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ABSTRACT

Several machine learning (ML) applications are characterized by searching for an
optimal solution to a complex task. The search space for this optimal solution is
often very large, so large in fact that this optimal solution is often not computable.
Part of the problem is that many candidate solutions found via ML are actually
infeasible and have to be discarded. Restricting the search space to only the feasible
solution candidates simplifies finding an optimal solution for the tasks. Further, the
set of feasible solutions could be re-used in multiple problems characterized by
different tasks. In particular, we observe that complex tasks can be decomposed into
subtasks and corresponding skills. We propose to learn a reusable and transferable
skill by training an actor to generate all feasible actions. The trained actor can then
propose feasible actions, among which an optimal one can be chosen according to
a specific task. The actor is trained by interpreting the feasibility of each action as
a target distribution. The training procedure minimizes a divergence of the actor’s
output distribution to this target. We derive the general optimization target for
arbitrary f-divergences using a combination of kernel density estimates, resampling,
and importance sampling. We further utilize an auxiliary critic to reduce the
interactions with the environment. A preliminary comparison to related strategies
shows that our approach learns to visit all the modes in the feasible action space,
demonstrating the framework’s potential for learning skills that can be used in
various downstream tasks.

1 INTRODUCTION

Complex tasks can often be decomposed into multiple subtasks, with corresponding skills that solve
these subtasks. Learning reusable and transferable skills is an active area of research (Kalashnikov
et al. (2021); Chebotar et al. (2021); Deisenroth et al. (2014)). However, given a subtask, learning
or even defining the corresponding skill is not straightforward. Consider a robotic scenario where a
robot is tasked to grasp an object and handle it in downstream tasks. Different downstream tasks can
have different optimal grasps if the object has multiple feasible grasping poses. Therefore, a grasping
skill cannot be trained based on optimality definitions of individual tasks. However, a grasping
algorithm that learned all feasible grasps could support all possible downstream tasks even without
explicit knowledge thereof during training. The downstream tasks can then select their respective
optimal grasp among the proposed feasible options. Therefore, we consider a skill to be defined by
the set of all feasible actions of a subtask.

We propose a novel method to train a generative neural network to generate all feasible actions
of a subtask by interacting with an environment. The interaction loop is adopted from Contextual
Bandit (CB) (Langford et al. (2008)) and Reinforcement Learning (RL) (Sutton & Barto (2018)): the
environment presents a state for which the actor selects an action, which is tested in the environment,
yielding either a success or failure outcome. As in CB, we limit ourselves to one-step interactions as
opposed to sequential multi-step interactions common in RL. However, we do not minimize regret,
typically done in CB. Instead, we optimize the final policy as in RL. Unlike CB and RL, the approach
does not aim to find one optimal solution for a given problem but aims to learn all feasible ones.

By interpreting the feasibility of each action given a state as a posterior probability distribution over
the actions, a target probability density function (pdf) is defined. The actor is trained to minimize a
divergence of its output distribution to this target pdf. The training algorithm in the method proposed
can be used with any given f-divergence, including Reverse Kullback-Leibler (RKL), Forward
Kullback-Leibler (FKL), and Jensen-Shannon (JS). The possibility to use FKL and JS is instrumental
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in visiting all the modes of the posterior distribution, as RKL is known to collapse into a single mode
(Jerfel et al. (2021)). The training algorithm presented in this paper uses Kernel Density Estimation
(KDE) to estimate the pdf of the actor and Monte Carlo integration with importance sampling to
estimate the normalization of the target. The divergences are estimated using samples from a proposal
distribution which is a separate KDE based on the original samples of the actor. This resampling step
is necessary for convergence, which is discussed in Section 3.3. As interactions with the environment
are typically costly, an auxiliary critic network imitating the environment is trained simultaneously.
The critic’s feasibility estimate of an action is then used to form the target distribution.

The learning algorithm has been tested on a planar robotic grasping problem. We test FKL, RKL, and
JS divergences and compare them to implementations of maximum entropy (ME) RL and Generative
Adversarial Networks (GANs). Besides accuracy, we measure how many grasping modes, i.e.,
disconnected regions in the action space, are visited by each approach. Generating actions in all
grasping modes can ensure that the learned skill is reusable and transferable for various downstream
tasks.

The contributions of this paper are the following:

• Design of a new learning method for generative neural network models to explicitly learn to
generate all feasible actions.

• Introduction of a novel gradient estimator for f-divergences that takes advantage of KDEs,
resampling, and importance sampling.

• Application of the proposed learning algorithm to a 2D robotic grasping problem, comparing
the proposed gradient estimators for f-divergences with related methods.

The rest of this work is structured as follows. Section 2 discusses the related work. Section 3
describes the optimization problem followed by the methodology in Section 4. The evaluation setup
is described in Section 5 and the results are presented in Section 6. Section 7 concludes and gives an
outlook on future work.

2 RELATED WORK

CBs have been successfully applied to several interactive learning problems with discrete action
spaces (Langford & Zhang (2007); Agarwal et al. (2014); Foster & Rakhlin (2020); Simchi-Levi
& Xu (2021)). In several cases, the context and action spaces have been embedded in a linear
multidimensional action space. The embedding keeps the interaction linear while the action and
context embeddings can be non-linear (Chernozhukov et al. (2019); Foster et al. (2020); Zhu et al.
(2022)). Recently, there has been an increased interest in extending the approach to continuous action
spaces. However, most works are limited to 1D actions (Chernozhukov et al. (2019); Majzoubi et al.
(2020); Zhu & Mineiro (2022)).

Learning from an interactive environment is also the focus of RL (Sutton & Barto (2018)). Many RL
approaches use Actor-Critic (AC) architectures, among which the Soft Actor-Critic (SAC) algorithm
(Haarnoja et al. (2018)) is most related to our work. In SAC, the state-action value function of the
critic is transformed into an energy-based distribution (Haarnoja et al. (2017)), yielding the target
of the actor’s distribution. SAC uses RKL as the loss function for the actor, which yields maximum
entropy RL. Through a reparameterization trick, which usually uses the family of Gaussians, the RKL
is minimized through a direct gradient from the critic.

GANs propose a similar architecture to AC, training a generator and discriminator adversarially. This
adversarial training is equivalent to minimizing the JS divergence (Goodfellow et al. (2014)) and
has been extended to arbitrary f-divergences (Nowozin et al. (2016)). Conditional GANs (Mirza
& Osindero (2014)) offer an alternative solution to the posterior sampling problem, as a generator
conditioned on a given state can be trained to provide successful actions adversarially. However, the
problem analyzed in our paper is not naturally adversarial, as actions that have not yet been tested in
the interactive environment should not be implicitly rejected. The discriminator learns to discriminate
between tested successful actions from untested ones, providing the generator with inconsistent
gradients.
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Expert knowledge is used in Imitation Learning (IL) to derive a policy from demonstration data.
The policy may be learned in a supervised manner in behavior cloning (Pomerleau (1988)) or as a
combination of Inverse Reinforcement Learning (IRL) (Ng et al. (2000)) to learn a reward function
and a subsequent RL procedure. Ho & Ermon (2016) introduced Generative Adversarial Imitation
Learning (GAIL), mitigating the intermediate IRL step by using a generative adversary. As discussed
in Li et al. (2017), the policy learned by GAIL tends to interpolate between modes leading to
erroneous behavior in multimodal settings. Using f-divergence minimization, the authors in Ke
et al. (2020); Ghasemipour et al. (2020) intentionally collapse modes to avoid interpolation. IL and
adversarial approaches require large amounts of expert data. However, expert data is limited in an
interactive environment. Additionally, given that we aim to find all feasible actions, even more expert
data representative of all feasible actions would be required.

Posterior sampling has been a long-standing problem in statistics. State-of-the-art methods in
Bayesian statistics rely on Markov Chain Monte Carlo (MCMC) algorithms (Hastings (1970); Gelfand
& Smith (1990)), eliminating the need to normalize the distribution which is often an intractable
problem (Kruschke (2015)). Variational Inference (VI) relies instead on fitting the posterior with a
family of parametric probability distributions that can then be sampled from (Jordan et al. (1999);
Wainwright & Jordan (2008)). Neural samplers offer another alternative by approximating the
posterior with a generative neural network (Nowozin et al. (2016); Hu et al. (2018)). Normalizing
flows also infer the pdf for each sample using invertible mappings (Rezende & Mohamed (2015);
Tabak & Turner (2013); Tabak & Vanden-Eijnden (2010)). While this approach does not require
density estimates, it limits its applicability to specific neural network designs.

For robotic grasping, Kalashnikov et al. (2018) propose using Deep Reinforcement Learning (DRL) to
find optimal grasps through interaction with multiple real-world robots. If the goal is to find grasping
poses explicitly to be used as the target of a classical controller, supervised learning techniques are
often utilized (Kleeberger et al. (2020)). To support various downstream tasks, it would be necessary
to find all feasible grasps. To this end, the action space is typically discretized and grasping success
is estimated for each discrete action through heat-maps. This can be learned supervised (Kumra
et al. (2020); Morrison et al. (2020)) or self-supervised (Zeng et al. (2020)). Zeng et al. (2020)
explicitly utilize structure given by spatial equivariances. We aim to find a solution that needs neither
discretization nor to make use of the structure as these requirements restrict applicability to planar
picking in carefully crafted environments.

3 OPTIMIZATION PROBLEM

3.1 PROBLEM FORMULATION

An interactive environment, simulated or physical, is defined as a function g : S × A 7→ {0, 1},
where S is the state space of the problem, and A is the corresponding action space. For all s ∈ S
we associate a feasible action space A+

s such that g(s, a) = 1,∀a ∈ A+
s and an infeasible action

space A−
s such that g(s, a) = 0,∀a ∈ A−

s , with A+
s ∪ A−

s = A. The goal of this work is to find
a state-dependent surjective map πs : Z → A+

s , referred to as policy, where Z is a latent space of
appropriate dimensionality. For a given state and uniform sampling from the latent space Z , the pdf
of πs is a function qs : A 7→ R, which is the posterior distribution qs(a) = q(a|s). For the same
state, the distribution of the feasible actions according to the environment can be defined as

ps(a) =
g(s, a)∫

A g(s, a) da
, (1)

which is the true posterior ps(a) = p(a|s). The optimal solution satisfies Df (ps || qs) = 0, where
Df is an f-divergence, for example from Table 1. This implies ps = qs, therefore the support of qs is
equal to the support of ps, which is A+

s by definition. Thus, the optimal policy is the solution to the
optimization problem:

π̃s = argminπs∼ΠDf (ps || qs) , (2)
with Π being an arbitrary family of distributions. To generalize over all states s ∈ S , the policy can be
modeled as a neural sampler πθ : S × Z 7→ A, with a corresponding pdf qθ(a|s), where θ indicates
the parameters of the neural network. Assuming that the environment can be used efficiently for
repeated controlled experiments, i.e., testing several actions for the same state, the above optimization
problem can be solved directly on the environment. If this is not possible, a critic network can be
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f(t) f ′(t)

Jensen-Shannon (JS) 1
2

[
(t+ 1) log

(
2

t+1

)
+ t log(t)

]
1
2 log

(
2t
t+1

)
Forward Kullback-Leibler (FKL) − log(t) − 1

t
Reverse Kullback-Leibler (RKL) t log(t) log(t) + 1

Table 1: Non-exhaustive list of f-divergences and the corresponding first derivative for gradient
estimators. The f-divergences are obtained by substituting the f functions above in equation 3 and
setting t = qθ/p. The conventions for p, q, FKL and RKL assume that p is the target distribution, q is
the model, and the FKL divergence is

∫
p log(p/q).

used to imitate the environment, which is further discussed in Section 4. Note that the system state is
often only partially observable, and the action must be inferred from an observation. For simplicity of
notation in the following derivation of the gradients, we assume that the state is directly observable,
and we omit the state and action dependence of q and p.

3.2 F-DIVERGENCES

The f-divergence between two pdfs p and q is a generalization of the Kullback-Leibler (KL) divergence
and has the form (Liese & Vajda (2006))

Df (p || qθ) =
∫
A
p f

(
qθ
p

)
da, (3)

where f : (0,∞)→ R is a convex function. Different choices of f lead to well known divergences
as summarized in Table 1. The gradients of the f-divergence w.r.t. θ can be estimated commuting
the derivative with the integral (L’Ecuyer (1995)) and using the score function gradient estimator
(Kleijnen & Rubinstein (1996)) as

∂

∂θ
Df =

∂

∂θ

∫
A
p f

(
qθ
p

)
da =

∫
A
p f ′

(
qθ
p

)
1

p

∂

∂θ
qθ da =

∫
A
qθ f

′
(
qθ
p

)
∂

∂θ
log qθ da, (4)

using the fact that p does not depend on θ. Since qθ is normalized to 1 and thus ∂θ
∫
A q da =∫

A q ∂θ log q da = 0, a Lagrangian term λ can be added to the gradient estimator:

∂

∂θ
Df =

∫
A
qθ

(
f ′

(
qθ
p

)
+ λ

)
∂

∂θ
log qθ da. (5)

If the support of qθ includes all of A the above formula can be rewritten as the expectation on qθ as
∂

∂θ
Df = Eqθ

[(
f ′

(
qθ
p

)
+ λ

)
∂

∂θ
log qθ

]
. (6)

Sampling from a proposal distribution q′, the expectation can be computed with importance sampling
(Robert & Casella (2004); Liu (2001)) as

∂

∂θ
Df ≈ Eq′

[
qθ
q′

(
f ′

(
qθ
p

)
+ λ

)
∂

∂θ
log qθ

]
. (7)

3.3 GRADIENT ESTIMATION

Given a sample a ∼ qθ, it is not possible to directly evaluate qθ(a) as it is not available in closed
form. Therefore, qθ needs to be estimated to compute the gradients of the f-divergence. Given N
sampled actions ai ∼ qθ, qθ can be approximated with a KDE by

qθ(a) ≈ q̂θ,σ(a) =
1

N

∑
ai∼qθ

kσ(a− ai), (8)

where kσ is a Gaussian kernel with a diagonal bandwidth matrix σ. The KDE makes the estimate of
the expectation possible. Using equation 6, computing the expectation value as the average over the
samples yields

∂

∂θ
Df ≈

1

N

∑
ai∼qθ

(
f ′

(
q̂θ,σ
p

)
+ λ

)
∂

∂θ
log q̂θ,σ. (9)
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This gradient estimator turned out not to converge in our experiments. While a systematic investigation
of the convergence issue was not completed, we suspect two primary reasons for this. First, the
support qθ usually does not cover the whole action space A, which is necessary for the expectation
formulation in equation 6. Second, evaluating qθ(ai) based on a KDE, which uses aj as supports, has
a bias for j = i.

Adding Gaussian noise to the samples gives full support in A and reduces the bias at the support
points of the KDE, which lead to convergence in the experiments. The new smoothed samples are
given by a∗j = ai + ϵ for mi ≤ j < m(i+ 1) and ϵ ∼ N (0, σ′), where m indicates the number of
smoothed samples drawn for each original sample. This is equivalent to sampling from a KDE with
ai as supports and σ′ as bandwidth. The gradient, using importance sampling in equation 7, can be
rewritten after resampling as follows

∂

∂θ
Df ≈

1

M

∑
a∗
j∼q̂θ,σ′

q̂θ,σ
q̂θ,σ′

(
f ′

(
q̂θ,σ
p

)
+ λ

)
∂

∂θ
log q̂θ,σ, (10)

with M = mN . Additionally, equation 10 requires an estimate of p, which in turn requires an
estimate of the volume in equation 1∫

A
g(a) da ≈ 1

M

∑
a∗
j

g(a∗j )

q̂θ,σ′(a∗j )
. (11)

This estimation is similar to self-normalized importance sampling (Murphy (2012)) but uses the
proposal distribution. The bandwidth σ′ of the proposal distribution is a hyper-parameter. Setting
σ′ = c σ, experiments show that c > 1 helps convergence. Intuitively, a larger bandwidth enables the
exploration of nearby modes in the action space. Specific estimators for the different f-divergences
can be obtained substituting f ′ from Table 1 into equation 10. A summary of the gradient estimators
used in this work is given in Table 2.

4 METHODOLOGY

The derivation in Section 3.3 assumes that the training could be performed directly on the interactive
environment. To train the actor, multiple actions have to be evaluated for the same state. Typically,
this is not possible, either because of reproducibility in real experiments or computational cost for
simulations. An auxiliary neural network ξϕ : S × A → R with parameters ϕ, can be trained to
imitate the environment g. The policy can then be trained to match the distribution of the feasible
actions according to this auxiliary neural network. We refer to πθ and ξϕ as generative actor and
critic, respectively. The neural network architectures are presented in Appendix B.

The learning algorithm presented in this paper is inspired by RL and CB. At every training step, the
environment generates a state for which the actor proposes an action. The action is evaluated in
the environment yielding success or failure. The state, action, and feasibility form an experience
stored in a replay memory. The critic is trained on random samples of experiences from the replay
memory with a cross-entropy loss on the outcome. The actor trains on a batch of states from the
memory. For each state, multiple actions are sampled from the actor, used as support for q̂θ,σ and
q̂θ,σ′ . New samples are drawn from the proposal distribution q̂θ,σ′ . These samples are evaluated
by the critic ξϕ, and the gradients are computed according to equation 10. The algorithm of the
interaction loop can be found in Appendix C. While the general interaction loop is standard in RL,
two changes have proven beneficial to the convergence: balanced replay memory and maximum
uncertainty collection. Additionally, an action optimization can take advantage of the density estimate
to improve performance after training.

4.1 BALANCED REPLAY MEMORY

Since the environment yields either a success or a failure, the critic is a binary classifier that suffers
from unbalanced data when being trained. Its memory dataset continuously grows through the
interactions between the actor and the environment. In the beginning, the actor performs poorly,
yielding primarily experiences with failure labels, with the opposite at the end of the training. This
labeling bias prevented the critic from distinguishing between success and failure outcomes, making
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Loss Actor Gradient Estimator λ

JS 1
2M

∑
a∗
j

q̂θ,σ
q̂θ,σ′

log
(

2q̂θ,σ
p+q̂θ,σ

)
∂
∂θ log q̂θ,σ 0

FKL - 1
M

∑
a∗
j

p
q̂θ,σ′

∂
∂θ log q̂θ,σ 0

RKL 1
M

∑
a∗
j

q̂θ,σ
q̂θ,σ′

log
(

q̂θ,σ
p

)
∂
∂θ log q̂θ,σ -1

GAN 1
N

∑
ai

∂
∂a log(1− ξϕ)

∂
∂θai -

ME 1
N

∑
ai

∂
∂θ log q̂θ,σ −

∂
∂a log ξϕ

∂
∂θai -

Table 2: Gradient estimators of different losses and choice of Lagrangian multiplier λ.

convergence impossible. To avoid the critic from biasing towards failure or success labels, we use
two replay memories, one for failures and one for successes. When training the critic, half of the
experiences are sampled from the positive replay memory and the other half from the negative replay
memory. With this strategy, the labeling bias can be mitigated. The potentially amplified classification
bias (e.g., complicated shapes have more failure labels) did not appear to hinder convergence. This
memory can be prefilled with imitation examples to bootstrap the critic learning. While it is possible
to minimize the use of expert knowledge, this paper focuses on the main learning method, while the
impact of imitation learning will be analyzed in future work.

4.2 MAXIMUM-UNCERTAINTY COLLECTION

Given one state of the environment, the actor can generate several candidate actions. Depending on
the training stage and the state, these proposed actions can have a different degree of information
for the critic. Selecting actions for which the critic predicts ξ ≈ 0.5, i.e., it cannot decide between
success and failure, can provide higher information content. This strategy has proven to improve the
convergence in our tests.

4.3 ACTION OPTIMIZATION

Optimal performance in an environment with multiple disconnected sets of feasible actions would
require a multimodal distribution with a probability density of zero between the modes. Since the
actor is a continuous neural network and the latent space is continuous, the actor cannot generate
only positive actions. However, the actor aims to minimize the probability density for actions in the
gaps between the modes. The probability density at each action can be estimated using the KDE, and
the actions with the lowest corresponding density can be rejected. The accuracy of actors with strong
multimodal performance like FKL is significantly increased from action optimization as shown in
Section 6.

5 EXPERIMENTAL SETUP

5.1 ROBOTIC GRASPING SIMULATION

The proposed architecture was tested in a simplified robotic grasping simulation. We assume a
vertical configuration of a parallel gripper with three degrees of freedom x, y, and α and an object
that is an extrusion of a 2D shape. The simulator generates five different shapes with varying position,
angle, color, and geometric parameters. The success of a grasp is determined by the relative position
and alignment of the gripper to the outline of the object as seen from a camera positioned above the
experiment. Details about the simulator can be found in Appendix A.

The choice of this simulation, as opposed to existing robotic simulations, was motivated by efficiency
while iterating through several combinations of models and parameters. The target distribution fidelity
is not of primary concern in this work. The focus is instead on the capability of the proposed method
to learn all feasible actions.
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(a) Problem

x

α

y

(b) Ground Truth

x

(c) Critic

x

(d) Actor

Figure 1: Critic classification and actor distribution trained with JS compared with the ground truth.
Five example grasps are shown in the problem and their associated locations in the ground truth. The
figures show projections onto the x-y plane (top row) and the x-α plane (bottom row).

5.2 COMPARISON

In the evaluation, we are comparing different f-divergences with each other and with two other
approaches. The analyzed f-divergences are the FKL, RKL, and JS divergences. The two other
approaches are an ME RL algorithm similar to SAC in Haarnoja et al. (2018), which trains the actor
to minimize

min
θ

Es∼M,z∼Z [log qθ(πθ(s, z)|s)− ξϕ(s, πθ(s, z))] , (12)

withM being the replay memory. The critic is trained as described in Section 4. Instead of using the
reparameterization trick with a known distribution to estimate the entropy, we use the KDE. The other
approach is an implementation of a conditional GAN (Mirza & Osindero (2014)) with a growing
dataset. The min-max optimization problem is given through

min
θ

max
ϕ

Es,a∼Mp,z∼Z [log(ξϕ(s, a))− log(1− ξϕ(s, πθ(s, z)))] , (13)

with the positive replay memoryMp, which grows through successful interactions with the environ-
ment. An asterisk is added (e.g., JS*) when using action optimization, rejecting 10% of the proposed
actions with the lowest probability density. The actor gradient estimators for all approaches are listed
in Table 2.

In the following section, we only compare with approaches that do not explicitly utilize the structure
of the problem, as the intention of the proposed approach is to be generally applicable in a continuous
CB problem setting. A comparison with a widely used approach from the grasping literature is
conducted in Appendix D.

6 RESULTS

For each configuration, 3 agents were trained for 1 million interaction steps with the environment,
taking approximately 48 hours on a single NVIDIA A100 GPU. At the start of the training, 80k
examples, including positives and negatives, for randomly generated shapes were added to the
balanced replay memory to bootstrap the critic and discriminator learning.

Figure 1 shows the problem, the ground truth feasible picking positions, the critic estimate, and
a heat-map of the actor’s proposed actions. All figures are projections taking the maximum over
the dimension that is not shown. In the problem visualization in Figure 1a, five feasible picks are
shown in different colors, which correspond to the markers in Figure 1b. These markers highlight the
complex multimodality of the problem. While it appears that, e.g., red and purple are in the same
mode in the x-y projection, it is visible in the x-α projection that they are not directly connected.
Figure 1c shows that the critic has an approximate understanding of the feasible regions of the action
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H

8

Box

(a) Problem (b) Truth (c) JS (d) FKL (e) RKL (f) GAN (g) ME

Figure 2: Qualitative comparison of the implemented algorithms, showing action heat-maps on three
different states, with the last state never been observed during training.

space, showing five modes clearly in the x-y projection. The actor distribution in Figure 1d also
shows all five modes, while the output is significantly sharper in the centers of the modes. This is due
to the use of the KDEs and the choice of bandwidth σ.

In the qualitative comparison in Figure 2 the actor distributions of the different algorithms are shown
for three different shapes. While the H and 8 shapes were trained on, the Box shape has not been seen
during training. The different subfigures show the action heat maps of all implemented algorithms,
showing only the x-y projections. The H-row shows that JS and FKL learned all five modes, with
JS having the fewest samples in the connecting area. RKL and the GAN show two modes. The ME
implementation collapses in a single mode. The 8-row and the Box-row show a similar pattern with
the most pronounced spread of the action distributions in JS and FKL and mostly collapsed action
regions in the other approaches.

To quantify the multimodal capabilities, and thus the transferability of the learned skill, each algo-
rithm’s accuracy and shares of modes on all shapes were evaluated. For each shape, 1024 random
states were generated that differ in pose, color, and geometry (example variations can be seen in the
Appendix A). For each state, 1024 actions were sampled from the different actors. The actions were
then evaluated, and the mode of each action was recorded. The modes were then ranked and averaged
over all the states of that shape by frequency. By averaging the ranks instead of the modes, the last
rank shows the average ratio of the least frequent mode for each state.

Figure 3 shows the shares of each rank for the H and Box shapes for all the algorithms, with
the asterisk indicating that action optimization was applied. This figure presents the multimodal
capabilities of the JS and FKL algorithms, which are the only ones with the last ranked mode present
for the H and with significantly more pronounced modes than the others for the Box. Therefore, only
JS and FKL are capable of learning a transferable skill according to our definition. The generalization
capability of the GAN implementation is significantly lower than the others, as seen on the Box shape.

To quantify the performance, Table 3 shows the accuracy (feasible actions generated over total actions
generated) for each shape and the last ranked mode for the H, T, and Box shapes. The table shows
that ME has solid performance on all shapes but fails to find the different modes. The GAN algorithm
performs well with some modes present, but overall it is weaker than the others. RKL has high
scores but mostly fails at finding all the modes. FKL shows good performance in mode finding,
with an overall accuracy similar to RKL. JS is on par with the ME accuracy with the addition that
it repeatably finds all the modes. Generally, action optimization improves accuracy but does not
help mode finding, slightly decreasing the least ranked mode for most approaches. The maximum
deviations in the superscript show that all approaches learn reliably with the GAN having the highest
performance deviations among runs.
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(a) H Shape (b) Box Shape

Figure 3: Gripping rank comparison, with the ratio of picks for each ranked mode or failure in %.

JS* JS FKL* FKL RKL* RKL GAN* GAN ME* ME

Sc
or

e

H 96.01.0 91.21.3 92.50.4 85.41.1 86.93.6 83.63.5 85.82.0 83.52.7 96.60.7 95.91.2

T 96.50.5 93.31.0 92.51.0 88.00.9 97.60.9 95.71.2 81.62.5 79.71.7 93.91.9 93.61.7

8 86.92.3 82.91.7 83.40.7 77.70.7 82.83.2 79.22.5 70.34.5 66.95.7 85.50.5 84.21.9

Spoon 97.40.6 96.90.5 93.61.9 90.62.3 97.41.1 97.61.1 94.72.1 95.12.3 92.11.5 92.21.6

Box 62.22.3 61.72.7 53.87.4 52.17.1 53.52.9 53.03.4 34.28.2 33.17.2 65.76.9 65.96.8

Avg 87.80.8 85.20.8 83.20.7 78.80.6 83.62.1 81.82.1 73.32.3 71.72.7 86.82.1 86.41.8

M
od

e H 9.70.7 10.70.3 9.80.5 9.40.6 0.00.0 0.00.0 0.20.4 0.20.3 0.00.0 0.00.0

T 11.00.7 12.30.6 15.80.6 15.30.3 0.40.3 0.70.4 1.12.3 1.42.6 0.00.0 0.00.0

Box 5.50.8 6.91.1 6.81.2 7.21.4 0.70.8 1.31.3 0.00.0 0.00.0 0.00.0 0.00.0

Table 3: Comparison on all shapes with the mean of the grasping success ratio in % on top and the
least ranked mode in % on the bottom, with the maximum deviations over the 3 runs in superscript.

7 CONCLUSION AND FUTURE WORK

This work proposes to learn a skill by training a generator to generate all feasible actions for a subtask.
To this end, the output distribution of the generator is learned to match a uniform distribution over
the feasible action space. While learning within a 2D grasping simulation, the method shows stable
convergence for FKL, RKL, and JS. As expected, FKL is more efficient in visiting all the modes.
JS has the highest accuracy while reliably visiting all the modes. The proposed learning strategy
expands the current state-of-the-art training within multimodal interactive environments by showing
competitive accuracy while visiting all the modes. Since the proposed approach can visit all the
modes, it learns the skill of grasping independently of a specific downstream task. In future work, we
will investigate how downstream tasks can choose their optimal action among the proposed feasible
options. As it is not dependent on the structure of the problem, we will further utilize it for a 6D
grasping problem as well as for other applications.

Some limitations have emerged during experimentation. Currently, many imitation examples are
required to bootstrap the critic’s learning. A possibility to mitigate this could be the progressive tuning
of the KDEs or learning their parameters during training. This approach could favor exploration
initially and divergence estimation later in training. A complementary strategy could be using
curriculum learning techniques that start with simple problems where solutions are less sparse in the
action space. Furthermore, the proposed approach may not be very effective in high-dimensional
problems as the sampling requirements for the estimator grow exponentially. The limit on the degrees
of freedom will be explored in future work. A mitigation of this issue can come from the rich literature
on non-parametric density estimation in higher-dimensional problems and its applicability to the
proposed method. Another approach could be to split higher-dimensional problems into multi-step
low dimensional problems and to learn to generate all feasible trajectories.
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8 REPRODUCIBILITY STATEMENT

The final version will include a GitHub link to the code for learning and evaluation.
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A GRASPING SIMULATION

The grasping simulator generates four different shapes (H, 8, Spoon, T) for training and a Box shape
for testing. The shape position, orientation, color, and geometry parameters are randomly sampled,
producing various observations. The observation space is a 128× 128 pixel RGB image. We assume
a vertical configuration of a parallel gripper with three degrees of freedom x, y, and α and assume
that the object is an extrusion of the 2D shape in the observation. The action space is constrained to
the center 78 × 78 pixel region to avoid undefined behavior at the border of the RGB image. The
angle of the grasp is in [0, π) as the gripper is symmetrical, and thus a full revolution is not necessary.

The success of a grasp is only determined by the relative position and alignment of the gripper to
the outline of the object, as seen from a camera positioned above the experiment. We developed an
algorithm that, given the alignment of the gripper, i.e., x, y, and α and a simulated picture of the
object from a fixed camera, provides a success/failure outcome in a deterministic and reproducible
manner. Given the maximum aperture of the parallel gripper l and the width of the gripper claws w,
the simulation analyzes the cropped image content of dimensions l × w between the gripper claws
before the claws close on the object. The simulation checks if the object is sufficiently present and
equidistant from the claws and aligned within parameterized margins. Figure 4 shows successful
grasping poses and the respective gripper content for the objects that are trained on.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Feasible gripper positions (red) for different variations of the shapes (H-shape, 8-shape,
Spoon, and T-shape) used in training, with a detailed view of the area between the gripper to the right
of each figure.

B NEURAL NETWORK ARCHITECTURES

...

...

(128x128x5)
(43x43x32)

(22x22x64)
(11x11x128) Shared MLP

(121x(128+d))

Latent Input (d)

FC

Figure 5: Before processing, the image is augmented with positional encoding resulting in 5 total
channels {r, g, b, x, y}. The network’s input layer (in gray) is a 5x5 embedding layer with stride 3,
followed by 7 residual blocks (in yellow) with a bottleneck. The output is processed by 3 layers of
"pixelwise" shared MLPs (in brown), with the features being concatenated with a latent input (in
purple) of length d. The latent input is a random sample from Z for the actor and the action to be
evaluated for the critic. Four (for the actor) or three (for the critic) fully connected layers (in blue)
output the action and the score, respectively.

The neural network design was guided by simplicity and inspired by GANs. Features that rely on
domain-specific knowledge are avoided to evaluate better the learning method presented in the paper.
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The structure of the actor and critic neural networks are illustrated in Figure 5. The residual feature
extraction network (He et al. (2016)) is shared between the actor and critic.

As a peculiarity of the network and the loss, the actor’s inferred action has four components,
[x, y, r sinα, r cosα], with r ∈ [0,

√
2]. The angle can be extracted trivially with the arctan of

the ratio of the third and fourth action components. As the scale factor r does not change the angle,
the critic receives the normalized action [x, y, sinα, cosα] as input. To avoid the actor from reaching
the singularity at r = 0 and the distribution q being spread along the radius, g(s, a) and ξ(s, a) are
scaled with an unnormalized Gaussian on the radius, centered at 0.5 with the standard deviation of
0.4.

C ALGORITHM AND HYPERPARAMETERS

Algorithm 1: Jenson-Shannon training loop
1 InitializeM with imitaition and random examples and initialize θ, ϕ
2 for 1 to Training Steps do // Training steps are 1, 000, 000 in experiments
3 for 1 to Interaction Steps do // Interaction steps are 1 in experiments
4 s← Generate a new problem
5 zi ← Sample uniformly in Z , ∀i ∈ [1, U ]
6 ai ← πθ(s, zi), ∀i ∈ [1, U ]
7 r̂i ← ξϕ(s, ai), ∀i ∈ [1, U ]
8 j ← argmini∈[1,U ] |0.5− r̂i| // Get action with highest uncertainty
9 r ← g(s, aj)

10 if r == 1 then
11 Store (s, aj , r) inMp

12 else
13 Store (s, aj , r) inMn

14 end
15 end
16 for 1 to Critic Steps do // Critic steps are 2 in experiments
17 (si, ai, ri)

L
i=1 ← Sample half fromMp and half fromMn

18 ϕ← ϕ− αϕ∇ϕ

∑L
i=1 ri log(ξϕ(si, ai)) + (1− ri) log(1− ξϕ(si, ai))

19 end
20 for 1 to Actor Steps do // Actor steps are 1 in experiments
21 for k = 1 to K do
22 sk ← Sample fromM
23 zi ← Sample uniformly in Z, ∀i ∈ [1, N ]
24 ai ← πθ(sk, zi), ∀i ∈ [1, N ]
25 ϵj ∼ N (0, σ′), ∀j ∈ [1,M ]
26 a∗j ← stop_gradient(a⌈j/m⌉) + ϵj , ∀j ∈ [1,M ] // Resample from KDE

27 q̂j ← 1
N

∑N
i=1 kσ(a

∗
j − ai), ∀j ∈ [1,M ] // Evaluate KDE on samples

28 q̂′j ← 1
N

∑N
i=1 kσ′(a∗j − ai), ∀j ∈ [1,M ] // Evaluate proposal pdf

29 r̂j ← ξϕ(sk, a
∗
j ), ∀j ∈ [1,M ]

30 V̂ ← 1
M

∑M
j=1

r̂j
q̂′j

// MC integration with importance sampling

31 p̂j ← r̂j

V̂
, ∀j ∈ [1,M ]

32 gk ← 1
2M

∑M
j=1

q̂j
q̂′j

log
(

2q̂j
q̂j+p̂j

)
∇θ log(q̂j) // gradient trace

33 end
34 θ ← θ − αθ

1
K

∑K
k=1 gk

35 end
36 end
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Parameter Value Description
N 128 Minibatch size
M 256 Resampling size
m 2 Samples per KDE support point (M/N )
U 64 Maximum uncertainty proposals
K 16 Actor batch size
L 32 Critic batch size
σ diag(0.025, 0.025, 0.4, 0.4) KDE bandwidth
σ′ diag(0.075, 0.075, 1.2, 1.2) Sampling KDE bandwidth
|Mp| 160,000 Positive replay memory size
|Mn| 160,000 Negative replay memory size
|M| 320,000 Total replay memory size

Table 4: Hyperparameters

D OBSERVATION VARIATION EXPERIMENTS

D.1 SETUP

Figure 6: Different distortions are applied, showing a colored chess board for illustration and an
example shape under all distortions.

To highlight the difference between the proposed approach and related work of robotic grasping, we
investigate how distortions of the observation affect the performance. The distortions investigated are
a rotation, projection, and rotation + projection as shown in Figure 6. These distortions correspond to
different camera perspectives. We train a new agent for 106 training steps for each distortion and
approach in the following comparison.

We compare with a common approach in the literature (Zeng et al. (2020)) that make use of spatial
equivariances. The approach utilizes fully convolutional networks to output a probability of success
for each action of a discretized action space. We implement two variants. In the first one, just as in
Zeng et al. (2020), the observation is fed into the neural network multiple times with different rotations.
The neural network then only needs to output a one-channel image containing the probability of
success of each discretized x, y action for the given rotation of the image. This approach thus
makes use of translation equivariance by using a convolutional neural network (CNN) and rotation
equivariance. In the experiments, we denote it as the heat-map approach (H). The second variant
estimates for each observation the success for different rotations by outputting a multi-channel
image indicating the success estimate of each discretized x, y, α action explicitly. Thus it only takes
advantage of translation equivariance. It is called stacked heat-map (SH) in the following.

The approaches are implemented using fully convolutional networks with an hourglass structure,
adopting the beginning of the Resnet in Figure 5 and adding the same structure in reverse order with
nearest-neighbor upsampling. Both approaches predict grasping success for 78x78 pixels with 16
rotation angles. They are trained on a cross-entropy loss on the grasping outcome sampled from
the balanced replay buffer. The replay buffer is also filled with imitation learning examples, and
maximum uncertainty sampling is applied. For evaluation, the success estimate of each discretized
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action is used as its probability to be sampled. To increase accuracy, an inverted temperature factor
increases the difference between higher and lower score actions. Specifically, the actions are sampled
according to

q(a|s) = exp(β log ξ(s, a))∑
∀a∈Ad

exp(β log ξ(s, a))
, (14)

with ξ being the fully convolutional network with s as input and as output shape the discretized action
space Ad. The inverted temperature was set to β = 100.

D.2 RESULTS

(a) H Shape (b) Box Shape

Figure 7: Gripping rank comparison, with the ratio of picks for each ranked mode or failure in %.

Normal Rotated Projected Rotated + Projected
JS* H SH JS* H SH JS* H SH JS* H SH

Sc
or

e

H 96.7 92.6 97.7 95.1 92.0 96.6 96.2 24.0 0.9 97.9 21.6 0.8

T 97.1 93.5 98.2 95.5 94.3 98.3 96.2 31.6 0.8 98.0 27.0 0.7

8 86.4 90.4 97.2 85.5 87.4 95.5 85.3 15.4 0.9 88.8 14.3 0.8

Spoon 97.7 93.8 98.8 96.5 94.5 98.6 97.1 33.8 0.7 97.8 33.2 0.6

Box 62.3 90.7 96.2 55.9 88.4 89.4 54.7 21.1 1.2 53.5 19.3 1.1

Avg 88.0 92.2 97.6 85.7 91.3 95.7 85.9 25.2 0.9 87.2 23.1 0.8

M
od

e H 9.1 9.3 10.0 8.6 7.5 4.6 8.0 0.2 0.0 8.5 0.0 0.0

T 11.5 18.7 18.5 10.4 14.8 9.8 11.8 0.5 0.1 14.3 0.2 0.1

Box 5.5 16.7 16.8 4.3 9.5 1.4 5.1 0.3 0.1 5.3 0.1 0.1

Table 5: Comparison of the proposed Jensen-Shannon approach with approaches from the literature.

The results are shown in Figure 7 and Table 5, which compare the performance of the proposed
Jensen-Shannon (JS) approach with the heat-map (H) and stacked heat-map (HS) approaches on
the four different distortions. As expected, the specifically crafted H and SH approaches perform
better on the original problem than the generic approach proposed in the paper. In that scenario, no
scene understanding is required, and only local features need to be considered to estimate grasping
success. Therefore, the approaches are expected to generalize well to unseen shapes, as seen for the
Box-Shape, since the grasping success depends only on gripper alignment. They only need to learn
to imitate the grasping success heuristic shown in Figure 4.

Interestingly, rotating the observation does not seem to impact their performance. However, under
projection and projection + rotation, both approaches fail to learn to grasp. The heat-map approach
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still learns to grasp the objects occasionally, while the stacked heat-map approach does not learn
anything. Our proposed approach learns well for all distortions. The generalization on the Box-Shape
decreases a bit but the general performance remains similar. Surprisingly, the results for rotation +
projection on the training shapes are above the variance in the main results in Table 3. An explanation
for the performance increase could be that the region in the input observation that the object can be in
is smaller than in the normal case, as can be seen by the area between the colored tiles in Figure 6.
The reduced region could slightly ease scene understanding, leading to improved results.

In general, the performance of our proposed approach does not depend on the distortion as it does not
explicitly use the spatial structure. Its design does not depend on the specifics of the experiment at
all. It can, therefore, learn independently of the distortion applied as long as the object is still fully
observable.
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