
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SYMBOLIC LEARNING ENABLES SELF-EVOLVING
AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The AI community has been exploring a pathway to artificial general intelligence
(AGI) by developing “language agents”, which are complex large language models
(LLMs) workflows involving both prompting techniques and tool usage methods.
While language agents have demonstrated impressive capabilities for many real-
world tasks, a fundamental limitation of current language agents research is that
they are model-centric, or engineering-centric. That’s to say, the progress on
prompts, tools, and workflows of language agents requires substantial manual
engineering efforts from human experts rather than automatically learning from
data. We believe the transition from model-centric, or engineering-centric, to
data-centric, i.e., the ability of language agents to autonomously learn and evolve
in environments, is the key for them to possibly achieve AGI.
In this work, we introduce agent symbolic learning, a systematic framework that
enables language agents to optimize themselves on their own in a data-centric way
using symbolic optimizers. Specifically, we consider agents as symbolic networks
where learnable weights are defined by prompts, tools, and the way they are stacked
together. Agent symbolic learning is designed to optimize the symbolic network
within language agents in a data-centric way by mimicking two fundamental algo-
rithms in connectionist learning: back-propagation and gradient descent. Instead
of dealing with numeric weights, agent symbolic learning works with text-based
weights, loss, and gradients. We conduct proof-of-concept experiments on both
standard benchmarks and complex real-world tasks and show substantial improve-
ments over static agent frameworks and simple prompt/tool optimization methods.
In addition, agent symbolic learning enables language agents to update themselves
after being created and deployed in the wild, resulting in “self-evolving agents”.
We will open-source the agent symbolic learning framework to facilitate future
research on data-centric agent learning.

1 INTRODUCTION

Recent advances in large language models (Radford et al., 2018; 2019; Brown et al., 2020; Ouyang
et al., 2022; OpenAI, 2023; Touvron et al., 2023a;b) open the possibility of building language agents
that can autonomously solve complex tasks. The common practice for developing AI agents is to
decompose complex tasks into LLM workflows where prompts and tools are stacked together (Park
et al., 2023; Hong et al., 2023; Zhou et al., 2023b; Chen et al., 2023b; Xie et al., 2023). In a sense,
language agents can be viewed as AI systems that connect connectionism AI (i.e., the LLM backbone
of agents) and symbolism AI (i.e., the workflow of prompts and tools), which partially explains their
effectiveness in real-world problem-solving scenarios.

However, the current state of language agent development is limited by the extensive engineering
effort required to build and customize language agent systems for a specific task. Specifically,
researchers and developers have to manually decompose complex tasks into subtasks, which we
refer to as nodes, that are more tractable for LLMs and then carefully design prompts and tools,
including API functions, knowledge bases, memories, etc., for specific nodes. The complexity of this
process makes the current landscape of language agent research model-centric, or engineering-centric.
This means it is almost impossible for researchers to manually tune or optimize language agents
on datasets on which we can train neural nets in a data-centric way. This limits the robustness and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Computation
Graph

Neural Netwok
Layer

Learnable
Weights Numeric Optimizer Gradient & Loss

Agent Workflow Node Prompts & Tools Symbolic Optimizer Language
Gradient & LossAgent Symbolic Learning

<Result>...</Result>
<Truth>...</Truth>
<Score>...</Score>

<Instruciton>:
Your task is to
optimize the ...

Neural Nets Connectionist Learning

Figure 1: Analogy between agent symbolic learning and neural nets connectionist learning.

versatility of manually coded language agents and requires substantial engineering effort to adapt
language agents to new tasks or data distributions. We believe the transition from engineering-centric
language agent development to data-centric learning is an important step in language agent research.

To this end, a number of recent efforts have been made on automatic optimization of language agents.
For example, DSpy (Khattab et al., 2023) introduces a framework for algorithmically optimizing
LLM prompts via bootstrapping or random searching in a combinatory space of different prompt
components and GPTSwarm (Zhuge et al., 2024) further proposes to tackle the combinatorial
optimization challenge raised in DSPy via an iterative optimization process. Agent-pro (Zhang
et al., 2024b) proposes a framework to optimize the components of the prompts corresponding to the
agents’ internal policy in competitive environments. AgentOptimizer (Zhang et al., 2024a) proposes
a framework to optimize functions with carefully engineered prompts. While effective in some
scenarios, these approaches only optimize separate modules in an agent system such as a prompt
for a specific node. As a result, these optimization methods are prone to local optimum of isolated
prompts, tools, and nodes that lead to compromised performance for the entire agent system. This
resembles the early practice in training neural nets (Hinton and Salakhutdinov, 2006) where layers
are separately optimized and it now seems trivial that optimizing neural nets as a whole leads to better
performance. We believe that this is also the case in agent optimization and joint optimization of all
symbolic components within an agent is the key for optimizing agents.

In this work, we introduce a agent symbolic learning framework for training language agents. The
agent symbolic learning framework is inspired by the connectionist learning procedure (Hinton, 1990)
used for training neural nets. To be specific, we make an analogy between language agents and neural
nets: the agent workflow of an agent corresponds to the computational graph of a neural net, a node
in the agent workflow corresponds to a layer in the neural net, and the prompts and tools for a node
correspond to the weights of a layer. In this way, we are able to implement the main components of
connectionist learning, i.e., backward propagation and gradient-based weight update, in the context
of agent training using language-based loss, gradients, and weights. We implement the loss function,
back-propagation, and weight optimizers in the context of agent training with carefully designed
LLM workflows. Specifically, for a training example, our framework first conducts the “forward pass”
(agent execution) and stores the input, output, prompts, and tool usage in each node in a “trajectory”.
We then use an LLM-based loss function to evaluate the outcome following recent LLM-as-a-judge
framework (Zheng et al., 2023), resulting in a text-based loss. Then we back-propagate the text-based
loss from the last to the first node along the trajectory, resulting in natural language analysis and
reflection for the symbolic components within each node including the prompts and tool descriptions.
We refer to these reflections and analyses as “language gradients” since they carry the same role as
conventional gradients in the training of neural nets: guide the direction to which optimizers should

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

change the weights so that the overall loss is minimized. Finally, we update all symbolic components
in each node, as well as the computational graph consisting of the nodes and their connections,
according to the language gradients using LLMs with carefully designed prompts and workflows. Our
approach also naturally supports optimizing multi-agent systems by considering nodes as different
agents or allowing multiple agents to take actions in one node.

The agent symbolic learning framework is an agent learning framework that mimics the standard
connectionist learning procedure. In contrast to existing methods that either optimize single prompt
or tool in a separate manner, the agent symbolic learning framework jointly optimizes all symbolic
components within an agent system, including prompts, tools, and the workflow that stacks them
into an agent system. This top-down optimization scheme also enables the agent symbolic learning
framework to optimize the agent system “holistically”, avoiding local optimum for each separated
component. This makes it possible for language agents targeting complex real-world problems to
effectively learn from data, opening up the possibility to transform the current state of language agent
research from engineering-centric to data-centric.

In sum, by learning from LLM-generated critics (language-based loss) and reflections (language-
based gradients), the agent symbolic learning framework has the following advantages compared to
conventional frameworks for language agents in which the prompts, tools, and workflows are static
and require human expert efforts for optimization: first, agent symbolic learning enables the agent
system to learn from failure or unstable cases and update the prompts by adding few-shot examples
or principles; second, it enables the system to include new nodes (subtasks) and adjust the workflow
to improve the overall performance or handle some common failure patterns; third, our approach
enables the agent system to update the tool descriptions and implementation or implement new tools
for improved performance.

Moreover, since the language-based loss function does not require ground-truth when generating the
language loss and the optimization framework only requires calling of LLM APIs instead of tons of
GPUs, our framework enables language agents to learn from experience and actively update all their
symbolic components after being created and deployed in the wild, enabling “self-evolving agents”1.
We believe this could be very helpful in the pursuit of artificial general intelligence.

As a proof-of-concept, we conduct a series of experiments on both standard LLM benchmarks and
complex agentic tasks. Our results demonstrate the effectiveness of the proposed agent symbolic
learning framework on optimizing and designing prompts and tools, as well as updating the overall
agent workflow, by data-centric learning. We will open-source all codes and prompts in the agent
symbolic learning framework to facilitate future research on data-centric agent learning.

2 RELATED WORK

2.1 LANGUAGE MODELS, PROMPTS, AND LANGUAGE AGENTS

Language model is a family of machine learning model that is trained to evaluate the probability
of sequences of words or tokens. Large language models (LLMs) (Radford et al., 2018; 2019;
Brown et al., 2020; Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023a;b) often refer to
language models that adopt the autoregressive probability factorization scheme, parametrized by
the Transformer architecture (Vaswani et al., 2017), consists of a large amount of parameters, and
trained on large-scale corpus. With scaling of model size, training data, and computation, LLMs have
demonstrated remarkable capabilities in generating human-like texts and understanding context.

Prompts, on the other hand, is the key for unleashing the capabilites of LLMs. Prompts are critical
components in controlling the behavior and output of LLMs and serve as the interface between human
and LLMs. The design of prompts significantly impacts the performance of language models and a
number of progress have been made on prompt engineering, including in-context learning (Brown
et al., 2020), chain-of-thought prompting (Nye et al., 2022; Wei et al., 2022), ReAct (Yao et al., 2022),
self-refine (Madaan et al., 2023), self-consistency (Wang et al., 2023), recurrent prompting (Zhou
et al., 2023a), etc.

1Agents can also collect training data in the wild and update the LLM backbone via fine-tuning. In this way,
all components in the agent can be updated. We leave this for future work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Language agents further extend the functionality of language models beyond simple prompting by
allowing LLMs to use tools (Schick et al., 2023) and integrating LLMs into broader systems capable
of executing multi-step tasks (Park et al., 2023; Hong et al., 2023; Zhou et al., 2023b; Chen et al.,
2023b; Xie et al., 2023). By stacking prompts and tools into carefully designed workflows, agents are
versatile in various applications, from customer service automation to advanced data analysis.

2.2 FROM AUTOMATED PROMPT ENGINEERING TO AGENT OPTIMIZATION

With the increasing popularity of prompt engineering in both academic and industry, a number of
recent work investigated methods to automate the prompt engineering process. For example, Pryzant
et al. (2020) and Yang et al. (2024) uses carefully designed prompts to unleash LLMs’ ability to do
prompt engineering for themselves. On the other hand, Prasad et al. (2023) and Guo et al. (2024)
employs different search algorithms such as genetic algorithms for prompt optimization.

Since prompts are critical components of agents, the success of automated prompt engineering
opens up the possibility of automated agent optimization. Similar to the case in automated prompt
engineering, methods for agent optimization can also be categorized into two categories: prompt-
based and search-based. For example, Agent-pro (Zhang et al., 2024b) and AgentOptimizer (Zhang
et al., 2024a) leverage carefully designed prompts to optimize either the prompts or the tools in a node
of the agent workflow. These methods work on isolated components within an agent. Another line of
research explored search-based agent optimization algorithms. Sordoni et al. (2023) uses variational
inference to optimize stacked LLMs. DSpy (Khattab et al., 2023) uses search algorithms to find the
best prompts or nodes in a combinatory space. GPTSwarm (Zhuge et al., 2024) further improved
the search algorithm for the combinatory optimization problem. These approaches have a few major
limitations. First, the search algorithm mainly works when the metric can be defined numerically
with equations that can be coded. However, most agentic tasks are real-world complex problems of
which the success can not be defined by some equations, such as software development or creative
writing. Second, these approaches update each component separately and therefore suffer from the
local optimum of each node or component. These approaches also lack the functionality of adding
nodes in the workflow or implementing new tools. Our proposed agent symbolic learning framework,
on the other hand, is the first agent learning method that optimize the agent system “holistically” and
is able to optimize prompts, tools, nodes, as well as the way they are stacked into agents.

Furthermore, a number of recent efforts have been done on synthesizing data to fine-tune the LLM
backbone of an agent (Chen et al., 2023a; Qiao et al., 2024; Song et al., 2024). This line of research
is orthogonal to our work and we believe they can be complementary to each other. ICE (Qian et al.,
2024) is also a related work investigating inter-task transfer learning for language agents, which can
be complementary with our method for building self-evolving agents.

3 AGENT SYMBOLIC LEARNING

3.1 PROBLEM FORMULATION

We first formulate the agent symbolic learning framework by drawing analogies to the components
and procedures used in neural network training. We define the key components of the framework and
explain the notations used throughout this section.

The agent symbolic learning framework, as illustrated in Figure 2 and described in Algo 1, is inspired
by the connectionist learning procedures used for training neural nets (Hinton, 1990). We first
introduce the notations for key concepts by making analogies to that in the connectionist learning
framework:

• Agent Workflow A: Similar to the computational graph in neural nets that represents the
structure of layers and their connections, agent workflow represents the sequence of nodes (or
steps) through which the agent processes input data. A sequence of nodes {N1,N2, . . . ,Nn}
that process the input data through various stages. Note that in some agent frameworks,
the agent workflow is input-dependent since the nodes are dynamically assigned during
execution, which is similar to the case of dynamic neural nets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 Agent Symbolic Learning Framework

Require: I ▷ Input to the agent system
Require: A ▷ Agent workflow with nodes
Require: G ▷ Prompt-based gradient propagation function
Require: L ▷ Prompt-based loss function
Ensure: Updated symbolic components in the agent system

1: τ ← [] ▷ Initialize trajectory
2: Forward Pass
3: for each N ∈ A do
4: In ← Get input for N ▷ Input to the node
5: On ← N (In,Pn, Tn) ▷ Output from the node
6: Append (In,On,Pn, Tn) to τ
7: end for
8: Loss Computation
9: Llang ← L(τ) ▷ Compute language loss

10: Back-propagation
11: for each N ∈ reverse(A) do
12: ∇n

lang ← G(∇
n+1
lang , In,On,Pn, Tn,Llang) ▷ ∇n+1

lang = ∅ for the last node
13: Append∇n

lang to τ
14: end for
15: Weight Update
16: for each N ∈ A do
17: Update Pn, Tn using∇n

lang ▷ Update prompts and tools
18: end for
19: Update A using {∇n

lang} ▷ Update the agent workflow
20: return (A, P , T) ▷ Updated agent system

• Node N : An individual step within an agent workflow. The role of a node in an agent
is similar to a layer in a neural network. A node Nn receives Node Input In, which are
also in natural language form. In general, the input for a node consists of the output of the
previous node and (optionally) inputs from the environment (e.g., human input). The node
Nn processes the input In with an LLM using both prompts Pn and tools Tn2. The output
On is in natural language and passed to the next node.

• Trajectory τ : Similar to the role of computational graph of neural nets, the trajectory stores
all information during the forward pass, including the inputs, outputs, prompts, and tools
usage for each node, and is responsible for gradient back-propagation.

• Language Loss Llang: Language loss in the agent symbolic learning framework is similar to
the loss in neural networks since they both measure the discrepancy between the expected
and actual outcomes. The main difference is that the language loss is in textual form and is
produced by a natural language loss function implemented by a carefully designed prompt
while conventional losses are float numbers computed with loss functions that are numerical
equations.

• Language Gradient ∇lang: Similar to the role of gradients in connectionist learning,
language gradients are textual analyses and reflections used for updating each component in
the agent with respect to the language loss.

3.2 AGENT SYMBOLIC LEARNING PROCEDURE

After defining the key components, we can summarize the workflow of the agent symbolic learning
framework in Algorithm 1. In this section, we describe each step in the agent symbolic learning
framework in detail.

Forward Pass The forward pass is almost identical to standard agent execution. The main dif-
ference is that we store the input, prompts, tool usage, and the output to the trajectory, which is

2Tn consists of the input and output for tool usage, and the implementation of the tool itself.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Forward PassInitialized

State1 State2 Statet-1 Statet

Trajectory Nodet ⊕ Agentt ⊕ Actiont ⊕ EnvironmenttTask LLM

AgentWorkflow

Prompt

Tools

Node

Frozen

Updated

Back Propagation of Language Gradients

Language
Gradients

Prompt Optimizer

Workflow Optimizer

Tool Optimizer

Optimized

Tr
aj

ec
to

ry

Freeze

1 1 1

2 2 2

Language
Loss

1

2 Next node is selected by transition controller of node

Next agent is selected by routing controller of node

Figure 2: Illustration of the agent symbolic learning framework.

used for language gradient back-propagation. This is similar to deep learning frameworks such as
PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2016) that store the intermediate outputs
and activation in the computation graph of the neural network.

Language Loss Computation After the forward pass, we compute the language loss for a training
example by feeding the trajectory into an LLM using a carefully designed prompt template Ploss:

Llang = LLM(Ploss(τ)) (1)

The key is the design for the prompt template, which is expected to holistically evaluate how the agent
performs with respect to the input, environment, and task requirements. To this end, we carefully
design a prompt template for language loss computation consisting of the following components: task
description, input, trajectory, few-shot demonstrations, principles, and output format control. Among
them, task description, input, and trajectory are data-dependent while the few-shot demonstrations,
principles, and output format control are fixed for all tasks and training examples. The language loss
consists of both natural language comments and a numerical score (also generated via prompting).
We can optionally feed the ground-truth label for the input when generating the language loss. We
call this scenario supervised agent learning. It can also generate language loss without ground-truth
by evaluating the output and trajectory according to the task description. In this case, we can say that
the agent is doing unsupervised agent learning, which enables language agents to self-evolving. We
present the detailed implementation of this prompt template in the Appendix.

Back-propagation of Language Gradients In standard connectionist learning, the goal of gradient
back-propagation is to calculate the impact of the weights with respect to the overall loss so that
the optimizers can update the weights accordingly. Similarly, in our framework, we also design a
“back-propagation” algorithm for language gradients. Specifically, we iterate from the last node to the
first node and compute the gradient for each node with LLMs using a carefully designed prompt:

∇n
lang = LLM(Pgradient(∇n+1

lang , In,On,Pn, Tn,Llang)) (2)

The prompt template Pgradient is designed to instruct the LLM to generate language gradients that
are analyses and reflections for the symbolic components within the node. Inspired by the idea of
back-propagation, we give the language gradients of the node executed after the current node, as well
as the information on the execution of the current node, which is stored in the trajectory. That’s to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

say, when doing analysis and reflection, the LLM not only needs to consider how the prompts and
tools suit the subgoal of the current node but also has to consider how they affect the accomplishment
of the subgoal of the next node. By chaining from top to bottom, the language gradients for all nodes
are relevant and responsible for the overall success of the agent. This method effectively reduces the
risk of optimizing toward the local optimum for each isolated prompt and tool, leading to the overall
performance of agent systems.

Language Gradient-based Update The final step in the framework is to update the prompts
and tools in each node and optimize the overall agent workflow with the help of language gradi-
ents. This is accomplished via “symbolic optimizers”. Symbolic optimizers are carefully designed
prompt workflows that can optimize the symbolic weights of an agent. We create three types of
symbolic optimizers: PromptOptimizer, ToolOptimizer, and WorkflowOptimizer. We present detailed
implementation of these prompts in the Appendix.

PromptOptimizer: To facilitate prompt optimization, we split prompts into different components,
including task description, few-shot examples, principles, and output format control. We then design
separate prompts tailored for the optimization of each prompt component. All prompts share a
detailed explanation and demonstration of how the LLM should focus on the language gradients
when reasoning about how to edit the original prompt components.

ToolOptimizer: The ToolOptimizer is a workflow of prompts that first instructs the LLM to
decide the kind of operation it should use: whether the tools should be improved (by editing the
tool description used for function calling), deleted, or new tools need to implement. Then the
ToolOptimizer calls different prompts specifically designed for tool editing, deletion, and creation.

WorkflowOptimizer: The goal of the WorkflowOptimizer is to optimizer the agent workflow
consisting of nodes and their connections. The prompt is designed to first introduce the agent
programming language used to define the agent workflow (we use the agent programming language
introduced in Zhou et al. (2023b)). Then the prompt describes the definition of a few atomic operations
that the LLM can use to update the workflow, including adding, deleting, and moving the nodes. It
then instructs the LLM to first analyze how the workflow could be improved and then implement the
update using the atomic operations. Detailed descriptions of the agent programming language and
the atomic operations used to update the agent workflow are available in the Appendix.

Since all aforementioned optimizers operate in natural language space and some optimization
operations need to be done in code space, we use a simple strategy that retries any illegal update
up to three times and discards the update if the error persists. We also use a rollback strategy that
re-runs the current example after optimization and rolls back to the original agent if the performance
evaluated using the language-based loss function drops. Furthermore, we also include a “learning
rate” component for each prompts in the optimizers which controls how aggressive the LLM should
be when optimizing prompts, tools, and agent workflows.

Batched Training The aforementioned optimization scheme works with one training example at a
time, which resembles stochastic gradient descent. Inspired by the fact that mini-batch stochastic
gradient descent works better, or more stably, in practice, we also devise a batched training variant for
symbolic optimizers. Specifically, we conduct forward pass, loss computation, and back-propagation
for each example separately. Then we feed a batch of language gradients for the same node, and
prompt the LLM to holistically consider all these language gradients when updating the agent.

Cost and Efficiency Compared to conventional static agent frameworks, agent symbolic learning
does not involve additional compute or API costs during inference time. As for training time, for each
training example, the agent symbolic learning framework requires roughly 3 to 5 times the API costs
(in terms of the number of input and output tokens) compared to that required for inference time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4 EXPERIMENTS

4.1 SETTINGS

4.1.1 TASKS

We conduct experiments on both standard LLM benchmarks and more complex agentic tasks. We
describe the tasks, datasets, and evaluation metrics as follows:

Table 1: Results on standard LLM benchmarks.

Methods HotPotQA MATH HumanEval
GPT-3.5 GPT-4 GPT-3.5 GPT-4 GPT-3.5 GPT-4

GPTs 24 / 38.8 33 / 44.3 23.2 53.1 59.2 71.7
Agents 27 / 37.5 39 / 49.8 23.8 56.0 59.5 85.0
Agents w/ AutoPE 29 / 39.8 38 / 50.3 22.5 57.2 63.5 82.3
DSPy 35 / 43.9 40 / 50.5 17.3 48.4 66.7 77.3
Ours 35 / 44.8 41 / 54.0 38.8 60.7 64.5 85.8

Standard Benchmarks We conduct experiments on standard benchmarks for LLMs including
HotpotQA (Yang et al., 2018), MATH (Hendrycks et al., 2021), and HumanEval (Chen et al., 2021).
HotPotQA is a multi-hop QA task challenging for rich background knowledge. We use the “hard”
split in the dataset since we find it to be more challenging for language agents. MATH is a collection
of challenging competition mathematics problems. HumanEval is an evaluation set that requires
LLMs or agents to synthesize programs from docstrings. As for evaluation metrics, we use F1 and
exact match for HotPotQA, accuracy for MATH, and Pass@1 for HumanEval. Tools are disabled in
these datasets to ensure the comparison of the results is meaningful with existing literature on these
tasks.

Complex Agent Tasks We consider creative writing and software development as two complex
agentic tasks. For the creative writing task, we follow Yao et al. (2023) and give 4 random sentences
to the agents and ask them to write a coherent passage with 4 paragraphs that end in the 4 input
sentences respectively. Such a task is open-ended and exploratory and challenges creative thinking
as well as high-level planning. We use GPT-4 score to evaluate the passages following (Yao et al.,
2023). The software development task, on the other hand, requires the agent system to develop an
executable software given a simple product requirement document (PRD). We evaluate the compared
agents according to the executability of the generated software, which is quantified by numerical
scores ranging from 1 to 4, corresponding to increasing levels of execution capability. Specifically, a
score of 1 signifies execution failure, 2 denotes successful code execution, 3 represents conformance
to the anticipated workflow, and 4 indicates flawless alignment with expectations.

4.1.2 BASELINES

We compare our proposed method against the following baselines:

• GPTs: a simple baseline that uses GPT and a carefully designed prompt following the way
OpenAI implements GPTs agents;

• Agents: a language agent method implemented using the Agents (Zhou et al., 2023b)
framework3 with carefully designed prompts, tools, and workflows;

• DSpy: an LLM workflow optimization framework that can search the best combination
of prompt components. It is not directly applicable for complex agent tasks where the
evaluation metric can not be defined in equation and code;

• Agents + AutoPE: a variant where the prompt in each node of the agent workflow is
optimized by an LLM following the method described in Yang et al. (2024). Compared

3We have tested with other agent frameworks such as OpenAgents and AgentVerse and got similar results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

with our approach, this baseline does not involve language gradient back-propagation and
language gradient-based optimization.

We conduct the experiments with both GPT-3.5 and GPT-4. We use the gpt-3.5-turbo-0125
endpoint for GPT-3.5 and the gpt-4-turbo-0409 endpoint for GPT-4. As for our approach,
we start with the Agents baseline and then conduct agent symbolic learning on top of it. All agent
systems included in the experiments are implemented and optimized with the best efforts from the
same group of engineers with good proficiency on agent development.

4.2 RESULTS

Table 2: Results on software development.

Task GPTs Agents Ours
Flappy bird 2 2 3
Tank battle game 1 2 4
2048 game 1 2 4
Snake game 2 3 4
Brick breaker game 2 3 4
Average score 1.6 2.4 3.8

Table 3: Results on creative writing.

Methods GPT-3.5 GPT-4
GPTs 4.0 6.0
Agents 4.2 6.0
Agents w/ AutoPE 4.4 6.5
ToT 3.8 6.8
Ours 6.9 7.4

Results on LLM Benchmarks The results on standard LLM benchmarks are shown in Table 1.
We can see that the proposed agent symbolic learning framework consistently improves over all
compared methods. The performance improvement on MATH, a competition-level benchmark, is
especially large. In contrast, the conventional LLM-based prompt optimization method (Agents w/
AutoPE) and the search-based prompt optimization approach (DSPy) are not as stable: they results in
good performance improvements in some cases but lead to significant performance degradation in
some other cases. This suggests that the agent symbolic learning framework is more robust and can
optimize the overall performance of language agents more effectively.

Results on Complex Tasks We present the results on software development and creative writing
in Table 2 & 3, respectively. We can see that our approach significantly outperforms all compared
baselines on both tasks with an even larger performance gap compared to that on conventional LLM
benchmarks. Interestingly, our approach even outperforms tree-of-thought, a carefully designed
prompt engineering and inference algorithm, on the creative writing task. We find that our approach
successfully finds a “plan, write, and revision“ workflow for professional creative writing, and the
prompts are very well optimized in each step. We also find that the agent symbolic learning framework
recovers a similar standard operation procedure developed in MetaGPT (Hong et al., 2023), an agent
framework specifically designed for software development. This confirms the effectiveness of the
proposed agent symbolic learning framework on real-world tasks where there is no ground truth
and the overall performance cannot be calculated by equations or codes, as contrary to search-based
algorithms such as DSPy.

4.3 CASE STUDY & ANALYSIS

We then show a case study for the optimization dynamics of the agent symbolic learning framework
in Figure 3. We can see that our approach can effectively do prompt engineering and designing of the
agent workflow in the way a human expert develops language agents. Specifically, agent symbolic
learning successfully adds an “edit” or “revision” node in the workflow of a creative writing agent
and substantially improves the design of the prompts.

Moreover, we find that the initialization of the agent system has non-negligible impacts on the final
performance, just as the initialization of neural nets is important for training. In general, we find that
it is generally helpful to initialize the agent in the simplest way and let the symbolic optimizers to do
the optimization. In contrast, the performance tends to become unstable if the initial agent system
is over-engineered. A natural extension of this observation is that maybe we can do some kind of
pre-training on large-scale and diverse tasks as a versatile initialization for general-purpose agents
and then adapt it to specialized tasks with agent symbolic learning. We also find that the success of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Node
Write

Agent1: writer
Description: Write a fluent passage
based on the questions given, in which
the closing part of each paragraph
ends with the sentence given

Optimize

Node
Write

Node
Check

Agent1: writer
Description: Write a fluent passage based on the questions given.
Ensure that each paragraph concludes with the specified sentence
to reinforce key ideas and provide a smooth narrative flow.

+Agent2: editor
+Description: Review the passage written by 'writer', correcting
grammatical errors, improving logical flow, and enhancing
readability. The final result should be free of major errors and
optimized for fluency.

Figure 3: A case study conducted on creative writing task.

our approach is more significant and stable on complex real-world tasks compared to that on standard
benchmarks where the performance is evaluated by traditional metrics such as accuracy or F1. This
suggests that future research on agent learning should focus more on real-world tasks, and the agent
research community should work on building a benchmark focusing on agent learning evaluation that
consists of diverse complex agentic tasks and investigating robust approaches to measure progress.

5 CONCLUSION

This paper introduces agent symbolic learning, a framework for agent learning that jointly optimizes
all symbolic components within an agent system. The agent symbolic learning framework draws
inspiration from standard connectionist learning procedure to do symbolic learning. It uses language-
based loss, gradients, and optimizers to optimize prompts, tools, and the agent workflow with respect
to the overall performance of the agent system. The proposed framework is among the first attempts
to optimize agents that can solve complex real-world tasks using sophisticated workflows. Our
frameworks enables language agents to “learn from data” and perform “self-evolve” after being
created and deployed in the wild. We conduct several proof-of-concept experiments and show that the
agent symbolic learning framework can effectively optimize agents across different task complexity.
We believe this transition from model-centric to data-centric agent research is a meaningful step
towards approaching artificial general intelligence and open-source the codes and prompts for the
agent symbolic learning framework to accelerate this transition.

6 LIMITATIONS & BOARDER IMPACT

The scope of experiments in this paper is not super large enough to cover most agentic tasks in the real
world. They are rather proof-of-concept experiments showcasing the effectiveness of the proposed
method. We believe the community on agent research should work on a standard evaluation procedure
to facilitate future research. Another limitation is that the experiments are done with text-only models
and tasks, while experiments with multi-modal agents and tasks would be very interesting.

As for the boarder impact, we would like to point out that enabling language agents to self-evolve in
the wild poses certain safety risks. We believe it is important to reveal these potential risks to the
agent research & development community and we need to discuss methods for effective regulation.

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2023b.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ZG3RaNIsO8.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, pages 555–610. Elsevier,
1990.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jin-
lin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. arXiv preprint arXiv:2310.03714, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2022. URL https://openreview.net/forum?id=iedYJm92o0a.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=iedYJm92o0a

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

OpenAI. GPT-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=TG8KACxEON.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based
instruction search for prompting large language models. In Andreas Vlachos and Isabelle
Augenstein, editors, Proceedings of the 17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 3845–3864, Dubrovnik, Croatia, May 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL
https://aclanthology.org/2023.eacl-main.277.

Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi, Dan Jurafsky, and Diyi
Yang. Automatically neutralizing subjective bias in text. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 480–489.
AAAI Press, 2020. doi: 10.1609/AAAI.V34I01.5385. URL https://doi.org/10.1609/
aaai.v34i01.5385.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan
Liu, and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent
self-evolution, 2024.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang,
Chengfei Lv, and Huajun Chen. AUTOACT: automatic agent learning from scratch via self-
planning. CoRR, abs/2401.05268, 2024. doi: 10.48550/ARXIV.2401.05268. URL https:
//doi.org/10.48550/arXiv.2401.05268.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=Yacmpz84TH.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for LLM agents. CoRR, abs/2403.02502, 2024. doi: 10.
48550/ARXIV.2403.02502. URL https://doi.org/10.48550/arXiv.2403.02502.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang
Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimization of
stacked LLMs using variational inference. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=iImnbUVhok.

12

https://openreview.net/forum?id=TG8KACxEON
https://aclanthology.org/2023.eacl-main.277
https://doi.org/10.1609/aaai.v34i01.5385
https://doi.org/10.1609/aaai.v34i01.5385
https://doi.org/10.48550/arXiv.2401.05268
https://doi.org/10.48550/arXiv.2401.05268
https://openreview.net/forum?id=Yacmpz84TH
https://doi.org/10.48550/arXiv.2403.02502
https://openreview.net/forum?id=iImnbUVhok

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong,
and Tao Yu. Openagents: An open platform for language agents in the wild, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2369–2380,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu.
Offline training of language model agents with functions as learnable weights, 2024a.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization, 2024b.

13

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=Bb4VGOWELI
https://aclanthology.org/D18-1259

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text, 2023a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Ningyu
Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source framework for
autonomous language agents, 2023b.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A IMPLEMENTATION DETAILS

We adopt the agent programming language and framework introduced in Agents (Zhou et al., 2023b),
a language agent framework that enables developers to build language agents that stacks prompts
and tools together into complex pipelines. The main advantage of the Agents framework is that
it enables developers to use a config file to define the agent system, which makes it easier for the
symbolic optimizers in the agent symbolic learning framework to perform update operations on the
agent system.

B PROMPT TEMPLATES

Prompt Template for Language Loss Function
Loss with ground truth:
You are a fine-tuner of a large model. I will provide you with some output results from the model and the
expected correct results. You need to evaluate these data and provide a score out of 10, please wrap the score
using <score></score>. Additionally, please provide some suggestions for modifying the model’s output,
using <suggestion></suggestion> to wrap your suggestions.

Here is the model’s output:
<result>result</result>;

The expected result is:
<ground_truth>ground_truth</ground_truth>

Please note:

1. Ensure that the output is wrapped with <score></score> and <suggestion></suggestion> respectively.
2. The output should be as consistent as possible with the expected result while being correct. For example,
if the expected result is “BUST”, and the model’s output is “The women’s lifestyle magazine is ’BUST’
magazine.”, even though the answer is correct, you should advise the model to be more concise.
3. The standard for a score of 10 is that the model’s output is exactly the same as the expected result in a
case-insensitive manner, and without any unnecessary content. Even if the model’s output is semantically
correct, if it includes superfluous content, points should be deducted.

Loss with ground truth and score:
You are a large language model fine-tuner. I will provide you with a model’s output and the expected
correct result. You need to evaluate it and suggest modifications to the model’s output. Please use ‘<sugges-
tion></suggestion>‘ to enclose your feedback.

Below is the model’s output:
<result>result</result>

The expected result is:
<ground_truth>ground_truth</ground_truth>

Here is the evaluation score for the model. Your goal is to optimize this score:
<score>score</score>

The relevant information about this score is as follows:
<evaluation_info>score_info</evaluation_info>

Note:
1. Ensure that ‘<suggestion></suggestion>‘ exists and appears once.
2. If the model’s output is satisfactory, you can output <suggestion>The output is satisfactory, no additional
requirements</suggestion>.
3. The output should be as close to the expected result as possible while ensuring correctness. For example,
if the expected result is "BUST" and the model’s output is "The women’s lifestyle magazine is ’BUST’
magazine.", even though this answer is correct, you should remind the model to be concise.

Table 4: Prompt Template for Language Loss Function

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Prompt Template for Gradient Back-propagation
Prompt-Level
You are now a prompt fine-tuner for a large language model. You are tasked with providing suggestions for
optimizing the prompt template.
Please enclose your suggestions using <suggestion></suggestion>, for example, <suggestion>it could be
made shorter</suggestion>.
The task is divided into multiple steps; I will provide you with the output from the previous step, the
requirement proposed by the next step for the current output, the current output itself, and the prompt
template. You need to suggest improvements for the current step’s prompt template.

- The prompt template that needs optimization is: <prompt_template>prompt_template</prompt_template>
- The output from the previous step is: <previous_output>previous_output</previous_output>
- The current output is: <output>response</output>
- The requirement proposed by the next step for the current output is: <require-
ment>suggestion</requirement>

In addition to suggesting modifications for the current prompt template, you also need to propose requirements
for the output of the previous step. Please wrap these using <suggestion></suggestion>, for example:
<suggestion>the analysis should include a comparison of original data</suggestion>.

Note:
1. Ensure that the results are wrapped with <suggestion></suggestion> and <suggestion></suggestion>, and
each tag appears only once.
2. If you are the first node, you can state within <suggestion></suggestion> “This is the first node.”
3. Please note that during your analysis, remember that this prompt template will be applied to multiple
different datasets, so your suggestions should be general and not solely focused on the examples provided
here.
4. Please analyze step by step.

Node-Level
You are a large model fine-tuner. Now you need to try to optimize the information of a node. For a complex
task, it has been divided into multiple nodes, each of which contains multiple roles that work together
to complete the task of this node. Each role is backed by an LLM Agent, and you need to optimize the
configuration information of one of the nodes.

Here are the relevant explanations for the Node configuration:
- The fields in the "controller" indicate the scheduling method of the model. If there is only one role, this
item does not need to be optimized:
- "route_type" indicates the scheduling method, which has three values: "random" means random scheduling,
"order" means sequential scheduling, and "llm" means scheduling determined by the LLM model.
- "route_system_prompt" and "route_last_prompt" are used when "route_type" is "llm" and are respectively
the system prompt and last prompt given to the LLM model responsible for scheduling.
- "begin_role" is a string indicating the name of the starting role of this node.
- "roles" is a dictionary where the key is the role name, and the value is the prompt used by this role.

You need to decide how to optimize the configuration of this node. Specifically, you need to try to provide
suggestions in the following aspects:
1. Update the node description field. This field describes the function of the node and is also an important
indicator to measure the performance of a node.
2. Update the scheduling method of the role. Note that if there is only one role, no optimization is needed.
3. Add a new role, and you need to clearly describe the function of this role.
4. Delete a role, and you need to clearly describe the reason for deleting this role.
5. Update a role, and you need to indicate how to update the description of this role.

Next, I will give you a Node configuration, and you need to provide optimization suggestions based on the
current Node configuration. Please use <suggestion>[put your suggestion here]</suggestion> to enclose
your suggestions.

Current Node Config
{node_config}

You need to first provide your analysis process, then give your optimized result. Please use <anal-
yse></analyse> to enclose the analysis process. Please use <suggestion></suggestion> to enclose the
optimization suggestions for the current node. Please use <suggestion></suggestion> to enclose the require-
ments for the previous node.
Note: The suggestions provided need to be in one or more of the five aspects mentioned above.

Table 5: Prompt Template for Gradient Back-propagation16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Prompt Template for Optimizers
Prompt Optimizer:
You are now a prompt fine-tuner for a large language model. I will provide you with a prompt template along
with its corresponding input and output information.

Please modify the prompt based on the provided data:
- The current prompt template is: prompt_template.

Here is some information about the model when using this template:

Example index
- Output result: <output>response</output>
- Suggestion: <suggestion>suggestion</suggestion>

You need to analyze the content above and input the optimized prompt result. Please wrap your analysis in
<analyse></analyse> and the new prompt in <new_prompt></new_prompt>.

Please note:
1. When actually using the prompt template, the Python format() method is employed to fill variables into
the prompt. Therefore, please ensure that the content enclosed in in both the new and old prompts remains
the same, with no variables added or removed.
2. Ensure that your new prompt template can be directly converted to a dictionary using the json.loads()
method. Therefore, you need to be careful to use double quotes and escape characters properly.
3. Ensure that <analyse></analyse> and <new_prompt></new_prompt> each appear only once.
4. If you believe that the current prompt template performs sufficiently well, leave
<new_prompt></new_prompt> empty.

Node Optimizer:
You are a large model fine-tuner. Now you need to try to optimize the information of a node. For a complex
task, it has been divided into multiple nodes, each containing multiple roles that work together to complete
the task of this node. Each role is backed by an LLM Agent, and you need to optimize the configuration
information of one of the nodes.

Here are the relevant explanations for the Node configuration:
- The fields in the "controller" indicate the scheduling method of the model. If there is only one role, this
item does not need to be optimized:
- "route_type" indicates the scheduling method, which has three values: "random" means random scheduling,
"order" means sequential scheduling, and "llm" means scheduling determined by the LLM model.
- "route_system_prompt" and "route_last_prompt" are used when "route_type" is "llm" and are respectively
the system prompt and last prompt given to the LLM model responsible for scheduling.
- "begin_role" is a string indicating the name of the starting role of this node.
- "roles" is a dictionary where the key is the role name, and the value is the prompt used by this role.

Next, I will give you a Node configuration and several modification suggestions. You need to modify the
Node configuration based on the suggestions:

Current Node Config
{node_config}

Suggestions
{suggestions}

When providing the modification plan, you need to give the optimized result in the following format. It is a
list, each element is a dict, and the dict contains an action field indicating the operation on the Node.

Your optimized result should be enclosed in <result></result>, that is, the content inside <result></result>
should be a JSON-formatted list, which should be able to be directly loaded by json.loads().

Note:
1. If you think the current configuration is already excellent and does not need modification, you can directly
output an empty list.
2. The format of <result>[optimization method]</result> needs to strictly follow the given format, otherwise,
it will be judged as incorrect.

Table 6: Prompt Template for Optimizers

17

	Introduction
	Related Work
	Language Models, Prompts, and Language Agents
	From Automated Prompt Engineering to Agent Optimization

	Agent Symbolic Learning
	Problem Formulation
	Agent Symbolic Learning Procedure

	Experiments
	Settings
	Tasks
	Baselines

	Results
	Case Study & Analysis

	Conclusion
	Limitations & Boarder Impact
	Implementation Details
	Prompt Templates

