the expected objective. For example, the configuration space may specify possible
item-user similarities or candidate network structures. We call such problems as undetermined
stochastic combinatorial optimization (USCO) problems.

Since the distribution of the configuration space is unknown, one can adopt the learning-and-
optimization strategy [4], where the unknown distribution is first learned from data so that the
subsequent optimization problem can be solved using existing methods. While such a strategy is
natural and proved successful in several applications [5], it may require a large amount of data to
learn an excessive number of parameters – for example, the weight between each pair of nodes in a
network or the similarity between each pair of user and item in a recommendation system. In the
worst case, we may not even have access to such kind of data (due to, for example, privacy issues
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[6]). Furthermore, a more technical concern is that the learning process is often independent of
the optimization process, causing the situation that optimizing the learned objective function does
not produce a good approximation to the true objective function, which is theoretically possible
[7]. These concerns motivate us to think of the settings that can eschew model learning and can
address USCO problems aiming right at the approximation guarantees. To this end, we consider the
regression between the input space and solution space, and wish to directly compute the solution for
future inputs without learning the hidden objective function.

USCO-Solver. In this paper, we present USCO-Solver, a general-purpose solver to USCO problems.
Our framework is designed through two main techniques: randomized function approximation and
approximate structured prediction. The key idea is to construct a hypothesis space composed of
affine combinations of combinatorial kernels generated using random configurations, from which
a large-margin machine is trained using input-solution pairs via approximate inference. The main
advantage of USCO-Solver is that it can handle an abstract USCO problem as long as an oracle to
solve its deterministic counterpart is given. Another significance of USCO-Solver lies in our use of
combinatorial kernels, which suggests a novel and principled way for incorporating an approximation
algorithm into a learning process. In doing so, we are able to handle combinatorial objects easily
without worrying much about their indifferentiability or the inherited symmetries, which is often not
possible for mainstream learning methods [8].

Theoretical analysis. For USCO-Solver, we present a learning-error analysis under the PAC-
Bayesian framework, where we introduce the multiplicative margin dedicated to bounding the
approximation guarantees. In particular, we prove that the approximation ratio of the predictions is
essentially bounded by O(α2), whenever the considered problem admits an α-approximation in the
deterministic sense. Such a result is possible due to the fact the hypothesis space of USCO-Solver
can approximate the configuration space arbitrarily well. To our knowledge, this is the first result of
such kind.

Empirical studies. We conduct experiments with USCO problems concerning three classic combina-
torial objects: path, coverage, and matching. On various real-world datasets, we consistently observe
that USCO-Solver not only works the way it is supposed to, but also outperforms other competitors
by an evident margin in most cases. In many case studies, near-optimal solutions can be computed
without consulting the true configuration distribution.

Supplementary material. The proofs, together with more results and discussions on the experiments,
can be found in the supplementary material. In addition, we release the experimental materials,
including source code, datasets, and pretrain models, as well as their instructions. The experiment
materials can be found online1.

2 Preliminaries

2.1 Undetermined stochastic combinatorial optimization problems

We are concerned with an abstract combinatorial optimization problem associated with three finite
combinatorial spaces: the input space X , the output space Y , and a configuration space C; in
addition, we are given a bounded non-negative function f(x, y, c) : X ×Y ×C → R+ denoting the
objective value to be maximized. Let Φ be the set of all distributions over C. We consider stochastic
combinatorial optimization problem in the sense that we seek to maximize f in terms of a distribution
φtrue ∈ Φ rather than a fixed configuration in C. This is desired because the system that defines
the objective values is often essentially probabilistic, which may stem from random networks or
functions with random parameters. Therefore, the objective function is given by

F (x, y, φtrue) =

∫
c∈C

φtrue(c) · f(x, y, c) dc. (1)

Given x and φtrue, we are interested in the problem

max
y∈Y

F (x, y, φtrue). (2)

We may wish to compute either the optimal solution H(x, φtrue) := arg maxy∈Y F (x, y, φtrue) or
its α-approximation Hα(x, φtrue) for some α ∈ (0, 1). Such problems are fundamental and also

1https://github.com/cdslabamotong/USCO-Solver
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ubiquitous, ranging from the stochastic version of classic combinatorial problems [9] to applications
subject to environmental uncertainties, such as commercial recommendation [10], viral marketing
[11], and behavioral decision making in autonomous systems [12]. Taking the stochastic longest path
problem [13] as an example, the length of each edge could follow a certain distribution, and therefore,
each configuration c ∈ C corresponds to a weighted graph; in such a case, x = (u, v) denotes a pair
of source and destination, y denotes a path from u to v, and f(x, y, c) amounts to the length of y in c.

While the above formulation is natural, we are always limited by our imperfect understanding of
the underlying system, which could be formalized by assuming that the distribution φtrue over the
configuration is not known to us. Since the true distribution φtrue is unknown, the objective function
F (x, y, φtrue) cannot be directly optimized. Essentially, a learning process is required. In such a
sense, we call these problems undetermined stochastic combinatorial optimization (USCO) problems.

Oracle. In general, USCO problems are made difficult by a) the learning challenges in dealing with
the unknown distribution φtrue and b) the approximation hardness in solving Equation 2. We focus
on the learning challenges and thus assume the approximation hardness (if any) can be resolved
by oracles. Notice that the objective function (Equation 1) lies in the positive affine closure of its
discretizations, which is

∪∞k=1

{ k∑
i=1

wi · f(x, y, ci) : wi ∈ R+, ci ∈ C
}
. (3)

For some fixed α ∈ (0, 1], we assume the access to a polynomial oracle for computing an α-
approximation to maximizing any function in the above class, which implies that Hα(x, φ) is
obtainable for each x ∈ X and φ. We can think of α as the best ratio that one can obtain by a
polynomial algorithm, with α = 1 denoting the scenario when the optimal solution can be efficiently
computed.

For a vector w = (w1, ..., wk) ∈ Rk and a subset C = {c1, ..., ck} ⊆ C of configurations, we denote
the induced kernel function as

KC(x, y) :=
(
f(x, y, c1), ..., f(x, y, ck)

)
and the associated affine combination as

F̂w,C(x, y) :=

k∑
i=1

wi · f(x, y, ci) = wTKC(x, y).

Finally, we denote the α-approximation to maxy∈Y F̂w,C(x, y) as hαw,C(x).

2.2 Learning settings

We consider samples of input-solution pairs:

Sm :=
{

(xi, y
α
i )
}m
i=1
⊆ 2X ×Y

where yαi :=Hα(xi, φtrue) is an α-approximation associated with the input xi. Such samples
intuitively offer the historical experience in which we successfully obtained good solutions to some
inputs. From a learning perspective, we have formulated a regression task between two combinatorial
spaces X and Y . Some formal treatments are given as follows.

Let us assume that the true distribution φtrue is unknown but fixed, and there is a distribution DX
over X . Our goal is to design a learning framework AS : X → Y that can leverage a set S of samples
to compute a prediction AS(x) ∈ Y for each future x ∈ X . For a prediction ŷ ∈ Y associated with
an input x, let l(x, ŷ) ∈ [0, 1] be a general loss function. Since we aim to examine if ŷ is a good
approximation to Equation 2, the loss l is determined jointly by ŷ and x. Consequently, we measure
the performance of A by

L(AS ,DX , l) :=Ex∼DX
[
l(x,AS(x))

]
3 A learning framework

In this section, we first present the learning framework and then analyze its generalization bounds.
Finally, we discuss training algorithms.
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3.1 USCO-Solver

Following the standard idea of structured prediction [14, 15, 16], we wish for a score function F̂ (x, y)

such that, for each x ∈ X , the y ∈ Y that can maximize F̂ (x, y) is a good solution to maximizing
F (x, y, φtrue). Suppose that we are provided with a set Sm of m ∈ Z samples. USCO-Solver
consists of the following steps:

• Step 1. Select a distribution φem ∈ Φ over C and decide a hyperparameter K ∈ Z.
• Step 2. Sample K configurations CK = {c1, ..., cK} ⊆ C independently following φem.
• Step 3. Compute a seed vector w̃ = (w̃1, ..., w̃K) ∈ RK using the training data.
• Step 4. Sample a vector w ∈ RK from Q(w|β · w̃, I), which is an isotropic Gaussian with

identity convariance and a mean of β · w̃, with β being

β :=
4

minp |w̃p| · α2

√
2 ln

2mK

‖w̃‖2
. (4)

• Score function. With CK and w = (w1, ..., wK), we adopt the score function

F̂w,CK (x, y) :=

K∑
i=1

wi · f(x, y, ci).

• Inference. For each input x ∈ X , the prediction is given by hαw,CK (x), which can be
computed by the oracle.

Given that the framework is randomized, the error of interest is

L(USCO-SolverSm ,DX , l) :=Ew∼Q,CK∼φem,x∼DX
[
l
(
x, hαw,CK (x)

)]
. (5)

So far, we have not seen how to determine the distribution φem, the parameter K, and the seed vector
w̃. We will first analyze how they may affect the generalization bound (Sec. 3.2), and then discuss
how to make selections towards minimizing the generalization bound (Sec. 3.3).

3.2 Generalization bound

We first study the general loss functions and then consider a particular loss function for measuring
the approximation effect in terms of Equation 2.

3.2.1 General loss

The generalization error in general can be decomposed into training error and approximation error
[17]; the PAC-Bayesian framework gives a particular bound of such kind [18, 19]. For USCO-Solver,
since the decision boundary is probabilistic (as w is sampled from the seed vector w̃), the training
error has to be bounded by considering the amount by which hαw,CK (xi) can deviate from hαw̃,CK (xi)
for each training input xi. To this end, we measure the similarity of two outputs y1, y2 ∈ Y through
the concept of margin, which is given by

m(w, CK , x, y1, y2) :=α · F̂w,CK (x, y1)− F̂w,CK (x, y2). (6)

For an input x, the potentially good solutions are those in

I(x,w, CK) :=
{
y ∈ Y : m(w, CK , x, h

α
w,CK (x), y) ≤ α

2
· F̂w,CK (x, hαw,CK (x))

}
. (7)

Intuitively, these are the solutions that are similar to the suboptimal one hαw,CK (x) in terms of
the score function associated with w and CK . For each w, the training error is then taken by the
worst-case loss over the possible y within the margin, which is

L(w, CK , Sm) :=
1

m

m∑
i=1

max
y∈I(xi,w,CK)

l(xi, y).

Notice that the loss L(w̃, CK , Sm) associated with the seed vector w̃ can be used to bound the
training error with respect to w, provided that the predictions are within the margin (with high
probability). With such intuitions, we have the first learning bound.

4



Theorem 1. For each w̃, CK , and δ > 0, with probability at least 1− δ, we have

L(USCO-SolverSm ,DX , l) ≤ L(w̃, CK , Sm) +
‖w̃‖2

m
+

√√√√ ln 2Km
‖w̃‖2 ( 4‖w̃‖

minp |w̃p|·α2 )2 + ln m
δ

2(m− 1)

The proof is inspired by the PAC-Bayesian framework [20, 21] applying to approximate structured
prediction [22, 19], where our contribution lies in the analysis of the multiplicative margin.

3.2.2 Approximation loss

In line with Equation 2, one natural loss function is the approximation ratio of the predictions, which
is

lapprox(x, ŷ) := 1−min(
F (x, ŷ, φtrue)

F (x,Hα(x, φtrue), φtrue)
, 1) ∈ [0, 1]. (8)

Essentially, we seek to generalize the approximation guarantee from the training samples to future
inputs, and the guarantees on the training samples are limited by the oracle. With such, we hope to
compare the generalization error under lapprox with α. According to Theorem 1, with an unlimited
supply of training data (i.e., m→∞), the generalization error is bounded by L(w̃, CK , Sm), and
therefore, the learning error of the ERM solution is concentrated on

inf
w̃

Ex∼DX

[
max

y∈I(xi,w̃,CK)
lapprox(xi, y)

]
. (9)

Relating the above quantity with α is not possible for the general case because the score function
F̂w̃,CK (x, y) defining the margin is independent of the objective function F (x, y, φtrue) inducing
the error. However, more concrete results can be obtained for the approximation loss, by leveraging a
subtle relationship between our construction of the kernel function and the stochastic combinatorial
optimization problem. The next result characterizes the relationship between Equation 9 and α.

Theorem 2. Suppose that f(x, y, c) ∈ [A,B] and C := supc
φtrue(c)
φem(c) . For each ε > 0, δ1 > 0, δ2 >

0 and φem, when K is no less than

2 · C2 ·B2

ε2 · δ22 ·A2
·max(

1

2
, ln |Y |+ ln

1

δ1
) (10)

with probability at least 1− δ1 over the selection of CK , there exists a w̃ such that

Pr
x∼DX

[
max

y∈I(xi,w̃,CK)
lapprox(xi, y) ≤ (1 + ε)− (1− ε)(α2/2)

(1 + ε)

]
≥ 1− δ2.

The above result shows that the approximation ratio in generalization is essentially bounded by α2/2.
It is intuitive that the bound on K depends on the deviation of φem from φtrue (i.e., C), the range of
the objective function (i.e.. B/A), and the size of the output space.

3.3 Training algorithms

Theorems 1 and 2 have explained how m, K and φem may affect the generalization performance in
theory. Practically, K can be conveniently taken as a hyperparameter, and φem is often the uniform
distribution over C (unless prior knowledge about φtrue is given). Now, for the four steps in Sec. 3.1,
the only problem left is to compute the seed vector w̃.

Relaxed margin. While Theorem 2 indicates that there exists a desired weight, we are not able
to search for such a weight directly because the loss function lapprox is not accessible under our
setting. In practice, one can adopt the zero-one loss or other loss function preferred by the considered
problem. For example, when the output space is a family of sets, the loss function can be induced by
the set similarity [23]. For a general loss function l(xi, y), Theorem 1 suggests computing the weight
w̃ by minimizing the upper bound L(w̃, CK , Sm) + ‖w̃‖2

m :

min
w

max
y

l(xi, y) · 1(y ∈ I(xi,w, CK)) + ||w||2,
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where 1 is the indicator function. Notice that the above problem is not only non-convex but also
complicated by the fact that w and hαw,CK (x) are convoluted with each other. For ease of optimization,
a relaxed margin will be useful, as seen shortly. Notice that we have F̂w,CK (xi, h

α
w,CK

(xi)) ≥
α · F̂w,CK (xi, y

α
i ), and therefore, for each y ∈ Y , y ∈ I(xi,w, CK) implies that

y ∈ I(x,w, CK) :=
{
y ∈ Y :

α2

2
· F̂w,CK (xi, y

α
i )− F̂w,CK (xi, y) ≤ 0

}
,

where the new margin I is measured with respect to yαi instead of hαw,CK (xi). Immediately, we have
I(xi,w, CK) ⊆ I(xi,w, CK), which indicates that the error is further upper bounded by

max
y

l(xi, y) · 1(y ∈ I(xi,w, CK)) + ||w||2, (11)

which is less challenging to minimize.

Large-margin training. Seeking a large-margin solution and scaling the margin proportional to the
loss function, Equation 11 amounts to solving the following problem:

min
1

2
‖w‖2 +

C

2m

m∑
i=1

ξi

s.t.
α2

2
wTKCK (xi, y

α
i )−wTKCK (xi, y) ≥ η · l(xi, y)− ξi, ∀i ∈ [m], ∀y ∈ Y, y 6= yαi

w ≥ 0

where C and η are hyperparameters. Notably, this is the vanilla structured SVM [16, 24]. Viewing
KCK as a score function, the constrains enforces that the solution yαi provided by the training data
should have a high score. The above formulation appears to be a standard quadratic programming,
but it in fact contains | Y | number of constrains, which can be prohibitively large (e.g., exponential in
the coding length of the configuration). Since the constraints are equivalent to

max
y∈Y

wTKCK (xi, y) + η · l(xi, y) ≤ α2

2
wTKCK (xi, y

α
i ) + ξi, ∀i ∈ [m],

the number of constraints could be reduced as linear in sample size if we can effectively solve the
loss-augmented inference problem:

max
y∈Y

wTKCK (xi, y) + η · l(xi, y)

For the zero-one loss, this is exactly to solve maxy∈Y w
TKCK (xi, y), which, to our delight, can be

solved using the oracle in Sec. 2.1. Once such loss-augmented inference problem can be solved, the
entire programming can be readily solved by existing methods, such as the cutting-plane algorithm
[25]. This completes the learning framework.
Remark 1. While our discussion so far is focused on maximization problems, the theoretical analysis
can be adapted to minimization problems easily. In the training part for minimization problems,
the major adaption is to reverse wTKCK (xi, y

α
i ) and wTKCK (xi, y), which also turns the loss-

augmented inference into a minimization problem.
Remark 2. For the stochastic shortest path problem, φem denotes a distribution over a collection C
of weighted graphs, and assuming the weights are nonnegative, we may use Dijkstra algorithm as the
oracle, as maxy∈Y F̂w,C(x, y) amounts to computing the shortest path in the combining graph of the
sampled weighted graphs.

4 Empirical studies

This section presents experiments across a variety of combinatorial problems, including stochastic
shortest path (SSP), stochastic set cover (SSC), and stochastic bipartite matching (SBM). In addition
to supporting the theoretical analysis, our empirical studies are of interest also because none of the
existing methods is known to be effective for solving any USCO problem.
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Table 1: SSP results. Each cell shows the mean of performance ratio with the standard deviation.

UCSO-Solver Other Methods

K 16 160 1600 3200 6400 NB DSPN Base

Col
φexp 1.942 (0.11) 1.952 (0.04) 1.565 (0.02) 1.129 (0.01) 1.148 (0.01) 2.064 (0.16) 2.009 (0.12) 1.956 (0.10)

φtrue 1.300(0.02) 1.015 (0.01) 1.016 (0.01) 1.010 (0.01) 1.022 (0.01)

K 80 160 640 3200 6400 NB DSPN Base

NY
φexp 1.613 (0.01) 1.571 (0.02) 1.353 (0.01) 1.303 (0.02) 1.192 (0.01) 3.155 (0.03) 2.469 (0.07) 2.853 (0.28)

φtrue 1.205 (0.01) 1.177 (0.01) 1.017 (0.01) 1.031 (0.01) 1.048 (0.01)

K 160 1600 3200 6400 9600 NB DSPN Base

Kro
φexp 7.599 (0.15) 5.829 (0.22) 5.858 (0.18) 4.613 (0.18) 4.323 (0.19) 10.08 (0.57) 7.451 (1.05) 10.92 (2.45)

φtrue 1.361 (0.09) 1.026 (0.01) 1.022 (0.01) 1.042 (0.01) 1.051 (0.01)

Evaluation metric. For each training pair (xi, y
α
i ) and a prediction ŷ, the performance ratio is

defined as F (xi,y
α
i ,φtrue)

F (xi,ŷ,φtrue)
for maximization problems and F (xi,ŷ,φtrue)

F (xi,yαi ,φtrue)
for minimization problems.

Therefore, lower is better in both cases. The performance is measured over five random testings. We
here present the main experimental settings and discuss key observations, deferring the complete
analysis to Appendix B.

4.1 Stochastic shortest path (SSP)

Problem definition and oracle. In the stochastic version of the shortest path problem, given a source
u and a destination v in a graph G = (V,E), we wish to find the path (from u to v) that is the shortest
in terms of a distribution over the possible edge weights. In this case, the configuration space C
denotes a family of weighted graphs associated with a distribution φtrue, the input x = (u, v) is a pair
of nodes, the output y is a path from u and v, and f(x, y, c) denotes the length of y in graph c. We
construct instances where the edge weights are non-negative, and thus, each function in Equation 3
can be minimized optimally using the Dijkstra algorithm [26], which is the oracle we use to generate
samples and solve the inference problem in USCO-Solver.

Instance construction. To setup a concrete instance, we first fix a graph structure, where two
real-world graphs (Col and NY) and one synthetic graph (Kro) are adopted. Col and NY are USA
road networks complied from the benchmarks of DIMACS Implementation Challenge [27], and Kro
is a Kronecker graph [28]. Following the common practice [29], we assign each edge a Weibull
distribution with parameters randomly selected from {1, ..., 10}, which – together with the graph
structure – induces the configuration space C and φtrue. For each instance, we generate the pool of
all possible input-solution pairs (x, y), where, for an input x = (u, v), y is the optimal solution to
miny∈Y F (x, y, φtrue). For each considered method, we randomly select 160 training samples and
6400 testing samples from the pool.

Implementing USCO-Solver. We setup two realizations (φexp and φtrue) of φem that will be used
in USCO-Solver. φexp assigns each edge in E an exponential distribution normalized in [1, 1e5], and
φtrue is exactly the true underlying distribution that defines the instance. Notice that φtrue is not
obtainable under our learning setting, and it is used only to verify our designs. For each distribution,
we sample a pool of 10000 configurations (i.e., weighted graphs). The number of configurations (i.e.,
K) is enumerated from small to large, with different ranges for different datasets. Given the size
K, the configurations are randomly selected from the pool in each run of USCO-Solver. We use the
zero-one loss, and the training algorithm is implemented based on Pystruct [30].

Implementing other competitors. For a baseline, we implement the Base method which, given an
input x = (u, v), outputs the shortest path from u to v in G where the edge weights are randomly
sampled from [0, 1]. Conceptually, our problem can be perceived as a supervised learning problem
from V ×V to the space of the paths, and thus, off-the-shelf learning methods appear to be applicable,
which however turns out to be non-trivial. We managed to implement two methods based respectively
on Naive Bayes (NB) [31] and Deep Set Prediction Networks (DSPN) [32], where the idea is to
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Table 2: SSC results. The table shows the results on two datasets Cora and Yahoo.

UCSO-Solver Other Methods

K 8 16 160 320 640 GNN DSPN Rand

Cora
φuni 1.480 (0.12) 1.452 (0.12) 1.230 (0.06) 1.147 (0.06) 1.083 (0.01) 1.036 (0.02) 1.782 (0.85) 16.57 (0.42)

φtrue 1.029 (0.01) 1.033 (0.01) 1.003 (<0.01) 1.000 (<0.01) 1.000 (<0.01)

K 8 16 160 320 640 GNN DSPN Rand

Yahoo
φuni 1.294 (0.03) 1.356 (0.03) 1.151 (0.01 1.146 (0.07) 1.093 (0.03) 1.076 (0.10) 1.387 (0.142) 6.58 (0.17)

φtrue 1.036 (0.02) 1.013 (0.01) 1.003 (<0.01) 1.009 (<0.01) 0.999 (<0.01)

leverage them to learn the node importance in the shortest path and then build the prediction based on
the node importance.

Observations. The main results are presented in Table 1. We highlight two important observations:
a) the performance of USCO-Solver smoothly increases when more configurations are provided, and
b) when fed with configurations from the true distribution φtrue, USCO-Solver can easily output
near-optimal solutions on all the datasets. These observations confirm that USCO-Solver indeed
functions the way it is supposed to. In addition, the efficacy of USCO-Solver is significant and robust
in terms of the performance ratio. On datasets like Col and NY, it can produce near-optimal solutions
using φexp. Meanwhile, other methods are not comparable to USCO-Solver, though DSPN offers
non-trivial improvement compared with Base on NY and Kro. It is also worth noting that different
instances exhibit different levels of hardness with respect to the number of configurations needed
by USCO-Solver. 3200 configurations are sufficient for USCO-Solver to achieve a low ratio on Col,
while the ratio is still larger than 4.0 on Kro even though 9600 configurations have been used. See
Appendix B.2 for a complete discussion.

4.2 Stochastic set cover (SSC)

In network science, coverage problems often require to compute a set of terminals that can maximally
cover the target area [33]; in applications like recommendation system or document summarization
[34], one would like to select a certain number of items that can achieve the maximum diversity by
covering topics as many as possible. These problems can be universally formulated as a maximal
coverage problem [35], where each instance is given by a family U of subsets of a ground set, where
our goal is to select a k-subset of U of which the union is maximized. In its stochastic version, we
assume that an item will appear in a subset with a certain probability [36]. The oracle we use is
the greedy algorithm, which is a (1− 1/e)-approximation [37]. We construct two instances based
on two real-world bipartite graphs Cora [38] and Yahoo [39]. Similar to the setup for SSP, we first
generate the ground truth distribution φtrue and then generate samples. We implement two learning
methods based on Graph neural network (GNN) and DSPN, together with a baseline method Rand
that randomly selects the nodes in ŷ. For USCO-Solver, we consider a distribution φuni that generates
a configuration by generating subsets uniformly at random. See Appendix B.3 for details.

The results are presented in Table 2. First, the observations here are similar to those in the SSP
problem – USCO-Solver works in a manner as we expect, and it can produce high-quality solutions
when a sufficient number of configurations are provided. We can see that GNN and DSPN are also
effective compared with Rand, which suggests that, compared to SSP, SSC is much easier for being
handled by existing learning methods.

4.3 Stochastic bipartite matching (SBM)

Our last problem is bipartite matching, which is regularly seen in applications such as public housing
allocation [40], semantic web service [41] and image feature analysis [42]. We consider the minimum
weight bipartite matching problem. Given a weighted bipartite graph G = (L,R,E), the input
x = (L∗, R∗) consists of two subsets L∗ ⊆ L and R∗ ⊆ R with |L∗| = |R∗|, and the output y
is a perfect matching between L∗ and R∗ such that the total cost is minimized. In other words, y
is a bijection between L∗ and R∗. In its stochastic version, the weight we for each edge e ∈ E
follows a certain distribution, and we aim to compute the matching that can minimize the expected
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Table 3: SBM results with φuni and φtrue.
K 16 160 1600 3200 6400 12800 19200 Rand

φuni 3.627 (0.01) 3.582 (0.01) 3.407 (0.01) 3.261 (0.01) 3.107 (0.01) 2.874 (0.01) 2.696 (0.01) 3.670 (0.01)

φtrue 1.029 (0.01) 1.033 (0.01) 1.003 (<0.01) 1.000 (<0.01) 1.000 (<0.01)

Table 4: SBM results with φ10, φ5, φ1 and φ0.3.
16 160 320 640 16 160 320 640

φ10 4.889 (0.09) 3.602 (0.06) 1.831 (0.04) 1.271 (0.01) φ5 4.321 (0.07) 1.403 (0.01) 1.120 (0.01) 1.040 (<0.01)

φ1 1.038 (<0.01) 1.008 (<0.01) 1.003 (<0.01) 1.002(<0.01) φ0.3 1.008 (<0.01) 1.003 (<0.01) 1.002 (<0.01) 1.002(<0.01)

cost F (x, y, φtrue). Notice that the minimum weight bipartite matching problem can be solved in
polynomial time by linear programming [43], which is a natural oracle to use in USCO-Solver. We
adopt a synthetic bipartite graph with 128 nodes. The weight we for each edge e ∈ E follows a
Gaussian distribution N (µe, σe) with µe sampled uniformly from [1, 10] and σe = 0.3 · µe, which
induces the true distribution φtrue. See Appendix B.4 for details.

Results under φuni. For USCO-Solver, we consider φuni that generates the configuration c by giving
each edge a weight from [1, 10] uniformly at random. We also test USCO-Solver with features from
the true distribution φtrue. The baseline method Rand produces y for a given input x = (L∗, R∗) by
randomly generating a permutation of R∗. The result of this part is shown in Table 3. We see that
USCO-Solver can again produce a better ratio when more configurations are provided, but different
from SSP and SSC, it cannot achieve a ratio that is close to 1 even when 19200 configurations have
been used. Plausibly, this is because the output space of SBM is more structured compared with SSP
and SSC.

Incorporating prior knowledge into USCO-Solver. For problems like bipartite matching where
uniform configurations cannot produce a near-optimal solution, it would be interesting to investigate
if USCO-Solver can easily benefit from domain expertise. To this end, given a parameter q ∈
{0.3, 1, 5, 10}, we consider the distribution φq that samples the weight for edge e from [µe − q ·
µe, µe + q · µe], which accounts for the case that a confidence interval of the weight we is known.
The performance ratios produced by such distributions are shown in Table 4. As we can see from
the table, the result indeed coincides with the fact that the prior knowledge is strong when p is small.
More importantly, with the help of such prior knowledge, the ratio can be reduced to nearly 1 using
no more than 160 configurations under φ1, while under the uniform distribution φuni, the ratio was
not much better than Rand with the same amount of configurations (as seen in Table 3).

5 Further discussions

Related work. The learning-and-optimization framework has been used widely (e.g., [44, 45, 46, 47,
48]). For example, Du et al. [49] and He et al. [50] study the problem of learning influence function
which is used in influence maximization; recently, Wilder et al. [51] proposes a decision-focused
learning framework based on continuous relaxation of the discrete problem. In contrast to these
works, we consider the input-solution regression without attempting to learn the objective function.
A similar setting was adopted in [52] for studying a special application in social network analysis,
but our paper targets abstract problems and provides generalization bounds on the approximation
ratio. There have been recent efforts to develop learning methods that can handle combinatorial
spaces (e.g., [53, 54, 32]), where the key is to preserve the inherited combinatorial structures during
the learning process. Our research is different because the problem we consider involves a hidden
optimization problem; in other words, we target the optimization effect rather than the prediction
accuracy. Our research is also related to the existing works that attempt to solve combinatorial
optimization problems using reinforcement learning [55, 56, 57, 58]; however, the objective function
is known in their settings, while we study the model-free setting.

Limitations. Our theoretical analysis is based on the assumption that y is an approximation solution
in each input-solution (x, y), but in practice, it may be impossible to prove such guarantees for real
datasets. Thus, it is left to experimentally examine USCO-Solver using the training pairs (x, y) where
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y is produced using heuristic but not approximation algorithms. In another issue, we have shown
that USCO-Solver is effective for three classic combinatorial problems, but it remains unknown if
USCO-Solver is universally effective, although it is conceptually applicable to an arbitrary USCO
problem. In addition, our experiments do not rule out the possibility that off-the-shelf learning
methods can be effective for some USCO problems (e.g., SSC), which suggests a future research
direction. Finally, we hope to extend our research by studying more practical applications involving
highly structured objects, such as Steiner trees, clustering patterns, and network flows. See Appendix
C for a more comprehensive discussion.
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