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ABSTRACT

We study gradient-free minimization of smooth convex functions through Silver
stepsizes—a non-monotone, 2-adic schedule that accelerates gradient descent—and
show how to compose it with two-point zeroth-order (ZO) estimators on a smoothed
objective. We apply Silver’s multi-step Lyapunov analysis to smoothed objectives
and show that it carries over verbatim when gradients are replaced by unbiased
two-point estimators with a tax in the form of a quadratic variance term. We control
this term via an orthogonal-on-spikes batching policy that allocates directions
proportionally to the Silver steps (with a cap at dimension), achieving budget-
optimal variance aggregation. Empirically, we validate our approach through both
numerical experiments and MeZO-style forward-pass-only fine-tuning of large
language models, incorporating practical considerations such as clipping strategies,
and demonstrate its superior performance.

1 INTRODUCTION

Zeroth-order (ZO, derivative-free) optimization addresses the common setting where we can query
function values but cannot reliably obtain gradients: the model is a black box, gradients are pro-
hibitively expensive or noisy, or we wish to optimize through a non-differentiable system (e.g.,
simulators, private APIs). This regime occurs across machine learning and scientific computing:
hyperparameter and architecture tuning, black-box adversarial attacks, policy search and evolution
strategies in RL, and large-model fine-tuning under tight memory budgets (Larson et al., 2019;
Flaxman et al., 2005; Duchi et al., 2015; Shamir, 2017; Salimans et al., 2017; Malladi et al., 2023).

Families of ZO estimators. Modern ZO methods approximate gradients from function values
using structured perturbations. (i) One-point bandit smoothing forms an unbiased estimator of
the gradient of a smoothed objective from a single evaluation (Flaxman et al., 2005). (ii) Two-
point estimators—our focus—use symmetric differences f(x+ µu)− f(x− µu) along a random
direction u, achieving strictly better variance/rates and minimax-optimal guarantees for smooth
convex objectives (Duchi et al., 2015; Shamir, 2017; Nesterov & Spokoiny, 2017). (iii) Coordinate-
wise finite differences estimate partial derivatives one coordinate at a time (often 2d queries per
gradient) and are widely used in black-box deep learning (e.g., ZOO attacks) (Chen et al., 2017). (iv)
SPSA perturbs all coordinates simultaneously using Rademacher noise and recovers a two-evaluation
gradient proxy with strong SA-style guarantees (Spall, 1992). (v) Orthogonal batches sample B
mutually orthonormal directions (Stiefel manifold) per iteration; this reduces the estimator variance
at fixed budget and unifies several schemes, including spherical smoothing and coordinate descent
(Kozak et al., 2023; Feng & Wang, 2023).

Core bottlenecks in ZO. ZO estimators introduce a bias–variance tradeoff via the smoothing radius
µ and sampling distribution. Even for smooth convex objectives, the best-known two-point schemes
incur a statistical floor that scales with dimension under noisy queries; controlling the variance
accumulation across iterations is the central algorithmic challenge (Duchi et al., 2015; Shamir, 2017;
2013; Jamieson et al., 2012).

A complementary acceleration lever: stepsize hedging (Silver). Independently of estimator
design, recent work shows that carefully structured stepsizes alone can accelerate plain gradient
descent on smooth convex functions. The Silver stepsize schedule is a simple, explicit, fractal
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sequence with a 2-adic block structure. It admits a multi-step Lyapunov certificate (“Silver identity”)
which yields a convergence rate of O

(
ε− logρ 2

)
= O

(
ε−0.7864

)
iterations for gradient descent, where

ρ = 1 +
√
2 is the silver ratio (Altschuler & Parrilo, 2023a;b; 2024). Intuitively, the schedule

interleaves small steps with periodic “spikes” whose algebraic cancellation accelerates net progress
across blocks.

This paper: composing Silver with two-point ZO on smoothed objectives. We bring these
strands together. We run the Silver schedule on a smoothed objective h = fµ/L (blockwise-
constant µ), and replace exact gradients by unbiased symmetric two-point estimators for ∇fµ along
orthonormal batches of directions. The Silver identity’s linear noise terms cancel in expectation,
so the entire stochastic tax collapses to an explicit quadratic variance term, which we control by
aligning batch size with the stepsize spikes (Bt ∝ αt, capped at d). This orthogonal-on-spikes policy
concentrates averaging where it matters most while keeping the total query budget fixed.

Motivation Two-point estimators are unbiased for∇fµ (not∇f ), making the smoothed problem
fµ the right analytical object. The Silver identity is robust to conditionally unbiased inexact gradients
and only pays the quadratic term from the terminal square in the certificate—precisely what batching
and blockwise µ can control. Orthogonal directions improve constants without complicating the
analysis or the memory footprint (Kozak et al., 2023; Feng & Wang, 2023).

We make the following contributions in this work.

• Silver-on-smoothing with two-point ZO: We adapt the Silver multi-step analysis to h =
fµ/L with symmetric two-point estimators, showing the identity carries over verbatim with
a single variance aggregation term

∑
t α

2
tE∥ζt∥2 (no linear noise term).

• Variance control via orthogonal-on-spikes batching: Under a fixed query budget per block,
we prove that allocating batch sizes proportional to the Silver steps (Bt ∝ αt, capped at
d) optimally controls

∑
t α

2
t /Bt (Cauchy–Schwarz tightness), and we instantiate this with

Stiefel sampling.
• High-probability bounds via Freedman: We give a simple high-probability translation of the

Silver identity with martingale differences, yielding dimension-aware tails in terms of the
predictable quadratic variation.

• Practical ZO for LLM fine-tuning: We apply the method to MeZO-style forward-only full-
parameter fine-tuning and discuss practical details (direction orthogonalization, clipping,
memory footprint.) (Malladi et al., 2023; Hu et al., 2021; Dettmers et al., 2023).

Organization. Section 3.1 states the formal setup and notation; Section 3.2 summarizes the Silver
schedule and the specific properties we use. Section ?? develops the inexact-gradient Silver identity
for two-point ZO on fµ and the variance control via orthogonal-on-spikes batching. Experiments
appear in Section 5.

2 RELATED WORK

Derivative-free / zeroth-order optimization. Classical DFO covers direct-search, model-based
trust-region, and interpolation methods; recent surveys unify these with randomized finite-difference
estimators used in ML (Larson et al., 2019). For convex ZO with random directions, one-point
bandit smoothing dates to Flaxman et al. (2005). Two-point estimators achieve optimal rates in
smooth/stochastic and adversarial settings (Duchi et al., 2015; Shamir, 2017). Nesterov & Spokoiny
(2017) give a self-contained analysis with explicit smoothing constants. Building on this line of work,
MeZO (Malladi et al., 2023) brings two-point, forward-only ZO into LLM fine-tuning, showing that
competitive adaptation is possible with inference-level memory (no backprop activations). In this
work, we build the analyse with a uniform sphere sampling for slightly tighter dimension-dependent
estimation variance at high dimension.

Estimator families and variance reduction. Coordinate-wise finite differences (up to 2d
queries/gradient) are common in black-box deep learning, e.g., ZOO (Chen et al., 2017). SPSA
provides a two-evaluation coordinate-free estimator rooted in stochastic approximation (Spall, 1992).
Sampling orthogonal directions (Stiefel manifold) reduces variance and unifies spherical and coordi-
nate schemes (Kozak et al., 2023); refined bounds appear in Feng & Wang (2023). Variance-reduced
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ZO methods (e.g., ZO-SVRG/SPIDER-SZO) are complementary and can be combined with our
blockwise policy (Ji et al., 2019; Fang et al., 2018).

Zeroth-order smoothing and two-point estimators. Ball/sphere and Gaussian smoothing with
two-point estimators are classical; see Flaxman et al. (2005) (one-point bandit smoothing), Duchi
et al. (2015); Shamir (2017) (two-point optimal rates), and Nesterov & Spokoiny (2017) (Gaussian
smoothing with explicit moment and bias constants). We emphasize the uniform ball/sphere pair,
which gives dimension-friendly bias constants and a clean gradient identity.

Stepsize hedging / Silver schedule. The Silver schedule is a simple explicit fractal stepsize sequence
that accelerates plain gradient descent in both strongly convex and smooth convex regimes. The
analysis hinges on a multi-step descent identity and 2-adic structure; see Altschuler & Parrilo
(2023a;b; 2024) for the arXiv and final journal versions. The rate T− logρ 2 with ρ = 1 +

√
2 lies

between classical O(ε−1) and Nesterov’s O(ε−1/2).

Orthogonal directions and variance reduction. Using mutually orthogonal directions (sampling on
the Stiefel manifold) provably reduces estimator variance and improves constants compared to i.i.d.
directions; see Kozak et al. (2023); Feng & Wang (2023).

3 PRELIMINARIES

3.1 PROBLEM SETUP AND NOTATION

We minimize a convex L-smooth function f : Rd → R with minimizer x⋆. We adopt the standard
uniform-ball smoothing

fµ(x) := Ev∼Unif(Bd)f(x+ µv), h(x) := fµ(x)/L,

so that h is 1-smooth and convex. Let u ∼ Unif(Sd−1). The sphere-gradient identity gives

∇fµ(x) =
d

µ
Eu

[
f(x+ µu)u

]
,

hence both the one-point d
µf(x+ µu)u and symmetric two-point

ĝ(x;µ, u) =
d

2µ

(
f(x+ µu)− f(x− µu)

)
u

are unbiased for ∇fµ(x). We use the symmetric two-point estimator because it enjoys sharper
variance/rate guarantees in smooth convex problems (Duchi et al., 2015; Shamir, 2017; Nesterov &
Spokoiny, 2017).

Iteration, stepsizes, and batching. We run a Silver block of length N = 2k − 1 with stepsizes
{αt}N−1

t=0 (Section 3.2), update

xt+1 = xt − αt

L ĝt, ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i,

and use orthogonal-on-spikes batching Bt = min{d, ⌈cB αt⌉} with Vt = [vt,1, . . . , vt,Bt ] ∈
St(d,Bt) drawn via thin QR of a Gaussian matrix (Haar on the Stiefel manifold). Each step
costs 2Bt function queries. Unless stated otherwise, we assume access to exact function values or
conditionally zero-mean value noise so that E[ĝt | Ft] = ∇fµ(xt) with Ft the natural filtration.

Bias and variance constants (used later). For L-smooth f ,

|fµ(x)− f(x)| ≤ L
2 µ

2 · d
d+2 , ∥∇fµ(x)−∇f(x)∥ ≤ L

2 dµ,

and for the two-point sphere estimator

E∥ĝ(x;µ, u)−∇fµ(x)∥2 ≤ 2d ∥∇f(x)∥2 + 1
2d

2L2µ2.

Averaging Bt directions divides the RHS by Bt. We keep µ fixed within each Silver block and may
geometrically decay it across blocks.
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Silver stepsizes (facts used). For a block of length N = 2k − 1, the multi-step identity implies
h(xN )− h⋆ ≤ rk∥x0 − x⋆∥2 with explicit rk = Θ(ρ−2k) and ρ = 1+

√
2. Moreover,

∑N−1
t=0 αt =

Θ(ρk). We rely only on these consequences of the identity Altschuler & Parrilo (2023b; 2024).

Uniform-ball smoothing and the sphere gradient identity. Let v ∼ Unif(Bd) and u ∼
Unif(Sd−1), and define fµ(x) := Ev f(x+ µv). Then fµ is convex and L-smooth and

∇fµ(x) =
d

µ
Eu

[
f(x+ µu)u

]
. (1)

By the Descent Lemma,

|fµ(x)− f(x)| ≤ L
2 µ

2 E∥v∥2 = L
2 µ

2 · d
d+2 .

Moreover (we include a short proof in the appendix),

∥∇fµ(x)−∇f(x)∥ ≤ L
2 dµ. (2)

This bound follows from the ball-to-sphere identity ∇fµ(x) = d
µEu∼Unif(Sd−1)[f(x + µu)u] and

the Descent Lemma; see, e.g., Lemma 4.1 and Proposition 6.5 in the self-contained derivation we
follow.1

For comparison, under Gaussian smoothing, ∥∇fµ(x) − ∇f(x)∥ ≤ L
2 (d + 3)3/2µ (Nesterov &

Spokoiny, 2017, Lemma 3).
Remark 3.1 (Default smoothing and unbiasedness). Throughout we define fµ(x) = Ev∼Unif(Bd)f(x+
µv). For this choice,

∇fµ(x) =
d

µ
Eu∼Unif(Sd−1)[f(x+ µu)u],

so both the one-point d
µf(x + µu)u and the symmetric two-point d

2µ (f(x + µu) − f(x − µu))u

estimators are unbiased for∇fµ(x). This identity goes back to the divergence-theorem proof used in
bandit smoothing (e.g., Flaxman et al. (2005)).2

Second moment (uniform sphere, two-point). For L-smooth f and u ∼ Unif(Sd−1),

E
∥∥ĝ(x;µ, u)∥∥2 ≤ C1 d ∥∇f(x)∥2 + C2 d

2 L2 µ2,

with explicit constants C1 = 2 and C2 = 1
2 via an elementary isotropy argument (details in the theory

section). Averaging Bt directions reduces the RHS by 1/Bt; using orthonormal batches on the Stiefel
manifold often improves constants in practice (Kozak et al., 2023; Feng & Wang, 2023).
Remark 3.2 (Ball vs. Gaussian smoothing). We work with the ball average and use the sphere-based
identity (1) to estimate ∇fµ from function values. The gradient-bias bound for ball smoothing is
∥∇fµ(x) − ∇f(x)∥ ≤ 1

2Ldµ (2), whereas for Gaussian smoothing it scales as 1
2L(d + 3)3/2µ

(Nesterov & Spokoiny, 2017, Lemma 3). This explains the better dimension dependence under ball
smoothing in our analysis.

Inexact-gradient Silver identity (what we use). Running Silver on h = fµ/L with unbiased noise
ζt := (ĝt −∇fµ(xt))/L gives

E[h(xN )− h⋆] ≤ rk E∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t E∥ζt∥2,

i.e., with no linear noise term. The proof mirrors the exact-gradient certificate and uses only tower-
property cancellations.

1These standard facts (including the two-point second moment below) are proved from first principles with
exact constants in a concise reference; we reproduce short proofs in the appendix.

2We work with the ball definition of fµ for tighter bias; we only use the sphere for the estimator.
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3.2 SILVER STEPSIZE PRIMER

The Silver schedule is a deterministic stepsize sequence with a 2-adic, fractal block structure. For
a block of length N = 2k − 1 and a 1-smooth convex objective ϕ, the Silver identity (a multi-step
Lyapunov certificate) implies

ϕ(xN )− ϕ⋆ ≤ rk ∥x0 − x⋆∥2,

with explicit rk = Θ(ρ−2k) for ρ = 1+
√
2 (the silver ratio). Moreover, the steps satisfy

∑N−1
t=0 αt =

Θ(ρk). Consequently, after T = Θ(2k) steps, gradient descent with Silver stepsizes reaches error ε in
O
(
ε− logρ 2

)
= O(ε−0.7864) iterations, strictly improving upon the classical O(1/ε) rate for smooth

convex objectives (Altschuler & Parrilo, 2023a;b; 2024). In our analysis we apply this identity to
h = fµ/L and rely only on:

1. the block guarantee ϕ(xN )− ϕ⋆ ≤ rk∥x0 − x⋆∥2;
2. the sum-of-steps property

∑N−1
t=0 αt = Θ(ρk);

3. robustness to conditionally unbiased inexact gradients, which adds exactly
∑

t α
2
tE∥ζt∥2 to the

RHS (no linear noise term).

4 ZO-SILVER: ALGORITHM AND THEORETICAL ANALYSIS

ROADMAP OF THIS SECTION

We first state the main guarantees at a glance: (i) an expectation-level one-block bound under two-
point ZO on the smoothed objective with Silver stepsizes; (ii) its budget-aligned specialization under
orthogonal-on-spikes batching; (iii) a multi-block (restart) bound; (iv) a high-probability version via
Freedman. We then present the algorithm and the few elementary ingredients (unbiasedness, second
moment, inexact-Silver identity, and the variance-optimal batching proposition). Proofs are short and
included inline or deferred to the appendix.

4.1 INGREDIENTS (UNBIASEDNESS, SECOND MOMENT, INEXACT SILVER, BATCHING)

Lemma 4.1 (Second moment: uniform sphere, symmetric two-point). Let f ∈ C1,1
L , u ∼

Unif(Sd−1), and ĝ(x;µ, u) = d
2µ

(
f(x+ µu)− f(x− µu)

)
u. Then

E
∥∥ĝ(x;µ, u)−∇fµ(x)∥2 ≤ Csig d ∥∇f(x)∥2 + Ccurv d

2L2µ2,

with (Csig, Ccurv) = (2, 1
2 ). Averaging any B ≥ 1 unit directions gives a 1/B reduction. Using

B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in
practice (Kozak et al., 2023; Feng & Wang, 2023).

These constants are tight up to lower-order terms for two-point ZO under L-smoothness; see the
elementary proof in the appendix and the companion derivation we follow. The proof is bound can be
found in the Appendix.

Filtration and conditional unbiasedness. Let Ft be a filtration. A vector process ζt is a martingale
difference sequence if ζt is Ft+1-measurable and E[ζt | Ft] = 0.

Let Ft be the σ-field generated by {x0, . . . , xt} and all randomness up to the start of iteration t. At
iteration t, sample fresh directions Vt independently of Ft (uniform on Sd−1 or Haar on St(d,Bt)),
and evaluate f exactly (or with conditionally zero-mean noise) using the same batch for ±µ queries.
With the symmetric two-point estimator, we then have

E[ĝt | Ft] = ∇fµ(xt) and hence E[ζt | Ft] = 0,

by the ball-to-sphere identity and unbiasedness of the estimator for ∇fµ(xt).

Lemma 4.2 (Martingale square identity). Let {ζt}N−1
t=0 be a square-integrable vector martingale

difference sequence adapted to {Ft}, i.e., E[ζt | Ft] = 0. Then, for any deterministic scalars {αt},

E
∥∥∥N−1∑

t=0

αt ζt

∥∥∥2 =

N−1∑
t=0

α2
t E∥ζt∥2.
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Proof. Expand the square and use E⟨ζs, ζt⟩ = 0 whenever s ̸= t: for s < t, E⟨ζs, ζt⟩ = E[ ⟨ζs,E[ζt |
Ft]⟩ ] = 0 by the tower property.

4.2 MAIN RESULTS

Lemma 4.3 (Inexact Silver, expectation level). Let h = fµ/L (so h is 1-smooth and convex) and
suppose xt+1 = xt − αt(∇h(xt) + ζt) with E[ζt | Ft] = 0. For a Silver block N = 2k − 1,

E
[
h(xN )− h⋆

]
≤ rk E∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t E∥ζt∥2.

Proof. See the Appendix for a detailed proof.

We run the Silver identity on h = fµ/L, which is 1-smooth and convex. Our update is

xt+1 = xt − αt

(
∇h(xt) + ζt

)
, ζt :=

1

L

(
ĝt −∇fµ(xt)

)
,

so E[ζt | Ft] = 0 by Lemma A.2.

Variance-optimal batching under a query budget. We motivate the batching policy with the
following variance-related observation.
Proposition 4.4 (Optimal allocation of directions under a query budget). Fix nonnegative weights
{αt}N−1

t=0 and a budget Q > 0 of function queries per block. With symmetric two-point queries,
Q = 2

∑
t Bt. Then, for any Bt > 0,

N−1∑
t=0

α2
t

Bt
≥

(∑N−1
t=0 αt

)2∑N−1
t=0 Bt

=
2
(∑

t αt

)2
Q

,

with equality iff Bt ∝ αt. In particular, the policy Bt = min{d, ⌈cBαt⌉} is (up to the cap and
integrality) optimal for a given budget.

One-line proof. By Cauchy–Schwarz,
(∑ α2

t

Bt

)
(
∑

Bt) ≥ (
∑

αt)
2. Substitute

∑
Bt = Q/2.

Theorem 4.5 (One block, expectation). Assume f : Rd→R is convex and L-smooth, and fix a Silver
block of length N = 2k−1 with steps {αt}N−1

t=0 . Let fµ be the uniform-ball smoothing, h = fµ/L,
and define the symmetric two-point estimator averaged over Bt unit directions:

ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i, xt+1 = xt −

αt

L
ĝt.

Assume the batch Vt = [vt,1, . . . , vt,Bt
] ∈ St(d,Bt) is drawn independently of Ft (thin QR of a

Gaussian suffices). Then

E
[
f(xN )− f⋆

]
≤ rk LE∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t

Bt

(
1

2
d2Lµ2 +

2d

L
E∥∇f(xt)∥2

)
+

L

2
µ2 d

d+ 2
.

In particular, if the iterates remain in a ball of radius R around a minimizer (e.g., by projection), then
∥∇f(xt)∥ ≤ LR and

E
[
f(xN )− f⋆

]
≤ rkLR

2 +
(

1
2d

2Lµ2 + 2dLR2
)N−1∑

t=0

α2
t

Bt
+ L

2 µ
2 d

d+ 2
.

Proof sketch. We apply the inexact-gradient Silver identity to h = fµ/L with ζt = (ĝt−∇fµ(xt))/L
(conditionally unbiased, so the identity has no linear noise term). Use the two-point second-moment
bound plus averaging-by-Bt, then convert from h to f using the value-bias of fµ. (see B.2, Eq. (3.1))
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Budget-aligned specialization. Let Bt = min{d, ⌈cB αt⌉} (orthogonal-on-spikes), and write
αmax = maxt αt. Then
Proposition 4.6 (Variance aggregation under Bt ∝ αt).

N−1∑
t=0

α2
t

Bt
≤ 1

cB

N−1∑
t=0

αt +
αmax

d

∑
t:αt>d/cB

αt.

In particular, if d ≥ cBαmax (cap inactive), then
∑

t α
2
t /Bt = (1/cB)

∑
t αt = Θ(ρk/cB).

Corollary 4.7 (Per-block calibration of µ and cB). If ρk

cB
·
(

1
2d

2Lµ2 + 2dLR2
)
≤ ε rk LR

2, then

E[f(xN )− f⋆] ≤ (1 + ε) rk LR
2 +

L

2
µ2 d

d+ 2
.

A sufficient choice is cB ≥ 2d ρk

εrk
and µ2 ≤ 2εrk

d2
R2

ρk .

Theorem 4.8 (Multi-block restarts). Run blocks j = 1, . . . , J with lengths Nj = 2kj − 1 and radii
µj (each fixed within the block), using Bt = min{d, ⌈cBαt⌉}. If ∥xt− x⋆∥ ≤ R across the run, then

E[f(xTJ
)− f⋆] ≤ LR2

J∑
j=1

rkj +
1

cB

J∑
j=1

(
1
2d

2Lµ2
j + 2dLR2

)
ρkj +

L

2
µ2
J

d

d+ 2
.

Lemma 4.9 (High-probability inexact Silver via Freedman). Let h = fµ/L and suppose xt+1 =
xt − αt(∇h(xt) + ζt) with E[ζt | Ft] = 0 and ∥ζt∥ ≤ G almost surely. Define the predictable
quadratic variation

V :=

N−1∑
t=0

α2
t E

[
ζtζ

⊤
t | Ft

]
, ᾱ := max

0≤t≤N−1
αt.

Then, for any δ ∈ (0, 1), with probability at least 1− δ,

h(xN )− h⋆ ≤ rk ∥x0 − x⋆∥2 +
(
2

√
2λmax(V ) log

18d

δ
+

2

3
ᾱ G log

18d

δ

)2

.

In particular, using (a+ b)2 ≤ 2a2 + 2b2,

h(xN )− h⋆ ≤ rk ∥x0 − x⋆∥2 + 16λmax(V ) log
18d

δ
+

8

9
ᾱ2G2 log2

18d

δ
.

Proof sketch. For any unit s ∈ Sd−1, apply scalar Freedman to Ms :=
∑N−1

t=0 αt⟨ζt, s⟩, which
has variance proxy σ2

s =
∑

t α
2
tE[⟨ζt, s⟩2 | Ft] = s⊤V s ≤ λmax(V ) and bounded incre-

ments |αt⟨ζt, s⟩| ≤ ᾱG. Freedman gives |Ms| ≤
√

2σ2
su + ᾱG

3 u with probability ≥ 1 − 2e−u

Freedman (1975). Take a 1/4-net N ⊂ Sd−1 with |N | ≤ 9d and union bound; since ∥z∥ ≤
2maxs∈N ⟨z, s⟩ (standard net argument; see e.g. Vershynin’s notes on sphere nets), we get∥∥∑

t αtζt
∥∥ ≤ 2

√
2λmax(V )u + 2

3 ᾱGu for u = log(2 · 9d/δ). Square this and insert into the
inexact-Silver identity, which contributes

∥∥∑
t αtζt

∥∥2 (no extra L’s, since ζt already contains the
1/L).

Remark 4.10 (Matrix-Freedman alternative). One can avoid the sphere net (and the factor log(18d/δ))
by applying a matrix Freedman inequality to a self-adjoint dilation of

∑
t αtζt, giveing a tail with

log(d/δ). See Tropp (2011). We keep Lemma 4.9 for its elementary proof via scalar Freedman
Freedman (1975) and standard net estimates Vershynin (2018).
Remark 4.11 (Empirical status of Silver in first-order GD). As far as we are aware, the original Silver
papers and their support material emphasize theoretical certificates, and do not provide systematic
first-order empirical benchmarks. Discussions on empirical observations and generalizations (e.g.,
proximal/projected GD) are included, but a standardized FO benchmark suite on Silver vs. standard
schedules has not yet emerged. See Altschuler & Parrilo (2023a;b; 2024); Parrilo (2024); Altschuler
& Parrilo (2023c); Bok & Altschuler (2024).
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4.3 ALGORITHM

Algorithm 1 ZO-SILVER: block-constant smoothing + orthogonal-on-spikes batching
1: Input: block length N = 2k − 1, radius µ > 0, Silver steps {αt}, cap d, batching constant

cB > 0
2: for t = 0, . . . , N − 1 do
3: Stepsize ηt = αt/L; Batch Bt = min{d, ⌈cB αt⌉}
4: Sample Vt = [vt,1, . . . , vt,Bt

] ∈ St(d,Bt) (orthonormal columns; e.g., thin QR of a Gaussian
matrix)

5: ĝt =
d

2µBt

Bt∑
i=1

(
f(xt + µvt,i)− f(xt − µvt,i)

)
vt,i

6: xt+1 = xt − ηt ĝt

Sampling orthonormal directions. A simple implementation samples G ∈ Rd×Bt with i.i.d.
N (0, 1) entries and sets Vt to the Q factor of the thin QR decomposition G = VtR, giving Vt ∈
St(d,Bt) with Haar-distributed columns.

Corollary 4.12 (Per-block calibration of µ and batching). Fix a block of length N = 2k − 1 with
Bt = min{d, ⌈cBαt⌉}. Assume ∥∇f(xt)∥ ≤ LRt along the block (e.g., by projection or local

boundedness). If we choose µ and cB to satisfy ρk

cB
·
(

1
2d

2Lµ2 + 2dLR2
t

)
≤ ε · rkLR2

t , then the
block guarantee becomes

E[f(xN )− f⋆] ≤ (1 + ε) rkLR
2
t + L

2 µ
2 d

d+ 2
.

Equivalently, one sufficient choice is cB ≥ 2d ρk

ε rk
and µ2 ≤ 2ε rk

d2 · R
2
t

ρk .

Remark 4.13 (Short blocks + geometric µ). Variance aggregation scales like ρk/cB . Using short
blocks (e.g., fix a small k◦) and geometrically decaying radii across blocks (e.g., µ← µ/1 +

√
2)

keeps the variance tax controlled while the Silver term rk◦ still provides a consistent per-block drop.
This matches the ZO folklore: you must either (i) grow the batch, or (ii) reduce smoothing, or (iii)
keep blocks short and restart. See also the two-point rates and floors in (Duchi et al., 2015; Shamir,
2017).

5 EXPERIMENTS

5.1 NUMERICAL EXPERIMENTS

Goals: (1) Verify that running Silver on the smoothed objective with block-constant µ preserves
the deterministic decay down to the ZO floor; (2) test our orthogonal-on-spikes batching against
flat/i.i.d. batching. Tasks and oracles: Synthetic smooth convex: ridge-regularized quadratic f(x) =
1
2x

⊤Hx+ b⊤x with κ(H) adjustable; logistic regression with ℓ2 regularization. We evaluate both
noiseless function values and noisy values f(x) + ξ with ξ ∼ N (0, σ2). Baselines: (i) Two-point
ZO with Gaussian smoothing and tuned constant stepsize (Nesterov & Spokoiny, 2017); Protocols:
We run horizons aligning with Silver blocks (T = 2k − 1). Within a block, µ is constant; across
blocks we use µj+1 = µj/1+

√
2 (or report a sweep). Batching follows Bt = min{d, ⌈cBαt⌉} with

a fixed cB ; comparison baselines use (a) Bt ≡ B and (b) Bt ≡ 1. Budgets and metrics: We report
#queries and f(xt)− f⋆ against queries and wall-clock. Each ZO step uses 2Bt function calls. We
use medians over 10 seeds with 95% bootstrap CIs.
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Figure 1: Function value vs. iterations for ridge-regularized quadratic problem.

5.2 EXPERIMENTS ON ZEROTH-ORDER FINE-TUNING LLMS

MeZO (Malladi et al., 2023) showed that large language models can be fine-tuned using only forward
passes via two-point zeroth-order steps, achieving competitive accuracy with substantially lower
memory than backprop. In the subsection, We instantiate our ZO-SILVER scheme in the same 16-shot
setting as in MeZO and conduct experiments on RoBERTa-large 350M (Liu et al., 2019).

For silver learning rate scheduler, we apply a simple clipping strategy αt = min{αt, αmax}, where
αmax is the largest learning rate multiplier and searched in {16.0, 32.0, 64.0, 128.0}. For MeZO, we
adopt a constant learning rate η0, which is the same as the one used in silver learning rate scheduler
and a large constant learning rate by taking the average over all the silver stepsizes. Specifically, after
clipping, the limit of mean value of silver sizes is limn→∞

1
n

∑n−1
i=0 min{αt, αmax} = (ρ/2)J+1 +

2−(J+1)(αmax−1), where J = ⌊1 + logρ(αmax − 1)⌋. We plot the average sivler stepsizes across the
training steps in Figure.2 with base learning rate 1e− 7 and largest learning rate multiplier 128.

As shown in Figure.3, MeZO-Silver achieves more stable training and lower validation loss under the
same query budget, demonstrating the benefits of structured stepsize scheduling in practical LLM
fine-tuning.
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Figure 2: Clipped Silver schedule
vs. constant LR baseline. We plot
the running average learning rate in-
duced by the Silver stepsizes with
base learning rate 1e − 7 and clip-
ping value 128.
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Figure 3: Evaluation loss vs. training steps for RoBERTa-
large fine-tuning on (a) SST-2 and (b) RTE. We compare
standard MeZO with constant learning rates to MeZO-Silver
using a clipped Silver schedule.

6 CONCLUSION

The theoretical analysis and subsequent experimental work show that, under the studied assumptions
for smooth objectives, composing two-point zeroth-order estimation with the Silver stepsize schedule
yields a clean inexact-gradient certificate whose stochastic cost collapses to a single quadratic variance
term. More broadly, our results provide the first step toward bringing stepsize hedging into the ZO
regime: the Silver schedule—originally proved to accelerate plain gradient descent for smooth convex
optimization—translates verbatim to the smoothed problem with conditionally unbiased ZO gradients,
preserving its deterministic multi-step progress up to standard ZO floors.
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A UNIFORM-BALL BIAS BOUNDS AND THE SPHERE GRADIENT IDENTITY

Let v ∼ Unif(Bd) and u ∼ Unif(Sd−1). For fµ(x) = Evf(x+ µv), the Descent Lemma gives

−L
2 µ

2E∥v∥2 ≤ fµ(x)− f(x) ≤ L
2 µ

2E∥v∥2, E∥v∥2 =
d

d+ 2
.

Moreover ∥∇fµ(x)−∇f(x)∥ ≤ Lµd
2 . To prove (1), apply the divergence theorem to

∫
Bd ∇f(x+

µz) dz.

Lemma A.1 (Ball-to-sphere gradient identity, with constants). Let fµ(x) = Ev∼Unif(Bd)f(x+ µv)

and u ∼ Unif(Sd−1). Then

∇fµ(x) =
d

µ
Eu

[
f(x+ µu)u

]
.

Lemma A.2 (Unbiasedness for ∇fµ). With u ∼ Unif(Sd−1) and ĝ(x;µ, u) = d
2µ (f(x + µu) −

f(x− µu))u, we have Eu[ĝ(x;µ, u)] = ∇fµ(x).

Lemma A.3 (Bias of fµ and ∇fµ). Assume f ∈ C1,1
L .

(a) (Ball value bias) For v ∼ Unif(Bd),

|fµ(x)− f(x)| ≤ L
2 µ2 E∥v∥2 = L

2 µ2 d

d+ 2
.

(b) (Ball gradient bias) For v ∼ Unif(Bd),

∥∇fµ(x)−∇f(x)∥ ≤ L
2 dµ.

Proof of (b). By (1), ∇fµ(x) − ∇f(x) = d
µ Eu

[
(f(x + µu) − f(x) − ⟨∇f(x), µu⟩)u

]
. By the

Descent Lemma along the line x+ τµu and ∥u∥ = 1, |f(x+ µu)− f(x)− ⟨∇f(x), µu⟩| ≤ L
2 µ

2.

Taking norms and expectations gives ∥∇fµ(x)−∇f(x)∥ ≤ d
µ ·

L
2 µ

2E∥u∥ = L
2 dµ, since ∥u∥ = 1

a.s.

B SPHERICAL TWO-POINT SECOND MOMENT

Let Ad−1 = surf(Sd−1) and Vd = vol(Bd); recall Ad−1 = dVd. We use the standard sphere isotropy
Eu∼Unif(Sd−1)[u] = 0, E[uu⊤] = 1

dI , and ∥u∥ = 1 a.s.

Lemma B.1 (Inexact Silver, expectation level). Let h = fµ/L (so h is 1-smooth and convex) and
suppose xt+1 = xt − αt(∇h(xt) + ζt) with E[ζt | Ft] = 0. For a Silver block N = 2k − 1,

E
[
h(xN )− h⋆

]
≤ rk E∥x0 − x⋆∥2 +

N−1∑
t=0

α2
t E∥ζt∥2.

Proof. Let {λij} be the Silver multipliers such that for any 1-smooth convex ϕ,∑
i̸=j

λijQij [ϕ] = ∥x0 − x⋆∥2 − ∥xN − ck∇ϕ(xN )− x⋆∥2 + ϕ(x⋆)− ϕ(xN )

rk
. (⋆)

Apply (⋆) with ϕ = h. In the Silver derivation, the only places where the update rule enters are: (i)
linear telescopings xa − xb = −

∑a−1
s=b αs∇h(xs) and (ii) the terminal square ∥xN − ck∇h(xN )−

x⋆∥2. With inexact updates we have xa − xb = −
∑

αs∇h(xs) −
∑

αsζs. Every such linear
ζ-term appears inside an inner product with an Fs-measurable vector, hence its expectation is 0 by
E[ζs | Fs] = 0. For the terminal square,

xN − ck∇h(xN )− x⋆ = A−
N−1∑
s=0

αsζs, A := x0 − x⋆ −
N−1∑
s=0

αs∇h(xs)− ck∇h(xN ).
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Therefore

E∥xN − ck∇h(xN )− x⋆∥2 = E∥A∥2 + E
∥∥∥N−1∑

s=0

αsζs

∥∥∥2
(the cross term vanishes in expectation as above). By Lemma 4.2, this last term equals∑N−1

t=0 α2
t E∥ζt∥2. Taking expectations in (⋆), dropping the nonnegative left-hand side

∑
λijQij [h],

and rearranging gives the claim.

Lemma B.2 (Second moment: uniform sphere, symmetric two-point). Let f ∈ C1,1
L , u ∼

Unif(Sd−1), and ĝ(x;µ, u) = d
2µ

(
f(x+ µu)− f(x− µu)

)
u. Then

E
∥∥ĝ(x;µ, u)−∇fµ(x)∥2 ≤ Csig d ∥∇f(x)∥2 + Ccurv d

2L2µ2,

with (Csig, Ccurv) = (2, 1
2 ). Averaging any B ≥ 1 unit directions gives a 1/B reduction. Using

B orthonormal directions (Stiefel sampling) preserves the 1/B factor and improves constants in
practice (Kozak et al., 2023; Feng & Wang, 2023).

These constants are tight up to lower-order terms for two-point ZO under L-smoothness; see the
elementary proof in the appendix and the companion derivation we follow.

Proof of Lemma B.2 (Proof sketch). Apply the Descent Lemma along ±µu to get
∣∣f(x + µu) −

f(x − µu) − 2µ⟨∇f(x), u⟩
∣∣ ≤ Lµ2, then expand ∥ĝ∥2, use (a + b)2 ≤ 2a2 + 2b2 and isotropy

E[uu⊤] = I/d. The full derivation is in Appendix B.

Finally, since Eu ĝ(x;µ, u) = ∇fµ(x) (Lemma A.1), we have

E∥ĝ −∇fµ(x)∥2 = E∥ĝ∥2 − ∥∇fµ(x)∥2 ≤ E∥ĝ∥2
(2)

≤ 2d ∥∇f(x)∥2 + 1
2d

2L2µ2.

For a batch {vi}Bi=1 of unit vectors (not necessarily independent),∥∥∥∥∥ 1

B

B∑
i=1

(Yi − EY )

∥∥∥∥∥
2

≤ 1

B

B∑
i=1

∥Yi − EY ∥2

by convexity of ∥ · ∥2; taking expectations gives the stated 1/B reduction.

Proof of Lemma B.2. Fix x ∈ Rd and u ∼ Unif(Sd−1). Since f ∈ C1,1
L , write the Descent Lemma

at x in the two directions ±µu:

f(x± µu) = f(x) ± µ⟨∇f(x), u⟩ + r±(x, u), |r±(x, u)| ≤
L

2
µ2.

Subtract to get the symmetric difference

∆(x, u) := f(x+ µu)− f(x− µu) = 2µ⟨∇f(x), u⟩ + (r+ − r−),

with |r+ − r−| ≤ Lµ2. Hence

ĝ(x;µ, u) = d ⟨∇f(x), u⟩u +
d

2µ
(r+ − r−)u.

Using E[uu⊤] = I/d for u ∼ Unif(Sd−1) and ∥u∥ = 1,

E
∥∥ĝ(x;µ, u)∥∥2 ≤ 2 d ∥∇f(x)∥2 +

d2

2µ2
E
[
(r+ − r−)

2
]
≤ 2 d ∥∇f(x)∥2 +

1

2
d2L2µ2.

For the centered version, note that E ĝ(x;µ, u) = ∇fµ(x) by the ball-to-sphere identity, so E∥ĝ −
∇fµ(x)∥2 = E∥ĝ∥2 − ∥∇fµ(x)∥2 ≤ E∥ĝ∥2, which yields the same bound. Finally, for an average
over B unit directions ĝB = 1

B

∑B
i=1 ĝ(x;µ, ui) (independent or not), convexity of ∥ · ∥2 gives

E∥ĝB −EĝB∥2 ≤ 1
B

∑B
i=1 E∥ĝ(x;µ, ui)−Eĝ∥2, so both second-moment bounds divide by B.
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