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ABSTRACT

Effectiveness of many existing backdoor removal techniques crucially rely on ac-
cess to clean in-distribution data. However, as model is often trained on sensi-
tive or proprietary datasets, it might not be practical to assume the availability of
in-distribution samples. To address this problem, we propose a novel approach
to reconstruct samples from a backdoored model and then use the reconstructed
samples as a proxy for clean in-distribution data needed by the defenses. We ob-
serve an interesting phenomenon that ensuring perceptual similarity between the
synthesized samples and the clean training data is not adequate to enable effective
defenses. We show that the model predictions at such synthesized samples can
be unstable to small input perturbations, which misleads downstream backdoor
removal techniques to remove these perturbations instead of underlying backdoor
triggers. Moreover, unlike clean samples, the predictions at the synthesized sam-
ples can also be unstable to small model parameter changes. To tackle these issues,
we design an optimization-based data reconstruction technique that ensures visual
quality while promoting the stability to perturbations in both data and parame-
ter space. We also observe that while reconstructed from a backdoored model,
the synthesized samples do not contain backdoors, and further provide a theo-
retical analysis that sheds light on this observation. Our evaluation shows that
our data synthesis technique can lead to state-of-the-art backdoor removal per-
formance without clean in-distribution data access and the performance is on par
with or sometimes even better than using the same amount of clean samples.

1 INTRODUCTION

Deep neural networks have been shown to be vulnerable to backdoor attacks, in which attackers
poison training data such that the trained model misclassifies any test input patched with some
trigger pattern as an attacker-specified target class (Saha et al., 2020; Li et al., 2020; Zeng et al.,
2021). These attacks create a major hurdle to deploying deep networks in safety-critical applications.

Various techniques (Wang et al., 2019; Guo et al., 2019; Liu et al., 2018a) have been developed to
remove the effects of backdoor attacks from a poisoned model and turn it into a well-behaved model
that does not react to the presence of a trigger. Most of these backdoor removal techniques rely on
access to a set of clean samples drawn from the distribution that the poisoned model is trained on.
These clean data are needed for synthesizing potential triggers and further fine-tuning the model
to let the model unlearn the triggers. However, accessing clean in-distribution samples might not
always be feasible. For instance, machine learning models are often trained on proprietary datasets
which are not released due to privacy concerns.

There have been a few attempts to lift the requirement on clean in-distribution data, yet suffering
unstable performance over different triggers. CLP (Zheng et al., 2022) assumes that the poisoned
model contains certain backdoor-related neurons that have a large Lipschitz constant and prunes
these neurons to repair the model. However, this assumption does not hold when the trigger induces
a large change in the model input. Another line of ideas (Chen et al., 2019) is to reconstruct some
data from the model and then use the reconstructed samples as a proxy for clean in-distribution data
needed by existing data-reliant defenses. This line has the unique benefit that it can take advantage
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of advances of those data-reliant defenses which have already demonstrated remarkable efficacy on
various triggers.

In fact, the problem of reconstructing samples from a trained model has been extensively studied
in the data privacy literature, known as model inversion. The simplest model inversion technique
synthesizes an input for a given class by optimizing the likelihood of the model for predicting that
class. Running the optimization multiple times with different initialization gives a set of synthesized
samples. Chen et al. (2019) utilize this technique to invert samples and further perform backdoor
removal. However, the simple model inversion technique is known to fall short in reconstructing
high-dimensional input (e.g., RGB images) from a deep neural network and returns a noise-like pat-
tern that does not contain any semantic information about the class. We observe that feeding such
reconstructed samples into even the state-of-the-art (data-reliant) backdoor removal technique leads
to poor performance. Recently, a series of works has significantly improved model inversion for
high-dimensional data (Zhang et al., 2020; Chen et al., 2021; Wang et al., 2021) by performing data
synthesis in the latent space of a pre-trained neural network generator. These advanced techniques
can often produce synthetic samples that largely retain the class-specific semantics and look percep-
tually similar to the original training data. A natural question is: Can we improve backdoor removal
performance by inserting these higher-quality synthesized samples?

This paper starts by examining the question above. Intriguingly, despite the perceptual similarity
between the samples synthesized by these advanced model inversion techniques and the original
training data, there is a significant gap in their resulting backdoor removal performance. Partic-
ularly, we find two factors that contribute to performance degradation. Firstly, we show that the
model predictions at the synthesized samples are unstable to small input perturbations, which mis-
leads downstream backdoor removal techniques to remove these perturbations instead of underly-
ing backdoor triggers. Moreover, unlike clean samples for which the prediction loss of the model
converges and thus is stable to local changes on the model parameters, the prediction loss at the
synthesized samples is sensitive to small parameter changes. Based on these observations, we in-
troduce a data reconstruction technique that promotes not only perceptual quality but the stability to
perturbations in data and parameter space.

In addition, a key question overlooked by existing work that leverages model inversion for back-
door removal is: will the samples reconstructed from a backdoored model contain backdoors? Note
that if the synthesized samples for the target class contain triggers, then the existing backdoor re-
moval techniques would be nullified. Empirically, we find that as long as the pre-trained generator
leveraged by model inversion is learned from clean data, the reconstructed samples from a poisoned
model do not contain triggers. For a commonly used generator in model inversion literature—a gen-
erative adversarial network (GAN), we prove that backdoors are not in the range of the generator by
analyzing the GAN’s equilibrium.

The contributions of the paper are summarized as follows.

• We investigate the connection between model inversion and backdoor removal. We go be-
yond perceptual quality and reveal the dependence of defense performance on the stability
of the inverted samples to input and parameter perturbations. We also provide a theoret-
ical understanding of why pre-trained generator based model inversion does not generate
backdoor-contaminated samples.

• We propose a novel bilevel optimization based data reconstruction approach, FRED, which
maximizes the stability to input perturbations while encouraging perceptual similarity and
the stability to parameter perturbations.

• On a range of datasets and model architectures, employing the synthetic samples produced
by FRED can lead to the state-of-the-art data-free backdoor defense performance, which is
comparable to or sometimes even better than using the same amount of clean data.

• FRED can be extended to match clean data’s features when there is limited access to clean
in-distribution samples. In particular, we show that combining just one clean in-distribution
point per class with FRED can lead to a better defense performance than directly supplying
20 clean points.
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2 PRELIMINARIES

Attacker model. Assume that an attacker performs a backdoor attack against a clean training set
D drawn from the distribution D. The attacker injects a set of poisoned samples into D to form
a poisoned dataset Dpoi. We will refer to the model trained on the poisoned dataset as a poisoned
model, denoted by fθpoi . The goal of the attacker is to poison the training set D such that for any
clean test input x, adding a pre-defined trigger pattern δ to x will change the output of the trained
classifier fθpoi to be an attacker-desired target class ytar. A standard technique to poison the dataset
is to inject backdoored samples that are labeled as the target class and inject the trigger into their
features. The model trained on such a poisoned dataset will learn the association between the trigger
and the target class, thereby outputting the target class whenever a test input contains the trigger.

Backdoor Removal. We consider that the defender is given the poisoned model fθpoi . The goal of
the defender is to remove the effects of backdoor triggers from fθpoi and obtain a new model fθ∗ that
is robust to backdoor triggers, i.e., fθ∗(x + δ) = fθ∗(x). Many past backdoor removal techniques
(including the state-of-the-art one) are based on the idea of fine-tuning the poisoned model with a
set of samples, which will be referred to as the base set; furthermore, past techniques assume that
the base set is clean and in-distribution, i.e., each sample there is drawn from D—the distribution
generating the clean portion of the data that the poisoned model is trained on. Given the base set
B = {(xi, yi)}ni=1, Zeng et al. (2022) provide a minimax optimization framework that unifies a
variety of different backdoor removal techniques (Wang et al., 2019; Chen et al., 2019; Guo et al.,
2019):

θ∗ = argmin
θ

max
δ

1

|B|
∑
i∈B

L(fθ(xi + δ), yi), (1)

where the inner optimization is aimed at (approximate) trigger synthesis, i.e., finding a pattern that
causes a high loss for predicting correct labels across all samples in the base set, and the outer
optimization performs trigger unlearning, which seeks a model that maintains the correct label
prediction yi when the synthesized trigger pattern is patched onto the input xi. Zeng et al. (2022)
proposed I-BAU, which achieves state-of-the-art backdoor removal performance by fine-tuning the
poisoned model using mini-batch gradients of the objective in (1). Backdoor removal performance
is typically measured by attack success rate (ASR), which measures the ratio of the backdoored
samples predicted as the target class, and clean accuracy (ACC), which measures the ratio of the
clean samples predicted as their original class. Despite the promising results, I-BAU shows that the
defense performance degrades quickly as the size of available clean in-distribution samples shrinks.

Connection between Data-Free Backdoor Removal and Model Inversion. How to remove
backdoors from a given poisoned model without access to clean, in-distribution samples? A natural
idea is that as the poisoned model is trained with some clean data, it may memorize the information
about the data and therefore one can potentially reconstruct the clean data from the poisoned model.
Reconstructing training data from a trained model is intensively studied in the privacy literature,
known as model inversion (Fredrikson et al., 2014; 2015). To recover training data from a given
model fθ for any class y, the key idea of model inversion is to find an input that minimizes the
prediction loss of y:

xsyn ∈ argmin
x

L(fθ(x), y) (2)

DeepInspect (Chen et al., 2019) solved (2) with gradient descent for multiple times, each of which
uses a randomly selected initial value of x; then, the base set was formed by collecting the converged
input xsyn for each initial value and pairing it with the corresponding label y. However, solving
(2) over the high-dimensional space without any constraints generates noise-like features that lack
semantic information about corresponding labels. Hence, using the samples synthesized by this way
to form the base set gives unsatisfactory backdoor removal performance.

Recently, more advanced model inversion techniques (Zhang et al., 2020; Chen et al., 2021) are
proposed to improve the visual quality of synthesized images. Their idea is to optimize over the
latent space of a pre-trained GAN:

xsyn = G(z∗), z∗ ∈ argmin
z

L(fθ(G(z)), y)︸ ︷︷ ︸
Lcl(z)

−D(G(z))︸ ︷︷ ︸
Lprior(z)

(3)

where G and D represent the generator and the discriminator of the GAN, respectively. Zhang et al.
(2020) show that the samples synthesized by the GAN-based model inversion technique above can
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maintain high visual similarity to the original training data of fθ. It is natural to ask: Can we apply
this more advanced model inversion technique to recover samples from the poisoned model and use
them as a substitute for the clean, in-distribution samples needed in backdoor removal? Also, it is
critical for the effectiveness of backdoor removal that the target-class samples in the base set do
not contain backdoor triggers; otherwise, the trigger unlearning step would reinforce the association
between the trigger and the target class, instead of eliminating it. Hence, another critical question
is: will model inversion recover backdoor triggers from the poisoned model? We will answer these
questions in the following section. And a more detailed discussion of related works on backdoor
removal and model inversion can be found in Appendix A.

3 ON USING MODEL INVERSION TO FORM THE BASE SET

3.1 VISUAL QUALITY IS NOT ENOUGH

We evaluate the performance of I-BAU (Zeng et al., 2022), the state-of-the-art backdoor removal
technique, when the underlying base set is formed by the samples synthesized by the pre-trained gen-
erator based model inversion technique in Zhang et al. (2020), which will be referred to as generative
model inversion (GMI). Specifically, the poisoned model is trained on a traffic sign dataset (Houben
et al., 2013). The backdoor attack in Li et al. (2020) is considered and the target class is a randomly
chosen class. Figure 1 (a) illustrates the reconstructed samples and the original training data. We
find that the samples synthesized by GMI can in general successfully recover the semantics of the
clean samples. However, when comparing the backdoor removal performance induced by these syn-
thesized samples with the clean, in-distribution samples of the same size, we find that ACC quickly
drops while ASR is two times higher (Figure 1 (b)).

Figure 1: (a) and (b) show the example images and defense performance of the three base sets.
(c) is misclassification rate when adding UAP to the three sets respectively. For each set, an op-
timal UAP is obtained and normalized to 1. We then gradually scale up the three UAPs and
test the corresponding misprediction rate. (d) is distribution of samples given its model stability
∥∇θL(fθ(x), y)|θ=θpoi∥1.

Many spurious backdoor triggers exist around the inverted samples. Many backdoor removal
techniques, including the state-of-the-art one, rely on trigger synthesis. Recall Eq. 1 which formal-
izes the backdoor trigger as a universal adversarial perturbation (UAP) that causes a high loss for
predicting correct labels across all samples. However, if synthetic samples are sensitive to small
UAPs, then these UAPs will be synthesized instead of the actual trigger, leading to poor or unstable
defense performance. As shown in Figure 1(c), clean data need to be perturbed with a stronger
universal adversarial perturbation (UAP) to reach the same misprediction rate as GMI-synthesized
data, implying that clean data is more robust to UAPs.

The poisoned model’s prediction on the inverted samples does not exhibit convergence.
The poisoned model is usually trained to be optimal on the original training data, meaning
that the gradient with respect to the model parameter on the data should be close to zero:
∥∇θL(fθ(x), y)|θ=θpoi∥1 ≈ 0. However, Figure 1 (d) shows that, while 90% of the clean sam-
ple has ∥∇θL(fθ(x), y)|θ=θpoi∥1 ≤ 0.001, GMI-reconstructed samples distribute more diversely,
and the gradient norm based on GMI generated samples are relatively higher.

3.2 PROPOSED APPROACH

We propose FRED, an approach to reconstructing the training data from a trained model. FRED
differs from recent model inversion techniques in that its synthesis goal not only considers synthetic
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data quality and recovery of class-specific semantics, but also addresses the specific challenges of
non-converging prediction and small universal perturbation that hinder successful application to
backdoor removal.

Specifically, in addition to the two loss terms in (3) that are commonly considered in model inversion
literature, we introduce some new loss terms critical to enable the downstream task of backdoor
removal. To reconstruct the samples for a given class y from the model fθpoi , we consider the
following loss terms.

• The model-perturbation loss Lmp(z) = ∥∇θL(fθ(G(z)), y))|θ=θpoi∥1, which measures the
stability of the prediction for the synthesized sample G(z) to small changes on the param-
eters of the poisoned model.

• (Optional) The feature consistency loss Lcon(z) =
∑

(x′,y′)∈Dclean,y′=y ∥gθpoi(G(z)) −
gθpoi(x

′)∥2, where gθpoi represents the feature extractor of the poisoned model fθpoi , i.e.,
the output of the penultimate layer. The loss is only used when we extend our approach to
the backdoor removal setting where a set of clean in-distribution samples Dclean is avail-
able. It measures the feature distance between the synthesized sample and the available
clean samples.

• The data-perturbation loss Ldp(z, δ) = −CosSim(fθpoi(G(z)), fθpoi(G(z) + δ)), where
CosSim(·, ·) stands for cosine similarity. This loss calculates the change of the model
output logits when a synthesized sample G(z) is perturbed by δ.

If the synthesized samples are sensitive to small universal perturbation, the trigger synthesis part of
backdoor removal (i.e., inner maximization of (1)) will synthesize these small universal perturba-
tions, instead of patterns similar to ground-truth trigger and hence the ground-truth trigger does not
get to be unlearned. To improve the effectiveness of backdoor removal, it is critical to maximize the
robustness of the synthesized samples to universal perturbations.

We propose a bilevel-optimization algorithm to find the most potent universal perturbation for B
synthesized samples:

δ∗ = argmax
θ

B∑
i=1

Ldp(z
∗
i (δ), δ) (4)

s.t. z∗i (δ) = argmin
zi

Lprior(zi) + λ1Lcl(zi) + λ2Lmp(zi) + λ3Lcon(zi) + λ4Ldp(zi, δ),

∀i ∈ {1, . . . , B} (5)

However, this bilevel optimization could be computationally expensive as the inner optimization
at any δ requires synthesizing a batch of samples. To tackle this challenge, we adopt an online
approximation algorithm (Shu et al., 2019; Madaan et al., 2021) to update z and δ alternatively
through a single optimization loop. At the output of this online algorithm, we will get both the
optimal perturbation and a batch of synthesized samples robustified against the perturbation. The
pseudo-code is summarized in Algorithm 1.

λ1 to λ4 are the weights associated with each loss to balance their scales in Equation 5. While there
are four hyperparameters in the optimization objective, the hyperparameter tuning is lightweight.
In our experiments, we choose λ1 = 1000 following the prior works on model inversion. We find
λ3 = 1000, λ4 = 1 work well across different datasets and models. The best value for λ2 is task-
dependant, and for each task, we use grid search to find the best value λ2 that yields the smallest
value of Lprior + Lcl + Lmp + Ldp.

4 MI DOES NOT RECOVER BACKDOORS

4.1 EMPIRICAL STUDY

We perform experiments on the GTSRB dataset (Houben et al., 2013) to study whether the synthe-
sized samples would contain backdoors. Specifically, we train a poisoned model under L0 invisible
(L0 inv) attack (Li et al., 2020), and apply FRED to reconstruct a set of samples from this model.
We generate 100 images for each class. To detect whether or not our synthesized data contain the
backdoor trigger, we train a binary trigger detection classifier on clean GTSRB training set and its
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ALGORITHM 1: Algorithm of FRED.
Input : Generator G, target model T , batch size B, clean data x (optional), max iterations N ,

learning rate α1, α2.
1 for each class y ∈ (1,K) do
2 Initialize z: z(1) ∼ N(0, I).
3 Initialize δ: δ(1) = 01×d where d is the dimension of synthesized sample G(z).
4 for each iteration i ∈ (1, N) do
5 Temporary Update z: ẑ(i) = z(i) − α1

1
B

∑B
b=1 ∇zLdp(z

(i), δ(i)|y, x).
6 Update δ: δ(i+1) = δ(i) + α2

1
B

∑B
b=1 ∇δLdp(ẑ

i, δ(i)).
7 Update z: z(i+1) = z(i) − α1

1
B

∑B
b=1 ∇zLtotal(z

(i), δ(i+1)|y, x).
8 end
9 zy = z(N)

10 end
11 return z1, . . . , zK

poisoned correspondence. The trained trigger classifier has 100% accuracy on a held-out test set.
Applying this trigger classifier to our synthesized data, we get that no images are detected to con-
tain the L0 inv trigger. However, it is still possible that backdoored data are within the support of
the GAN generated images but just not discovered by our synthesis technique as the underlying
optimization does not directly lead the synthesized data to recover the backdoored samples. To em-
pirically verify whether the backdoored data are not found by our optimization or they are not in the
support of the GAN, after regular optimization as shown in 1, we continue to optimize these syn-
thesized data to minimize the mean square error (MSE) between them and their poisoned version.
However, even after the optimization, backdoor detection rate is still 0.

Above experiments are all based on the assumption that the auxiliary dataset Daux used for training
GAN is clean. What if some poisoned data is mixed into GAN’s training data? We further poison
Daux with different ratio and test the trigger detection rate respectively. As shown in Figure 3,
detection rate remains 0 when using 1% and 2% poison rate, which is typically used for backdoor
attacks. Even when the poison rate to an uncommonly large ratio (i.e., 50%), the detection rate
remains low at 0.02. Bau et al. (2019) show similar findings of the wholesale omission of GAN on
generating some objects. These objects are either complex patterns that include many pixels (e.g.,
large human figure), or are under-represented in the GAN training distribution.

4.2 THEORETICAL JUSTIFICATION BASED ON EQUILIBRIUM IN GAN

Here, we provide the theoretical justification of why reconstructing samples from a poisoned model
based on a (clean) pre-trained GAN does not recover backdoored samples. We require the following
two assumptions.

Assumption 1. The generator G is L-Lipschitz in latent vector input h ∈ Rp.

Assumption 2. For all h ∈ Rp, if ∥h∥ ≥ B for some B > 0, then G(h) has no semantic meaning.

The Assumption 5 is justified by Figure 3 (b) in Appendix B: We observe an apparent quality degra-
dation of the generated images when increasing the norm of the latent vector h. When the norm
is 106 larger, the generated images do not contain semantic meaning. Note that both clean and
backdoor data are considered to have semantic meaning.

We are interested in whether the range of the generator range(G) contains backdoored data. Since
the backdoored images still have semantic meaning by definition, if range(G) contains backdoored
data they will be within the high-density region where the corresponding latent vector h has ∥h∥ ≤
B. By the Lipschitzness (which implies continuity) of G, it means the density of the distribution
induced by the generator (G(h), h ∼ N (0, I)) on the backdoored data points > 0.1 Thus, we
reduce the question of “whether the range of G contains backdoored data” to “whether the generator
distribution has a non-zero density on backdoored data points.”

1Note that the set of latent vectors with semantic meaning {h : ∥h∥ < B} is an open set.

6



Under review as a conference paper at ICLR 2023

We proceed by formulating GAN training as a two-player game between the generator and discrim-
inator. The game terminates only when the two players reach a min-max solution where neither
party has the incentive to deviate from the current state. Such a min-max solution is called pure
Nash equilibrium. Based on the game-theoretic framework, we show the following result, and the
proof is outlined in Appendix B.

Theorem 3 (Informal). When the generator learns a distribution with non-negligible density on
backdoored data, the generator and discriminator cannot achieve pure equilibrium.

This result implies that, no backdoored data point can appear in range(G) when the GAN is trained
properly where the generator and discriminator reaches equilibrium. Thus, no matter how we search
over G(h) for different latent vector h during the model inversion step, it is impossible to find an h
such that G(h) is a backdoored image.

5 EVALUATION

The primary goal of our evaluation is to assess the effectiveness of FRED to enable data-free back-
door removal. We will also investigate the benefits of using FRED when there is a very limited
amount of clean samples available, which alone cannot support effective backdoor removal. In addi-
tion, we will go beyond backdoor removal and study the potential application of FRED in adversarial
fine-tuning (Jeddi et al., 2020b), where the goal is to robustify a pre-trained model against adver-
sarial examples (Goodfellow et al., 2014). At last, we will perform ablation study on several design
choices of FRED, including different loss terms and the number of synthesized samples.

5.1 EXPERIMENTAL SETUP

Data. We evaluate datasets built for different prediction tasks, including face recognition, traffic
sign classification, and general object recognition. For each task, we choose two datasets, one used
for training the poisoned model and another for learning a pre-trained GAN. Detailed usage of the
datasets is shown in Table 5.

Backdoor Attacks. We evaluate nine different kinds of backdoor attacks in all-to-one settings (the
target model will misclassify all other classes’ samples patched with the trigger as the target class),

including the hidden trigger backdoor attack (Hidden) (Saha et al., 2020), input-aware backdoor
(IAB) attack (Nguyen & Tran, 2020), WaNet (Nguyen & Tran, 2021), L0 invisible (L0 inv) (Li
et al., 2020), L2 invisible (L2 inv) (Li et al., 2020), the frequency invisible smooth (Smooth) attack
(Zeng et al., 2021), trojan watermark (Troj-WM) (Liu et al., 2018b), trojan square (Troj-SQ) (Liu
et al., 2018b), and blend attack (Chen et al., 2017). The implementation details of the attacks are
deferred to Appendix C.2.

Baselines. We compare FRED with five baselines, where the first four baselines differ in what
kind of samples are contained in the base set and share the same downstream backdoor removal
technique, namely, I-BAU, which achieves the state-of-the-art backdoor removal performance given
a clean base set. 1) Clean: The base set is formed by clean samples drawn from the original training
data of the poisoned model. 2) Out-of-the-distribution (OOD): The base set consists of the OOD
samples that are used for learning the pre-trained GAN. 3) Naive: The base set contains samples
synthesized by the MI adopted in (Chen et al., 2019) which directly optimizes in the pixel space.
4) GMI: The base set is formed by the synthetic samples from GMI (Zhang et al., 2020). The
comparison between FRED and GMI will demonstrate the effectiveness of our designed loss terms.
5) CLP (Zheng et al., 2022): The last baseline is a recent data-free backdoor removal technique
that does not utilize the idea of data synthesis. Instead, it prunes the neurons directly based on
corresponding Lipschitz constants.

Protocol. We generate 20 samples per class for PubFig and GTSRB; 40 samples per class for
CIFAR-10. A detailed study of choosing the number of samples to be generated for each class is
shown in Section 5.2. We use the same amount of samples for all the methods for a fair comparison.
For the hyperparameters, we fix λ1 = 1000, λ3 = 1000, λ4 = 1, set λ2 = 10 for PubFig and
GTSRB, and λ2 = 100 for CIFAR-10. The defense performance is averaged over three random-
initialized runs of I-BAU.
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L0 inv L2 inv
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.97 0.98 0.88 0.88 0.93 0.95 0.94 0.97 0.98 0.9330 0.95 0.94 0.94 0.94
ASR 1.0 0.03 0.02 0.08 0.09 0.02 0.02 0.998 0.06 0.832 0.06 0.48 0.01 0.01

Smooth Wanet
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.97 0.98 0.83 0.82 0.96 0.97 0.18 0.98 0.94 0.26 0.17 0.81 0.94 0.01
ASR 0.998 0.1 0.40 0.05 0.03 0.02 0.02 0.99 0.05 0.34 0.97 0.16 0.05 0.99

IAB Troj-Sq
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.94 0.97 0.81 0.45 0.89 0.91 0.92 0.98 0.96 0.40 0.45 0.86 0.94 0.81
ASR 1.0 0.02 0.10 0.11 0.11 0.10 0.10 1.0 0.01 0.06 0.16 0.10 0.06 0.23

Troj-Wm Blend
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.98 0.96 0.47 0.62 0.84 0.87 0.87 0.98 0.96 0.47 0.68 0.82 0.92 0.75
ASR 1.0 0.01 0.30 0.09 0.30 0.09 0.12 1.0 0.08 0.51 0.55 0.48 0.22 0.85

Table 1: Results of FRED boosted backdoor unlearning on GTSRB.
5.2 RESULTS

Data-Free Backdoor Defense. Table 5.1 shows that FRED outperforms naive MI, OOD, GMI
and CLP against various backdoor attacks on GTSRB. Results for the other datasets can be found
in Appendix D and FRED remains the best. Figure 6 visualizes the samples synthesized by Naive,
GMI, and FRED. GMI, and FRED can generate samples with better visual quality, whereas Naive
generates merely noise-like samples. This visualization explains the significant defense performance
improvement achieved by GMI and FRED upon Naive. The performance of FRED is mostly on par
with Clean. Interestingly, FRED achieves a higher ACC and comparable ASR than baseline utilizing
clean data when defending against the IAB attack performed on the CIFAR-10 dataset. This may be
because the model is overfitted to the clean training samples, and samples generated by FRED reduce
the degree of overfitting by providing more abundant features. Note that CLP fails defensing against
Smooth, Wanet, and Blend attack: Either the ACC drops to close to zero (Smooth and Wanet),
or ASR remains high (Wanet and Blend), or both occurs (Wanet). As the above triggers have large
norm and hence induce large changes in the model input, CLP’s assumption that the poisoned model
contains certain backdoor-related neurons have a large Lipschitz constant does not hold. To better
interpret the data synthesis process of FRED, we show a series of samples generated at different
iterations in Figure 5. We observe that the appearance of the generated images varies significantly
over the first ten optimization iterations and stabilizes afterwards.

Data-Free Adversarial Fine-Tuning. Given the promising results on backdoor removal, we con-
sider a related application of the synthesized samples—adversarial fine-tuning, where the goal is
to enhance the robustness of a trained model against evasion attacks by fine-tuning with adversar-
ial examples. Specifically, we use FRED-synthesized samples to perform adversarial fine-tuning
(FT) (Jeddi et al., 2020a). A detailed experiment setting can be found in Appendix D. We compare
FRED with Clean, OOD, Naive, and GMI with the same number of samples, and evaluate the de-
fense performance using two metrics. The first is accuracy on the original, untampered data (Clean
Acc); The second is the prediction accuracy under evasion attacks. Table 5.2 presents the results
on GTSRB, and we leave the results on CIFAR-10 to Appendix D. Remarkably, FRED outperforms
Clean on both clean and robust accuracy. This could be explained by the fact that our specially
designed data-perturbation loss facilitates synthesis of larger perturbation during adversarial fine-
tuning, hence improving robustness. This observation coincides with the one made in Sehwag et al.
(2021) that the synthetic samples from generative models help improve robustness.

Initial Clean OOD Naive GMI FreD
Clean ACC 93.8 91.4 32.3 91.2 91.5 91.9
PGD (8/255) 9.0 16.2 9.2 10.1 19.2 22.8

PGD (10/255) 4.1 8.8 6.1 5.4 9.2 14.9
PGD (16/255) 0.1 1.6 4.0 1.2 1.4 4.1

AutoAttack (8/255) 10.0 15.4 8.1 10.2 15.3 21.7
AutoAttack (10/255) 4.2 7.4 6.8 5.2 7.2 14.6

Table 2: Results of FRED boosted FT on GTSRB.
All numbers are accuracies given in %.

Data-Limiated Backdoor Defense.
Here, we evaluate the benefits of FRED
when there exists a tiny amount of clean
samples. Particularly, we consider a stress
test with 1 sample. With a single sam-
ple, even the state-of-the-art data-reliant
backdoor removal technique works poorly
as shown in the CIFAR-10 and PubFig83
results in Table 5.2). To evaluate FRED,
we use FRED with the proposed feature consistency loss Lcon to generate 20 additional samples
for each class, and the final result (FRED-Booster) is obtained by using the combination of both 1
clean sample and 20 generated samples for each class. Table 5.2 shows that FRED can significantly
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boost the defense performance compared to solely using the available clean sample(s). Moreover,
using 20 samples from FRED plus one clean sample gives better defense performance than 20 clean
samples. As a final note, compared to FRED, CLP, the data-free backdoor removal baseline based
on model pruning, cannot be benefited from additional clean samples.

GTSRB Smooth CIFAR-10 IAB PubFig83 Troj-wm
Clean(20) Clean(1) FRED-Booster Clean(20) Clean(1) FRED-Booster Clean(20) Clean(1) FRED-Booster

ACC 0.98 0.93 0.98 0.82 0.52 0.85 0.86 0.44 0.86
ASR 0.01 1 0 0.03 0.18 0.01 0.03 0.35 0

Table 3: Backdoor unlearning performance with a small amount of clean data and generated samples.
Ablation of Loss Terms. We proposed two loss terms 1) model-perturbation loss Lmp and 2) data-
perturbation loss Ldp to improve the utility of the synthesized samples in the data-free backdoor
defense setting. Table 5.2 presents an ablation study of the two losses on a poisoned model trained
on GTSRB under the trojan square attack as well as a model trained on Celeba under the trojan
watermark attack. We observe that ldp improves the ASR more than lmp while lmp is a more critical
driver of maintaining the ACC compared to ldp. This observation aligns with our design objectives.
Recall that ldp is designed to enable effective synthesis of backdoor trigger and thus directly related
to the reduction of ASR. On the other hand, lmp encourages the stability of prediction to small
parameter changes, which in turn mitigates catestrophic forgetting during unlearning; hence, it is
directly related to maintaining the clean accuracy.

Initial GMI Lmp Ldp Lmp + Ldp

GTSRB ACC(%) 98.8 86.52 92.70 89.32 94.49
ASR(%) 100.0 10.06 8.63 8.25 5.90

PubFig ACC(%) 92.21 70.52 72.32 70.61 83.53
ASR(%) 100.0 26.06 3.25 1.63 2.88

Table 4: Ablation study of proposed model-perturbation loss Lmp and data-perturbation loss Ldp.

Figure 2: Ablation study of the number of samples
used on backdoor defenses on the GTSRB with L0

inv attack.

Ablation of the Base Set Size. We study
the impact of the number of the synthesized
samples used for creating the base set. We
choose the number of samples for each class
to be [1, 5, 10, 15, 20, 25, 30] and evaluate
the defense performance by averaging over
3 runs of the defense. To better interpret
the performance of FRED, we also compare
with Clean, Naive and GMI using the same
amount of samples. Note that this experi-
ment excludes the OOD baseline: we use
the poisoned model to generate pseudo-labels for the OOD samples but because the label space
of the OOD samples and that of the poisoned model may not overlap, the labeled OOD samples are
insufficient or even none for some classes. Figure 2 shows that the defense performance keeps in-
creasing as the number of samples increases and converges to optimum when the number of samples
for each class is above 20. FRED, GMI, and Clean can maintain a high ACC when a larger number
of generated samples are used, but Naive suffers a significant ACC drop. We also observe during
the experiments that performance of Naive has a large variance when evaluated over base set with
different size. The variance could induce from the inconsistent quality among generated samples, or
instability of the samples against input perturbation, leading to synthesizing inaccurate triggers. On
the other hand, the variance of FRED is similar to the variance of Clean, indicating good generaliz-
ability of FRED-enabled defenses. Another interesting finding is that when performing unlearning
with a small amount of samples (i.e., 1 or 5 per class), FRED even achieves higher ACC than Clean.

6 CONCLUSIONS

We present a FRED to generate synthetic samples that can be used as a substitute for clean data to
support backdoor removal. FRED can also be used to boost the defense performance when only
limited clean data are available. This work sets a foundation towards developing highly effective
data-free backdoor defenses. In particular, one can potentially supply our synthetic data to other
future defenses to enable their data-free mode of usage or improve their performance in the limited
data setting.
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A RELATED WORKS

Backdoor defenses. Backdoor defenses normally can be performed on two levels: data-level and
model-level. For data-level detection or cleaning, the defender aims to identify (Gao et al., 2019;
Chen et al., 2018; Tran et al., 2018; Koh & Liang, 2017; Chou et al., 2020; Zeng et al., 2021) or
purify (Doan et al., 2020) the poison input in the training set, thus requiring the access to training
data. Model-level detection or cleaning, instead, aims to detect if a pre-trained model is poisoned or
mitigate vulnerabilities of the models. In this paper, we focus on model-level cleaning. Most of the
prior works on this line (Wang et al., 2019; Chen et al., 2019; Guo et al., 2019; Zeng et al., 2022)
require a small set of clean data to synthesize triggers and further perform unlearning. Among them,
I-BAU (Zeng et al., 2022) has achieved the state-of-the-art defense performance against a wide range
of existing attacks. However, the performance of I-BAU degrades as the number of clean samples
reduces. We aim to enable I-BAU to function effectively without any clean data. A recent work
(Zheng et al., 2022) proposes a method to perform backdoor removal without using clean data. They
identify model channels with high Lipschitz constants, which are directly calculated from the weight
matrices, as backdoor related channels; and do simple pruning to repair the model. However, their
method only applies to backdoor scenarios and cannot benefit from clean samples if available. Our
method, by contrast, also applies to evasion attacks and is able to leverage available clean samples
to further boost defense performance. Above all, the performance of our method is more favorable.

Model Inversion. The goal of model inversion (MI) is similar to ours. But from an attack per-
spective, MI aims to divulge sensitive attributes in the training data, and to achieve this goal, the
generated data should have good visual quality. Fredrikson et al. (Fredrikson et al., 2015) follows
the maximum likelihood principle and performs model inversion by searching over the image space
for a sample with highest likelihood under the given target model. DeepInspect (Chen et al., 2019)
employs this simple model inversion to generate a surrogate training set for backdoor unlearning
and achieves good results on MNIST and GTSRB. However, we find that samples generated by this
naive model inversion approach have bad visual quality and usually fail in downstream defenses on
high-dimensional datasets (e.g., PubFig and CIFAR-10). In this paper, we build upon the idea of
recent MI works (Zhang et al., 2020; Chen et al., 2021) that search for a synthetic sample in the
latent space of a pre-trained GAN instead of the image space. Even when the GAN is not trained on
the in-distribution data, this idea can greatly help improve the visual quality of synthesized samples.
The key innovations that set our work apart from the MI attacks is that we go beyond the traditional
“high-likelihood” assumption made in all existing model inversion works about clean data and fur-
ther formalize other plausible assumptions, especially those related to data- and model-stability. We
show that enforcing the synthetic data to satisfy these assumptions can significantly improve their
utility for defenses.

B WHY IS BACKDOORED DATA NOT ON GAN’S RANGE?

Figure 3: (a) Trigger detection rate when increasing data poison rate of auxiliary dataset Daux. (b)
Example of images generated from latent code h with different scales of norm.

Notation. Throughout the section, we use d for the dimension of samples, and p for the dimension
of the latent vector. We denote discriminator D : Rd → [0, 1], generator G : Rp → Rd. We use
Preal to denote the real distribution the GAN aims to learn. The generator G defines a distribution
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PG as follows: generate latent vector h from p-dimensional spherical standard Gaussian distribution,
and then apply G on h and generate a sample x = G(h). We denote the class of discriminators as
D = {D} and the class of generators G = {G}. Ideally, D is the class of all 1-Lipschitz functions.
For a distribution P , we use P(x) to denote the density of P on x, and P(S) denotes the Lebesgue
integration

∫
I[x ∈ S]dP(x). We use EP [D] as an abbreviation for Ex∼P [D(x)]. We use supp(·)

to denote the support of distribution. We use dW(·, ·) to denote 1-Wasserstein distance with ℓ2-norm,
i.e., the Earth Mover distance.

We require the following two assumptions.
Assumption 4. The generator G is L-Lipschitz in latent vector input h ∈ Rp.
Assumption 5. For all h ∈ Rp, if ∥h∥ ≥ B for some B > 0, then G(h) has no semantic meaning.

The Assumption 5 is justified by Figure 3 (b): We observe a apparent quality decrease of the gen-
erated image When scalping up norm of an optimized seed h. When the norm is 1e6 larger, the
generated image does not contain semantic meaning. Note that both clean and backdoor data are
considered to have semantic meaning.

To formally state our theorem, we formulate the training of GAN as a game between generator and
discriminator.
Definition 6 (Payoff). For a class of generators G = {G} and a class of discriminators D = {D},
we define the payoff F (D,G) of the game between generator and discriminator as

F (D,G) = E
x∼Preal

[D(x)]− E
x∼PG

[D(x)] (6)

The generator and discriminator aims at reaching a min-max solution, i.e., the pure Nash equilib-
rium, where neither party has the incentive to deviate from the current state..
Definition 7 (pure equilibrium). A pair of strategy (D∗, G∗) a pure equilibrium if for some value
V ,

∀D ∈ D, F (D,G∗) ≤ V

∀G ∈ G, F (D∗, G) ≥ V

However, such an equilibrium may not be achievable for a pure strategy setting. We introduce a
natural relaxation for quantifying the extent of equilibrium between a pair of generator/discriminator.
Definition 8 (ε-approximate pure equilibrium). A pair of strategy (D∗, G∗) is an ε-approximate
pure equilibrium if for some value V ,

∀D ∈ D, F (D,G∗) ≤ V + ε

∀G ∈ G, F (D∗, G) ≥ V − ε

We are now ready to state our main results.
Theorem 9 (Formal). Given any two distributions P1,P2 s.t. for the set SOOD = {x ∈ supp(P2) :
miny∈supp(P1)∪supp(Preal) ∥x− y∥ ≥ 1}, we have P2(SOOD) ≥ 1 − q′ for some q′ ∈ [0, 1). Let
D∗ = argmaxD∈D EPreal

[D] − EP1
[D] and D∗ ∈ D∗. If G induce a mixture distribution PG =

(1− q)P1 + qP2 for some q ∈ (0, 1), then there exists no D ∈ D s.t. (D,G) is ε-approximate pure
equilibrium for any ε < 1

2q(EP1
[D∗]− q′). Moreover, when Preal = P1, we have ε < 1

2q(1− q′).
Further more, given Assumption 4 and 5, we can lower bound q if range(G) contains backdoored

data, which leads to ε < 1
2 (1− q′)

(
1

L
√
2

)p
exp(− 1

2B
2)

Γ(p/2+1) , where Γ is the Gamma function.

To interpret the above theorem statement, one can regard P1 as a clean distribution (not necessarily
Preal), and P2 as a distribution that contains backdoor data on its support. Since backdoored images
are separated from clean image (i.e., out-of-distribution (OOD) data), we can assume that all back-
doored images are within the set SOOD = {x ∈ supp(P2) : miny∈supp(P1)∪supp(Preal) ∥x− y∥ ≥ 1}.
The above theorem thus states that no equilibrium could be achieved if PG has non-negligible den-
sity on SOOD.
Remark. It is also possible that P1 also supports on {x : miny∈supp(Preal) ∥x− y∥ ≥ 1}, but this
leads to vacuous results.
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B.1 PROOF OF THE FORMAL THEOREM

Lemma 10. Given any two distributions P1,P2, let D∗ = argmaxD∈D EPreal
[D] − EP1

[D]. For
any D∗ ∈ D∗, if G induce a distribution PG = (1 − q)P1 + qP2, then there exists no D ∈ D s.t.
(D,G) is ε-approximate pure equilibrium for any ε < 1

2q(EP1
[D∗]− EP2

[D∗]).

Proof. We define an alternative generator G∗ s.t. PG∗ = P1. Given any discriminator D, the payoff
gain of G by switching strategy to G∗ is

F (D,G)− F (D,G∗) (7)
= (1− q)(EPreal

[D]− EP1
[D]) + q(EP0

[D]− EP2
[D])− (EPreal

[D]− EP2
[D]) (8)

= q(EP1 [D]− EP2 [D]) (9)

Given any discriminator D, the payoff gain of D by switching strategy to D∗ is

F (D∗, G)− F (D,G) (10)
= EPreal

[D∗]− (1− q)EP1 [D
∗]− qEP2 [D

∗]− (EPreal
[D]− (1− q)EP1 [D]− qEP2 [D]) (11)

= EPreal
[D∗]− EP1

[D∗] + q(EP1
[D∗]− EP2

[D∗])− (EPreal
[D]− EP1

[D])− q(EP1
[D]− EP2

[D])
(12)

= dW(Preal,P1) + q(EP1
[D∗]− EP2

[D∗])− (EPreal
[D]− EP1

[D])− q(EP1
[D]− EP2

[D])
(13)

By Definition 8, (D,G) cannot be ε-approximate equilibrium for

ε < max (F (D,G)− F (D,G∗), F (D∗, G)− F (D,G)) (14)

since otherwise at least one of D and G will gain more than ε by chang-
ing its strategy to D∗ or G∗. Therefore, we are interested in lower bounding
minD max (F (D,G)− F (D,G∗), F (D∗, G)− F (D,G)). Note that the minimum can only
be achieved when F (D,G)− F (D,G∗) = F (D∗, G)− F (D,G), where we have

LHS = q(EP1
[D]− EP2

[D]) (15)
= dW(Preal,P1) + q(EP1 [D

∗]− EP2 [D
∗])− (EPreal

[D]− EP1 [D])− q(EP1 [D]− EP2 [D])
(16)

= RHS (17)

and we have

2LHS = dW(Preal,P1) + q(EP1
[D∗]− EP2

[D∗])− (EPreal
[D]− EP1

[D]) (18)
≥ q(EP1

[D∗]− EP2
[D∗]) (19)

where the last inequality is due to EPreal
[D] − EP1

[D] ≤ supD∈D EPreal
[D] − EP1

[D] =
dW(Preal,P1).

Therefore,

min
D

max (F (D,G)− F (D,G∗), F (D∗, G)− F (D,G)) ≥ 1

2
q (EP1

[D∗]− EP2
[D∗]) (20)

Remark. This result may be of independent interest.
Lemma 11. Consider the set SOOD = {x ∈ supp(P2) : miny∈supp(P1)∪supp(Preal) ∥x− y∥ ≥ 1}. If
P2(SOOD) ≥ 1− q′ for some q′ ∈ [0, 1], then we have EP2

[D∗] ≤ q′.

Proof. The value of D on supp(P2)\ (supp(Preal)∪ supp(P1)) does not affect EPreal
[D]−EP1

[D],
therefore we only need to ensure that D∗ satisfies the Lipschitz assumption. It is easy to see that
D∗(x) can be 0 for all x ∈ SOOD. Since P2(SOOD) ≥ 1− q′, we know that EP2

[D∗] ≤ q′.

Therefore, we know that (G,D) is ε-approximate pure equilibrium only for ε ≥ 1
2q (EP1

[D∗]− q′).
Moreover, when Preal = P1, it is impossible to distinguish between Preal and P1 and thus D∗

contains function D that output D(x) = 1 for all x ∈ supp(Preal). Thus ε ≥ 1
2q (1− q′).

Now we lower bound q, based on Assumption 4 and 5.
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Lemma 12. q ≥
(

1
L
√
2

)p
exp(− 1

2B
2)

Γ(p/2+1)

Proof. Suppose for some h ∈ Rp we have G(h) ∈ SOOD, then for all ∥h′ − h∥ we have
∥G(h′)−G(h)∥ ≤ L ∥h′ − h∥ ≤ 1. Therefore, G(h′) ∈ supp(P2). Therefore, h′ within the
ball centered at h with radius 1/L will all have G(h′) ∈ supp(P2), and thus

q ≥ 1

(2π)p/2
exp(−B2/2)

πp/2

Γ(p/2 + 1)
(1/L)p =

(
1

L
√
2

)p exp(− 1
2B

2)

Γ(p/2 + 1)
(21)

Plugging this lower bound back to the original bound for ε leads to the final result in Theorem 9.

C EXPERIMENTAL SETTINGS

C.1 DATA

Eight datasets built for four different prediction tasks are evaluated in our experiments, including
face recognition, traffic sign classification and general object recognition. Detailed usage of the
datasets is shown in Table 5.

Face Recognition Traffic Sign Classification General Object Detection
Poisoned Model PubFig(Pinto et al., 2011) GTSRB (Houben et al., 2013) CIFAR-10 (Krizhevsky et al.)

Pre-trained GAN CelebA (Liu et al., 2015) TSRD(Huang) STL-10 (Coates et al., 2011)

Table 5: Datasets.

C.2 BACKDOOR ATTACK IMPLEMENTATION DETAILS

On CIFAR, we adopt test all the nine attacks listed in Section 5. Note that initially, Hidden can
only work in one-to-one attack settings where the goal is to fool one class with the trigger, thereby
resulting in a low ASR in all-to-one settings. To address this issue, we manually increase the norm
bound to 50/255 with one round of fine-tuning of a pre-trained clean model to achieve an acceptable
ASR. However, the ASR of Hidden on GTSRB is still less than 10%, hence, we exclude it from
evaluation on GTSRB. On PubFig, we adopt Trojan watermark (Troj-WM), Trojan square (Troj-
SQ), and blend attack. The implementations of each attack follow the original works which propose
them. The adopted trigger and the target label on each dataset is visualized in Fig. 4.

Figure 4: Datasets and examples of backdoor attacks incorporated. We consider three different
datasets in this work: (1) CIFAR-10, (2) GTSRB, and (3) PubFig. Nine different backdoor attack
triggers are included in the experimental part as listed. Above, we also show the target label used
during the evaluated attacks (e.g., Hidden targeting at label 8 of the CIFAR-10 dataset).

C.3 ADVERSARIAL ATTACKS IMPLEMENTATION DETAILS

Evaluation Metrics. As is customary in the adversarial training literature, we evaluate our tech-
niques against two metrics. The first is accuracy on the original, unaltered data (Clean Acc). The
second is accuracy under a PGD based attack, which we call robustness. A robustness value of 0%
means every adversarial attack is successful. Note that unlike the metrics in the previous section,
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this value is better when higher and worse when lower. As is customary, we consider PGD with
ϵ = 8/255 and ϵ = 10/255 - it is well understood that adversarial training on the PGD attack
provides robust defenses against many first-order adversarial attacks. Because our paper aims to
illustrate a new technique but not provide a novel defense, we set aside new attacks like AutoAttack
Croce & Hein (2020) which are designed to mitigate adversarial training.

Attack Settings. We look at models trained on the CIFAR-10 and GTSRB datasets. Our unal-
tered models - ResNet18 for CIFAR and VGG16 for GTSRB - suffer from accuracy close to 0%
when faced with both PGD and AutoAttacks. We do not consider PubFig because the baseline FT
approach on the full original PubFig dataset leads to minimal gains in robustness. In fact, even full
end-to-end adversarial training from scratch - which would be considered as the "gold standard"
to compare against - leads to relatively minor robustness on this dataset. For the FT algorithm,
we borrow ideas from the original paper (Jeddi et al. (2020a), specifically gradually increasing the
learning rate and then sharply declining. We find that the exact learning rate scheduling proposed in
that work does not work for our techniques, so we adjust accordingly.

Baselines. We compare FRED with four baselines: 1) Clean: The base set is formed by clean
samples drawn from the original training data of the poisoned model. 2) Out-of-the-distribution
(OOD): The base set consists of the OOD samples that are used for learning the pre-trained GAN.
3) Naive: The base set contains samples synthesized by the MI adopted in (Chen et al., 2019) which
directly optimizes in the pixel space. 4) GMI: The base set is formed by the synthetic samples
from GMI (Zhang et al., 2020). The comparison between FRED and GMI will demonstrate the
effectiveness of our designed loss terms.
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D FRED BOOSTED DEFENSES RESULTS ON CIFAR-10 AND PUBFIG

Figure 5: Examples of model-specific synthesize by FRED at first 10 iterations for Identity 12 in
PubFig dataset. Rightmost in the lower row is the real image of this identity from PubFig.

Figure 6: Examples of images obtained by FRED and naive MI. Each subplot represents randomly
generated samples for the same class. The upper row shows image generated by FRED and the lower
row shows image generated by naive MI.

L0 inv L2 inv Smooth
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.93 0.89 0.47 0.44 0.70 0.76 0.69 0.94 0.90 0.45 0.87 0.89 0.90 0.67 0.93 0.83 0.48 0.54 0.83 0.83 0.23
ASR 0.97 0.15 0.07 0.09 0.09 0.06 0.06 0.99 0.07 0.12 0.06 0.07 0.01 0.05 0.95 0.18 0.02 0.94 0.20 0.18 0.86

Wanet IAB Hidden
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.94 0.91 0.84 0.23 0.79 0.81 0.75 0.94 0.82 0.11 0.34 0.84 0.85 0.70 0.76 0.89 0.11 0.66 0.86 0.89 0.35
ASR 0.99 0.01 0.32 0.32 0.03 0.03 0.05 0.99 0.03 0 0.08 0.06 0.05 0.03 0.88 0.09 0 0.16 0.13 0.09 0.94

Troj-Sq Troj-Wm Blend
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.94 0.81 0.51 0.14 0.71 0.71 0.71 0.94 0.80 0.50 0.23 0.74 0.75 0.66 0.94 0.80 0.85 0.65 0.76 0.79 0.46
ASR 1.0 0.02 0.07 0.37 0.28 0.06 0.05 1.0 0.04 0.11 0.22 0.02 0.01 0.58 0.99 0.05 0.71 0.05 0.06 0.06 0.28

Table 6: Results of FRED boosted backdoor unlearning on CIFAR-10.

Troj-Wm Troj-Sq Blend
Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP Initial Clean OOD Naive GMI FreD CLP

ACC 0.92 0.86 0.06 0.13 0.83 0.83 0.01 0.92 0.84 0.02 0.18 0.74 0.78 0.01 0.91 0.88 0.06 0.12 0.83 0.84 0.03
ASR 1.0 0.03 0.04 0.23 0.10 0.03 0.82 1.0 0.04 0.002 0.01 0.06 0.06 0.89 1.0 0.44 0.06 0.78 0.82 0.52 0.93

Table 7: Results of FRED boosted backdoor unlearning on PubFig.

Initial Clean OOD Naive GMI FreD
Clean ACC 92.2 85.4 45.3 90.1 90.3 90.5
PGD (8/255) 5.2 42.3 13.1 6.0 21.2 23.6

PGD (10/255) 3.1 32.8 8.1 4.2 15,8 18.3
PGD (16/255) 0.6 13.1 1.2 1.3 9.9 10.0

AutoAttack (8/255) 7.3 23.8 12.0 7.2 14.4 14.9
AutoAttack (10/255) 4.7 20.1 10.3 5.4 12.1 12.3

Table 8: Results of FRED boosted FT on CIFAR-10. All numbers are accuracies given in %.
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