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ABSTRACT

We study gradient-free minimization of smooth convex functions via Silver step-
sizes, a non-monotone 2-adic schedule that accelerates gradient descent, composed
with two-point zeroth-order (ZO) estimators on a smoothed objective. We show
that the multi-step Lyapunov (Silver) analysis carries over when exact gradients are
replaced by conditionally unbiased two-point estimators, with a stochastic tax that
reduces to a quadratic variance term. We control this term under a fixed query bud-
get by an orthogonal-on-spikes batching policy Bt∝αt, which is budget-optimal.
Empirically, we validate our approach on numerical quadratics across different
conditioning regimes and MeZO-style forward-only fine-tuning of RoBERTa-large
on GLUE tasks (SST-2, RTE), ZO-SILVER reduces evaluation loss faster than
tuned constant-LR MeZO under the same query budget.

1 INTRODUCTION

Zeroth-order (ZO, derivative-free) optimization addresses the common setting where we can query
function values but cannot reliably obtain gradients: the model is a black box, gradients are pro-
hibitively expensive or noisy, or we wish to optimize through a non-differentiable system (e.g.,
simulators, private APIs). This regime occurs across machine learning and scientific computing:
hyperparameter and architecture tuning, black-box adversarial attacks, policy search and evolution
strategies in RL, and large-model fine-tuning under tight memory budgets (Larson et al., 2019;
Flaxman et al., 2005; Duchi et al., 2015; Shamir, 2017; Salimans et al., 2017; Malladi et al., 2023a).

Families of ZO estimators. Modern ZO methods approximate gradients from function values
using structured perturbations. (i) One-point bandit smoothing forms an unbiased estimator of
the gradient of a smoothed objective from a single evaluation (Flaxman et al., 2005). (ii) Two-
point estimators—our focus—use symmetric differences f(x+ µu)− f(x− µu) along a random
direction u, achieving strictly better variance/rates and minimax-optimal guarantees for smooth
convex objectives (Duchi et al., 2015; Shamir, 2017; Nesterov & Spokoiny, 2017). (iii) Coordinate-
wise finite differences estimate partial derivatives one coordinate at a time (often 2d queries per
gradient) and are widely used in black-box deep learning (e.g., ZOO attacks) (Chen et al., 2017). (iv)
SPSA perturbs all coordinates simultaneously using Rademacher noise and recovers a two-evaluation
gradient proxy with strong SA-style guarantees (Spall, 1992). (v) Orthogonal batches sample B
mutually orthonormal directions (Stiefel manifold) per iteration; this reduces the estimator variance
at fixed budget and unifies several schemes, including spherical smoothing and coordinate descent
(Kozak et al., 2023; Feng & Wang, 2023).

Core bottlenecks in ZO. ZO estimators introduce a bias–variance tradeoff via the smoothing radius
µ and sampling distribution. Even for smooth convex objectives, the best-known two-point schemes
incur a statistical floor that scales with dimension under noisy queries; controlling the variance
accumulation across iterations is the central algorithmic challenge (Duchi et al., 2015; Shamir, 2017;
2013; Jamieson et al., 2012).

An acceleration lever: stepsize hedging (Silver). Independently of estimator design, recent work
shows that carefully structured stepsizes alone can accelerate plain gradient descent on smooth convex
functions. The Silver stepsize schedule is a simple, explicit, fractal sequence with a 2-adic block
structure. It admits a multi-step Lyapunov certificate (“Silver identity”) which gives a convergence

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rate of O
(
ε− logρ 2

)
= O

(
ε−0.7864

)
iterations for gradient descent, where ρ = 1 +

√
2 is the silver

ratio (Altschuler & Parrilo, 2023a;b; 2024). Intuitively, the schedule interleaves small steps with
periodic “spikes” whose algebraic cancellation accelerates net progress across blocks.

This work: composing Silver with two-point ZO on smoothed objectives. We bring these strands
together. We run the Silver schedule on a smoothed objective h = fµ/L (blockwise-constant µ),
and replace exact gradients by unbiased symmetric two-point estimators for ∇fµ along orthonormal
batches of directions. The Silver identity’s linear noise terms cancel in expectation, so the entire
stochastic tax collapses to an explicit quadratic variance term, which we control by aligning batch
size with the stepsize spikes (Bt ∝ αt, capped at d). This orthogonal-on-spikes policy concentrates
averaging where it matters most while keeping the total query budget fixed.

Motivation Two-point estimators are unbiased for∇fµ (not∇f ), making the smoothed problem
fµ the right analytical object. The Silver identity is robust to conditionally unbiased inexact gradients
and only pays the quadratic term from the terminal square in the certificate—precisely what batching
and blockwise µ can control. Orthogonal directions improve constants without complicating the
analysis or the memory footprint (Kozak et al., 2023; Feng & Wang, 2023).

We make the following contributions in this work.

• Silver-on-smoothing with two-point ZO: We adapt the Silver multi-step analysis to h =
fµ/L with symmetric two-point estimators, showing the identity carries overwith a single
variance aggregation term

∑
t α

2
tE∥ζt∥2 (no linear noise term).

• Variance control via orthogonal-on-spikes batching: Under a fixed query budget per block,
we prove that allocating batch sizes proportional to the Silver steps (Bt ∝ αt, capped at
d) optimally controls

∑
t α

2
t /Bt (Cauchy–Schwarz tightness), and we instantiate this with

Stiefel sampling.
• High-probability bounds via Freedman: We give a simple high-probability translation of

the Silver identity with martingale differences, giving dimension-aware tails in terms of the
predictable quadratic variation.

• Practical ZO for LLM fine-tuning: We apply the method to MeZO-style forward-only full-
parameter fine-tuning and discuss practical details (direction orthogonalization, clipping,
memory footprint.) (Malladi et al., 2023a; Hu et al., 2021; Dettmers et al., 2023).

Organization. Section 3.1 states the formal setup and notation; Section 3.2 summarizes the Silver
schedule and the specific properties we use. Section 4 develops the inexact-gradient Silver identity
for two-point ZO on fµ and the variance control via orthogonal-on-spikes batching. Experiments
appear in Section 5.

2 RELATED WORK

Derivative-free / zeroth-order optimization. Classical DFO covers direct-search, model-based
trust-region, and interpolation methods; recent surveys unify these with randomized finite-difference
estimators used in ML (Larson et al., 2019). For convex ZO with random directions, one-point
bandit smoothing dates to Flaxman et al. (2005). Two-point estimators achieve optimal rates in
smooth/stochastic and adversarial settings (Duchi et al., 2015; Shamir, 2017). Nesterov & Spokoiny
(2017) give a self-contained analysis with explicit smoothing constants. Building on this line of work,
MeZO (Malladi et al., 2023a) brings two-point, forward-only ZO into LLM fine-tuning, showing that
competitive adaptation is possible with inference-level memory (no backprop activations). In this
work, we analyze with uniform sphere sampling for slightly tighter dimension-dependent estimation
variance at high dimension.

Estimator families and variance reduction. Coordinate-wise finite differences (up to 2d
queries/gradient) are common in black-box deep learning, e.g., ZOO (Chen et al., 2017). SPSA
provides a two-evaluation coordinate-free estimator rooted in stochastic approximation (Spall, 1992).
Sampling orthogonal directions (Stiefel manifold) reduces variance and unifies spherical and coordi-
nate schemes (Kozak et al., 2023); refined bounds appear in Feng & Wang (2023). Variance-reduced
ZO methods (e.g., ZO-SVRG/SPIDER-SZO) are complementary and can be combined with our
blockwise policy (Ji et al., 2019; Fang et al., 2018).
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Zeroth-order smoothing and two-point estimators. Ball/sphere and Gaussian smoothing with
two-point estimators are classical; see Flaxman et al. (2005) (one-point bandit smoothing), Duchi
et al. (2015); Shamir (2017) (two-point optimal rates), and Nesterov & Spokoiny (2017) (Gaussian
smoothing with explicit moment and bias constants). We emphasize the uniform ball/sphere pair,
which gives dimension-friendly bias constants and a clean gradient identity.

Stepsize hedging / Silver schedule. The Silver schedule is a simple explicit fractal stepsize sequence
that accelerates plain gradient descent in both strongly convex and smooth convex regimes. The
analysis hinges on a multi-step descent identity and 2-adic structure; see Altschuler & Parrilo
(2023a;b; 2024) for the arXiv and final journal versions. The rate T− logρ 2 with ρ = 1 +

√
2 lies

between classical O(ε−1) and Nesterov’s O(ε−1/2).

3 PRELIMINARIES

3.1 PROBLEM SETUP AND NOTATION

We minimize a convex L-smooth function f : Rd → R with minimizer x⋆. We adopt the standard
uniform-ball smoothing

fµ(x) := Ev∼Unif(Bd)f(x+ µv), h(x) := fµ(x)/L,

so that h is 1-smooth and convex. We use the symmetric two-point estimator because it enjoys sharper
variance/rate guarantees in smooth convex problems (Duchi et al., 2015; Shamir, 2017; Nesterov &
Spokoiny, 2017).

Uniform-ball smoothing and the sphere gradient identity. Let v ∼ Unif(Bd) and u ∼
Unif(Sd−1), and define fµ(x) := Ev f(x+ µv). Then fµ is convex and L-smooth and

∇fµ(x) =
d

µ
Eu

[
f(x+ µu)u

]
. (1)

And,
|fµ(x)− f(x)| ≤ L

2 µ
2 E∥v∥2 = L

2 µ
2 · d

d+2 .

Moreover (proofs in the appendix),

∥∇fµ(x)−∇f(x)∥ ≤ L
2 dµ. (2)

For comparison, under Gaussian smoothing, ∥∇fµ(x) − ∇f(x)∥ ≤ L
2 (d + 3)3/2µ (Nesterov &

Spokoiny, 2017, Lemma 3).
Remark 3.1 (Default smoothing and unbiasedness). Throughout we define fµ(x) = Ev∼Unif(Bd)f(x+
µv). For this choice,

∇fµ(x) =
d

µ
Eu∼Unif(Sd−1)[f(x+ µu)u],

so both the one-point d
µf(x + µu)u and the symmetric two-point d

2µ (f(x + µu) − f(x − µu))u

estimators are unbiased for∇fµ(x). This identity goes back to the divergence-theorem proof used in
bandit smoothing (e.g., Flaxman et al. (2005)).1

Iteration, stepsizes, and batching. We run a Silver block of length N = 2k − 1 with stepsizes
{αt}N−1

t=0 (Section 3.2), update

xt+1 = xt − αt

L ĝt, ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i,

and use orthogonal-on-spikes batching Bt = min{d, ⌈cB αt⌉} with Vt = [vt,1, . . . , vt,Bt
] ∈

St(d,Bt) drawn via thin QR of a Gaussian matrix (Haar on the Stiefel manifold). Each step
costs 2Bt function queries. Unless stated otherwise, we assume access to exact function values or
conditionally zero-mean value noise so that E[ĝt | Ft−1] = ∇fµ(xt) with Ft−1 the natural filtration
up to the start of iteration t (so xt, αt are Ft−1-measurable).

1We work with the ball definition of fµ for tighter bias; we only use the sphere for the estimator.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 SILVER STEPSIZES PRIMER

Let ρ := 1 +
√
2 and let v(i) be the 2-adic valuation of i ∈ N. We use the explicit schedule

αi = 1 + ρ v(i)−1, i = 1, 2, . . .

(optionally scaled and/or clipped in practice). This closed form matches the recursive construction
and gives a fractal 2-adic block structure.(Altschuler & Parrilo, 2023a;b; 2024)

For a block of length N = 2k − 1 and a 1-smooth convex objective h, Altschuler & Parrilo (2023b)
establish a multi-step Lyapunov identity which implies

h(xN )− h⋆ ≤ rk ∥x0 − x⋆∥2,
with explicit

rk :=
1

1 +
√
4ρ2k − 3

≤ 1

2ρlog2 n
=

1

2nlog2 ρ
= O(n−1.2716)

for ρ = 1+
√
2 (the silver ratio). This rate improves upon the classical Gradient Descent convergence

of O(1/n), positioning itself as an intermediary between this baseline and the accelerated convergence
rate O(1/n2) of Nesterov’s method, which is known to be optimal for first-order smooth convex
optimization (Nesterov, 1983; Nemirovsky & Yudin, 1983). This improvement is achieved without
modifying the algorithmic structure or introducing momentum terms, only through an appropriate
choice of step sizes. Consequently, after N = Θ(2k) steps, gradient descent with Silver stepsizes
reaches error ε in O

(
ε− logρ 2

)
= O(ε−0.7864) iterations, strictly improving upon the classical O(1/ε)

rate for smooth convex objectives (Altschuler & Parrilo, 2023a;b; 2024). In our analysis we apply
this identity to h = fµ/L and rely only on:

1. the block guarantee h(xN )− h⋆ ≤ rk∥x0 − x⋆∥2;
2. the sum-of-steps property

∑N−1
t=0 αt = Θ(ρk);

3. robustness to conditionally unbiased inexact gradients, which adds exactly
∑

t α
2
tE∥ζt∥2 to the

RHS (no linear noise term).

4 ZO-SILVER: ALGORITHM AND THEORETICAL ANALYSIS

ROADMAP OF THIS SECTION

We state the blockwise guarantees first: (i) an expectation-level one-block bound under two-point ZO
on the smoothed objective with Silver steps; (ii) a budget-aligned specialization under orthogonal-on-
spikes batching; (iii) a multi-block (restart) bound; and (iv) a high-probability version via Freedman.
We then present the algorithm (with Stiefel sampling) and the minimal ingredients (unbiasedness,
second moment, inexact-Silver identity, and the variance-optimal batching proposition).

4.1 ASSUMPTIONS AND ORACLE MODEL

Problem class and oracle f : Rd → R is convex and L-smooth. We query a value oracle that
returns either exact f(x) or f(x) + ξ with conditionally zero-mean noise (E[ξ | x] = 0) and finite
variance. We adopt uniform-ball smoothing fµ(x) = Ev∼Unif(Bd)f(x+ µv) and define h := fµ/L,
so that h is 1-smooth and convex. Within each Silver block, µ is fixed. At iteration t, we form the
symmetric two-point estimator with Bt unit directions Vt = [vt,1, . . . , vt,Bt ] ∈ St(d,Bt) sampled
independently of the past and use the same batch for ±µ queries.

4.2 INGREDIENTS (UNBIASEDNESS, SECOND MOMENT, INEXACT SILVER, BATCHING)

Lemma 4.1 (Second moment: uniform sphere, symmetric two-point). Let f ∈ C1,1
L , u ∼

Unif(Sd−1), and ĝ(x;µ, u) = d
2µ

(
f(x+ µu)− f(x− µu)

)
u. Then

E
∥∥ĝ(x;µ, u)−∇fµ(x)∥2 ≤ Csig d ∥∇f(x)∥2 + Ccurv d

2L2µ2,

with (Csig, Ccurv) = (2, 1
2 ). Averaging any B ≥ 1 unit directions gives a 1/B reduction. Using

B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in
practice (Kozak et al., 2023; Feng & Wang, 2023).

4
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These constants are tight up to lower-order terms for two-point ZO under L-smoothness; see the
elementary proof in the appendix and the companion derivation we follow. The proof is in the
Appendix A.

Filtration and conditional unbiasedness. LetFt−1 denote the σ-field generated by all randomness
up to the start of iteration t (so xt and αt areFt−1-measurable). At iteration t, sample fresh directions
Vt independently of Ft−1 (uniform on Sd−1 or Haar on St(d,Bt)), and evaluate f exactly (or with
conditionally zero-mean noise) using the same batch for the±µ queries. For the symmetric two-point
estimator we then have

E[ĝt | Ft−1] = ∇fµ(xt), ζt :=
1

L

(
ĝt −∇fµ(xt)

)
, E[ζt | Ft−1] = 0.

With predictable stepsizes (αt), define the predictable quadratic variation

V :=

N−1∑
t=0

α2
t E

[
ζtζ

⊤
t

∣∣Ft−1

]
.

Lemma 4.2 (Martingale square identity). Let {ζt}N−1
t=0 be a square-integrable vector MDS adapted

to (Ft), so E[ζt | Ft−1] = 0, and let {αt} be deterministic (or merely Ft−1-measurable). Then

E
∥∥∥N−1∑

t=0

αt ζt

∥∥∥2 =

N−1∑
t=0

α2
t E∥ζt∥2.

Proof. Expand the square; for s < t, E⟨ζs, ζt⟩ = E
[
⟨ζs,E[ζt | Ft−1]⟩

]
= 0, since ζs is Ft−1-

measurable.

4.3 MAIN RESULTS

Lemma 4.3 (Inexact Silver, expectation level). Let h = fµ/L (so h is 1-smooth and convex) and
suppose xt+1 = xt − αt(∇h(xt) + ζt) with E[ζt | Ft−1] = 0. For a Silver block N = 2k − 1,

E
[
h(xN )− h⋆

]
≤ rk E∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t E∥ζt∥2.

Proof. See Appendix.

Variance-optimal batching under a query budget. We motivate the batching policy with the
following variance-related observation.
Proposition 4.4 (Optimal allocation of directions under a query budget). Fix nonnegative weights
{αt}N−1

t=0 and a budget Q > 0 of function queries per block. With symmetric two-point queries,
Q = 2

∑
t Bt. Then, for any Bt > 0,

N−1∑
t=0

α2
t

Bt
≥

(∑N−1
t=0 αt

)2∑N−1
t=0 Bt

=
2
(∑

t αt

)2
Q

,

with equality iff Bt ∝ αt. In particular, the policy Bt = min{d, ⌈cBαt⌉} is (up to the cap and
integrality) optimal for a given budget.

Proof. By Cauchy–Schwarz,
(∑ α2

t

Bt

)
(
∑

Bt) ≥ (
∑

αt)
2. Substitute

∑
Bt = Q/2.

Theorem 4.5 (One block, expectation). Assume f : Rd→R is convex and L-smooth, and fix a Silver
block of length N = 2k−1 with steps {αt}N−1

t=0 . Let fµ be the uniform-ball smoothing, h = fµ/L,
and define the symmetric two-point estimator averaged over Bt unit directions (orthonormal columns
Vt ∈ St(d,Bt) drawn independently of Ft−1)

ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i, xt+1 = xt −

αt

L
ĝt.

5
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Then

E
[
f(xN )− f⋆

]
≤ rk LE∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t

Bt

(
1

2
d2Lµ2 +

2d

L
E∥∇f(xt)∥2

)
+

L

2
µ2 d

d+ 2
.

In particular, if ∥xt − x⋆∥ ≤ R, then ∥∇f(xt)∥ ≤ LR and

E
[
f(xN )− f⋆

]
≤ rk LR2 +

(
2dR2 + 1

2d
2µ2

)N−1∑
t=0

α2
t

Bt
+ Lµ2 d

d+ 2
.

Proof sketch. We apply the inexact-gradient Silver identity to h = fµ/L with ζt = (ĝt−∇fµ(xt))/L
(conditionally unbiased, so the identity has no linear noise term). Use the two-point second-moment
bound plus averaging-by-Bt, then convert from h to f using the value-bias of fµ. (see Appendix.)

Budget-aligned specialization. Let Bt = min{d, ⌈cB αt⌉} (orthogonal-on-spikes), and write
αmax = maxt αt. Then
Proposition 4.6 (Variance aggregation under Bt ∝ αt).

N−1∑
t=0

α2
t

Bt
≤ 1

cB

N−1∑
t=0

αt +
αmax

d

∑
t:αt>d/cB

αt.

In particular, if d ≥ cBαmax (cap inactive), then
∑

t α
2
t /Bt = (1/cB)

∑
t αt = Θ(ρk/cB).

Corollary 4.7 (Per-block calibration of µ and cB). If ρk

cB
·
(

1
2d

2Lµ2 + 2dLR2
)
≤ ε rk LR

2, then

E[f(xN )− f⋆] ≤ (1 + ε) rk LR
2 +

L

2
µ2 d

d+ 2
.

A sufficient choice is cB ≥ 2d ρk

εrk
and µ2 ≤ 2εrk

d2
R2

ρk .

Theorem 4.8 (Multi-block restarts). Run blocks j = 1, . . . , J with lengths Nj = 2kj − 1 and radii
µj (each fixed within the block), using Bt = min{d, ⌈cBαt⌉}. If ∥xt− x⋆∥ ≤ R across the run, then

E[f(xTJ
)− f⋆] ≤ LR2

J∑
j=1

rkj +
1

cB

J∑
j=1

(
1
2d

2Lµ2
j + 2dLR2

)
ρkj +

L

2
µ2
J

d

d+ 2
.

Remark 4.9 (Empirical status of Silver in first-order GD). As far as we are aware, the original Silver
papers and their support material emphasize theoretical certificates, and do not provide systematic
first-order empirical benchmarks. Discussions on empirical observations and generalizations (e.g.,
proximal/projected GD) are included, but a standardized FO benchmark suite on Silver vs. standard
schedules has not yet emerged. See Altschuler & Parrilo (2023a;b; 2024); Parrilo (2024); Altschuler
& Parrilo (2023c); Bok & Altschuler (2024).

4.4 ALGORITHM

Algorithm 1 ZO-SILVER: block-constant smoothing + orthogonal-on-spikes batching

1: Input: block length N = 2k − 1, radius µ > 0, Silver steps {αt}, cap d, batching constant
cB > 0

2: for t = 0, . . . , N − 1 do
3: Stepsize ηt = αt/L; Batch Bt = min{d, ⌈cB αt⌉}
4: Sample Vt = [vt,1, . . . , vt,Bt

] ∈ St(d,Bt) (orthonormal columns; e.g., thin QR of a Gaussian
matrix)

5: ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i

6: xt+1 = xt − ηt ĝt

6
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Sampling orthonormal directions. A simple implementation samples G ∈ Rd×Bt with i.i.d.
N (0, 1) entries and sets Vt to the Q factor of the thin QR decomposition G = VtR, giving Vt ∈
St(d,Bt) with Haar-distributed columns.

Corollary 4.10 (Per-block calibration of µ and batching). Fix a block of length N = 2k − 1 with
Bt = min{d, ⌈cBαt⌉}. Assume ∥∇f(xt)∥ ≤ LRt along the block (e.g., by projection or local

boundedness). If we choose µ and cB to satisfy ρk

cB
·
(

1
2d

2Lµ2 + 2dLR2
t

)
≤ ε · rkLR2

t , then the
block guarantee becomes

E[f(xN )− f⋆] ≤ (1 + ε) rkLR
2
t + L

2 µ
2 d

d+ 2
.

Equivalently, one sufficient choice is cB ≥ 2d ρk

ε rk
and µ2 ≤ 2ε rk

d2 · R
2
t

ρk .

Remark 4.11. In addition to the expectation-level bounds presented, we present high-probability
results (see Appendix), to further justify our design choices, in particular the batching policy adopted.

5 EXPERIMENTS

This section evaluates on two settings: (i) controlled, strongly-convex quadratics varying condition
number and dimension, and (ii) forward-only MeZO-style fine-tuning on GLUE tasks (SST-2,
RTE) using RoBERTa-large. Across both, we enforce budget-fairness (same number of function
evaluations).

Two-point ZO and budget matching. Each iteration uses the symmetric two-point estimator
(Sec. 3.1); querying Bt directions costs 2Bt function calls. We report and match Q = 2

∑
t Bt

across methods. We keep smoothing µ block-constant and use the same µ across baselines to isolate
scheduling effects.

We compare against a tuned ZO-GD (constant LR) baseline that uses the same two-point estimator,
smoothing µ, and matched query budget.

We first start by a quadratic test case, across different conditionings and dimensions, we then evaluate
on two GLUE classification tasks: SST-2 (binary sentiment) and RTE (recognizing textual entailment).
We adopt the MeZO forward-only two-point estimator and compare (i) constant learning rate baselines
to (ii) ZO-SILVER with clipped Silver stepsizes. We match the per-step query budget across both
methods (Silver uses the same base LR, and the constant-LR baseline is additionally matched to the
running-average of the clipped Silver multipliers).

5.1 QUADRATIC SUITE: PLOTS ACROSS CONDITIONING AND DIMENSION

We minimize ridge-type quadratics with prescribed condition numbers κ ∈ {5, 20, 35, 50} and
dimensions d∈{200, 500, 1000}. Each panel shows function value vs. iterations on a log y-scale;
per-step budgets are matched.

Observation. On easy instances, ZO-Silver closely tracks the tuned constant-LR baseline; spikes do
not destabilize training and sometimes provide a slight late-phase edge. As d increases, the late-phase
gap widens: ZO-Silver’s non-monotone spikes consistently accelerate log-decay at matched budgets.
In the ill-conditioned regime: ZO-Silver shows an advantage in later iterations, and reaches lower
final values with the same number of queries.
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Figure 1: Quadratics, κ = 5: ZO-Silver vs. tuned constant-LR under matched query budgets. κ = 20:
growing advantage of ZO-Silver with dimension. κ = 35, 50: ZO-Silver excels in later iterations
under equal budgets.

Summary across different dimensions and condition regimes. ZO-Silver is never worse in
well-conditioned cases and becomes increasingly better as conditioning (κ) and dimension (d) rise.
We validate this observation in the second part of our empirical experiments on LLM-finetuning test
cases, which are characterized by high conditioning and large dimension.

5.2 EXPERIMENTS ON ZEROTH-ORDER FINE-TUNING LLMS

We consider two GLUE classification tasks: SST-2 (binary sentiment) and RTE (binary entailment).
We fine-tune RoBERTa-large with two-point MeZO updates. For , we use a clipped schedule with
max multiplier αmax and match the mean LR to the constant-LR baseline to isolate scheduling effects.

PRELIMINARIES: MODEL, TASK, AND SETTING

Model. We fine-tune RoBERTa-large, a 24-layer masked-LM pretrain replica/extension of BERT
with an improved training recipe and larger corpora; RoBERTa established strong results on GLUE
and other benchmarks.2 Liu et al. (2019)

2See Liu et al. (2019).
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Benchmark. GLUE is a standard multi-task NLU benchmark; we focus on two classification tasks
that are widely used in few-shot studies: SST-2 (binary sentiment) and RTE (textual entailment).3
Wang et al. (2019); Socher et al. (2013); tfd

Tasks. SST-2 consists of single-sentence movie-review snippets labeled positive/negative (Socher
et al., 2013); RTE asks whether a hypothesis is entailed by a premise, derived from the PASCAL/TAC
RTE challenges (Dagan et al., 2005; Bentivogli et al., 2009). Socher et al. (2013); tfd; Dagan et al.
(2005); Bentivogli et al. (2009)

Few-shot protocol. We adopt the common K=16 few-shot split per task (prompted examples plus
dev/test) and run full-parameter, forward-only optimization. This isolates the effect of stepsize
scheduling in the constrained-sample regime (Wang et al., 2019). Wang et al. (2019)

Forward-only (MeZO). MeZO fine-tunes LMs using a two-point, forward-only zeroth-order estima-
tor (two forward passes per update), achieving an inference-level memory footprint and supporting
full-parameter or PEFT variants (Malladi et al., 2023b). Our runs keep the per-step forward-pass
budget identical across schedulers. Malladi et al. (2023b)

SCHEDULERS AND FAIRNESS

Clipped Silver vs. constant LR. We compare (i) MeZO with a constant learning rate and (ii) MEZO-
SILVER, which uses Silver stepsizes with clipping αclip

t = min{αt, αmax}. To attribute gains purely
to when learning-rate mass is deployed, the constant-LR baseline is set to the running-average LR
induced by the clipped Silver multipliers times the same base LR. If

J =
⌊
1 + logρ(αmax − 1)

⌋
, lim

n→∞

1

n

n−1∑
t=0

min{αt, αmax} =
(

ρ
2

)J+1

+ 2−(J+1)(αmax − 1),

then with base LR 10−7 and αmax = 128, the matched constant LR is ≈ 4.727× 10−7.

Learning-rate schedule sanity check. Figure 2 plots the running-average learning rate induced by
the clipped Silver schedule (base LR 10−7; clip αmax = 128) and the constant LR chosen to match
that mean. This controls for mean-LR effects when comparing schedulers.

Setup: Few-shot K=16; 5,000 steps with evaluation every 500 steps; logging every 10 steps;
per-device train batch 64; per-device eval batch 4. All schedulers use the same two-point estimator,
hence the same per-step forward-pass budget.
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Figure 2: Clipped Silver schedule
vs. constant LR baseline. We plot
the running average learning rate in-
duced by the Silver stepsizes with
base learning rate 1e − 7 and clip-
ping value 128.
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Figure 3: Evaluation loss vs. training steps for RoBERTa-
large fine-tuning on (a) SST-2 and (b) RTE. We compare
standard MeZO with constant learning rates to MeZO-Silver
using a clipped Silver schedule.

6 CONCLUSION

This work, with the theoretical analysis and subsequent experimental work presented shows non-
monotone Silver stepsizes pair naturally with two-point zeroth-order (ZO) estimators when we

3GLUE: Wang et al. (2019). SST-2 originates from the Stanford Sentiment Treebank (Socher et al., 2013);
GLUE’s RTE combines examples from RTE1–3 and RTE5.
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optimize a smoothed objective. More broadly, our results provide the first step toward bringing
stepsize hedging into the ZO regime: the Silver schedule, originally proved to accelerate plain gradient
descent for smooth convex optimization, translates to the smoothed problem with conditionally
unbiased ZO gradients, and preserves its deterministic multi-step progress up to standard ZO floors,
compared with a constant stepsize scheme.

Empirically, we validated these claims in two complementary settings. On controlled, strongly-convex
quadratics, is never worse than a carefully tuned constant-LR ZO baseline on well-conditioned
instances, and it increasingly outperforms as the condition number and dimension grow, precisely
where variance management matters most. In a forward-only fine-tuning regime (MeZO-style
updates) on GLUE tasks (SST-2, RTE) with RoBERTa-large, clipped Silver steps combined with
budget-aware batching give faster evaluation-loss decay and earlier stabilization than constant-LR
under the same forward-pass budget.

Limitations Our analysis assumes convex, L-smooth objectives and focuses on two-point estimators
with orthonormal direction batches; the LLM experiments could be further expanded to a more
comprehensive benchmark. ZO methods as it is traditionally known can also incur higher query
complexity than FO methods; throughput can become a bottleneck if the per-step budget is very
small.

Outlook and Future Directions Several directions look promising: (i) combining Silver with
variance-reduced ZO estimators and adaptive batching; (ii) proximal and constrained variants (pro-
jected/regularized objectives); (iii) task-aware smoothing schedules and spike-aware data reuse for
forward-only fine-tuning; and (iv) extending the inexact Silver certificate beyond convexity (e.g.,
PL or one-point weakly convex settings). We hope this work helps position stepsize hedging as
a broadly useful knob in practical ZO optimization, especially in memory-constrained fine-tuning
where forward-only updates are attractive.
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A UNIFORM-BALL BIAS BOUNDS AND THE SPHERE GRADIENT IDENTITY

Let v ∼ Unif(Bd) and u ∼ Unif(Sd−1). For fµ(x) = Evf(x+ µv), the Descent Lemma gives

−L
2 µ

2E∥v∥2 ≤ fµ(x)− f(x) ≤ L
2 µ

2E∥v∥2, E∥v∥2 =
d

d+ 2
.

Moreover ∥∇fµ(x)−∇f(x)∥ ≤ Lµd
2 . To prove (1), apply the divergence theorem to

∫
Bd ∇f(x+

µz) dz.
Lemma A.1 (Ball-to-sphere gradient identity, with constants). Let fµ(x) = Ev∼Unif(Bd)f(x+ µv)

and u ∼ Unif(Sd−1). Then

∇fµ(x) =
d

µ
Eu

[
f(x+ µu)u

]
.

Remark A.2 (Ball-to-sphere identity: one-line proof). Let Ad−1 = dVd be sphere area and ball
volume. Differentiating fµ(x) = 1

Vd

∫
Bd f(x + µz) dz and applying the divergence theorem to

∇f(x + µz) gives ∇fµ(x) = 1
Vd
· 1µ

∫
Sd−1 f(x + µu)u dS = d

µ Eu∼Unif(Sd−1)[f(x + µu)u]. See
Flaxman et al. (2005) for bandit smoothing details.
Lemma A.3 (Unbiasedness for ∇fµ). With u ∼ Unif(Sd−1) and ĝ(x;µ, u) = d

2µ (f(x + µu) −
f(x− µu))u, we have Eu[ĝ(x;µ, u)] = ∇fµ(x).
Lemma A.4 (Bias of fµ and ∇fµ). Assume f ∈ C1,1

L .

(a) (Ball value bias) For v ∼ Unif(Bd),

|fµ(x)− f(x)| ≤ L
2 µ2 E∥v∥2 = L

2 µ2 d

d+ 2
.

(b) (Ball gradient bias) For v ∼ Unif(Bd),

∥∇fµ(x)−∇f(x)∥ ≤ L
2 dµ.

Proof of (b). By (1), ∇fµ(x) − ∇f(x) = d
µ Eu

[
(f(x + µu) − f(x) − ⟨∇f(x), µu⟩)u

]
. By the

Descent Lemma along the line x+ τµu and ∥u∥ = 1, |f(x+ µu)− f(x)− ⟨∇f(x), µu⟩| ≤ L
2 µ

2.

Taking norms and expectations gives ∥∇fµ(x)−∇f(x)∥ ≤ d
µ ·

L
2 µ

2E∥u∥ = L
2 dµ, since ∥u∥ = 1

a.s.

Proof of Lemma 4.1. Let f ∈ C1,1
L , u ∼ Unif(Sd−1), and ĝ(x;µ, u) = d

2µ

(
f(x+µu)−f(x−µu)

)
u.

Then
E
∥∥ĝ(x;µ, u)−∇fµ(x)∥2 ≤ Csig d ∥∇f(x)∥2 + Ccurv d

2L2µ2,

with (Csig, Ccurv) = (2, 1
2 ). Averaging any B ≥ 1 unit directions gives a 1/B reduction. Using

B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in
practice (Kozak et al., 2023; Feng & Wang, 2023).

Fix x ∈ Rd and u ∼ Unif(Sd−1). Since f ∈ C1,1
L , write the Descent Lemma at x in the two

directions ±µu:

f(x± µu) = f(x) ± µ⟨∇f(x), u⟩ + r±(x, u), |r±(x, u)| ≤
L

2
µ2.

Subtract to get the symmetric difference

∆(x, u) := f(x+ µu)− f(x− µu) = 2µ⟨∇f(x), u⟩ + (r+ − r−),

with |r+ − r−| ≤ Lµ2. Hence

ĝ(x;µ, u) = d ⟨∇f(x), u⟩u +
d

2µ
(r+ − r−)u.

Using E[uu⊤] = I/d for u ∼ Unif(Sd−1) and ∥u∥ = 1,

E
∥∥ĝ(x;µ, u)∥∥2 ≤ 2 d ∥∇f(x)∥2 +

d2

2µ2
E
[
(r+ − r−)

2
]
≤ 2 d ∥∇f(x)∥2 +

1

2
d2L2µ2.
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For the centered version, note that E ĝ(x;µ, u) = ∇fµ(x) by the ball-to-sphere identity, so E∥ĝ −
∇fµ(x)∥2 = E∥ĝ∥2 − ∥∇fµ(x)∥2 ≤ E∥ĝ∥2, which gives the same bound. Finally, for an average
over B unit directions ĝB = 1

B

∑B
i=1 ĝ(x;µ, ui) (independent or not), convexity of ∥ · ∥2 gives

E∥ĝB −EĝB∥2 ≤ 1
B

∑B
i=1 E∥ĝ(x;µ, ui)−Eĝ∥2, so both second-moment bounds divide by B.

Proof of Lemma 4.3. Let h = fµ/L (so h is 1-smooth and convex) and suppose xt+1 = xt −
αt(∇h(xt) + ζt) with E[ζt | Ft] = 0. For a Silver block N = 2k − 1,

E
[
h(xN )− h⋆

]
≤ rk E∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t E∥ζt∥2.

Let {λij} be the Silver multipliers such that for any 1-smooth convex ϕ,∑
i̸=j

λijQij [ϕ] = ∥x0 − x⋆∥2 − ∥xN − ck∇ϕ(xN )− x⋆∥2 + ϕ(x⋆)− ϕ(xN )

rk
. (⋆)

Apply (⋆) with ϕ = h. In the Silver derivation, the only places where the update rule enters are: (i)
linear telescopings xa − xb = −

∑a−1
s=b αs∇h(xs) and (ii) the terminal square ∥xN − ck∇h(xN )−

x⋆∥2. With inexact updates we have xa − xb = −
∑

αs∇h(xs) −
∑

αsζs. Every such linear
ζ-term appears inside an inner product with an Fs-measurable vector, hence its expectation is 0 by
E[ζs | Fs] = 0. For the terminal square,

xN − ck∇h(xN )− x⋆ = A−
N−1∑
s=0

αsζs, A := x0 − x⋆ −
N−1∑
s=0

αs∇h(xs)− ck∇h(xN ).

Therefore

E∥xN − ck∇h(xN )− x⋆∥2 = E∥A∥2 + E
∥∥∥N−1∑

s=0

αsζs

∥∥∥2
(the cross term vanishes in expectation as above). By Lemma 4.2, this last term equals∑N−1

t=0 α2
t E∥ζt∥2. Taking expectations in (⋆), dropping the nonnegative left-hand side

∑
λijQij [h],

and rearranging gives the claim.
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B HIGH-PROBABILITY GUARANTEES

We analyze one Silver block of length N = 2k−1 iterations, run on h = fµ/L, with updates

xt+1 = xt − αt

(
∇h(xt) + ζt

)
, ζt :=

1

L

(
ĝt −∇fµ(xt)

)
.

Throughout, (Ft) is the natural filtration, E[ζt | Ft−1] = 0, and ∥ζt∥ ≤ G a.s. (enforced in practice
by clipping if needed).

Predictable quadratic variation. Define

V :=

N−1∑
t=0

α2
t E

[
ζtζ

⊤
t | Ft−1

]
, ᾱ := max

0≤t≤N−1
αt.

A matrix Freedman tool. We use Tropp’s matrix Freedman inequality applied to the self-adjoint
dilation of vector martingale differences; see Theorem B.1. This gives the sharp log(2d/δ) factor.4

Theorem B.1 (Matrix Freedman for vector MDS). Let ζt ∈ Rd be an (Ft)-adapted martingale
difference sequence with E[ζt | Ft−1] = 0 and ∥ζt∥ ≤ G a.s., and let αt be Ft−1-measurable
(predictable). With V and ᾱ as above, for any δ ∈ (0, 1),∥∥∥N−1∑

t=0

αt ζt

∥∥∥ ≤ √
2λmax(V ) log

2d

δ
+

ᾱG

3
log

2d

δ
w.p. ≥ 1− δ.

Proof. Apply Tropp’s matrix Freedman to the self-adjoint dilation Yt =

(
0 (αtζt)

⊤

αtζt 0

)
. Then

∥Yt∥ ≤ ᾱG and
∑

t E[Y 2
t | Ft−1] = diag(V, V ), so ∥

∑
t E[Y 2

t | Ft−1] ∥ = λmax(V ). The claim
follows from the stated matrix tail bound.

Reference: Tropp (2011).

Where the stochastic terms enter the Silver certificate. Let {λij} be the nonnegative multipliers
certifying the Silver block identity (co-coercivity certificate). For exact GD, one has∑

i̸=j

λijQij [h] = ∥x0 − x⋆∥2 − ∥xN − ck∇h(xN )− x⋆∥2 + h(x⋆)− h(xN )

rk
,

with Qij [h] ≥ 0 by co-coercivity. When xt+1 = xt − αt(∇h(xt) + ζt), re-running the same algebra
produces two stochastic contributions:

(i) the terminal square contributes
∥∥∑N−1

t=0 αtζt
∥∥2;

(ii) the linear telescopings contribute a scalar martingale sum
∑N−1

t=0 ⟨wt, ζt⟩with wt predictable
(i.e., Ft−1-measurable).

The following bound on wt uses only structural properties (nonnegativity and k-sparsity) of the
multipliers, established for Silver in (Altschuler & Parrilo, 2023a, Thm. 5.2 & App. B).

Lemma B.2 (Predictable linear weights). There exists an absolute constant CSil > 0 (depending
only on the Silver certificate) such that the predictable vectors wt satisfy ∥wt∥ ≤ CSil αt for all t.

Proof. Noise enters linearly wherever the update is used in telescopings. Each time index t is
“covered” by only O(1) pairs (i, j) by k-sparsity, and the associated coefficients are nonnegative.
Collect these coefficients and the corresponding predictable vectors into wt; their ℓ1-sum is O(αt),
hence ∥wt∥ ≤ CSilαt. See (Altschuler & Parrilo, 2023a, §5.2 and App. B) for the multipliers’
structure.

4Classical scalar Freedman Freedman (1975) and the ε-net argument also apply but lead to a weaker
log(18d/δ) dimension factor; see Remark B.4.
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Theorem B.3 (HP inexact Silver, matrix version). Run one Silver block on h = fµ/L with updates
xt+1 = xt − αt(∇h(xt) + ζt), E[ζt | Ft−1] = 0, and ∥ζt∥ ≤ G a.s. Define V and ᾱ as above and
let CSil be as in Lemma B.2. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

h(xN )− h⋆ ≤ rk ∥x0 − x⋆∥2 +
(√

2λmax(V ) log 4d
δ + ᾱG

3 log 4d
δ

)2

+ CSil

(√
2 d λmax(V ) log 4

δ + ᾱG
3 log 4

δ

)
.

Proof. Re-run the Silver certificate with the inexact update. The left side
∑

i̸=j λijQij [h] stays
nonnegative. Move all terms and upper bound by discarding −∥xN − ck∇h(xN ) − x⋆∥2. What
remains is

h(xN )− h⋆ ≤ rk∥x0 − x⋆∥2 +
∥∥∥∑

t

αtζt

∥∥∥2 +
∑
t

⟨wt, ζt⟩.

Apply Theorem B.1 to S :=
∑

t αtζt with failure probability δ/2, and scalar Freedman to M :=∑
t⟨wt, ζt⟩ (increments bounded by ∥wt∥ ∥ζt∥ ≤ CSilαtG; variance proxy

∑
t E[⟨wt, ζt⟩2 | Ft−1] ≤

C2
Sil tr(V ) ≤ C2

Sil d λmax(V )) with failure probability δ/2. Combine the two bounds via a union
bound.

Remark B.4 (On dimension factors and alternatives). Using an ε-net on the sphere plus scalar
Freedman gives the same structure but with log(18d/δ) in the square and log(18d/δ) in the linear
term; see any standard treatment of sphere nets. The matrix approach above is strictly tighter in d.
Freedman (1975); Tropp (2011)
Corollary B.5 (Direction randomness only). Assume function values are deterministic and at step t
we average Bt unit directions that are orthonormal (Vt ∈ St(d,Bt)). Then

λmax(V ) ≤
N−1∑
t=0

α2
t E∥ζt∥2 ≤

N−1∑
t=0

α2
t

Bt

( 2d

L2
∥∇f(xt)∥2 +

1

2
d2µ2

)
.

In particular, if Bt = min{d, ⌈cBαt⌉} and ∥∇f(xt)∥ ≤ LR, then

λmax(V ) ≤
(
2dR2 + 1

2d
2µ2

) 1

cB

∑
t

αt +
αmax

d

∑
αt>d/cB

αt

 .

Proof. λmax(V ) ≤
∑

t α
2
t E∥ζt∥2 and the two-point second moment with 1/Bt averaging gives

E∥ζt∥2 ≤ 1
Bt

(
2d
L2 ∥∇f(xt)∥2 + 1

2d
2µ2

)
(sphere two-point; proof in appendix). The batching bound

is a direct summation with the cap handled by the displayed decomposition.

Corollary B.6 (Additive value noise). Suppose each value query returns f(x)+ξ with E[ξ | Ft−1] =
0, Var(ξ | Ft−1) ≤ σ2, independently across the 2Bt calls at step t. Then

λmax(V ) ≤
N−1∑
t=0

α2
t

d2 σ2

2L2 µ2Bt
.

With Bt = min{d, ⌈cBαt⌉} and inactive cap, λmax(V ) = Θ
(

d2 σ2

L2µ2 cB
ρk

)
.

Proof. For each orthonormal direction, Var(ξ+ − ξ−) = 2σ2; orthonormality kills cross-terms,
giving E∥ĝ(noise)t ∥2 = d2σ2

2µ2Bt
. Divide by L2 to convert to ζt and sum with weights α2

t .

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C MATRIX FREEDMAN TOOLS AND PREDICTABLE WEIGHTS

We use the following standard Matrix Freedman bound Tropp (2011).

Lemma C.1 (Matrix Freedman via self-adjoint dilation). Let ζt ∈ Rd be an (Ft)-martingale
difference with E[ζt | Ft−1] = 0 and ∥ζt∥ ≤ G a.s. Let αt be Ft−1-measurable and set

S :=

N−1∑
t=0

αt ζt, V :=

N−1∑
t=0

α2
t E[ζtζ⊤t | Ft−1], ᾱ := max

t
αt.

Then for any δ ∈ (0, 1), with probability at least 1− δ,

∥S∥ ≤
√

2λmax(V ) log
2d

δ
+

ᾱG

3
log

2d

δ
.

Proof. Apply Tropp’s matrix-Freedman to the self-adjoint dilation Yt =
(

0 (αtζt)
⊤

αtζt 0

)
. Then

∥Yt∥ ≤ ᾱG and
∑

t E[Y 2
t | Ft−1] = diag(V, V ), whose spectral norm is λmax(V ).

Theorem C.2 (Vector Freedman via a 1/4-net). Under the assumptions of Lemma C.1, with proba-
bility at least 1− δ,∥∥∥N−1∑

t=0

αt ζt

∥∥∥ ≤ 2

√
2λmax(V ) log

18d

δ
+

2ᾱG

3
log

18d

δ
.

Proof. Cover Sd−1 by a 1/4-net of size ≤ 9d; use ∥z∥ ≤ 2maxs∈N ⟨s, z⟩ and scalar Freedman on
each s, then union bound (two-sided tails give the extra factor 2).

Next we bound the linear weights that arise when we re-run the Silver certificate with inexact updates.

Lemma C.3 (Predictable linear weights in the Silver certificate). Let {αt}N−1
t=0 be a Silver block

(length N = 2k − 1) and let the multi-step identity be instantiated with the explicit nonnegative
multipliers {λij} given by the recursive gluing construction in (Altschuler & Parrilo, 2023b, Eq.
(3.2), Thm. 3.4). If the update rule is inexact,

xt+1 = xt − αt

(
∇h(xt) + ζt

)
, E[ζt | Ft] = 0,

then the stochastic linear terms that appear in the identity can be written as a scalar martingale sum

N−1∑
t=0

⟨wt, ζt⟩, wt ∈ Rd is Ft-measurable,

with the uniform bound
∥wt∥ ≤ CSil αt, CSil ≤ 2.

Proof. We expand the certificate exactly as in (Altschuler & Parrilo, 2023b, §3), but use xs+1−xs =
−αs(∇h(xs) + ζs) in the places where the identity invokes the update rule (“by definition of GD”
lines in the proof). Each occurrence of xi − xj becomes a sum over s ∈ [j, i− 1] with coefficients
±1 times αs(∇h(xs) + ζs). Linear noise terms collect into

∑
s⟨Ws, ζs⟩, where Ws is a linear

combination of gradients ∇h(xi) with nonnegative weights that are linear in the multipliers λij

for those pairs (i, j) that “cover” s. The k-sparsity property of the multipliers (defined right after
Example 3.3 in Altschuler & Parrilo (2023b)) guarantees each s is covered a uniformly bounded
number of times under the recursive gluing (Theorem 3.4). A short induction on the gluing step
gives ∥Ws∥ ≤ CSilαs ∥∇h(xs)∥ with CSil ≤ 2 (the factor “2” comes from the two children in the
binary gluing plus the cap at the parent; a more refined book-keeping gives CSil = 1). Finally, using
Cauchy–Schwarz and 1-smoothness to replace ∥∇h(xs)∥ by a predictable vector of norm at most 1
gives the claimed ∥ws∥ ≤ CSilαs.
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Lemma C.4 (Freedman for predictable linear forms). With wt as in Lemma C.3 and ∥ζt∥ ≤ G a.s.,
the scalar martingale M :=

∑
t⟨wt, ζt⟩ satisfies, for any δ ∈ (0, 1),

|M | ≤
√
2
∑
t

E[⟨wt, ζt⟩2 | Ft] log
2
δ + 1

3 max
t
∥wt∥G log 2

δ

≤ CSil

√
2 tr(V ) log 2

δ + CSil

3 ᾱ G log 2
δ

≤ CSil

√
2 d λmax(V ) log 2

δ + CSil

3 ᾱ G log 2
δ .

Proof. Apply scalar Freedman to the MDS Zt := ⟨wt, ζt⟩, noting E[Z2
t | Ft] = w⊤

t E[ζtζ⊤t |
Ft−1]wt ≤ ∥wt∥2 tr

(
E[ζtζ⊤t | Ft−1]

)
, and ∥wt∥ ≤ CSilαt. Summing over t gives the displayed

bound.

Proof of Theorem B.3. Re-run the Silver certificate (the identity in (Altschuler & Parrilo, 2023b, Eq.
(3.2))) with xt+1 = xt − αt(∇h(xt) + ζt). The left-hand side (a weighted sum of co-coercivities) is
nonnegative. The right-hand side equals ∥x0 − x⋆∥2 − ∥xN − ck∇h(xN )− x⋆∥2 + h(x⋆)−h(xN )

rk
+

(noise terms). The only stochastic terms are: (i) the terminal square contribution
∥∥∑

t αtζt
∥∥2 and

its cross term, and (ii) the linear martingale sum
∑

t⟨wt, ζt⟩ from the telescopings. Bounding the
cross term by 2 ∥A∥

∥∥∑
t αtζt

∥∥ and then by Young’s inequality absorbs it into the square. Applying
Lemma B.1 to

∑
t αtζt and Lemma C.4 to

∑
t⟨wt, ζt⟩ gives the result.

Proof of Corollary B.5. Use the two-point second-moment bound and 1/Bt averaging to get
E∥ζt∥2 ≤ 1

Bt

(
2d
L2 ∥∇f(xt)∥2 + 1

2d
2µ2

)
, then insert into V and use the policy Bt =

min{d, ⌈cBαt⌉}.

Proof of Corollary B.6. With independent value noises ξt,i,+, ξt,i,− (variance ≤ σ2), Var((ξt,i,+ −
ξt,i,−)) = 2σ2; orthonormality gives E∥ĝ(noise)t ∥2 = d2

4µ2B2
t
· (2σ2Bt) =

d2σ2

2µ2Bt
. Divide by L2 to

convert to ζt, then sum with weights α2
t .
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D BACKGROUND ON MEZO (FORWARD-ONLY ZEROTH-ORDER FINE-TUNING)

What problem it solves. Backpropagation through large Transformers requires storing activations
for every layer, making full-parameter fine-tuning memory-prohibitive. MeZO replaces backprop with
a two-point zeroth-order (ZO) estimator, so each update uses only forward passes and the memory
footprint is essentially that of inference (Malladi et al., 2023a).

How MeZO works (one step). At parameters x ∈ Rp, MeZO samples B perturbation directions
vi (Rademacher or Gaussian; optionally orthonormalized) and reuses the same minibatch across ±ε
evaluations to reduce variance:

ĝ(x) =
1

B

B∑
i=1

ℓ(x+ εvi)− ℓ(x− εvi)

2ε
vi, x← x− η ĝ(x).

Per update the cost is 2B forward passes and no backward graph. We adopt this forward-only
estimator and compose it with clipped Silver stepsizes and budget-aware batching (Bt ∝ αt).

Why it is memory-efficient. The update is computed in place from scalar losses; no layer activations
or per-parameter gradients are stored. In practice, this enables full-parameter tuning at (roughly)
inference memory, while retaining the ability to optimize non-differentiable objectives (e.g., accuracy
or F1) (Malladi et al., 2023a).

Compatibility with PEFT and quantization. MeZO can train all parameters or only a small set
of adapter weights; it is complementary to PEFT such as LoRA (Hu et al., 2021) and works with
quantization-aware setups (e.g., QLoRA) (Dettmers et al., 2023). Our experiments use full-parameter
updates (forward-only) on RoBERTa-large.

Limitations and when to use it. ZO generally needs more function evaluations than FO; training
can be slower if the per-step budget is small. MeZO shines when memory, not pure throughput, is the
bottleneck (limited-VRAM devices; very deep models; non-differentiable objectives).

Algorithm 2 MEZO (forward-only two-point ZO, one iteration)

1: Inputs: current params xt, LR ηt, radius ε, batch size Bt, minibatch St
2: Sample Vt = [vt,1, . . . , vt,Bt ] (unit directions; optional thin-QR for orthonormal columns)
3: For each i=1..Bt: compute losses L+

i = ℓ(xt + εvt,i;St) and L−
i = ℓ(xt − εvt,i;St)

4: Form ĝt =
1

Bt

Bt∑
i=1

L+
i − L−

i

2ε
vt,i

5: Update in place: xt+1 = xt − ηt ĝt (only forward passes; memory ≈ inference)

How we use MeZO. We keep the forward-only estimator above but (i) run it on the smoothed
objective fµ and (ii) drive the step sizes with the Silver schedule (clipped), allocating budget via
Bt ∝ αt. The inexact-Silver identity then converts stochasticity into a single quadratic term, which
the budget-aware batching controls; see Sec. 5.2 for results on SST-2 and RTE.
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