
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Staple: Towards Reliable Problem Solving
with Large Language Models via Plan Opti-
mization and Tree Search

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) exhibit the ability to perform step-by-step
reasoning when tackling complex problems across various tasks. To improve
the reliability of multi-step reasoning and mitigate potential hallucina-
tions, sophisticated prompting techniques have been developed to provide
instructions on what to do at each step, offering reasoning guidance be-
fore addressing specific questions. However, this additional prompting can
increase time and token consumption without guaranteeing effectiveness.
In response, this paper proposes Staple, a novel plan retrieval augmented
reasoning framework that utilizes offline plan optimization. This approach
involves constructing a plan database of general-purpose reasoning instruc-
tions. Subsequently, online plan searching facilitates the direct retrieval of
optimal and effective step-by-step plans from the database when addressing
new questions, serving as guidance for LLMs to derive correct answers.
The offline stage uses LLMs to self-generate and optimize plans, storing
them as tree structures via Monte Carlo Tree Search (MCTS) to form the
plan database. Extensive experiments on mathematical and multi-task
problems show that Staple achieves competitive problem-solving rates while
minimizing token usage and interactions. Importantly, the plan trees in the
database are human-interpretable, revealing the prioritization of various
plan combinations for a given task. In addition, the plan database can be
reused, updated, and expanded by users for a wider range of applications.

1 Introduction

Large language models (LLMs), trained via autoregressive text token prediction, exhibit the
capacity for multi-step reasoning to solve complex tasks. When presented with a prompt,
these models can be directed to approach problems step-by-step (Kojima et al., 2022), with
each step referred to as a thought and representing a solution to a simplified subproblem.
However, due to LLMs’ susceptibility to hallucinations, incorrect or invalid thoughts are
often produced (Jiang et al., 2023; Ji et al., 2023), highlighting a crucial need to enhance the
reliability of their problem-solving abilities.
Existing literature addresses this objective by prompting LLMs with step-by-step instructions.
Existing approaches relying on hand-crafted demonstrations Wei et al. (2022); Zhou et al.
(2023a); Fu et al. (2023) or domain-specific knowledge databases Sun et al. (2024); Luo
et al. (2024) may have limited applicability. Recent proposals allow LLMs to autonomously
generate error analyses Madaan et al. (2023); Chen et al. (2024); Miao et al. (2024); Chen &
Li (2024), plans Wang et al. (2023); Yu et al. (2024); Zheng et al. (2024b) or premises Ling
et al. (2023) as instructions while tackling individual questions. However, beyond consuming
token and time resources, engaging LLMs in instruction generation remains susceptible to
hallucinations Valmeekam et al. (2023), suggesting that the assumption of LLMs producing
accurate guidance may be unfounded. Consequently, we pose the question: “How can we
autonomously generate reliable instructions for each step during multi-step problem-solving
while minimizing token and time costs?”
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This research challenge remains unresolved, primarily because formulating an effective
instruction is as challenging as selecting a move in The Game of Go Müller (2002). Given
existing thoughts, it remains unclear how LLMs can explore or exploit an instruction that
yields an improved subsequent thought, particularly when the solution requires numerous
steps or is unknown. Furthermore, in contrast to the finite sets of moves and board positions
analyzed by AlphaGo Silver et al. (2016), the thoughts and instructions generated by LLMs
are unbounded, potentially infinite, and susceptible to errors, especially due to the diversity
of questions and the possibility of hallucinations. In contrast, human next-step reasoning
is guided by a plan, which serves as a general-purpose instruction presenting specific logic,
such as “Use variables to represent unknown quantities” or a theorem. Plans necessary for
addressing a given task can be standardized and limited in scope, allowing humans to first
acquire experience on plan priorities, and subsequently select effective ones for new, related
questions.
In this paper, we propose Staple, a new plan retrieval augmented reasoning (RAR) framework
designed to incorporate both offline plan optimization and online plan searching. During the
offline stage, Staple optimizes plans based on a task-specific samples. By leveraging LLMs for
step-wise plan proposal and reasoning on labeled questions, Staple expands the plan space as
a tree structure using Monte Carlo Tree Search (MCTS) Coulom (2006). Beginning with an
empty plan tree, Staple utilizes LLMs to either expand the plan (node) or select high-priority
options to simulate multi-step reasoning towards a solution, subsequently updating plan
sequence priorities during backpropagation. Notably, as plan (node) selection relies on the
previous thought (state), Staple allows each node to store all such thoughts. Thus, by
exploiting the clustering nature of embeddings for similar thoughts, and by incorporating
the distance between current and stored thoughts into priority scores, we are able to avoid
searching in an infinite state space. Upon completion of offline training, Staple generates a
plan database in which each plan tree corresponds to a specific task, such as a particular
domain of mathematical problems. During the online stage, when presented with a new
question, Staple identifies high-priority plans from the relevant plan tree to guide LLMs
towards reliable multi-step reasoning.
With Staple, we make a number of important contributions in this paper. First, it provides a
generalized framework that allows LLMs to autonomously explore and optimize task-specific
plans without human intervention. Second, Staple uncovers numerous plan combinations
and their associated priorities to address task-related questions. Third, it is inherently
effective, resource-efficient, and user-friendly, as the reliability of LLM reasoning is ensured
by effective plans retrieved from Staple’s plan database tree, and the task-specific plan
trees can be reused, updated, and extended. Finally, our comprehensive set of experiments
on mathematical and multi-task problems corroborate these advantages and demonstrate
Staple’s competitive solving rates.

2 Related Work

Pre-trained large language models (LLMs), such as GPT-4o OpenAI (2023) and Llama 3.2
Touvron et al. (2023), possess the capability of multi-step reasoning, wherein problems
are solved incrementally Kojima et al. (2022) with intermediate steps manifested as thoughts
generated by LLMs. Nevertheless, LLMs often confidently produce incorrect or invalid
thoughts due to hallucinations Jiang et al. (2023); Ji et al. (2023); Zheng et al. (2024a).
Consequently, prompting LLMs with instructions on what to do at each step is crucial
for dependable problem-solving. Chain of Thoughts Wei et al. (2022) and subsequent
works Wang et al. (2022); Zhou et al. (2023a); Fu et al. (2023); Chen et al. (2023a); Weng
et al. (2023) encourage LLMs to emulate human-made demonstrations. Notably, Auto-CoT
Zhang et al. (2023b) samples examples from the training set based on question clustering.
Furthermore, without designing specific prompts, existing approaches like ToT Yao et al.
(2023) and GoT Besta et al. (2023) allow LLMs to backtrack and self-evaluate during the
reasoning process. Recent research Madaan et al. (2023); Chen et al. (2024); Chen & Li
(2024); Miao et al. (2024) utilizes LLMs to perform self-reflection, thereby collecting error
analyses in the prompt to guide LLMs towards accurate thought generation. Rather than
becoming ensnared in these resource-intensive approaches, this paper initially learns the
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plan, an effective high-level concept of what to do in the subsequent step, to prompt LLMs
with appropriate plans for reliable problem-solving.
Similar to our plan-based problem solving, there also exists literature on augmenting LLMs
with step-wise planning. Existing approaches Wang et al. (2023); Zhang et al. (2023a);
Ling et al. (2023); Wang et al. (2023) relying on the divide and conquer mechanism break
down a task into smaller, manageable sub-problems based on plans derived from LLMs. For
example, having LLMs perform analogical reasoning Yu et al. (2024); Zheng et al. (2024b)
to acquire high-level strategies for facilitating multi-step reasoning proves more effective.
Specifically, to enhance problem reasoning, STEP-BACK prompting Zheng et al. (2024b)
initially learns a generic strategy from an abstracted version of the problem. Moreover,
combining LLMs with the heuristic algorithm, Monte Carlo Tree Search (MCTS) Coulom
(2006) demonstrates competitive planning performance Zhao et al. (2023). However, LLMs
struggle to generate plans that are guaranteed to be correct Valmeekam et al. (2023). In
contrast, our offline plan optimization initially constructs a plan database containing effective
plans for tasks. Subsequently, online plan searching retrieves the most useful plans to guide
LLMs towards reliable problem-solving.
The prompting framework of optimizing first and applying afterward in Staple closely
resembles prompt optimization Zhou et al. (2023b); Guo et al. (2024); Wang et al. (2024).
In this approach, LLMs optimize a simple prompt based on labeled questions for a single task,
thereby producing high-quality instructions that benefit the addressing of new questions.
Notably, PromptAgent Wang et al. (2024) views prompt optimization as a strategic planning
problem, utilizing Monte Carlo tree search (MCTS) and self-reflection Weng et al. (2023) of
LLMs to explore expert-level prompts. MoT Li & Qiu (2023) introduces a method where
LLMs generate and store useful thoughts, which are extracted as instructions to guide them
in solving new questions. Our work advances significantly by optimizing step-wise plans
rather than improving a single prompt, which can guide LLMs towards reliable multi-step
problem-solving. Specifically, post-optimization, Staple generates a plan tree for each task,
illustrating which plans can be employed in each step and which are superior. We aim for
Staple and the database containing plan trees to inspire broader applications of LLMs.

3 Methodology: First Plan Optimization, Then Retrieval

3.1 Overview

Given a question q from the dataset D of a task T , the multi-step problem-solving process
with an LLM fθ involves guiding this pre-trained model with an input prompt I (·) to
perform multi-step reasoning toward a solution y. In this process, the intermediate steps are
represented as thoughts Z : z0...T = [z0, z1, ..., zn..., zT ] generated by LLMs, where z0 contains
q, zn is the n-th thought, and zT := y is the final solution thought. We specifically focus on
a multi-interaction approach Chen et al. (2024); Chen & Li (2024), in which each interaction
with the LLM produces one subsequent thought, formulated as zn ∼ fθ (z|IG (z0...n−1)). To
mitigate hallucinations in zn, it is essential to consistently include an effective instruction ψn
that presents what to do as reasoning guidance in IG, resulting in IG (z0...n−1,ψ1...n), where
ψ1...n = [ψ1, ..., ψn] represent the instructions for n steps.
In this context, our primary objective is to autonomously produce a sequence of reliable
instructions, thus eventually leading to the reasoning chain z0

ψ1−−→ z1...
ψn−−→ zn

ψn+1−−−→ ...zT ,
which gives a correct solution while minimizing both token and time costs.
In this paper, drawing inspiration from human-like reasoning — where high-level principles
for addressing a task’s questions can be fixed and limited in number — we introduce the
concept of a plan 3.1. With a plan and given a task, we can reduce the search space by
transforming the instruction space into a plan space, resulting in a more tractable problem.
This approach derives from the intuition that, due to the clustering nature of semantically
similar texts, thoughts with more closely aligned embedding vectors are more likely to follow
the same plan.
Definition 3.1 (plan). A plan is a high-level, question-agnostic principle that aids in
deducing a single logical reasoning step towards addressing a specific task. When provided
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with a prompt containing this general-purpose reasoning instruction, LLMs are guided to
employ a particular logical approach to generate a valid thought leading to the correct
solution.

Ultimately, we can simplify the aforementioned objective by implementing a two-stage
approach: initially, we explore and optimize plans for a specific task, enabling LLMs
to subsequently search for the most effective plans step-by-step when addressing related
downstream questions. Consequently, our proposed plan retrieval augmented reasoning
(RAR) framework, Staple, encompasses both of these stages, henceforth referred to as offline
plan optimization and online plan searching.

3.2 Offline Plan Optimization

Based on the labeled questions from the training dataset of a given task, the plan optimization
problem is formulated as P∗ = arg minP

∑
(q,y)∈Dr

1 (y, fθ (q,P)), where Dr denotes labeled
samples and we aim to optimize a plan selection method P to consistently yield correct
solutions, as measured by an indicator function 1. As discussed in Section 3.1, this strategic
planning problem is naturally addressed by Monte Carlo Tree Search (MCTS) Coulom (2006),
which structures P as a decision tree. Leveraging the inherent capabilities of LLMs, we
integrate fθ to develop an effective algorithm as follows.
Plan tree. A task’s plan tree P contains a Plan Set Ψ and Plan Thought Υ, with each
node corresponding to one plan. The plan (node) set Ψn of the n-th level presents plan
candidates for the n-th thought generation. Let ψni denote the plan with index i of the n-th
level; its parent node (plan) and child nodes are denoted as ψin−1j and C (ψni), respectively.
For ψni, its corresponding Υni stores any thought zn−1 that leads to this plan. For instance,
in Ψ1 of the 1-st level, the Υ1i of the i-index plan contains all questions z0 =: q that embrace
ψ1i plan as guidance when generating the first reasoning step z1. See Fig. 6 and Section D
of the Appendix for more insights.
Plan generation. Any plan ψni in the n-th level is generated only by using the
LLM to summarize one from the generated thought zn, which is formulated as ψn ←
fθ (ψ|IS (z0,...,n,ψ0,...,n−1)), where IS is the plan summarization prompt and ψ0,...,n−1 =[
ψ00, ..., ψ(n−1)∗

]
contains a sequence of plans selected in the previous n− 1 steps, with ψ00

as the root and ∗ as a general denotation representing a selected plan. As the next step of
existing thoughts z0...n−1, zn generated by LLMs is essentially a trial of reasoning and thus
implicitly follows the LLM’s internal logic in this reasoning chain z0...n. A plan summarized
from this thought maintains such logic and can thus be used as guidance for the n-th thought
generation for similar questions.
Plan exploration. Since P is initially empty, there should be a trade-off between explo-
ration (generating new plans) and exploitation (using existing plans). Thus, we set the
rule: for each plan (node) ψni, the probability of exploration pψni

is a sigmoid function
1/

(
1 + e0.2(|C(ψni)|−M)), where M is a constant value. When the probability is larger than

0.5, we use the LLM to generate a thought by excluding existing plans in C (ψni), which is
formulated as zn+1 ← fθ (zn+1|IE (z0,...,n, C (ψni))), where IE is the plan exclusion prompt.
Then, by summarizing from this thought, we generate a new plan and add it to C (ψni).
Plan comparison. Once a plan ψ is summarized from a thought, the LLM with a plan
comparison prompt IC (ψ,ψ) is used to check whether ψ exists in a set ψ.
Thought comparison. Since semantically similar thoughts have closer text embeddings, a
generated thought zn is compared with Υn+1. That is, for the i-index plan (node) of the
n-th level, the embedding distance d

(
zn,Υ(n+1)ik

)
shows the similarity between the thought

zn and a stored thought with index k of the node. Thus, we set K
(
zn,Υ(n+1)i

)
as the

number of K neighbors of zn.
Reward assignment. Our Staple assigns the reward to each thought of the plan, meaning
that r (Υnik) is the reward of the k-index thought of the i-index plan of the n-th level.
Additionally, r contains two parts: rw, rllm ∈ [0, 1]. rw is the indicator of win, noting
whether selecting the plan ψni for the next thought generation for Υnik leads to the final
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Algorithm 1: Plan Optimization in Staple
Input: LLM fθ, Plan Tree P = {Ψ,Υ}, Question (q, y).
Output: Optimized P.

1 z0 = [z0 := q], ψ0 = [ψ00], n = 0 //Start the multi-step reasoning
2 while not zn reaches solution do
3 if pψn∗ >= 0.5 ▷ Plan exploration
4 zn+1 ← fθ (z|IE (z0,...,n, C (ψn∗))) //Generate next thought excluding C (ψn∗)
5 else
6 zn+1 ∼ fθ (z|IG′ (z0...n,ψn)) //Generate next thought normally
7 end
8 ψn+1 ← fθ (ψ|IS (z0,...,n+1,ψ0,...,n)) ▷ Plan generation
9 if ψn+1 ∈ C (ψn∗) ▷ Plan comparison

10 //Selection of MCTS: ▷ Best plan first
11 ψ(n+1)∗ = ψ(n+1)i∗ where i∗ = arg maxi

{
V

(
ψ(n+1)i,Υ(n+1)i, zn

)
, i ∈ C (ψn∗)

}
12 zn+1 ← fθ

(
z|IG

(
z0...n,

[
ψ00, ψ1∗, ..., ψn∗, ψ(n+1)∗

]))
//Generate next thought

13 vllm = fθ
(
v|IA

(
z0,...n, ψ(n+1)∗, zn+1

))
//Plan assessment

14 Υ(n+1)i∗ ←
[
Υ(n+1)i∗ , zn

]
, ψn+1 ←

[
ψn, ψ(n+1)∗

]
, zn+1 ← [zn, zn+1], n← n+ 1

15 else
16 //Expansion of MCTS: ▷ Create new plan
17 vllm = fθ (v|IA (z0,...n, ψn+1)) ▷ Plan assessment
18 C (ψn∗) = C (ψn∗) ∪ ψn+1, Υ(n+1)|C(ψn∗)| ←

[
Υ(n+1)|C(ψn∗)|, zn

]
19 ψ(n+1)∗ = ψn+1, ψn+1 ←

[
ψn, ψ(n+1)∗

]
, zn+1 ← [zn, zn+1], n← n+ 1

20 break
21 end
22 end
23 //Simulation/RollOut of MCTS: ▷ Reason toward solution
24 m← n
25 while not zm reaches solution do
26 ψ(m+1)∗ = ψ(m+1)i where random i ∈ C (ψm∗) //Random plan selection
27 zm+1 ← fθ

(
z|IG

(
z0...m,ψm, ψ(m+1)∗

))
, zm+1 ← [zm, zm+1], m← m+ 1

28 end
29 ▷ Backpropagate 1 (y,zm) to visited nodes based on Reward assignment.

correct solution. The rllm indicates the LLM’s evaluation score for selecting the i-index
plan to guide the next thought generation after reaching the thought Υnik. With the plan
assessment prompt IA, rllm is obtained from fθ (v|IA (z0,...n−1, zn, ψni)).
Value function. When reaching a thought zn guided by the plan ψnj , the priority score
V (·) of selecting a next plan ψ(n+1)i is λrllm + (1− λ) rw + 1 / µ

(
K

(
zn,Υ(n+1)i

))
, where

i ∈ C (ψnj), rllm and rw compute the average rllm and win rate of K neighbors, respectively,
i.e., K

(
zn,Υ(n+1)i

)
, and µ (·) computes the average distance of text embeddings.

With these designs, we can complete plan optimization by allowing the LLM to self-reason
through each question in the dataset Dr for E epochs. In multi-step reasoning for each
question, one MCTS iteration is performed to explore and optimize the plan tree, the process
of which is shown by Algorithm 1, Fig. 5 and Fig. 6.

3.3 Online Plan Searching

After the offline stage, Staple acquires a plan database comprising numerous plan trees.
Each tree originates from a specific task and is tagged with a category name, such as
“Math/Algebra” or “Math/Number Theory” from the MATH dataset. Therefore, Staple
ensures reliable problem-solving by retrieving the highest-priority plans from the tree as
reasoning guidance.
When presented with a question, Staple initially retrieves the relevant plan tree by matching
the question’s category with the corresponding tag. Following this, Staple searches for plan

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

combinations within the tree to guide the LLMs towards reliable multi-step reasoning for
answering the question. Two methods of plan searching are employed. The first method,
termed Direct, selects the plan with the highest r at each level, thereby obtaining a sequence
of plans. Using these plans in the prompt IG, the LLM answers the question in a single
interaction. The second method, Adaptive, dynamically selects plans during the reasoning
process. Specifically, once a thought zn is generated, the plan with the highest V (·) is chosen
to prompt the LLM to produce the next thought zn+1. Consequently, plans are adaptively
searched until reaching the tree’s leaf, which represents a solution. Inspired by BoT Chen
et al. (2024) and TR Chen & Li (2024), we also investigate the inclusion of plans with
the lowest value in the prompt as negative examples, guiding the LLM to avoid incorrect
reasoning. This approach is referred to as D-Contrastive. For more concrete examples of
how Adaptive tackles the question, refer to Fig. 7 and Fig. 8.

4 Experiments

Datasets. We perform experiments on two categories of tasks using AQUA-RAT97467/800/254
Ling et al. (2017), MATH7500/700/900 Hendrycks et al. (2021), and TheoremQA800/800/800 Chen
et al. (2023b) (no-visual) datasets. The numerical subscripts a/b/c denote the total number
of samples, training samples, and testing samples, respectively.
Large language models. We employ GPT-3.5-turbo (gpt-3.5-turbo-16k-0613), GPT-4
(gpt-4-0613) OpenAI (2023), and Llama 2 Touvron et al. (2023), which includes Llama 2-13b
(Llama-2-13b-chat-hf) and Llama 2-70b (Llama-2-70b-chat-hf), where 1b represents one
billion parameters. For LLMs using Staple, the Temperature/Top_P settings for I′

G, IG, IS ,
IE , IC , and IA are 0.6, 0.4, 0.4, 0.2, and 0.2, selected based on empirical intuition. Across
all experiments, the offline stage consists of 10 epochs, with λ set to 0.3. Additionally, M for
plan exploration is fixed at 5 and the text-embedding-3-small is used as the embedder while
the cosine distance is used for text distance measurement. For comprehensive details and
insightful experiments, refer to Section A in the Appendix.
Competitors. Baseline methods include Zeroshot, Zeroshot-CoT Kojima et al. (2022),
Chain-of-thought (CoT) Wei et al. (2022), and Complex CoT Fu et al. (2023) (C-CoT), each
consistently using 8 shots. The state-of-the-art competitors are Tree of Thoughts (ToT)
Yao et al. (2023), Cumulative Reasoning (CR) Zhang et al. (2023a), Boosting of Thoughts
(BoT) Chen et al. (2024), Thought Rollback (TR) Chen & Li (2024), and STEP-BACK
Zheng et al. (2024b), with their optimal settings applied. ToT Reasoning utilizes ToT with
a breadth limit of 6 following the best first search (BFS). To facilitate the ablation study, we
incorporate multi-interaction reasoning (Chain Reasoning) without a plan, Staple-Direct, and
Staple-Adaptive. Notably, we implement Staple with the ensemble method (Ensemble-C),
wherein #C plan chains are extracted from the plan tree for reasoning with LLMs, and the
final solution is determined by majority voting of their individual solutions.
Metrics. All experiments report the Solve Rate (%), calculated by comparing the solution
following “The solution is” in z0...T with the ground truth. Furthermore, we record the
number of interactions and tokens necessary to solve a single problem using the LLM. See
Section A of the Appendix for Reproducibility.

4.1 Overall Performance

Plan database. Following the offline optimization stage in Staple with GPT-4, we acquire
three plan databases corresponding to AQUA-RAT, MATH, and TheoremQA, with the number of
internal plan trees being 1, 7, and 14 + 5 + 14 + 6, respectively. The notation 14 + 5 + 14 + 6
represents the number of categories across four fields: MATH, EECS, Physics, and
Finance in the TheoremQA dataset. Each plan tree is tagged with a category name, allowing
for retrieval upon matching the category of a new question. For example, the plan tree tagged
with EECS/InformationTheory contains plans with optimized priorities for questions
within this knowledge domain. Consequently, the plan tree is inherently reusable as the
general instruction for questions from the same domain follows consistent logic. The number
of nodes (plans) in these three plan databases is 2001, 2283, and 2435, respectively, indicating
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Figure 1: Staple’s effectiveness in reducing interaction costs and optimizing plan trees. The
interaction count is determined by employing the Staple-Adaptive retrieval method with
GPT-4 to address questions from each dataset. The right subfigure illustrates that as the
number of training samples increases, Staple constructs a plan tree with more nodes/plans,
resulting in improved solving rates.

that Staple synthesizes and optimizes numerous plan trials during optimization. Moreover,
Staple automatically obtains a plan to guide LLMs in self-checking the reasoning step for
revisions, as illustrated in Fig. 8 (red color) and Section E.1 (Bold plan).
Effectiveness. As demonstrated by Fig. 1 and Table 1, Staple achieves competitive solving
rates with minimal token cost and interaction numbers (#Interactions). Our maximum
cost Staple-Adaptive method reduces #Interactions by factors of 5, 7, and 9, respectively,
compared to TR Chen & Li (2024). In comparison to ToT reasoning Yao et al. (2023),
which requires approximately 100 #Interactions for challenging MATH and Theorem tasks,
the cost-saving benefits of Staple are even more substantial. Regarding token cost for
reasoning on the three datasets, Staple-Direct is 72, 38, and 31 times less than TR Chen
& Li (2024) and Chen et al. (2024), while the values for Staple-Adaptive are 9, 8, and 7,
respectively. By reducing interaction count and prompt token cost to levels comparable
with zero-shot multi-round reasoning (Chain Reasoning), our method enhances usability in
real-world applications. Notably, the solving rate of Staple-Adaptive remains the second-best
across all three challenging datasets. Staple-Direct directly achieves higher solving rates
than ToT Reasoning Yao et al. (2023) and C-CoT Fu et al. (2023). Compared with the
state-of-the-art competitor, TR Chen & Li (2024), Staple reduce the interaction and token
cost by approximately 10 times, with only a slight decrease in the solving rate.
Flexibility. As the plan tree encapsulates the general and high-level plans to address a
specific problem, each path of the tree represents a distinct reasoning logic for tackling the
question. The plan database exhibits high flexibility, as many existing reasoning algorithms
can be integrated into or achieved by the plan tree. In the lower block of Table 1, we
specifically incorporate ensemble Wang et al. (2022) and contrastive Chen et al. (2024); Chen
& Li (2024) approaches at the retrieval stage in Staple. Contrary to our expectations, the
solving rate of D-contrastive does not demonstrate a clear improvement. When 10 paths
with lower priorities from the plan tree are included in the prompt, the value decreases
by 0.75 compared to that of 5 paths. Similarly, for the ensemble method, the solving rate
is competitive with Staple-Adaptive only when 80 paths are involved in solution voting.
This result suggests that the plan tree is already optimized, as each node/plan incorporates
historical thoughts with their corresponding rllm and rw. The sole requirement is to adaptively
identify the best plan for each step from numerous candidates in each layer of the tree.
Reliability. Accurately solving a given question while avoiding hallucinations and presenting
human-explainable intermediate reasoning logic is the principal advantage of Staple. Firstly,
as shown in Table 1, Staple is confirmed to achieve the second-best solving rate across all
three most challenging tasks. This is attributed to the fact that with a sequence of effective
plans, LLMs are guided to perform reasoning, thus significantly reducing the frequency of
hallucinations. Secondly, during the online retrieval stage, for each thought, we consistently
select the plan based on the principle that after using this plan, similar thoughts achieve the
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Table 1: Comparing the Staple with other baseline methods by performing GPT-4 on the
test sets of AQUA-RAT, MATH and TheoremQA. The metrics used here are solving rate (SR %),
and the number of prompt tokens (#Tokens). The unit of the quantity of #Tokens is 1K,
meaning 1000 per unit. We show the mean ± standard deviation.

AQUA-RAT MATH TheoremQA
Methods SR #Tokens SR #Tokens SR #Tokens
ZeroShot 50.4 0 42.2 0 - 0

Zeroshot-CoT Kojima et al. (2022) 73.2 0.09 ± 0.02 44.7 0.1 ± 0.03 40.8 0.12 ± 0.04
C-CoT Wei et al. (2022) 75.2 3.3 ± 1.2 48.93 4.6 ± 1.9 - -

PHP+C-CoT 79.9 7.9 ± 2.3 53.9 11.34 ± 3.1 - -
Chain Reasoning 74.41 2.1 ± 1.1 45.4 2.7 ± 1.2 36.5 4.6 ± 7.6

ToT Reasoning Yao et al. (2023) 76.38 6.8 ± 2.7 48 9.9 ± 3.5 38.38 11.9 ± 8.9
BoT Chen et al. (2024) 81.4 42.4 ± 33 62.9 51.3 ± 41 - -
TR Chen & Li (2024) 79.97 38.4 ± 29.8 71.89 46.9 ± 38 46.25 43.4 ± 49.4

TR+W-Voting Chen & Li (2024) 87.8 38.4 ± 29.8 72.1 46.9 ± 38 56.75 43.4 ± 49.4
Staple: after offline optimization, performing reasoning with plan trees

Direct 77.56 0.5 ± 0.07 53.11 1.2 ± 0.09 45.62 1.4 ± 0.1
D-Contrastive-5 78.74 3.5 ± 1.2 58.11 4.7 ± 1.6 47 5.1 ± 1.9
D-Contrastive-10 77.95 13.7 ± 5.6 59.22 8.7 ± 2.8 47.12 8.9 ± 3.3

Ensemble-5 81.89 2.2 ± 0.6 58.56 4.5 ± 1.9 48.38 4.3 ± 1.3
Ensemble-10 83.07 4.1 ± 1.3 62.56 8.9 ± 3.6 50.62 9.2 ± 2.7
Ensemble-20 84.25 8.2 ± 3.2 65.11 17.6 ± 9.3 51.75 15.4 ± 2.1
Ensemble-40 85.04 17.4 ± 11.2 66.44 35.2 ± 12.5 52.5 32.3±15.5
Ensemble-80 85.04 33.2 ± 17.5 66.67 70.63±28.5 52.5 65.3±23.4

Adaptive 84.25 4.6 ± 1.9 66.78 6.3 ± 2.3 52.5 6.6 ± 2.4

highest rllm and rw during optimization. Thirdly, as illustrated in Fig. 1, by incorporating
more training samples in the optimization process, Staple constructs plan trees with more
nodes/plans, and importantly, the solving rate increases significantly. This result indicates
that Staple learns and evaluates various reasoning logics, thereby gaining reliable plans by
leveraging GPT-4 to reason on more training samples rather than merely adding nodes.
Ultimately, each retrieved plan is presented as human-readable text, rendering the reasoning
process interpretable and reliable, as discussed in Section 4.2 and sections B D of the
Appendix.

4.2 Plan Database: Reusable, Updatable and Interpretable

The three plan databases generated through Staple demonstrate the once-for-all property,
indicating that subsequent universal tasks can utilize these plan trees directly without extra
effort. First, Table 2 illustrates that we can reuse the plan tree PA of category Algebra
across three datasets. Retrieving plans from PA optimized on U800 to solve 254 test questions
from U254 achieves nearly the same solving rate as the U254’s own policy tree. Second, when
GPT-3.5 and Llama 2 retrieve from PA optimized with GPT-4 to answer Algebra questions,
these older LLMs experience a substantial improvement in their solving rate, such as the
47.06 for GPT 3.5 on T51. However, a limitation of Staple emerges when applying policy
trees across categories. This suggests that once the policy trees are optimized on M-G500,
M-NT500, and T-K29, other categories may not benefit from them as the solving rates are
close to 0, as demonstrated in Table 2.
The continuously updatable feature in Staple allows it to accumulate plans that capture
a domain’s general knowledge by analyzing additional samples. Specifically, updating PA

using Algebra samples from U and M enhances the solving rates for this category across three
datasets accordingly. Notably, for M, which has only 51 available samples, directly reusing
this updated policy tree results in a 94.12 solving rate.
Fig. 2 illustrates a detailed online plan searching process. The process begins with step 0,
where a tag-matched plan tree is retrieved from the MATH plan database. By comparing
the question with Plan Thought Υ0, Staple calculates and selects N -24 P -1, which has the
highest priority score of 1.57. Using this selected plan as a guide, GPT-4 generates a reliable
reasoning step 1, represented as N -1 S-1 in the thought structure, where S-1 indicates Step
1. Next, Step 1 is compared with Υ1 to execute the 2. Best first search, resulting in N -56
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Table 2: Utilizing the plan tree in Staple optimized with GPT-4 on four cases. Here, the
three datasets, including AQUA-RAT, MATH, TheoremQA, are abbreviated as U, M, and T to save
space. The subscripts indicate the amount of data used for optimization and testing. And
the category of plan tree PA used here is Algebra (A). G NT K are the abbreviations of
Geometry, Number Theory, and Kinetics, respectively.

Purpose Reuse PA across dataset Reuse across category Reuse PA across LLMs Update PA across dataset
Dataset U800 M700 T51 M-G500 M-NT500 T-K29 GPT3.5 Llama2 U+M U+M+T

U254 84.25 87.71 69.1 4.7 2 3.5 53.54 → 76.38 18.5 → 47.24 87.4 87.4
M500 84 83 70 2 1.6 2.2 51.2 → 76.4 20.2 → 34 86 86.6
T51 88.24 84.31 58.8 5.8 3.9 1.9 27.45 → 74.51 17.65 → 35.29 94.12 96.08

(Counting & Probability) Question: Find the value of
$n$ that satisfies $2(n+1)!+6n!=3(n+1)!$, where $n! =
n\cdot (n-1)\cdot (n-2) \cdots 2\cdot 1$.

N-1 S-1: 

Find the value of $n$ that satisfies $2(n+1)!+6n!=3(n+1)!$,
where $n! = n\cdot (n-1)\cdot (n-2) \cdots 2\cdot 1$.

Counting & Probability

N-2 S-2: 

Next, we can simplify the fraction $\frac{6n!}{(n+1)!}$.
Since $(n+1)! = (n+1) \cdot n!$, the fraction simplifies to
$\frac{6}{n+1}$. Substituting this back into the equation
gives us $2 + \frac{6}{n+1} = 3$.

N-3 S-3: 

Next, we can solve the equation $2 + \frac{6}{n+1} = 3$
for $n$. To do this, we first subtract 2 from both sides of
the equation to get $\frac{6}{n+1} = 1$. Then, we can
multiply both sides of the equation by $n+1$ to get $6 =
n+1$.

N-4 S-4: 

Finally, we can solve the equation $6 = n+1$ for $n$ by
subtracting 1 from both sides of the equation. This gives
us $n = 6 - 1 = 5$.
N-5 S-5: 

The final solution is $n = 5$. Since we have found the
value of $n$ that satisfies the given equation, no further
steps are needed.

N-24 P-1: Identify and factor out common terms
from both sides of the equation to simplify it.

0. Match Plan Tree

Score: 1.57

1. Best first search

2. Best first search

N-56 P-2: Simplify complex fractions by identifying
and using the definition or properties of the terms
involved. Substitute the simplified term back into the
equation.

Score: 2.03

3. Best first search

N-13 P-3: Isolate the variable in the equation by
performing inverse operations in the reverse order of
operations (PEMDAS/BODMAS), maintaining the
equality by applying the same operation to both sides
of the equation.

Score: 1.41

4. Best first search

N-67 P-4: Isolate the variable in the equation by
performing inverse operations, maintaining the
equality by applying the same operation to both sides
of the equation.

Score: 2.63

N-49 P-5: Confirm the final solution and conclude the
reasoning process once the desired variable or result
has been isolated and identified.

5. Best first search

Score: 2.3

Figure 2: Illustrating how GPT-4 with Staple-Adaptive tackles a question from the category
“Counting & Probability” of the MATH data during reasoning. Refer to Fig. 4 for explanations
of these plotted modules.

P -2 as guidance for reasoning step 2. This adaptive searching mechanism is repeated 5 times,
ultimately yielding the final answer n = 5. Unlike existing approaches such as TR Chen &
Li (2024), STEPBACK Zheng et al. (2024b), and CR Zhang et al. (2023a), the reliable plans
discovered by Staple during reasoning offer human-readable and insightful information about
how LLMs conduct an effective reasoning process.

5 Concluding Remarks

In this paper, we proposed Staple, a new plan retrieval augmented reasoning framework
designed to optimize general-purpose reasoning instructions and retrieve appropriate plans to
guide large language models towards reliable problem-solving. The offline plan optimization
stage in Staple leverages LLMs to autonomously explore and refine the plan space, structuring
it as a tree based on Monte Carlo Tree Search. Subsequently, the online plan searching
stage adaptively identifies the optimal plan for each reasoning step, ensuring dependable
multi-step reasoning even in the presence of hallucinations. Upon optimizing the plan tree
for each task category, Staple generates a reusable plan database that can be updated and
applied to downstream problems. Our experiments demonstrate that Staple consistently
achieves the second-highest solving rate while maintaining minimal resource consumption.
Finally, the human-interpretable plans derived from tasks and employed in the reasoning
process offer valuable insights into the logical processes of LLMs, potentially yielding broader
implications for the field.
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A Reproducibility

Full reproducibility is essential for effective work, particularly when projects involve reliable
reasoning with Large Language Models (LLMs). To facilitate this, this section provides
detailed instructions on the Source Code (Section A.1), Result Reproduction (Section A.2),
and Prompts (Section A.3) for readers to successfully reproduce the results of the paper.
Specifically, in Section A.4, we offer an illustration showcasing the components that appear
in the figures, highlighting thought structures, plan trees, and plan searching in the paper.
Throughout the appendix, all plan tree-related figures are generated using Networkx Hagberg
et al. (2008).

A.1 Source Code

Our implementation of Staple is based on a new Python framework we developed, called
Llmpebase. The source code, along with a comprehensive explanation of its module structure
and functions, is available in the code/ folder of the supplementary materials. We have
designed the code for ease of use, allowing Staple to be run in less than one minute to
facilitate quick testing.
In addition, we have implemented several representative competitors mentioned in the
experiments. These include Zeroshot-COT, Chain Reasoning, ToT reasoning Yao et al.
(2023), BoT reasoning Chen et al. (2024), and TR Chen & Li (2024), all of which can be
found in the code/ directory.
Our framework, Staple, is referred to as StapleReasoning in the code. The code includes
all necessary modules, including our designs and visualization. Some of them are as follows:

• embedder.py: Compute the text embeddings and Search Top-K neighbors.
• mcts_thought_structure.py: Perform the core MCTS-based plan optimization in

according to Algorithm 1.
• optimize_pipeline.py: Implement the offline plan optimization.
• plan_tree.py: Define the plan tree structure and operations.
• staple_prompts: Implement all prompts used in Staple.
• staple_system_prompts: Implement the system prompts used in Staple.
• StapleOptimization.py: Running interface.
• StapleRetrieval.py: Running interface for online plan searching.

A.2 Result Reproduction

Staple is capable of being executed by using a single line of command. For example, to perform
offline plan optimization on the AQUA-ART dataset, one can run the following command:

python examples/StapleReasoning/StapleOptimization.py -c
configs/AQUA/GPT4/StapleReasoning_ZeroshotCoT.yml -b ICLR

while the command for MATH is:

python examples/StapleReasoning/StapleOptimization.py -c
configs/MATH/GPT4/StapleReasoning_ZeroshotCoT.yml -b ICLR

Throughout the optimization process, our code automatically generates and stores all inter-
mediate results. These include the thought structure, plan trees, reasoning process, solution,
token/interaction cost, and the final plan database. When executing the aforementioned
commands, the results are saved in the ICLR/results/ and ICLR/results/visualizations
folders. Within these directories, results can be located in the corresponding subfolder named
after the reasoning method, such as StapleReasoning__*. For each question’s optimiza-
tion, the file is saved as thought_structure-Epoch 1-Idx 4-ID<5026>. Additionally, the
solution and token/interaction cost are stored in the llm_records file. Notably, the plan
database is stored in the PlanBase folder. Detailed information can be found in Fig. 3.
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Figure 3: Illustrating the positions and details of the results obtained by Staple.

Thought Node Generated with Plan Summarization Prompt 
N-*

IS P-*

N-* Identity of the Thought Node  

P-* Index of the Plan  

S-* Index of the Reasoning step  

Thought Node Generated with Plan Assessment Prompt 
N-*

IA P-*

Thought Node Generated with Plan Generation Prompt 
N-*
P-*

Thought Node Generated with Plan Guided Generation Prompt 
N-*
P-*

Thought Node Containing the final solution  
N-*

IS P-*

Thought Node Generated with Plan Comparison Prompt 

Task Plan tree's Root Node with Category Tag

Q Thought Structure's Root Node Showing the Question

Plan Tree's Plan Node Containing the Plan Description
N-*
P-*

N-*
IC P-*

Reasoning

Plan-based Operations

Figure 4: Illustrating the modules used during plotting the reasoning process of Staple.

A.3 Prompts

All prompts utilized by Staple are located in code/StapleReasoning/staple_prompts.py
and code/StapleReasoning/staple_system_prompts.py. We present the detailed prompts
here to provide further clarification.
Prompt for the Plan Guided Thought Generation IG:

• System Prompt. As an expert in problem-solving, you are skilled in methodical, step-
by-step reasoning guided by policies, each presenting a general-purpose reasoning
instruction for one step. The plan is a high-level, question-agnostic principle that
facilitates deducing a single logical reasoning step toward addressing one task.
Following the plan, you should generate a specific reasoning step. Start by reviewing
the problem, the previous reasoning steps, and their corresponding policies, then
follow the given specific plan to directly generate the next step. Remember, your
next step should include a precise analysis and the corresponding mathematical
expression. This comprehensive approach will ensure a thorough solution. Utilize
Python Programming as an auxiliary tool when necessary.

• {Question}\nLet’s focus on following the plan to directly generate the next reason-
ing step for the reasoning steps below.\n\n{zn}\n{ψn}\n\n{ψ(n+1)∗}\n\nPlease
review the reasoning steps along with their plans, then follow the Plan ψ(n+1)∗ to
proceed to directly generate the best next step, i.e., Step {n+1}.

Prompt for the Plan Exclusion Generation IE :

• System Prompt. As an expert in problem-solving, you are adept at methodical,
step-by-step reasoning while avoiding duplicating the given policies, each presenting
a general-purpose reasoning instruction for one step. You need to know that each
plan is a high-level, question-agnostic principle that facilitates deducing a single
logical reasoning step toward addressing one task. Thus, excluding the plan means
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having a new and different plan to generate the corresponding next step. Remember,
your response should only include one next step. Start by reviewing the problem
and reasoning steps, then exclude the given specific policies to generate the next
step. You can ignore the plan exclusion when no plan is given. The next step should
contain the precise analysis and the corresponding mathematical expression. Utilize
Python Programming as an auxiliary tool when necessary.

• IE : {Question}\nLet’s focus on avoiding using the given policies to carefully
and directly generate the next possible reasoning step for the reasoning steps
below.\n\n{zn}\n{ψn}\n\n{C (ψn∗)}\n\nPlease review the reasoning steps and
their policies, then specifically avoid repeating all Plans C (ψn∗) to proceed to
directly generate the best next step, i.e., Step {n+1}.

Prompt for the Plan Comparison IC :

• System Prompt. As a professional plan comparison expert, your expertise lies in
judging whether a plan exists in a plan pool containing various policies. Remember
that plan is a general-purpose reasoning instruction and is a high-level, question-
agnostic principle. Please perform the comparison in terms of the logic, high-level
ideas, theorems, or rules. Please compare the given plan with each of the policies in
the pool. Once there is a similar one, return True. Start by reviewing policies in the
pool, then directly judge whether the given plan already exists. The output should
be either True or False.

• IE : Let’s focus on whether the given plan exists in the plan
pool.\n\n{ψn+1}\n\n\n{C (ψn∗)}\n\nPlease judge whether the Plan ψn+1
already exists in the C (ψn∗). Only output True if exists, or False if not. Remember
that plan is a high-level, question-agnostic principle. Do not focus on text details
but on the logic, high-level ideas, theorems, or rules.

Prompt for the Plan Assessment IA:

• System Prompt. You are a professional mathematician with expertise in assessing
a plan that presents general-purpose reasoning instruction for generating the next
reasoning step. Specifically, the plan is a high-level, question-agnostic principle
that facilitates deducing a single logical reasoning step toward addressing one task.
You should assess the plan by scoring it based on whether it guides generating the
reasonable reasoning step that progresses the problem-solving. Start by reviewing
the given problem, reasoning steps already taken, and the generated next step
guided by the plan, then directly assess this given plan. Importantly, the generated
reasoning step guided by this plan is also given to facilitate the assessment. Utilize
Python Programming as an auxiliary tool when necessary. The output should be a
float score without including any other content.

• IE : {Question}\nFor the given question, Let’s focus on assessing
whether the plan can guide the generation of an effective next reasoning
step.\n\n{zn}\n{zn+1}\n\n{ψn+1}\n\nPlease review the reasoning steps already
taken and the generated next Step {zn+1} guided by the Plan {ψn+1}, then assess
this Plan {ψn+1}.

Prompt for the Plan Summarization IS :

• System Prompt. You are an expert in identifying, extracting, and summarizing
the plan that underpins one reasoning step. The summarized plan should be a
general-purpose reasoning instruction and, thus, is a high-level, question-agnostic
principle. Please get such a plan containing the highest-level ideas, principles, rules,
or theorems from the given reasoning step. Start by reviewing the given question and
any previous reasoning steps already taken along with their corresponding policies,
then directly summarize the plan of the given reasoning step. Please summarize
the plan directly and briefly, avoiding including the specific contents of the given
question or any reasoning steps.
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• IS : {Question}\nFor the given question, let’s focus on summarize the plan that
underpins the reasoning step {}.\n\n{zn}\n{ψn}\n\n{zn+1}\n\nPlease review
the reasoning steps and their corresponding policies and proceed to summarize the
plan of Step zn+1, i.e., Plan {n+1}.

• One Example from MATH Dataset:

Input: \nQuestion: Find the number of ordered pairs of positive
integers $(a,b)$ such that $a+b=1000$ and neither $a$ nor $b$ has
a zero digit.\n \n\nFor the given question, let’s focus on

summarize the plan that underpins the reasoning step 2.\n\n<Step
Chain>\n Step 1. Recognize that the problem is a partition
problem, where we need to partition the number 1000 into two
parts, each represented by a positive integer. However, the
condition that neither of the integers can contain a zero digit
adds a layer of complexity. To tackle this, we can start by
finding the total number of ways to partition 1000 into two
positive integers without any restrictions. This can be done by
subtracting 1 from 1000, as the number of ways to partition a
number n into two parts is n-1. This gives us 999 ways.\t\n<\\
Step Chain>\n<Plan Chain>\n Plan 1. Identify the problem as a
partition problem and calculate the total number of ways to
partition the given number into two parts without any
restrictions. This is typically done by subtracting 1 from the
given number.\n<\\Plan Chain>\n\n<Step>\n Step 2. The next step
is to determine the number of ways in which a zero digit can
appear in either $a$ or $b$. This can occur if $a$ or $b$ is a
multiple of 10. We need to subtract these cases from the total
999 ways. The multiples of 10 between 1 and 1000 are 10, 20, 30,
..., 990, 1000. There are 100 such numbers. However, we need to
exclude the case where $a$ or $b$ is 1000, as it is not a valid
partition of 1000 into two positive integers. Therefore, there
are 99 ways in which a zero digit can appear in either $a$ or $b$
.\n<\\Step>\n\nPlease review the reasoning steps within <Step
Chain> and their corresponding policies within <Plan Chain> and
proceed to summarize the plan of Step 2 within <Step Chain>, i.e
., Plan 2. Only direct output summarized plan. Do not include the
Plan index in the output. Remember that the plan is a high-level

, question-agnostic principle. Do not include any question or
reasoning step content in the plan.

Output: Identify the cases that violate the given conditions and
calculate their number. Subtract these cases from the total
number of possibilities to get the number of valid cases.

A.4 Plot Illustration

As previously stated, our code generates plots for all intermediate results, encompassing
thought structures and plan trees. Furthermore, we illustrate the MCTS-based optimization
process in Staple as a component of the thought structure to clearly demonstrate its
functionality, as elaborated in Section B. Consequently, Fig. 4 shows the significance of each
module within the figures.

B Examples of Optimization

Based on the experimental results in the supplementary material folder MATH-explain-1/,
we can provide a detailed explanation of how Staple utilized GPT-4 to optimize the plan tree
for the task “Counting & Probability”. In the initial stage of offline optimization, the 3rd
iteration of Algorithm 1 explores, optimizes, and creates 6 new plans for the Plan Tree Ψ,
which contains 2 paths and 13 plans. The value function described in Section 3.2 is defined
for arbitrary thoughts. Specifically, based on rllm and rw defined in Reward assignment and
K (·) defined in Reward assignment, we present that the value function includes three parts:
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(Counting & Probability)Question:

A club has 10 members, 5 boys and 5 girls. Two of the members are chosen at
random. What is the probability that they are both girls?

N-1 S-1:

Calculate the total number of ways to choose 2 members from the
club. This can be done using the combination formula C(n, r) = n! / [(n-r)!r!],
where n is the total number of members (10) and r is the number of members to
be chosen (2).

Q

N-1 S-1

N-5 S-2

N-8 S-3

N-11 SS-4

N-14 S-5

N-3 S-1:

False.

N-4 S-1:

0.9.

N-6 S-2:

0.8.

N-9 S-3:

0.9.

N-13 S-4:

0.8.

N-16 S-5:

0.9.

N-19 S-s:

1.0.

N-2 P-1:

Determine the total number of possible
outcomes for a situation by using the
combination formula, which calculates
the number of ways to choose a specific
number of items from a larger set.

N-6 P-2:

Apply the combination formula to
calculate the specific number of ways to
select a subset from a larger set, given
the total number of items in the set and
the number of items to be selected.

N-9 P-3:

Apply the combination formula to
calculate the specific number of ways to
select a subset from a specific group
within a larger set, given the total
number of items in the group and the

N-12 P-4:

Calculate the probability of a specific
outcome by dividing the number of
favorable outcomes by the total number
of possible outcomes.

N-15 P-5:

Simplify the calculated probability by
reducing the fraction to its lowest terms,
using the greatest common divisor of
the numerator and the denominator.

N-18 P-6:

Present the final solution, which is the
result obtained from the previous
reasoning steps.

N-5 S-2:

Using the combination formula C(n, r) = n! / [(n-r)!r!], where n is the total number
of members (10) and r is the number of members to be chosen (2), the total
number of ways to choose 2 members from the club is C(10, 2) = 10! / [(10-2)!2!]
= 45.

N-8 S-3:

Calculate the total number of ways to choose 2 girls from the club. This can be
done using the combination formula C(n, r) = n! / [(n-r)!r!], where n is the total
number of girls (5) and r is the number of girls to be chosen (2). Using the
combination formula, the total number of ways to choose 2 girls from the club is
C(5, 2) = 5! / [(5-2)!2!] = 10.

N-11 S-4

Calculate the probability that both chosen members are girls. This can be done
by dividing the number of ways to choose 2 girls (10) by the total number of
ways to choose 2 members (45). So, the probability is 10/45.

N-14 S-5

Simplify the fraction obtained in the previous step to get the final probability. The
fraction 10/45 can be simplified by dividing both the numerator and the
denominator by their greatest common divisor, which is 5. So, the simplified
probability is 10/5 / 45/5 = 2/9.

N-17 S-6

The final solution is the simplified probability
obtained in the previous step, which is 2/9. This
means that the probability that both members
chosen at random from the club are girls is 2/9.

Backpropagation

Plan Exploration

Figure 5: Illustration of the 3rd iteration of offline plan optimization in Staple. This figure
shows the exact process of the Algorithm 1 by presenting how the reasoning is performed
and how the plans are explored, summarized, assessed, and created. The table in the figure
shows the specific contents of the Plan Thought Υ in each node of the plan tree and how it
is updated during optimization. These tables are extracted from the Plan Tree Ψ shown in
Fig. 6. We present them here to make a clear alignment with the optimization process.

N-1 P-1:

Use recursion to solve the problem by defining a
sequence of probabilities, each representing the likelihood
of a specific event given a certain condition. Start by
defining the initial term of the sequence as the desired
probability.

N-2 P-2:

Extend the recursive sequence by defining additional
terms based on the same logic as the initial term. Express
these terms in relation to a terminal condition that satisfies
the problem's requirements.

N-3 P-3:

Establish recursive relations for the defined sequence of
probabilities, taking into account the equal likelihood of
different outcomes in each step. In each relation, consider
both the case where the next event brings us closer to the
desired outcome and the case where it does not, adjusting
the probability accordingly.

N-4 P-4:

Solve the system of recursive equations by substituting
known values and solving for the remaining variables one
by one, starting from the equation with the least
unknowns. Use the solutions of each equation as known
values for the subsequent equations.

N-5 P-5:

Continue the process of substituting the solutions of each
equation into the next equation in the system, and
solve for the remaining variables one by one. This
process should be continued until the desired variable is
isolated and its value is found.

N-6 P-6:

Rearrange the derived equation to form a standard
quadratic equation. Then, solve the quadratic equation
using the quadratic formula.

N-7 P-7:

Apply the quadratic formula to the derived quadratic
equation to find the possible solutions. Then, filter out
any solutions that do not meet the constraints of the
problem context.

N-8 P-8:

Express the final solution in the required
format, and perform any necessary
calculations to obtain the final answer.

N-9 P-1:

Identify the problem as a partition problem and calculate
the total number of ways to partition the given number into
two parts without any restrictions. This is typically done by
subtracting 1 from the given number.

N-10 P-2:

Identify the cases that violate the given conditions and
calculate their number. Subtract these cases from the total
number of possibilities to get the number of valid cases.

N-11 P-3:

Identify any additional cases that violate the
given conditions and calculate their number. Add
these to the previously calculated number of
invalid cases. Subtract the total number of
invalid cases from the total number of
possibilities to get the number of valid cases.

N-12 P-4:

Identify any cases that have been double-
counted due to overlapping conditions.
Calculate the number of these double-counted
cases and add them back to the previous result
to correct for the over-subtraction.

N-13 P-5:

Review the entire calculation process and
correct any errors or misconceptions that may
have occurred in previous steps. This includes
reevaluating the conditions of the problem and
ensuring that all calculations align with these
conditions.

N-14 P-1:

Determine the total number of possible outcomes for
a situation by using the combination formula, which
calculates the number of ways to choose a specific
number of items from a larger set.

N-15 P-2:

Apply the combination formula to calculate the
specific number of ways to select a subset from a
larger set, given the total number of items in the set
and the number of items to be selected.

N-6 P-3:

Apply the combination formula to calculate the
specific number of ways to select a subset from a
specific group within a larger set, given the total
number of items in the group and the number of items
to be selected.

N-17 P-4:

Calculate the probability of a specific outcome by
dividing the number of favorable outcomes by the
total number of possible outcomes.

N-19 P-6:

Present the final solution, which is the result
obtained from the previous reasoning steps.

N-18 P-5:

Simplify the calculated probability by
reducing the fraction to its lowest terms,
using the greatest common divisor of
the numerator and the denominator.

Counting & Probability Counting & Probability

Figure 6: Illustration the specific plans in Plan Tree Ψ and the tree change before and after
the third optimization iteration.

• rllm represents the evaluation score of the next thought generated by the LLM based
on the current thought.

• rw indicates whether selecting the plan for the next thought generation from the
current thought results in the final correct solution. It is used for backpropagation
in MCTS.

• K (·) represents the similarity between the current thought and all previous thoughts
that led to the corresponding plan.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

With this value function, we aim to provide an evaluation score for selecting a plan for the
current thought, based on both past experience and the LLM’s self-assessment.
As shown in Fig. 5, the Plan Tree Ψ tagged with “Counting & Probability” is retrieved based
on the category of the question Q. The Plan Exploration is then performed by computing
the exploration probability pψ0 = 1/

(
1 + e0.2(2−5)) = 0.65, where 2 represents the number

of child plans of ψ0 as shown in the 1st depth of the policy tree in Fig. 6. Using the
prompt I′

G, GPT-4 explores new plans by excluding existing ones. For the generated thought
N − 1S− 1, GPT-4 with IS summarizes the plan, which is then assessed using the prompt IA
to generate rllm. Subsequently, GPT-4 with IC compares the summarized plan with existing
plans at the 1-st depth, namely N − 1P − 1 and N − 9P − 1 of Fig. 6. As this is a new
plan, a new node N − 14P − 1 is created in Ψ to record the plan’s content and the Plan
Thought Υ11. For instance, in Fig. 5, the table N − 14P − 1 : Υ11 records the previous
thought Q and its corresponding rllm. Following this expansion phase in MCTS, we conduct
the simulation/rollout by allowing GPT-4 to continue reasoning until it reaches a solution
N − 17S − 6. During this process, a sequence of plans is summarized and assessed, resulting
in the creation of nodes such as N − 15P − 2, N − 16P − 3, N − 17P − 4, N − 18P − 5, and
N − 19P − 6, each with their respective rllm. Consequently, Ψ develops a new plan path
where each node/plan has its own Plan Thought Υ, as illustrated in Fig. 5 and Fig. 6. After
comparing the obtained solution 2/9 with the ground truth 2

9 , Staple backpropagates the
rw : 1 to each node of the plan path and updates the Plan Tree Ψ and Plan Thought Υ
accordingly.
Fig. 6 illustrates the specific content of a Ψ, which comprises numerous plan combinations
presented as the paths in the tree. The left subfigure displays the policy tree with 2 paths
and 13 nodes prior to the third iteration of optimization. It is evident that each plan serves
as a concise and high-level principle outlining what to do during the reasoning step. By
using the plan as an instruction in the prompt, LLMs are guided to follow a specific logical
sequence to reason step-by-step toward the solution. Significantly, after incorporating the
new plan path into the tree, plans denoted as P − 1 at the first depth of the tree differ
from one another, indicating that each plan represents a unique approach to addressing the
given question. Consequently, by continuously conducting trial reasoning with LLMs and
optimizing the policy tree, we can explore a task’s plan space to acquire effective plans with
priority scores that can be directly utilized by downstream tasks.

C Limitations

As an inherent limitation, Staple still incurs token and time costs during the offline plan
optimization stage. Specifically, we use the training sets from the AQUA-RAT, MATH, and
TheoremQA datasets, with sample sizes of 800, 700, and 800, respectively. As outlined in the
experimental settings, we perform 10 epochs to construct the plan trees. Consequently, in
the offline stage, the total token costs are 5.811M, 7.441M, and 8.217M, where M represents
1 million tokens, with corresponding time costs of 36 minutes, 58 minutes, and 1 hour and 23
minutes. The time costs for MATH and TheoremQA are relatively high due to the complexity
of the questions, as LLMs generally need to perform multiple reasoning steps to solve them.
Staple’s applicability covers two scenarios: Case A, where users want to create the plan
database from scratch, and Case B, where users first download a pre-learned plan database
from Hugging Face and then apply it to their own task.
In summary, for users with weak LLMs who want to create a plan database from scratch,
Staple offers only limited improvement, as the database generated by weak LLMs may not
effectively guide problem-solving. However, for users with weak LLMs who reuse a plan
database generated by top-performing LLMs, such as GPT-4, Staple can significantly enhance
performance by retrieving effective plans from the downloaded database. The experimental
results presented below support our argument. Specifically, we use the Number Theory
subset of the MATH dataset, consisting of 800 samples for plan optimization and 540 samples
for evaluation. The offline plan optimization of Staple is conducted using the 800 training
set samples.
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Table 3: Comparing the performance of Staple with different weak LLMs in Case A and
Case B. The 4-shot CoT Wei et al. (2022) is the baseline. The “Staple from scratch” column
means that the model is used in both the offline plan optimization and online plan searching.
The “Reuse the plan database” column means that during the online plan searching, the
model retrieves plans from the plan database generated by Staple using GPT-4.

Models 4-shot CoT Staple from scratch Reuse the plan database
Llama2 7B 12.59 12.04 29.81
Llama2 13B 26.67 29.26 40
Llama2 70B 34.26 38.7 49.63
Llama3 8B 28.89 29.81 44.44
Llama3 70B 48.7 53.15 63.7

Thus, the results shown in Table 3 lead to the following three conclusions.

• For Case A, with weak LLMs, Staple offers only limited improvement. This may
restrict its usability when users prefer to execute both the offline and online stages
of Staple using weak LLMs.

• For Case A, as the capability of the LLMs increases, the performance of Staple
improves accordingly.

• For Case B, users with weak LLMs can significantly enhance their performance by
reusing the plan database from top-performing LLMs, such as GPT-4. The trees in
the plan database of our Staple are in text format, making the database easy to share
on Hugging Face. This further highlights the practicality of our Staple, enabling
researchers worldwide to perform reliable multi-step reasoning by downloading the
well-optimized plan database at no additional cost.

D Plan Tree of the Intermediate Algebra of MATH dataset

Based on the folder MATH-plantree-IntermediateAlgebra/ in the supplementary materials,
we illustrate the plan tree for the Intermediate Algebra task in the MATH dataset. The plan
tree is optimized by Staple following Algorithm 1 with the parameters mentioned in Sec. 4.

D.1 Optimized Plans

Plans sampled from the 1-depth:

• N − 1P − 1: Recognize the properties of a polynomial, specifically that the sum of
the roots is equal to the negation of the coefficient of the second highest degree term
divided by the coefficient of the highest degree term. Use this property to set up an
equation and solve for the desired variable.

• N − 15P − 1: Identify the given properties of the geometric figures and use relevant
formulas to form equations. Use these equations to solve for unknown variables.

• N − 30P − 1: Rewrite the given equation in a standard form by grouping related
terms together and completing the square. This involves identifying and grouping
similar terms, then adjusting the equation to form perfect squares.

• N − 36P − 1: Identify and categorize the types of given equations in a problem.
Recognize that the intersection points of the graphs represented by these equations
will be the solutions to the system formed by these equations.

• N − 36P − 1: Identify the given inequality and the conditions provided. Apply the
mathematical principle that when a negative number is multiplied on both sides
of an inequality, the direction of the inequality reverses. Compare the resulting
inequality with the given inequality to determine if the statement is always true.

• N−76P −1: Identify the roots of the polynomial from the given conditions. Express
the polynomial in its factored form using these roots.
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• N − 82P − 1: Recognize that if a polynomial has real coefficients, its non-real roots
must come in conjugate pairs. If a complex number is a root, then its conjugate
must also be a root.

• N − 91P − 1: Start the process of polynomial long division by dividing the first
term of the numerator by the first term of the denominator to obtain the first term
of the quotient.

Plans sampled from the 2-depth:

• N − 2P − 2: Simplify the equation by combining like terms to make it easier to solve
for the desired variable.

• N − 16P − 2: Express one variable in terms of another using one equation, then
substitute this expression into another equation to reduce the number of unknowns
and simplify the problem.

• N − 25P − 2: Substitute the identified parameters into the appropriate formula or
equation to calculate the desired value or result.

• N − 31P − 2: Calculate the values needed to complete the square for each variable
in the equation. This involves taking half of the coefficient of each variable, squaring
it, and adding it to both sides of the equation. This will transform the equation into
a form where the variables are part of perfect squares.

• N − 45P − 2: Identify the conditions under which the rearranged inequality holds
true by leveraging known mathematical principles or properties. Solve the resulting
inequality to find the range of possible values for the variables or constants involved.

• N−37P−2: Substitute one equation into another when trying to find the intersection
points of two graphs. This simplifies the system of equations into a single equation
with one variable, which can then be solved.

• N − 50P − 2: Apply the mathematical principle that when a negative number is
multiplied on both sides of an inequality, the direction of the inequality reverses.
Compare the resulting inequality with the given inequality to verify if the statement
is always true.

• N − 56P − 2: Distribute the terms in the equation to simplify it further.
• N − 64P − 2: Set each factor of the factored equation equal to zero and solve for

the variable to find the solutions of the equation.
• N − 70P − 2: Identify and list all the factors of the given numbers, considering both

positive and negative values.

Plans sampled from the 3-depth:

• N − 3P − 3: Separate the real and imaginary parts of a complex equation to form
two separate equations. Use these equations to solve for the desired variables. If
an inconsistency or error is found, consider revisiting previous steps to identify and
correct the mistake.

• N − 17P − 3: Substitute the expression of one variable in terms of another into the
equation, then simplify the equation to solve for the desired variable.

• N − 26P − 3: Perform arithmetic operations to simplify the expression or equation,
if necessary, to get the final result.

• N − 32P − 3: Normalize the equation to the standard form of an ellipse by dividing
all terms by the constant on the right side of the equation. This will allow for the
identification of the square of the semi-major and semi-minor axes.

• N − 36P − 3: Identify and categorize the types of given equations in a problem.
Recognize that the intersection points of the graphs represented by these equations
will be the solutions to the system formed by these equations.

• N − 46P − 3: Solve the derived inequality by isolating the variable or constant of
interest. Use appropriate mathematical operations to manipulate the inequality,
considering both positive and negative solutions if necessary.
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• N − 51P − 3: Apply the mathematical principle that when a negative number is
multiplied on both sides of an inequality, the direction of the inequality reverses.
Compare the resulting inequality with the given inequality to ascertain if the
statement is always true.

• N − 57P − 3: Combine like terms in the equation to further simplify it.
• N − 65P − 3: Identify patterns or properties in the simplified expression that allow

for further simplification, such as telescoping series where most terms cancel out,
leaving only a few terms to compute.

Plans sampled from the 4-depth:

• N − 4P − 4: Identify and correct any errors in previous steps, particularly in
mathematical calculations or the application of formulas. If an inconsistency is
found, revisit the steps to ensure the correct separation of real and imaginary parts
in complex equations. Use the corrected equations to solve for the desired variables.

• N − 18P − 4: Simplify the equation by cancelling out common factors or terms, in
order to isolate and solve for the desired variable.

• N − 27P − 4: Continue to perform arithmetic operations to further simplify the
expression or equation, if necessary, to get the final result.

• N−33P−4: Identify the formula for the area of an ellipse and apply it by substituting
the lengths of the semi-major and semi-minor axes obtained from the standard form
of the ellipse equation. This involves taking the square root of the values of a2̂ and
b2̂ to get the lengths of the axes, and then substituting these values into the area
formula.

• N − 47P − 4: Identify the maximum or minimum value from the range of possible
values for the variable or constant of interest, based on the requirements of the
problem.

• N − 39P − 4: Further simplify the equation by combining like terms involving the
same variables on both sides. This process often results in a more manageable
equation, such as a quadratic equation, which can then be solved.

• N − 52P − 4: Apply the mathematical principle that adding the same number to
both sides of an inequality does not change the direction of the inequality. Compare
the resulting inequality with the given inequality to determine if the statement is
always true.

• N − 58P − 4: Isolate the terms involving the variable on one side of the equation
and the constant term on the other side by using the principle of equality to add or
subtract the same quantity from both sides of the equation.

• N −72P −4: Simplify the fractions obtained from the previous step by dividing each
numerator by each denominator and reducing the resulting fraction to its simplest
form. Count the total number of unique simplified fractions to determine the number
of different possible outcomes based on the given conditions.

• N − 139P − 4: Summarize the results of the verification process and conclude the
final solution based on the validated roots.

Plans sampled from the 6-depth:

• N − 6P − 6: Substitute the expression for a variable obtained from previous steps
into the given equations or expressions to further simplify or solve them.

• N − 20P − 6: Use the formula for the perimeter of a geometric figure, substituting
in the known values of the variables, to calculate the perimeter.

• N − 29P − 6: Present the final solution or result obtained from the previous steps.
• N − 35P − 6: Simplify the final expression to obtain the final solution.
• N − 41P − 6: Apply the quadratic formula to solve for the variable in a quadratic

equation. This involves identifying the coefficients of the quadratic equation and
substituting them into the quadratic formula.
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• N − 54P − 6: After evaluating each option individually according to the given
conditions and mathematical principles, consolidate the results to identify which
options are always true.

• N − 60P − 6: Set each factor of the factored equation equal to zero and solve for
the variable to find the solutions of the equation.

• N − 68P − 6: Present the final numerical solution, which is the result of the previous
calculations and simplifications.

Plans sampled from the 9-depth:

• N − 9P − 9: When faced with complex equations that are difficult to simplify
directly, consider using the given conditions or properties of the problem to form new
equations. Substitute these conditions back into the original equations or expressions
and equate them to a known value, in this case zero. This process will yield a system
of equations that can be solved simultaneously to find the desired variables.

• N − 23P − 9: State the final solution to the problem.
• N − 44P − 9: Interpret the mathematical results obtained from previous steps. If

the results indicate an impossibility within the given mathematical system (such
as the square root of a negative number in the real number system), conclude that
there are no valid solutions. Use this conclusion to answer the original question or
problem.

• N − 90P − 9: Present the final solution as the answer to the problem, indicating
the conclusion of the reasoning process.

Plans sampled from the 12-depth:

• N−102P−12: Simplify the expression obtained from the previous step by combining
like terms.

• N − 136P − 12: Conclude the reasoning process by stating the final solution, once
all unknown variables have been determined.

• N − 198P − 12: Present the final solution by stating the quotient and the remainder
obtained from the polynomial long division process.

• N −246P −12: After substituting the expressions for the variables into the equation,
simplify the equation by cancelling out common terms. Continue to simplify the
equation by expanding the terms and combining like terms.

• N − 268P − 12: Present the final solution of the problem.

D.2 Solved Questions

In Fig. 7 and Fig. 8, we show how Staple guides GPT-4 to perform reliable step-by-step
reasoning based on the searched step-wise plan. The initial experimental results are stored
under folders MATH-Questio-1/ and MATH-Questio-2/ of the supplementary.

E Plan Tree of the Kinetics for TheoremQA dataset

E.1 Optimized Plans

Plans sampled from the 1-depth:

• N − 1P − 1 Identify the relevant formula or principle to solve the problem, in this
case, the formula for escape speed. Substitute the given values into the formula to
calculate the desired quantity.

• N − 11P − 1 Identify the problem as one of equilibrium and apply the principle of
moments (torque) to set up an equation. The equation should reflect that the sum
of the moments about any point is zero for the system to be in equilibrium. This
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Question: Four horizontal lines and four vertical lines are drawn in a plane. In how many ways can four lines be chosen such that a
rectangular region is enclosed?
P-1: Identify the components needed to form the desired structure and determine the number of ways to select these components from the
available set. Use the combination formula to calculate the number of ways to choose a specific number of items from a larger set.$
S-1: The problem can be seen as a permutation problem involving movements in a grid with limited directions. In this case, we have four
horizontal lines and four vertical lines drawn in a plane. To enclose a rectangular region, we need to choose two horizontal lines and two
vertical lines. The total number of movements is four (two horizontal and two vertical), and there are two types of movements (horizontal and
vertical). We can use the permutation formula for multiset to calculate the number of ways to arrange these movements. The permutation
formula for a multiset is n!/(n1! * n2! * ... * nk!), where n is the total number of items, and n1, n2, ..., nk are the numbers of each type of item.
In this case, n = 4 (the total number of lines to be chosen), n1 = 2 (the number of horizontal lines to be chosen), and n2 = 2 (the number of
vertical lines to be chosen). Therefore, the number of ways to choose four lines such that a rectangular region is enclosed can be calculated
as 4!/(2! * 2!).

P-2: Calculate the number of ways to select a subset from a larger set using the combination formula. This involves identifying the total
number of items and the number of items to choose, and applying these values to the combination formula.
S-2: Calculate the number of ways to choose two lines out of four for both horizontal and vertical lines separately. This can be done using
the combination formula C(n, r) = n! / [(n-r)! * r!], where n is the total number of items and r is the number of items to choose. In this case, n
= 4 (the total number of lines) and r = 2 (the number of lines to choose). Therefore, the number of ways to choose two lines out of four can
be calculated as C(4, 2) for both horizontal and vertical lines.

P-3: Apply the combination formula to calculate the number of ways to select a subset from a larger set for each category separately.
Multiply the results together if selections from different categories are needed simultaneously.
S-3: Calculate the number of ways to choose two lines out of four for both horizontal and vertical lines separately using the combination
formula C(4, 2) = 4! / [(4-2)! * 2!]. This gives us 6 ways for each, horizontal and vertical lines. Now, since we need to choose 2 lines each
from both horizontal and vertical lines, we multiply the two results together. Therefore, the total number of ways to choose four lines such
that a rectangular region is enclosed is 6 * 6 = 36.

P-4: Confirm the correctness and completeness of the reasoning steps and solutions. If the final solution has been obtained and no further
steps are needed, conclude the reasoning process.
S-4: The reasoning steps provided are correct and complete. Since the final solution has been obtained in Step 3, no further steps are
needed. The final solution is 36.

Figure 7: Illustration of how GPT-4 addresses the question guided by the plans retrieved
from the plan tree of Intermediate Algebra.

involves identifying the forces acting on the system and their distances from the
point of interest.

• N − 17P − 1 Identify the concepts relevant to the problem, in this case, static
and kinetic friction. Understand that static friction must be overcome to initiate
motion and kinetic friction must be overcome to maintain constant velocity. Use the
appropriate equations for static and kinetic friction, recognizing that the normal
force in these equations is equivalent to the weight of the object in question.

• N − 23P − 1 Identify the problem as one involving the conservation of energy,
where potential energy is converted into kinetic energy. Apply the principle of
conservation of energy, which states that the total energy in a closed system remains
constant. Equate the initial potential energy to the final kinetic energy to establish
a relationship for further calculations.

• N−31P −1 Identify the key concepts and relationships involved in the problem. Use
the given information and these relationships to set up the necessary calculations.

• N−42P −1 Identify the variables in the problem and establish relationships between
them. In this case, determine the time of flight for a moving object by expressing
the distance it needs to travel in terms of its speed and the time of flight. This
involves setting up an equation that equates the distance traveled to the product of
the object’s speed and the time of flight.

• N − 50P − 1 Apply the principle of conservation of momentum to establish an
equation representing the relationship between the masses and velocities of the
objects involved in the event.

Plans sampled from the 2-depth:

• N − 2P − 2 Apply the identified formula or principle by substituting the given or
known values into it to perform the necessary calculations.

• N − 8P − 2 Simplify the equation derived from the principle of equilibrium by
eliminating common factors or variables, thus making the equation easier to solve.
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Question: Find the real root of the equation \[\sqrt{x} + \sqrt{x+2} = 10.\]

P-1: Apply the mathematical operation of squaring to both sides of an equation to eliminate square roots.

S-1: To begin, we can square both sides of the equation to eliminate the square roots. This gives us:\n\n\[(\sqrt{x} + \sqrt{x+2})^2 = 10^2.\].

S-2: We expand the left side of the equation using the formula for the square of a binomial (a+b)^2 = a^2 + 2ab + b^2. This gives
us:\n\n\[x + 2\sqrt{x(x+2)} + (x+2) = 100.\]

S-3: To simplify the equation further, let's isolate the term with the square root on one side of the equation. This gives us:\n\n\
[2\sqrt{x(x+2)} = 100 - 2x - 2.\]

S-4: Simplify the right side of the equation to make the equation easier to solve. This gives us:\n\n\[2\sqrt{x(x+2)} = 98 - 2x.\]

S-5: To isolate the square root term, divide both sides of the equation by 2. This gives us:\n\n\[\sqrt{x(x+2)} = 49 - x.\]

S-6: To eliminate the square root, square both sides of the equation again. This gives us:\n\n\[x(x+2) = (49 - x)^2.\]

S-7: Expand the right side of the equation using the formula for the square of a binomial (a-b)^2 = a^2 - 2ab + b^2. This gives
us:\n\n\[x(x+2) = 49^2 - 2*49*x + x^2.\]

S-8: The right side of the equation was incorrectly expanded in the previous step. The correct expansion of (49 - x)^2 should be
2401 - 2*49*x + x^2. So, we correct this to get:\n\n\[x(x+2) = 2401 - 2*49*x + x^2.\]

S-9: To simplify the equation further, let's distribute the x on the left side of the equation and simplify the right side of the
equation. This gives us:\n\n\[x^2 + 2x = 2401 - 98x + x^2.\]

S-10: The equation in the last step is a quadratic equation. However, we notice that the x^2 term is present on both sides of the
equation. To simplify the equation further, we can subtract x^2 from both sides of the equation to eliminate the x^2 term. This
gives us:\n\n\[2x = 2401 - 98x.\]

S-11: To isolate the x term, add 98x to both sides of the equation. This gives us:\n\n\[100x = 2401.\]

S-12: To solve for x, divide both sides of the equation by 100. This gives us:\n\n\[x = \frac{2401}{100}.\]

S-13: The final step is to simplify the fraction on the right side of the equation to get the value of x. This gives us:\n\n\[x =
24.01.\]. The final solution is x = 24.01. This is the real root of the given equation.

P-2: Apply the formula for the square of a binomial to expand the squared terms in an equation.

P-3: Isolate the term containing the square root on one side of the equation to simplify the equation further.

P-4: Simplify the equation by performing basic arithmetic operations to make it easier to solve.

P-5: Divide both sides of the equation by a common factor to further isolate the term of interest.

P-6: Apply the mathematical operation of squaring to both sides of an equation to eliminate square roots.

P-7: Apply the formula for the square of a binomial to expand the squared terms in an equation.

P-8: Correct any mathematical errors in the previous steps to ensure the accuracy of the calculations.

P-9: Distribute and simplify terms in the equation to further simplify it.

P-10: Subtract the same term from both sides of the equation to simplify it further, especially when the term is present on both
sides.

P-11: Isolate the variable of interest by performing the same operation on both sides of the equation.

P-12: Divide both sides of the equation by the same number to solve for the variable of interest.

P-13: Simplify the expression or fraction to obtain the final value of the variable.

Figure 8: Illustration of how GPT-4 addresses the question guided by the plans retrieved
from the plan tree of Intermediate Algebra.

• N − 28P − 2 Apply the formula for static friction to calculate the coefficient of static
friction. Use the given values for the static frictional force and the normal force in
the calculation.

• N −44P −2 Formulate an equation that represents the conservation of energy in the
system, equating the initial potential energy to the sum of the final kinetic energy
and the final potential energy. Identify and define the variables in the equation
based on the given problem.

• N − 63P − 2 Use relevant scientific principles or formulas to express the variables of
interest in the problem. In this case, apply the physics of projectile motion to derive

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

an expression for the time of flight of a projectile, which depends on the initial speed,
launch angle, and acceleration due to gravity.

• N − 71P − 2 Use the derived relationship from the conservation of momentum
to express the velocities of the objects in terms of their masses. Substitute these
expressions into the kinetic energy formula to represent the kinetic energy of each
object in terms of the masses and one of the velocities.

Plans sampled from the 3-depth:

• N − 3P − 3 Perform the necessary mathematical operations, including multiplication
and division of numbers and exponents, and the square root operation, to simplify
the expression and calculate the desired quantity.

• N − 13P − 3 Expand and simplify the terms in the equation to make it easier to
isolate and solve for the unknown variable.

• N − 19P − 3 Perform the necessary mathematical operations to derive the final
value from the previously set up equation or formula.

• N−25P−3 Rearrange the derived equation to isolate the desired variable. Substitute
the known values into the equation to calculate the value of the desired variable.

• N − 33P − 3 Perform the necessary mathematical operations to compute the desired
quantity using the formula and the values substituted into it.

• N − 44P − 3 Combine the derived expressions from previous steps to form an
equation that can be solved for the unknown variable. This involves equating the
two expressions that represent the same physical quantity, simplifying the equation
by cancelling out common terms, and then rearranging the equation to solve for the
unknown variable.

• N − 52P − 3 Simplify the derived expressions for kinetic energy by cancelling out
common terms. Use the established relationships from previous steps to express all
kinetic energies in terms of the same velocity and their respective masses.

Plans sampled from the 5-depth:

• N − 5P − 5 Perform the final mathematical operation, in this case, the square root,
to obtain the final result of the calculation.

• N − 15P − 5 Solve the simplified equation to find the value of the unknown variable,
which represents the solution to the problem.

• N − 21P − 5 Perform the necessary mathematical operations to derive the final
value from the previously set up equation or formula.

• N − 27P − 5 Perform the necessary calculations as per the derived equation to
obtain the value of the unknown variable. This may involve multiple mathematical
operations, including but not limited to, multiplication, subtraction, division, and
extraction of square roots.

• N − 35P − 5 Perform the necessary mathematical operations to compute the desired
quantity using the formula and the values substituted into it.

• N − 46P − 5 Simplify the mathematical expression by performing the calculations
or operations indicated, and apply relevant mathematical functions or principles to
derive the final value of the unknown variable.

• N − 54P − 5 Substitute known or given values into the simplified expression to
calculate the desired quantity. Simplify the expression further if possible.

Plans sampled from the 7-depth:

• N − 7P − 7 Evaluate the final mathematical expression to obtain the solution to
the problem in the desired units.
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• N − 29P − 7 Verify the units of the final answer to ensure they match the
expected units for the quantity being calculated. This step confirms the
consistency and correctness of the solution.

• N−37P−7 Convert the calculated results into the units specified or most appropriate
for the context of the problem.

• N − 48P − 7 Evaluate the final mathematical expression using a calculator or
appropriate software, and interpret the result in the context of the problem.

• N − 56P − 7 Perform the final arithmetic operation to convert the fraction into
a decimal or percentage, providing a more understandable representation of the
calculated quantity.

Plans sampled from the 10-depth:

• Finalize the solution by evaluating the mathematical expression, ensuring that the
result is in the desired units. This completes the problem-solving process.

• Review the final results for correctness and reasonableness based on the
context and known characteristics of the problem. If the results align
with expectations, conclude that the problem is solved.

E.2 Solved Questions
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Question: A neutron at rest decays (breaks up) to a proton and an electron. Energy is released in the decay and appears as kinetic energy
of the proton and electron. The mass of a proton is 1836 times the mass of an electron. What fraction of the total energy released goes into
the kinetic energy of the proton?

P-1: Apply the principle of conservation of momentum to establish an equation representing the relationship between the masses and
velocities of the objects involved in the event.

S-2: The kinetic energy of a particle is given by the equation K = 1/2 * m * v^2. We can express the velocities v_p and v_e in terms of the
masses m_p and m_e using the conservation of momentum equation from Step 1. This gives us:\n\nv_p = (m_e/m_p) * v_e\n\nand\n\nv_e
= (m_p/m_e) * v_p\n\nWe can substitute these expressions into the kinetic energy equations to get the kinetic energy of the proton and the
electron in terms of the masses and one of the velocities. This gives us:\n\nK_p = 1/2 * m_p * ((m_e/m_p) * v_e)^2\n\nand\n\nK_e = 1/2 *
m_e * ((m_p/m_e) * v_p)^2

P-2: Use the derived relationship from the conservation of momentum to express the velocities of the objects in terms of their masses.
Substitute these expressions into the kinetic energy formula to represent the kinetic energy of each object in terms of the masses and one of
the velocities.

S-1: Since the neutron is initially at rest, the total momentum before the decay is zero. After the decay, the total momentum must still be
zero due to the conservation of momentum. This means that the momentum of the proton and the electron must be equal in magnitude but
opposite in direction. Therefore, we can write the equation for the conservation of momentum as:\n\nm_p * v_p = m_e * v_e\n\nwhere m_p
and v_p are the mass and velocity of the proton, and m_e and v_e are the mass and velocity of the electron.

P-3: Simplify the derived expressions for kinetic energy by cancelling out common terms. Use the established relationships from previous
steps to express all kinetic energies in terms of the same velocity and their respective masses.

S-3: Simplify the expressions for the kinetic energy of the proton and the electron. The mass terms in the expressions for K_p and K_e will
cancel out, giving us:\n\nK_p = 1/2 * m_e * v_e^2\n\nand\n\nK_e = 1/2 * m_p * v_p^2\n\nSince the velocities v_p and v_e are equal in
magnitude (from the conservation of momentum), we can substitute v_e for v_p in the equation for K_e, giving us:\n\nK_e = 1/2 * m_p *
v_e^2\n\nNow we have the kinetic energy of the proton and the electron in terms of the same velocity, v_e, and their respective masses.

P-4: Combine the simplified expressions for the kinetic energies of the objects to represent the total energy. Calculate the fraction of the
total energy that goes into one object by dividing its kinetic energy by the total energy. Simplify the expression for this fraction by cancelling
out common terms.

S-4: The total energy released in the decay is the sum of the kinetic energy of the proton and the electron. We can express this as:\n\n
K_total = K_p + K_e\n\nSubstituting the expressions for K_p and K_e from Step 3 into this equation gives us:\n\n K_total = 1/2 * m_e *
v_e^2 + 1/2 * m_p * v_e^2\n\nWe can factor out the common terms to simplify this expression:\n\n K_total = 1/2 * v_e^2 * (m_e +
m_p)\n\nThe fraction of the total energy that goes into the kinetic energy of the proton is then given by the ratio of the kinetic energy of the
proton to the total energy:\n\n Fraction = K_p / K_total\n\nSubstituting the expressions for K_p and K_total into this equation gives us:\n\n
Fraction = (1/2 * m_e * v_e^2) / (1/2 * v_e^2 * (m_e + m_p))\n\nThe v_e^2 terms cancel out, leaving us with:\n\n Fraction = m_e / (m_e +
m_p)

P-5: Substitute known or given values into the simplified expression to calculate the desired quantity. Simplify the expression further if
possible.

S-5: We know that the mass of a proton is 1836 times the mass of an electron. We can substitute this into the equation for the fraction of the
total energy that goes into the kinetic energy of the proton. This gives us:\n\nFraction = m_e / (m_e + 1836*m_e)\n\nWe can factor out m_e
from the denominator to simplify this expression:\n\nFraction = 1 / (1 + 1836).

P-6: Perform the final calculation using the simplified expression to obtain the desired result.

S-6: The next step is to calculate the value of the fraction. This fraction represents the portion of the total energy that goes into the kinetic
energy of the proton. The calculation gives us:\n\nFraction = 1 / (1 + 1836) = 1 / 1837.

P-7: Perform the final arithmetic operation to convert the fraction into a decimal or percentage, providing a more understandable
representation of the calculated quantity.

S-7: The final solution is to simplify the fraction to get the decimal representation. This can be done by dividing 1 by 1837. The calculation
gives us:\n\nFraction = 1 / 1837 ≈ 0.000544. \n\nThis means that approximately 0.0544% of the total energy released goes into the kinetic
energy of the proton.

Figure 9: Illustration of how GPT-4 addresses the question guided by the plans retrieved
from the plan tree of Kinetics of TheoremQA.
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