SILVER STEPSIZE FOR FASTER ZEROTH-ORDER OPTI-MIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We study gradient-free minimization of smooth convex functions through Silver stepsizes—a non-monotone, 2-adic schedule that accelerates gradient descent—and show how to compose it with two-point zeroth-order (ZO) estimators on a smoothed objective. We apply Silver's multi-step Lyapunov analysis to smoothed objectives and show that it carries over verbatim when gradients are replaced by unbiased two-point estimators with a tax in the form of a quadratic variance term. We control this term via an orthogonal-on-spikes batching policy that allocates directions proportionally to the Silver steps (with a cap at dimension), achieving budget-optimal variance aggregation. Empirically, we validate our approach through both numerical experiments and MeZO-style forward-pass-only fine-tuning of large language models, incorporating practical considerations such as clipping strategies, and demonstrate its superior performance.

1 Introduction

Zeroth-order (ZO, derivative-free) optimization addresses the common setting where we can query function values but cannot reliably obtain gradients: the model is a black box, gradients are prohibitively expensive or noisy, or we wish to optimize through a non-differentiable system (e.g., simulators, private APIs). This regime occurs across machine learning and scientific computing: hyperparameter and architecture tuning, black-box adversarial attacks, policy search and evolution strategies in RL, and large-model fine-tuning under tight memory budgets (Larson et al., 2019; Flaxman et al., 2005; Duchi et al., 2015; Shamir, 2017; Salimans et al., 2017; Malladi et al., 2023).

Families of ZO estimators. Modern ZO methods approximate gradients from function values using structured perturbations. (i) *One-point bandit smoothing* forms an unbiased estimator of the gradient of a smoothed objective from a single evaluation (Flaxman et al., 2005). (ii) *Two-point estimators*—our focus—use symmetric differences $f(x + \mu u) - f(x - \mu u)$ along a random direction u, achieving strictly better variance/rates and minimax-optimal guarantees for smooth convex objectives (Duchi et al., 2015; Shamir, 2017; Nesterov & Spokoiny, 2017). (iii) *Coordinate-wise finite differences* estimate partial derivatives one coordinate at a time (often 2d queries per gradient) and are widely used in black-box deep learning (e.g., ZOO attacks) (Chen et al., 2017). (iv) *SPSA* perturbs all coordinates simultaneously using Rademacher noise and recovers a two-evaluation gradient proxy with strong SA-style guarantees (Spall, 1992). (v) *Orthogonal batches* sample B mutually orthonormal directions (Stiefel manifold) per iteration; this reduces the estimator variance at fixed budget and unifies several schemes, including spherical smoothing and coordinate descent (Kozak et al., 2023; Feng & Wang, 2023).

Core bottlenecks in **ZO**. ZO estimators introduce a bias-variance tradeoff via the smoothing radius μ and sampling distribution. Even for smooth convex objectives, the best-known two-point schemes incur a statistical floor that scales with dimension under noisy queries; controlling the *variance accumulation* across iterations is the central algorithmic challenge (Duchi et al., 2015; Shamir, 2017; 2013; Jamieson et al., 2012).

A complementary acceleration lever: stepsize hedging (Silver). Independently of estimator design, recent work shows that carefully structured *stepsizes* alone can accelerate plain gradient descent on smooth convex functions. The *Silver stepsize schedule* is a simple, explicit, fractal

sequence with a 2-adic block structure. It admits a *multi-step Lyapunov certificate* ("Silver identity") which yields a convergence rate of $O(\varepsilon^{-\log_\rho 2}) = O(\varepsilon^{-0.7864})$ iterations for gradient descent, where $\rho = 1 + \sqrt{2}$ is the silver ratio (Altschuler & Parrilo, 2023a;b; 2024). Intuitively, the schedule interleaves small steps with periodic "spikes" whose algebraic cancellation accelerates net progress across blocks.

This paper: composing Silver with two-point ZO on smoothed objectives. We bring these strands together. We run the Silver schedule on a *smoothed* objective $h = f_{\mu}/L$ (blockwise-constant μ), and replace exact gradients by unbiased *symmetric two-point* estimators for ∇f_{μ} along *orthonormal* batches of directions. The Silver identity's linear noise terms cancel in expectation, so the entire stochastic tax collapses to an explicit *quadratic variance term*, which we control by aligning batch size with the stepsize spikes ($B_t \propto \alpha_t$, capped at d). This *orthogonal-on-spikes* policy concentrates averaging where it matters most while keeping the total query budget fixed.

Motivation Two-point estimators are unbiased for ∇f_{μ} (not ∇f), making the smoothed problem f_{μ} the right analytical object. The Silver identity is robust to *conditionally unbiased* inexact gradients and only pays the quadratic term from the terminal square in the certificate—precisely what batching and blockwise μ can control. Orthogonal directions improve constants without complicating the analysis or the memory footprint (Kozak et al., 2023; Feng & Wang, 2023).

We make the following contributions in this work.

- Silver-on-smoothing with two-point ZO: We adapt the Silver multi-step analysis to $h = f_{\mu}/L$ with symmetric two-point estimators, showing the identity carries over verbatim with a single *variance aggregation* term $\sum_t \alpha_t^2 \mathbb{E} \|\zeta_t\|^2$ (no linear noise term).
- Variance control via orthogonal-on-spikes batching: Under a fixed query budget per block, we prove that allocating batch sizes proportional to the Silver steps ($B_t \propto \alpha_t$, capped at d) optimally controls $\sum_t \alpha_t^2/B_t$ (Cauchy–Schwarz tightness), and we instantiate this with Stiefel sampling.
- High-probability bounds via Freedman: We give a simple high-probability translation of the Silver identity with martingale differences, yielding dimension-aware tails in terms of the predictable quadratic variation.
- Practical ZO for LLM fine-tuning: We apply the method to MeZO-style forward-only full-parameter fine-tuning and discuss practical details (direction orthogonalization, clipping, memory footprint.) (Malladi et al., 2023; Hu et al., 2021; Dettmers et al., 2023).

Organization. Section 3.1 states the formal setup and notation; Section 3.2 summarizes the Silver schedule and the specific properties we use. Section ?? develops the inexact-gradient Silver identity for two-point ZO on f_{μ} and the variance control via orthogonal-on-spikes batching. Experiments appear in Section 5.

2 RELATED WORK

Derivative-free / zeroth-order optimization. Classical DFO covers direct-search, model-based trust-region, and interpolation methods; recent surveys unify these with randomized finite-difference estimators used in ML (Larson et al., 2019). For convex ZO with random directions, one-point bandit smoothing dates to Flaxman et al. (2005). Two-point estimators achieve optimal rates in smooth/stochastic and adversarial settings (Duchi et al., 2015; Shamir, 2017). Nesterov & Spokoiny (2017) give a self-contained analysis with explicit smoothing constants. Building on this line of work, MeZO (Malladi et al., 2023) brings two-point, forward-only ZO into LLM fine-tuning, showing that competitive adaptation is possible with inference-level memory (no backprop activations). In this work, we build the analyse with a uniform sphere sampling for slightly tighter dimension-dependent estimation variance at high dimension.

Estimator families and variance reduction. Coordinate-wise finite differences (up to 2d queries/gradient) are common in black-box deep learning, e.g., ZOO (Chen et al., 2017). SPSA provides a two-evaluation coordinate-free estimator rooted in stochastic approximation (Spall, 1992). Sampling *orthogonal* directions (Stiefel manifold) reduces variance and unifies spherical and coordinate schemes (Kozak et al., 2023); refined bounds appear in Feng & Wang (2023). Variance-reduced

ZO methods (e.g., ZO-SVRG/SPIDER-SZO) are complementary and can be combined with our blockwise policy (Ji et al., 2019; Fang et al., 2018).

Zeroth-order smoothing and two-point estimators. Ball/sphere and Gaussian smoothing with two-point estimators are classical; see Flaxman et al. (2005) (one-point bandit smoothing), Duchi et al. (2015); Shamir (2017) (two-point optimal rates), and Nesterov & Spokoiny (2017) (Gaussian smoothing with explicit moment and bias constants). We emphasize the uniform *ball/sphere* pair, which gives dimension-friendly bias constants and a clean gradient identity.

Stepsize hedging / Silver schedule. The Silver schedule is a simple explicit fractal stepsize sequence that accelerates plain gradient descent in both strongly convex and smooth convex regimes. The analysis hinges on a multi-step descent identity and 2-adic structure; see Altschuler & Parrilo (2023a;b; 2024) for the arXiv and final journal versions. The rate $T^{-\log_\rho 2}$ with $\rho=1+\sqrt{2}$ lies between classical $O(\varepsilon^{-1})$ and Nesterov's $O(\varepsilon^{-1/2})$.

Orthogonal directions and variance reduction. Using mutually orthogonal directions (sampling on the Stiefel manifold) provably reduces estimator variance and improves constants compared to i.i.d. directions; see Kozak et al. (2023); Feng & Wang (2023).

3 Preliminaries

3.1 PROBLEM SETUP AND NOTATION

We minimize a convex L-smooth function $f: \mathbb{R}^d \to \mathbb{R}$ with minimizer x^* . We adopt the standard uniform-ball smoothing

$$f_{\mu}(x) := \mathbb{E}_{v \sim \operatorname{Unif}(\mathbb{B}^d)} f(x + \mu v), \qquad h(x) := f_{\mu}(x)/L,$$

so that h is 1-smooth and convex. Let $u \sim \mathrm{Unif}(\mathbb{S}^{d-1})$. The sphere-gradient identity gives

$$\nabla f_{\mu}(x) = \frac{d}{\mu} \mathbb{E}_{u} [f(x + \mu u) u],$$

hence both the one-point $\frac{d}{\mu}f(x+\mu u)u$ and symmetric two-point

$$\widehat{g}(x;\mu,u) = \frac{d}{2\mu} (f(x+\mu u) - f(x-\mu u))u$$

are *unbiased* for $\nabla f_{\mu}(x)$. We use the symmetric two-point estimator because it enjoys sharper variance/rate guarantees in smooth convex problems (Duchi et al., 2015; Shamir, 2017; Nesterov & Spokoiny, 2017).

Iteration, stepsizes, and batching. We run a Silver block of length $N=2^k-1$ with stepsizes $\{\alpha_t\}_{t=0}^{N-1}$ (Section 3.2), update

$$x_{t+1} = x_t - \frac{\alpha_t}{L} \, \widehat{g}_t, \qquad \widehat{g}_t = \frac{d}{2\mu B_t} \sum_{i=1}^{B_t} \left(f(x_t + \mu v_{t,i}) - f(x_t - \mu v_{t,i}) \right) v_{t,i},$$

and use orthogonal-on-spikes batching $B_t = \min\{d, \lceil c_B \alpha_t \rceil\}$ with $V_t = [v_{t,1}, \ldots, v_{t,B_t}] \in \operatorname{St}(d, B_t)$ drawn via thin QR of a Gaussian matrix (Haar on the Stiefel manifold). Each step costs $2B_t$ function queries. Unless stated otherwise, we assume access to exact function values or conditionally zero-mean value noise so that $\mathbb{E}[\widehat{g}_t \mid \mathcal{F}_t] = \nabla f_\mu(x_t)$ with \mathcal{F}_t the natural filtration.

Bias and variance constants (used later). For L-smooth f,

$$|f_{\mu}(x) - f(x)| \le \frac{L}{2}\mu^2 \cdot \frac{d}{d+2}, \qquad \|\nabla f_{\mu}(x) - \nabla f(x)\| \le \frac{L}{2} d\mu,$$

and for the two-point sphere estimator

$$\mathbb{E}\|\widehat{g}(x;\mu,u) - \nabla f_{\mu}(x)\|^{2} \leq 2d \|\nabla f(x)\|^{2} + \frac{1}{2}d^{2}L^{2}\mu^{2}.$$

Averaging B_t directions divides the RHS by B_t . We keep μ fixed within each Silver block and may geometrically decay it across blocks.

Silver stepsizes (facts used). For a block of length $N=2^k-1$, the multi-step identity implies $h(x_N)-h^\star \leq r_k\|x_0-x^\star\|^2$ with explicit $r_k=\Theta(\rho^{-2k})$ and $\rho=1+\sqrt{2}$. Moreover, $\sum_{t=0}^{N-1}\alpha_t=\Theta(\rho^k)$. We rely only on these consequences of the identity Altschuler & Parrilo (2023b; 2024).

Uniform-ball smoothing and the sphere gradient identity. Let $v \sim \mathrm{Unif}(\mathbb{B}^d)$ and $u \sim \mathrm{Unif}(\mathbb{S}^{d-1})$, and define $f_{\mu}(x) := \mathbb{E}_v f(x + \mu v)$. Then f_{μ} is convex and L-smooth and

$$\nabla f_{\mu}(x) = \frac{d}{\mu} \mathbb{E}_{u} [f(x + \mu u) u]. \tag{1}$$

By the Descent Lemma,

$$|f_{\mu}(x) - f(x)| \le \frac{L}{2}\mu^2 \mathbb{E}||v||^2 = \frac{L}{2}\mu^2 \cdot \frac{d}{d+2}.$$

Moreover (we include a short proof in the appendix),

$$\|\nabla f_{\mu}(x) - \nabla f(x)\| \le \frac{L}{2} d\mu. \tag{2}$$

This bound follows from the ball-to-sphere identity $\nabla f_{\mu}(x) = \frac{d}{\mu} \mathbb{E}_{u \sim \mathrm{Unif}(\mathbb{S}^{d-1})}[f(x + \mu u)u]$ and the Descent Lemma; see, e.g., Lemma 4.1 and Proposition 6.5 in the self-contained derivation we follow ¹

For comparison, under *Gaussian* smoothing, $\|\nabla f_{\mu}(x) - \nabla f(x)\| \leq \frac{L}{2} (d+3)^{3/2} \mu$ (Nesterov & Spokoiny, 2017, Lemma 3).

Remark 3.1 (Default smoothing and unbiasedness). Throughout we define $f_{\mu}(x) = \mathbb{E}_{v \sim \text{Unif}(\mathbb{B}^d)} f(x + \mu v)$. For this choice,

$$\nabla f_{\mu}(x) = \frac{d}{\mu} \mathbb{E}_{u \sim \text{Unif}(\mathbb{S}^{d-1})} [f(x + \mu u) \, u],$$

so both the one-point $\frac{d}{\mu}f(x + \mu u)u$ and the symmetric two-point $\frac{d}{2\mu}(f(x + \mu u) - f(x - \mu u))u$ estimators are *unbiased* for $\nabla f_{\mu}(x)$. This identity goes back to the divergence-theorem proof used in bandit smoothing (e.g., Flaxman et al. (2005)).²

Second moment (uniform sphere, two-point). For L-smooth f and $u \sim \text{Unif}(\mathbb{S}^{d-1})$,

$$\mathbb{E}\|\widehat{g}(x;\mu,u)\|^2 \leq C_1 d \|\nabla f(x)\|^2 + C_2 d^2 L^2 \mu^2,$$

with explicit constants $C_1 = 2$ and $C_2 = \frac{1}{2}$ via an elementary isotropy argument (details in the theory section). Averaging B_t directions reduces the RHS by $1/B_t$; using orthonormal batches on the Stiefel manifold often improves constants in practice (Kozak et al., 2023; Feng & Wang, 2023).

Remark 3.2 (Ball vs. Gaussian smoothing). We work with the *ball* average and use the sphere-based identity (1) to estimate ∇f_{μ} from function values. The gradient-bias bound for ball smoothing is $\|\nabla f_{\mu}(x) - \nabla f(x)\| \leq \frac{1}{2}Ld\,\mu$ (2), whereas for *Gaussian* smoothing it scales as $\frac{1}{2}L(d+3)^{3/2}\mu$ (Nesterov & Spokoiny, 2017, Lemma 3). This explains the better dimension dependence under ball smoothing in our analysis.

Inexact-gradient Silver identity (what we use). Running Silver on $h = f_{\mu}/L$ with unbiased noise $\zeta_t := (\widehat{g}_t - \nabla f_{\mu}(x_t))/L$ gives

$$\mathbb{E}[h(x_N) - h^*] \leq r_k \, \mathbb{E} \|x_0 - x^*\|^2 + \sum_{t=0}^{N-1} \alpha_t^2 \, \mathbb{E} \|\zeta_t\|^2,$$

i.e., with no linear noise term. The proof mirrors the exact-gradient certificate and uses only tower-property cancellations.

¹These standard facts (including the two-point second moment below) are proved from first principles with exact constants in a concise reference; we reproduce short proofs in the appendix.

²We work with the *ball* definition of f_{μ} for tighter bias; we only use the *sphere* for the estimator.

3.2 SILVER STEPSIZE PRIMER

216

217 218

219

220 221

222

223

224

225

226

227

228 229 230

231

232 233

234 235

236 237

238

239

240

241

242 243

244 245

246

247

248 249

250

251

252 253

254

255

256

257

258 259

260

261

262

263

264

265

266 267 268 The Silver schedule is a deterministic stepsize sequence with a 2-adic, fractal block structure. For a block of length $N=2^k-1$ and a 1-smooth convex objective ϕ , the Silver identity (a multi-step Lyapunov certificate) implies

$$\phi(x_N) - \phi^* \leq r_k \|x_0 - x^*\|^2$$

with explicit $r_k = \Theta(\rho^{-2k})$ for $\rho = 1 + \sqrt{2}$ (the silver ratio). Moreover, the steps satisfy $\sum_{t=0}^{N-1} \alpha_t = 0$ $\Theta(\rho^k)$. Consequently, after $T = \Theta(2^k)$ steps, gradient descent with Silver stepsizes reaches error ε in $O(\varepsilon^{-\log_{\rho} 2}) = O(\varepsilon^{-0.7864})$ iterations, strictly improving upon the classical $O(1/\varepsilon)$ rate for smooth convex objectives (Altschuler & Parrilo, 2023a;b; 2024). In our analysis we apply this identity to $h = f_{\mu}/L$ and rely only on:

- 1. the block guarantee $\phi(x_N) \phi^\star \le r_k \|x_0 x^\star\|^2$; 2. the sum-of-steps property $\sum_{t=0}^{N-1} \alpha_t = \Theta(\rho^k)$;
- 3. robustness to *conditionally unbiased* inexact gradients, which adds exactly $\sum_t \alpha_t^2 \mathbb{E} \|\zeta_t\|^2$ to the RHS (no linear noise term).

ZO-SILVER: ALGORITHM AND THEORETICAL ANALYSIS

ROADMAP OF THIS SECTION

We first state the main guarantees at a glance: (i) an expectation-level *one-block* bound under twopoint ZO on the smoothed objective with Silver stepsizes; (ii) its budget-aligned specialization under orthogonal-on-spikes batching; (iii) a multi-block (restart) bound; (iv) a high-probability version via Freedman. We then present the algorithm and the few elementary ingredients (unbiasedness, second moment, inexact-Silver identity, and the variance-optimal batching proposition). Proofs are short and included inline or deferred to the appendix.

4.1 Ingredients (unbiasedness, second moment, inexact Silver, batching)

Lemma 4.1 (Second moment: uniform sphere, symmetric two-point). Let $f \in C_L^{1,1}$, $u \sim$ Unif(\mathbb{S}^{d-1}), and $\widehat{g}(x;\mu,u) = \frac{d}{2u} (f(x+\mu u) - f(x-\mu u))u$. Then

$$\mathbb{E} \| \widehat{g}(x; \mu, u) - \nabla f_{\mu}(x) \|^{2} \leq C_{\text{sig}} d \| \nabla f(x) \|^{2} + C_{\text{curv}} d^{2} L^{2} \mu^{2},$$

with $(C_{\text{sig}}, C_{\text{curv}}) = (2, \frac{1}{2})$. Averaging any $B \ge 1$ unit directions gives a 1/B reduction. Using B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in practice (Kozak et al., 2023; Feng & Wang, 2023).

These constants are tight up to lower-order terms for two-point ZO under L-smoothness; see the elementary proof in the appendix and the companion derivation we follow. The proof is bound can be found in the Appendix.

Filtration and conditional unbiasedness. Let \mathcal{F}_t be a filtration. A vector process ζ_t is a martingale difference sequence if ζ_t is \mathcal{F}_{t+1} -measurable and $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$.

Let \mathcal{F}_t be the σ -field generated by $\{x_0,\ldots,x_t\}$ and all randomness up to the start of iteration t. At iteration t, sample fresh directions V_t independently of \mathcal{F}_t (uniform on \mathbb{S}^{d-1} or Haar on $\mathrm{St}(d, B_t)$), and evaluate f exactly (or with conditionally zero-mean noise) using the same batch for $\pm \mu$ queries. With the symmetric two-point estimator, we then have

$$\mathbb{E}[\widehat{g}_t \mid \mathcal{F}_t] = \nabla f_{\mu}(x_t)$$
 and hence $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$,

by the ball-to-sphere identity and unbiasedness of the estimator for $\nabla f_{\mu}(x_t)$.

Lemma 4.2 (Martingale square identity). Let $\{\zeta_t\}_{t=0}^{N-1}$ be a square-integrable vector martingale difference sequence adapted to $\{\mathcal{F}_t\}$, i.e., $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$. Then, for any deterministic scalars $\{\alpha_t\}$,

$$\mathbb{E} \Big\| \sum_{t=0}^{N-1} \alpha_t \, \zeta_t \Big\|^2 = \sum_{t=0}^{N-1} \alpha_t^2 \, \mathbb{E} \|\zeta_t\|^2.$$

Proof. Expand the square and use $\mathbb{E}\langle \zeta_s, \zeta_t \rangle = 0$ whenever $s \neq t$: for s < t, $\mathbb{E}\langle \zeta_s, \zeta_t \rangle = \mathbb{E}[\langle \zeta_s, \mathbb{E}[\zeta_t \mid \mathcal{F}_t] \rangle] = 0$ by the tower property.

4.2 MAIN RESULTS

Lemma 4.3 (Inexact Silver, expectation level). Let $h = f_{\mu}/L$ (so h is 1-smooth and convex) and suppose $x_{t+1} = x_t - \alpha_t(\nabla h(x_t) + \zeta_t)$ with $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$. For a Silver block $N = 2^k - 1$,

$$\mathbb{E}[h(x_N) - h^{\star}] \leq r_k \, \mathbb{E} ||x_0 - x^{\star}||^2 + \sum_{t=0}^{N-1} \alpha_t^2 \, \mathbb{E} ||\zeta_t||^2.$$

Proof. See the Appendix for a detailed proof.

We run the Silver identity on $h = f_{\mu}/L$, which is 1-smooth and convex. Our update is

$$x_{t+1} = x_t - \alpha_t (\nabla h(x_t) + \zeta_t), \qquad \zeta_t := \frac{1}{L} (\widehat{g}_t - \nabla f_\mu(x_t)),$$

so $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$ by Lemma A.2.

Variance-optimal batching under a query budget. We motivate the batching policy with the following variance-related observation.

Proposition 4.4 (Optimal allocation of directions under a query budget). Fix nonnegative weights $\{\alpha_t\}_{t=0}^{N-1}$ and a budget Q>0 of function queries per block. With symmetric two-point queries, $Q=2\sum_t B_t$. Then, for any $B_t>0$,

$$\sum_{t=0}^{N-1} \frac{\alpha_t^2}{B_t} \ge \frac{\left(\sum_{t=0}^{N-1} \alpha_t\right)^2}{\sum_{t=0}^{N-1} B_t} = \frac{2\left(\sum_t \alpha_t\right)^2}{Q},$$

with equality iff $B_t \propto \alpha_t$. In particular, the policy $B_t = \min\{d, \lceil c_B \alpha_t \rceil\}$ is (up to the cap and integrality) optimal for a given budget.

One-line proof. By Cauchy–Schwarz,
$$\left(\sum \frac{\alpha_t^2}{B_t}\right) \left(\sum B_t\right) \geq \left(\sum \alpha_t\right)^2$$
. Substitute $\sum B_t = Q/2$.

Theorem 4.5 (One block, expectation). Assume $f: \mathbb{R}^d \to \mathbb{R}$ is convex and L-smooth, and fix a Silver block of length $N=2^k-1$ with steps $\{\alpha_t\}_{t=0}^{N-1}$. Let f_μ be the uniform-ball smoothing, $h=f_\mu/L$, and define the symmetric two-point estimator averaged over B_t unit directions:

$$\widehat{g}_{t} = \frac{d}{2\mu B_{t}} \sum_{i=1}^{B_{t}} \left(f(x_{t} + \mu v_{t,i}) - f(x_{t} - \mu v_{t,i}) \right) v_{t,i}, \quad x_{t+1} = x_{t} - \frac{\alpha_{t}}{L} \, \widehat{g}_{t}.$$

Assume the batch $V_t = [v_{t,1}, \dots, v_{t,B_t}] \in St(d, B_t)$ is drawn independently of \mathcal{F}_t (thin QR of a Gaussian suffices). Then

$$\mathbb{E}[f(x_N) - f^*] \le r_k L \mathbb{E}||x_0 - x^*||^2 + \sum_{t=0}^{N-1} \frac{\alpha_t^2}{B_t} \left(\frac{1}{2} d^2 L \,\mu^2 + \frac{2d}{L} \,\mathbb{E}||\nabla f(x_t)||^2\right) + \frac{L}{2} \mu^2 \frac{d}{d+2}.$$

In particular, if the iterates remain in a ball of radius R around a minimizer (e.g., by projection), then $\|\nabla f(x_t)\| \leq LR$ and

$$\mathbb{E}[f(x_N) - f^*] \leq r_k L R^2 + \left(\frac{1}{2} d^2 L \mu^2 + 2 d L R^2\right) \sum_{t=0}^{N-1} \frac{\alpha_t^2}{B_t} + \frac{L}{2} \mu^2 \frac{d}{d+2}.$$

Proof sketch. We apply the inexact-gradient Silver identity to $h = f_{\mu}/L$ with $\zeta_t = (\widehat{g}_t - \nabla f_{\mu}(x_t))/L$ (conditionally unbiased, so the identity has no linear noise term). Use the two-point second-moment bound plus averaging-by- B_t , then convert from h to f using the value-bias of f_{μ} . (see B.2, Eq. (3.1))

Budget-aligned specialization. Let $B_t = \min\{d, \lceil c_B \alpha_t \rceil\}$ (orthogonal-on-spikes), and write $\alpha_{\max} = \max_t \alpha_t$. Then

Proposition 4.6 (Variance aggregation under $B_t \propto \alpha_t$).

$$\sum_{t=0}^{N-1} \frac{\alpha_t^2}{B_t} \, \leq \, \frac{1}{c_B} \sum_{t=0}^{N-1} \alpha_t \, + \, \frac{\alpha_{\max}}{d} \sum_{t: \, \alpha_t > \, d/c_B} \alpha_t.$$

In particular, if $d \ge c_B \alpha_{\max}$ (cap inactive), then $\sum_t \alpha_t^2 / B_t = (1/c_B) \sum_t \alpha_t = \Theta(\rho^k / c_B)$.

Corollary 4.7 (Per-block calibration of μ and c_B). If $\frac{\rho^k}{c_B} \cdot \left(\frac{1}{2}d^2L\mu^2 + 2dLR^2\right) \le \varepsilon r_k LR^2$, then

$$\mathbb{E}[f(x_N) - f^*] \le (1 + \varepsilon) r_k L R^2 + \frac{L}{2} \mu^2 \frac{d}{d+2}.$$

A sufficient choice is $c_B \ge \frac{2d\rho^k}{\varepsilon r_k}$ and $\mu^2 \le \frac{2\varepsilon r_k}{d^2} \frac{R^2}{\rho^k}$.

Theorem 4.8 (Multi-block restarts). Run blocks $j=1,\ldots,J$ with lengths $N_j=2^{k_j}-1$ and radii μ_j (each fixed within the block), using $B_t=\min\{d,\lceil c_B\alpha_t\rceil\}$. If $\|x_t-x^\star\|\leq R$ across the run, then

$$\mathbb{E}[f(x_{T_J}) - f^{\star}] \leq LR^2 \sum_{j=1}^{J} r_{k_j} + \frac{1}{c_B} \sum_{j=1}^{J} \left(\frac{1}{2} d^2 L \mu_j^2 + 2d L R^2 \right) \rho^{k_j} + \frac{L}{2} \mu_J^2 \frac{d}{d+2}.$$

Lemma 4.9 (High-probability inexact Silver via Freedman). Let $h = f_{\mu}/L$ and suppose $x_{t+1} = x_t - \alpha_t(\nabla h(x_t) + \zeta_t)$ with $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$ and $\|\zeta_t\| \leq G$ almost surely. Define the predictable quadratic variation

$$V \ := \ \sum_{t=0}^{N-1} \alpha_t^2 \, \mathbb{E} \big[\zeta_t \zeta_t^\top \mid \mathcal{F}_t \big], \qquad \bar{\alpha} := \max_{0 \le t \le N-1} \alpha_t.$$

Then, for any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$h(x_N) - h^* \le r_k \|x_0 - x^*\|^2 + \left(2\sqrt{2\lambda_{\max}(V)\log\frac{18^d}{\delta}} + \frac{2}{3}\bar{\alpha}G\log\frac{18^d}{\delta}\right)^2.$$

In particular, using $(a+b)^2 \le 2a^2 + 2b^2$,

$$h(x_N) - h^* \le r_k \|x_0 - x^*\|^2 + 16 \lambda_{\max}(V) \log \frac{18^d}{\delta} + \frac{8}{9} \bar{\alpha}^2 G^2 \log^2 \frac{18^d}{\delta}.$$

Proof sketch. For any unit $s \in \mathbb{S}^{d-1}$, apply scalar Freedman to $M_s := \sum_{t=0}^{N-1} \alpha_t \langle \zeta_t, s \rangle$, which has variance proxy $\sigma_s^2 = \sum_t \alpha_t^2 \mathbb{E}[\langle \zeta_t, s \rangle^2 \mid \mathcal{F}_t] = s^\top V s \leq \lambda_{\max}(V)$ and bounded increments $|\alpha_t \langle \zeta_t, s \rangle| \leq \bar{\alpha} G$. Freedman gives $|M_s| \leq \sqrt{2\sigma_s^2 u} + \frac{\bar{\alpha} G}{3} u$ with probability $\geq 1 - 2e^{-u}$ Freedman (1975). Take a 1/4-net $\mathcal{N} \subset \mathbb{S}^{d-1}$ with $|\mathcal{N}| \leq 9^d$ and union bound; since $\|z\| \leq 2 \max_{s \in \mathcal{N}} \langle z, s \rangle$ (standard net argument; see e.g. Vershynin's notes on sphere nets), we get $\|\sum_t \alpha_t \zeta_t\| \leq 2 \sqrt{2\lambda_{\max}(V) u} + \frac{2}{3}\bar{\alpha} G u$ for $u = \log(2 \cdot 9^d/\delta)$. Square this and insert into the inexact-Silver identity, which contributes $\|\sum_t \alpha_t \zeta_t\|^2$ (no extra L's, since ζ_t already contains the 1/L).

Remark 4.10 (Matrix-Freedman alternative). One can avoid the sphere net (and the factor $\log(18^d/\delta)$) by applying a matrix Freedman inequality to a self-adjoint dilation of $\sum_t \alpha_t \zeta_t$, giveing a tail with $\log(d/\delta)$. See Tropp (2011). We keep Lemma 4.9 for its elementary proof via scalar Freedman Freedman (1975) and standard net estimates Vershynin (2018).

Remark 4.11 (Empirical status of Silver in first-order GD). As far as we are aware, the original Silver papers and their support material emphasize theoretical certificates, and do not provide systematic first-order empirical benchmarks. Discussions on empirical observations and generalizations (e.g., proximal/projected GD) are included, but a standardized FO benchmark suite on Silver vs. standard schedules has not yet emerged. See Altschuler & Parrilo (2023a;b; 2024); Parrilo (2024); Altschuler & Parrilo (2023c); Bok & Altschuler (2024).

4.3 ALGORITHM

Algorithm 1 ZO-SILVER: block-constant smoothing + orthogonal-on-spikes batching

- 1: **Input:** block length $N=2^k-1$, radius $\mu>0$, Silver steps $\{\alpha_t\}$, cap d, batching constant $c_B>0$
- 2: **for** t = 0, ..., N-1 **do**
- 3: Stepsize $\eta_t = \alpha_t / L$; Batch $B_t = \min\{d, \lceil c_B \alpha_t \rceil\}$
- 4: Sample $V_t = [v_{t,1}, \dots, v_{t,B_t}] \in \text{St}(d, B_t)$ (orthonormal columns; e.g., thin QR of a Gaussian matrix)

5:
$$\widehat{g}_t = \frac{d}{2\mu B_t} \sum_{i=1}^{B_t} (f(x_t + \mu v_{t,i}) - f(x_t - \mu v_{t,i})) v_{t,i}$$

 $6: \quad x_{t+1} = x_t - \eta_t \, \widehat{g}_t$

Sampling orthonormal directions. A simple implementation samples $G \in \mathbb{R}^{d \times B_t}$ with i.i.d. $\mathcal{N}(0,1)$ entries and sets V_t to the Q factor of the thin QR decomposition $G = V_t R$, giving $V_t \in \operatorname{St}(d,B_t)$ with Haar-distributed columns.

Corollary 4.12 (Per-block calibration of μ and batching). Fix a block of length $N=2^k-1$ with $B_t=\min\{d,\lceil c_B\alpha_t\rceil\}$. Assume $\|\nabla f(x_t)\|\leq LR_t$ along the block (e.g., by projection or local boundedness). If we choose μ and c_B to satisfy $\frac{\rho^k}{c_B}\cdot\left(\frac{1}{2}d^2L\mu^2+2dLR_t^2\right)\leq \varepsilon\cdot r_kLR_t^2$, then the block guarantee becomes

$$\mathbb{E}[f(x_N) - f^*] \le (1 + \varepsilon) r_k L R_t^2 + \frac{L}{2} \mu^2 \frac{d}{d+2}.$$

Equivalently, one sufficient choice is $c_B \geq \frac{2d\,\rho^k}{\varepsilon\,r_k}$ and $\mu^2 \leq \frac{2\varepsilon\,r_k}{d^2} \cdot \frac{R_t^2}{\rho^k}$.

Remark 4.13 (Short blocks + geometric μ). Variance aggregation scales like ρ^k/c_B . Using short blocks (e.g., fix a small k_\circ) and geometrically decaying radii across blocks (e.g., $\mu \leftarrow \mu/1 + \sqrt{2}$) keeps the variance tax controlled while the Silver term r_{k_\circ} still provides a consistent per-block drop. This matches the ZO folklore: you must either (i) grow the batch, or (ii) reduce smoothing, or (iii) keep blocks short and restart. See also the two-point rates and floors in (Duchi et al., 2015; Shamir, 2017).

5 EXPERIMENTS

5.1 Numerical Experiments

Goals: (1) Verify that running Silver on the smoothed objective with block-constant μ preserves the deterministic decay down to the ZO floor; (2) test our orthogonal-on-spikes batching against flat/i.i.d. batching. Tasks and oracles: Synthetic smooth convex: ridge-regularized quadratic $f(x) = \frac{1}{2}x^{T}Hx + b^{T}x$ with $\kappa(H)$ adjustable; logistic regression with ℓ_2 regularization. We evaluate both noiseless function values and noisy values $f(x) + \xi$ with $\xi \sim \mathcal{N}(0, \sigma^2)$. Baselines: (i) Two-point ZO with Gaussian smoothing and tuned constant stepsize (Nesterov & Spokoiny, 2017); Protocols: We run horizons aligning with Silver blocks $(T = 2^k - 1)$. Within a block, μ is constant; across blocks we use $\mu_{j+1} = \mu_j/1 + \sqrt{2}$ (or report a sweep). Batching follows $B_t = \min\{d, \lceil c_B\alpha_t\rceil\}$ with a fixed c_B ; comparison baselines use (a) $B_t \equiv B$ and (b) $B_t \equiv 1$. Budgets and metrics: We report #queries and $f(x_t) - f^*$ against queries and wall-clock. Each ZO step uses $2B_t$ function calls. We use medians over 10 seeds with 95% bootstrap CIs.

Figure 1: Function value vs. iterations for ridge-regularized quadratic problem.

5.2 EXPERIMENTS ON ZEROTH-ORDER FINE-TUNING LLMS

MeZO (Malladi et al., 2023) showed that large language models can be fine-tuned using *only forward passes* via two-point zeroth-order steps, achieving competitive accuracy with substantially lower memory than backprop. In the subsection, We instantiate our ZO-SILVER scheme in the same 16-shot setting as in MeZO and conduct experiments on RoBERTa-large 350M (Liu et al., 2019).

For silver learning rate scheduler, we apply a simple clipping strategy $\alpha_t = \min\{\alpha_t, \alpha_{\max}\}$, where α_{\max} is the largest learning rate multiplier and searched in $\{16.0, 32.0, 64.0, 128.0\}$. For MeZO, we adopt a constant learning rate η_0 , which is the same as the one used in silver learning rate scheduler and a large constant learning rate by taking the average over all the silver stepsizes. Specifically, after clipping, the limit of mean value of silver sizes is $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} \min\{\alpha_t, \alpha_{\max}\} = (\rho/2)^{J+1} + 2^{-(J+1)(\alpha_{\max}-1)}$, where $J = \lfloor 1 + \log_{\rho}(\alpha_{\max}-1) \rfloor$. We plot the average sivler stepsizes across the training steps in Figure.2 with base learning rate 1e-7 and largest learning rate multiplier 128.

As shown in Figure.3, MeZO-Silver achieves more stable training and lower validation loss under the same query budget, demonstrating the benefits of structured stepsize scheduling in practical LLM fine-tuning.

Figure 2: Clipped Silver schedule vs. constant LR baseline. We plot the running average learning rate induced by the Silver stepsizes with base learning rate 1e-7 and clipping value 128.

Figure 3: Evaluation loss vs. training steps for RoBERTalarge fine-tuning on (a) SST-2 and (b) RTE. We compare standard MeZO with constant learning rates to MeZO-Silver using a clipped Silver schedule.

6 Conclusion

The theoretical analysis and subsequent experimental work show that, under the studied assumptions for smooth objectives, composing two-point zeroth-order estimation with the Silver stepsize schedule yields a clean inexact-gradient certificate whose stochastic cost collapses to a single quadratic variance term. More broadly, our results provide the first step toward bringing stepsize hedging into the ZO regime: the Silver schedule—originally proved to accelerate plain gradient descent for smooth convex optimization—translates verbatim to the smoothed problem with conditionally unbiased ZO gradients, preserving its deterministic multi-step progress up to standard ZO floors.

REFERENCES

- Jason M. Altschuler and Pablo A. Parrilo. Acceleration by stepsize hedging i: Multi-step descent and the silver stepsize schedule. *arXiv* preprint, 2023a. URL https://arxiv.org/abs/2309.07879.
- Jason M. Altschuler and Pablo A. Parrilo. Acceleration by stepsize hedging ii: Silver stepsize schedule for smooth convex optimization. *arXiv preprint*, 2023b. URL https://arxiv.org/abs/2309.16530.
- Jason M. Altschuler and Pablo A. Parrilo. Support material for Acceleration by Stepsize Hedging. https://jasonaltschuler.github.io/AccelerationByStepsizeHedging/, 2023c.
- Jason M. Altschuler and Pablo A. Parrilo. Acceleration by stepsize hedging ii: Silver stepsize schedule for smooth convex optimization. *Mathematical Programming*, 199:1179–1219, 2024. doi: 10.1007/s10107-024-02164-2. URL https://link.springer.com/article/10.1007/s10107-024-02164-2. Final journal version.
- Jinho Bok and Jason M. Altschuler. Accelerating proximal gradient descent via silver stepsizes. https://optimization-online.org/wp-content/uploads/2024/12/ proxgd_stepsize_accel.pdf, 2024. arXiv:2412.05497.
- Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: Zeroth order optimization based black-box attacks to deep neural networks. In *Proceedings of the 10th Workshop on Artificial Intelligence and Security*, 2017.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *NeurIPS*, 2023. URL https://arxiv.org/abs/2305.14314.
- John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order convex optimization: The power of two function evaluations. *IEEE Transactions on Information Theory*, 61(5):2788–2806, 2015.
- Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. In *Advances in Neural Information Processing Systems* (NeurIPS), 2018. URL https://proceedings.neurips.cc/paper/2018/file/ba9a56ce0a9bfa26e8ed9e10b2cc8f46-Paper.pdf. ZO variants discussed in follow-ups.
- Yasong Feng and Tianyu Wang. Stochastic zeroth order gradient and hessian estimators: Variance reduction and refined bias bounds. *Information and Inference: A Journal of the IMA*, 12(3):1514–1545, 2023. doi: 10.1093/imaiai/iaad014. URL https://academic.oup.com/imaiai/article/12/3/1514/7150743.
- Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the bandit setting: Gradient descent without a gradient. In *Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pp. 385–394. SIAM, 2005. URL https://arxiv.org/abs/cs/0408007.
- David A. Freedman. On tail probabilities for martingales. *The Annals of Probability*, 3(1):100–118, 1975.
- Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
- Kevin G. Jamieson, Robert Nowak, and Benjamin Recht. Query complexity of derivative-free optimization. In *Advances in Neural Information Processing Systems 25 (NeurIPS)*, pp. 2672–2680, 2012. URL https://proceedings.neurips.cc/paper/2012/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf.

- Kaiyi Ji, Zhe Wang, Yingbin Zhou, Yingbin Liang, and Ji Liu Wang. Improved zeroth-order variance reduced algorithms and analysis for nonconvex optimization. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, 2019. URL https://proceedings.mlr.press/v97/ji19a/ji19a.pdf.
 - David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-order optimization with orthogonal random directions. *Mathematical Programming*, 2023. URL https://link.springer.com/content/pdf/10.1007/s10107-022-01866-9.pdf.
 - Jeffrey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimization methods. Acta Numerica, 28:287-404, 2019. doi: 10.1017/S0962492919000060. URL https://www.cambridge.org/core/journals/acta-numerica/article/abs/derivativefree-optimization-methods/84479E2B03A9BFFE0F9CD46CF9FCD289.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.
 - Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev Arora. Fine-tuning language models with just forward passes. *NeurIPS*, 2023. URL https://arxiv.org/abs/2305.17333. Oral.
 - Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Foundations of Computational Mathematics, 17(2):527–566, 2017. doi: 10.1007/s10208-015-9296-2. URL https://link.springer.com/article/10.1007/s10208-015-9296-2.
 - Pablo A. Parrilo. Accelerating gradient descent by stepsize hedging. https://aaforml.com/slides/SilverStepsizes.pdf, 2024. Applied Algorithms for ML, Paris, June 2024.
 - Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable alternative to reinforcement learning. *arXiv* preprint arXiv:1703.03864, 2017.
 - Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In *Proceedings of the 26th Annual Conference on Learning Theory (COLT)*, volume 30 of *Proceedings of Machine Learning Research*, pp. 3–24. PMLR, 2013. URL https://proceedings.mlr.press/v30/Shamir13.pdf.
 - Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. *Journal of Machine Learning Research*, 18(52):1–11, 2017. URL https://jmlr.org/papers/volume18/16-632/16-632.pdf.
 - James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *IEEE Transactions on Automatic Control*, 37(3):332–341, 1992. doi: 10.1109/9. 119632.
 - Joel A. Tropp. Freedman's inequality for matrix martingales. *Electronic Communications in Probability*, 16:262–270, 2011.
 - Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge University Press, 2018.

A UNIFORM-BALL BIAS BOUNDS AND THE SPHERE GRADIENT IDENTITY

Let $v \sim \text{Unif}(\mathbb{B}^d)$ and $u \sim \text{Unif}(\mathbb{S}^{d-1})$. For $f_{\mu}(x) = \mathbb{E}_v f(x + \mu v)$, the Descent Lemma gives

$$-\frac{L}{2}\mu^2 \mathbb{E} \|v\|^2 \le f_{\mu}(x) - f(x) \le \frac{L}{2}\mu^2 \mathbb{E} \|v\|^2, \qquad \mathbb{E} \|v\|^2 = \frac{d}{d+2}.$$

Moreover $\|\nabla f_{\mu}(x) - \nabla f(x)\| \le L\mu \frac{d}{2}$. To prove (1), apply the divergence theorem to $\int_{\mathbb{R}^d} \nabla f(x + \mu z) dz$.

Lemma A.1 (Ball-to-sphere gradient identity, with constants). Let $f_{\mu}(x) = \mathbb{E}_{v \sim \text{Unif}(\mathbb{B}^d)} f(x + \mu v)$ and $u \sim \text{Unif}(\mathbb{S}^{d-1})$. Then

$$\nabla f_{\mu}(x) = \frac{d}{\mu} \mathbb{E}_{u} [f(x + \mu u) u].$$

Lemma A.2 (Unbiasedness for ∇f_{μ}). With $u \sim \text{Unif}(\mathbb{S}^{d-1})$ and $\widehat{g}(x; \mu, u) = \frac{d}{2\mu}(f(x + \mu u) - f(x - \mu u))u$, we have $\mathbb{E}_{u}[\widehat{g}(x; \mu, u)] = \nabla f_{\mu}(x)$.

Lemma A.3 (Bias of f_{μ} and ∇f_{μ}). Assume $f \in C_L^{1,1}$.

(a) (Ball value bias) For $v \sim \text{Unif}(\mathbb{B}^d)$,

$$|f_{\mu}(x) - f(x)| \le \frac{L}{2} \mu^2 \mathbb{E} ||v||^2 = \frac{L}{2} \mu^2 \frac{d}{d+2}.$$

(b) (Ball gradient bias) For $v \sim \text{Unif}(\mathbb{B}^d)$,

$$\|\nabla f_{\mu}(x) - \nabla f(x)\| \leq \frac{L}{2} d\mu.$$

Proof of (b). By (1), $\nabla f_{\mu}(x) - \nabla f(x) = \frac{d}{\mu} \mathbb{E}_{u} \left[\left(f(x + \mu u) - f(x) - \langle \nabla f(x), \mu u \rangle \right) u \right]$. By the Descent Lemma along the line $x + \tau \mu u$ and $\|u\| = 1$, $|f(x + \mu u) - f(x) - \langle \nabla f(x), \mu u \rangle | \leq \frac{L}{2} \mu^{2}$. Taking norms and expectations gives $\|\nabla f_{\mu}(x) - \nabla f(x)\| \leq \frac{d}{\mu} \cdot \frac{L}{2} \mu^{2} \mathbb{E} \|u\| = \frac{L}{2} d\mu$, since $\|u\| = 1$ a.s.

B SPHERICAL TWO-POINT SECOND MOMENT

Let $A_{d-1} = \operatorname{surf}(\mathbb{S}^{d-1})$ and $V_d = \operatorname{vol}(\mathbb{B}^d)$; recall $A_{d-1} = dV_d$. We use the standard sphere isotropy $\mathbb{E}_{u \sim \operatorname{Unif}(\mathbb{S}^{d-1})}[u] = 0$, $\mathbb{E}[uu^\top] = \frac{1}{d}I$, and ||u|| = 1 a.s.

Lemma B.1 (Inexact Silver, expectation level). Let $h = f_{\mu}/L$ (so h is 1-smooth and convex) and suppose $x_{t+1} = x_t - \alpha_t(\nabla h(x_t) + \zeta_t)$ with $\mathbb{E}[\zeta_t \mid \mathcal{F}_t] = 0$. For a Silver block $N = 2^k - 1$,

$$\mathbb{E}[h(x_N) - h^*] \leq r_k \, \mathbb{E} \|x_0 - x^*\|^2 + \sum_{t=0}^{N-1} \alpha_t^2 \, \mathbb{E} \|\zeta_t\|^2.$$

Proof. Let $\{\lambda_{ij}\}$ be the Silver multipliers such that for any 1-smooth convex ϕ ,

$$\sum_{i \neq j} \lambda_{ij} Q_{ij}[\phi] = \|x_0 - x^*\|^2 - \|x_N - c_k \nabla \phi(x_N) - x^*\|^2 + \frac{\phi(x^*) - \phi(x_N)}{r_k}. \tag{*}$$

Apply (\star) with $\phi=h$. In the Silver derivation, the only places where the update rule enters are: (i) linear telescopings $x_a-x_b=-\sum_{s=b}^{a-1}\alpha_s\nabla h(x_s)$ and (ii) the terminal square $\|x_N-c_k\nabla h(x_N)-x^\star\|^2$. With inexact updates we have $x_a-x_b=-\sum\alpha_s\nabla h(x_s)-\sum\alpha_s\zeta_s$. Every such linear ζ -term appears inside an inner product with an \mathcal{F}_s -measurable vector, hence its expectation is 0 by $\mathbb{E}[\zeta_s\mid\mathcal{F}_s]=0$. For the terminal square,

$$x_N - c_k \nabla h(x_N) - x^* = A - \sum_{s=0}^{N-1} \alpha_s \zeta_s, \qquad A := x_0 - x^* - \sum_{s=0}^{N-1} \alpha_s \nabla h(x_s) - c_k \nabla h(x_N).$$

Therefore

$$\mathbb{E}||x_N - c_k \nabla h(x_N) - x^*||^2 = \mathbb{E}||A||^2 + \mathbb{E}\left|\left|\sum_{s=0}^{N-1} \alpha_s \zeta_s\right|\right|^2$$

(the cross term vanishes in expectation as above). By Lemma 4.2, this last term equals $\sum_{t=0}^{N-1} \alpha_t^2 \mathbb{E} \|\zeta_t\|^2$. Taking expectations in (\star) , dropping the nonnegative left-hand side $\sum \lambda_{ij} Q_{ij}[h]$, and rearranging gives the claim.

Lemma B.2 (Second moment: uniform sphere, symmetric two-point). Let $f \in C_L^{1,1}$, $u \sim \text{Unif}(\mathbb{S}^{d-1})$, and $\widehat{g}(x;\mu,u) = \frac{d}{2u} \big(f(x+\mu u) - f(x-\mu u) \big) u$. Then

$$\mathbb{E}\|\widehat{g}(x;\mu,u) - \nabla f_{\mu}(x)\|^{2} \leq C_{\text{sig}} d \|\nabla f(x)\|^{2} + C_{\text{curv}} d^{2}L^{2}\mu^{2},$$

with $(C_{\text{sig}}, C_{\text{curv}}) = (2, \frac{1}{2})$. Averaging any $B \ge 1$ unit directions gives a 1/B reduction. Using B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in practice (Kozak et al., 2023; Feng & Wang, 2023).

These constants are tight up to lower-order terms for two-point ZO under L-smoothness; see the elementary proof in the appendix and the companion derivation we follow.

Proof of Lemma B.2 (Proof sketch). Apply the Descent Lemma along $\pm \mu u$ to get $|f(x + \mu u) - f(x - \mu u) - 2\mu \langle \nabla f(x), u \rangle| \leq L\mu^2$, then expand $\|\widehat{g}\|^2$, use $(a + b)^2 \leq 2a^2 + 2b^2$ and isotropy $\mathbb{E}[uu^{\top}] = I/d$. The full derivation is in Appendix B.

Finally, since $\mathbb{E}_u \, \widehat{g}(x; \mu, u) = \nabla f_{\mu}(x)$ (Lemma A.1), we have

$$\mathbb{E}\|\widehat{g} - \nabla f_{\mu}(x)\|^{2} = \mathbb{E}\|\widehat{g}\|^{2} - \|\nabla f_{\mu}(x)\|^{2} \leq \mathbb{E}\|\widehat{g}\|^{2} \stackrel{(2)}{\leq} 2d \|\nabla f(x)\|^{2} + \frac{1}{2}d^{2}L^{2}\mu^{2}.$$

For a batch $\{v_i\}_{i=1}^B$ of unit vectors (not necessarily independent),

$$\left\| \frac{1}{B} \sum_{i=1}^{B} (Y_i - \mathbb{E}Y) \right\|^2 \le \frac{1}{B} \sum_{i=1}^{B} \|Y_i - \mathbb{E}Y\|^2$$

by convexity of $\|\cdot\|^2$; taking expectations gives the stated 1/B reduction.

Proof of Lemma B.2. Fix $x \in \mathbb{R}^d$ and $u \sim \mathrm{Unif}(\mathbb{S}^{d-1})$. Since $f \in C_L^{1,1}$, write the Descent Lemma at x in the two directions $\pm \mu u$:

$$f(x \pm \mu u) = f(x) \pm \mu \langle \nabla f(x), u \rangle + r_{\pm}(x, u), \qquad |r_{\pm}(x, u)| \le \frac{L}{2} \mu^{2}.$$

Subtract to get the symmetric difference

$$\Delta(x, u) := f(x + \mu u) - f(x - \mu u) = 2\mu \langle \nabla f(x), u \rangle + (r_{+} - r_{-}),$$

with $|r_+ - r_-| \le L\mu^2$. Hence

$$\widehat{g}(x;\mu,u) = d \langle \nabla f(x), u \rangle u + \frac{d}{2\mu} (r_+ - r_-) u.$$

Using $\mathbb{E}[uu^{\top}] = I/d$ for $u \sim \text{Unif}(\mathbb{S}^{d-1})$ and ||u|| = 1,

$$\mathbb{E} \left\| \widehat{g}(x;\mu,u) \right\|^2 \ \leq \ 2 \, d \, \|\nabla f(x)\|^2 \ + \ \frac{d^2}{2\mu^2} \, \mathbb{E} \big[(r_+ - r_-)^2 \big] \ \leq \ 2 \, d \, \|\nabla f(x)\|^2 \ + \ \frac{1}{2} \, d^2 L^2 \mu^2.$$

For the centered version, note that $\mathbb{E}\,\widehat{g}(x;\mu,u) = \nabla f_{\mu}(x)$ by the ball-to-sphere identity, so $\mathbb{E}\|\widehat{g} - \nabla f_{\mu}(x)\|^2 = \mathbb{E}\|\widehat{g}\|^2 - \|\nabla f_{\mu}(x)\|^2 \leq \mathbb{E}\|\widehat{g}\|^2$, which yields the same bound. Finally, for an average over B unit directions $\widehat{g}_B = \frac{1}{B}\sum_{i=1}^B \widehat{g}(x;\mu,u_i)$ (independent or not), convexity of $\|\cdot\|^2$ gives $\mathbb{E}\|\widehat{g}_B - \mathbb{E}\widehat{g}_B\|^2 \leq \frac{1}{B}\sum_{i=1}^B \mathbb{E}\|\widehat{g}(x;\mu,u_i) - \mathbb{E}\widehat{g}\|^2$, so both second-moment bounds divide by B. \square