000 001 002

SYMBOLIC LEARNING ENABLES SELF-EVOLVING AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

The AI community has been exploring a pathway to artificial general intelligence (AGI) by developing "language agents", which are complex large language models (LLMs) workflows involving both prompting techniques and tool usage methods. While language agents have demonstrated impressive capabilities for many realworld tasks, a fundamental limitation of current language agents research is that they are model-centric, or engineering-centric. That's to say, the progress on prompts, tools, and workflows of language agents requires substantial manual engineering efforts from human experts rather than automatically learning from data. We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the ability of language agents to autonomously learn and evolve in environments, is the key for them to possibly achieve AGI.

021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 In this work, we introduce *agent symbolic learning*, a systematic framework that enables language agents to optimize themselves on their own in a data-centric way using *symbolic optimizers*. Specifically, we consider agents as symbolic networks where learnable weights are defined by prompts, tools, and the way they are stacked together. Agent symbolic learning is designed to optimize the symbolic network within language agents in a *data-centric* way by mimicking two fundamental algorithms in connectionist learning: back-propagation and gradient descent. Instead of dealing with numeric weights, agent symbolic learning works with text-based weights, loss, and gradients. We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks and show substantial improvements over static agent frameworks and simple prompt/tool optimization methods. In addition, agent symbolic learning enables language agents to update themselves after being created and deployed in the wild, resulting in "self-evolving agents". We will open-source the agent symbolic learning framework to facilitate future research on *data-centric* agent learning.

036 037

038

1 INTRODUCTION

039 040 041 042 043 044 045 046 Recent advances in large language models [\(Radford et al.,](#page-11-0) [2018;](#page-11-0) [2019;](#page-11-1) [Brown et al.,](#page-9-0) [2020;](#page-9-0) [Ouyang](#page-11-2) [et al.,](#page-11-2) [2022;](#page-11-2) [OpenAI,](#page-11-3) [2023;](#page-11-3) [Touvron et al.,](#page-12-0) [2023a](#page-12-0)[;b\)](#page-12-1) open the possibility of building language agents that can autonomously solve complex tasks. The common practice for developing AI agents is to decompose complex tasks into LLM workflows where prompts and tools are stacked together [\(Park](#page-11-4) [et al.,](#page-11-4) [2023;](#page-11-4) [Hong et al.,](#page-10-0) [2023;](#page-10-0) [Zhou et al.,](#page-13-0) [2023b;](#page-13-0) [Chen et al.,](#page-10-1) [2023b;](#page-10-1) [Xie et al.,](#page-12-2) [2023\)](#page-12-2). In a sense, language agents can be viewed as AI systems that connect connectionism AI (i.e., the LLM backbone of agents) and symbolism AI (i.e., the workflow of prompts and tools), which partially explains their effectiveness in real-world problem-solving scenarios.

047 048 049 050 051 052 053 However, the current state of language agent development is limited by the extensive engineering effort required to build and customize language agent systems for a specific task. Specifically, researchers and developers have to manually decompose complex tasks into subtasks, which we refer to as nodes, that are more tractable for LLMs and then carefully design prompts and tools, including API functions, knowledge bases, memories, etc., for specific nodes. The complexity of this process makes the current landscape of language agent research *model-centric*, or *engineering-centric*. This means it is almost impossible for researchers to manually tune or optimize language agents on datasets on which we can train neural nets in a *data-centric* way. This limits the robustness and

Figure 1: Analogy between agent symbolic learning and neural nets connectionist learning.

versatility of manually coded language agents and requires substantial engineering effort to adapt language agents to new tasks or data distributions. We believe the transition from engineering-centric language agent development to data-centric learning is an important step in language agent research.

092 To this end, a number of recent efforts have been made on automatic optimization of language agents. For example, DSpy [\(Khattab et al.,](#page-10-2) [2023\)](#page-10-2) introduces a framework for algorithmically optimizing LLM prompts via bootstrapping or random searching in a combinatory space of different prompt components and GPTSwarm [\(Zhuge et al.,](#page-13-1) [2024\)](#page-13-1) further proposes to tackle the combinatorial optimization challenge raised in DSPy via an iterative optimization process. Agent-pro [\(Zhang](#page-12-3) [et al.,](#page-12-3) [2024b\)](#page-12-3) proposes a framework to optimize the components of the prompts corresponding to the agents' internal policy in competitive environments. AgentOptimizer [\(Zhang et al.,](#page-12-4) [2024a\)](#page-12-4) proposes a framework to optimize functions with carefully engineered prompts. While effective in some scenarios, these approaches only optimize separate modules in an agent system such as a prompt for a specific node. As a result, these optimization methods are prone to local optimum of isolated prompts, tools, and nodes that lead to compromised performance for the entire agent system. This resembles the early practice in training neural nets [\(Hinton and Salakhutdinov,](#page-10-3) [2006\)](#page-10-3) where layers are separately optimized and it now seems trivial that optimizing neural nets as a whole leads to better performance. We believe that this is also the case in agent optimization and joint optimization of all symbolic components within an agent is the key for optimizing agents.

093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 In this work, we introduce a *agent symbolic learning* framework for training language agents. The agent symbolic learning framework is inspired by the connectionist learning procedure [\(Hinton,](#page-10-4) [1990\)](#page-10-4) used for training neural nets. To be specific, we make an analogy between language agents and neural nets: the agent workflow of an agent corresponds to the computational graph of a neural net, a node in the agent workflow corresponds to a layer in the neural net, and the prompts and tools for a node correspond to the weights of a layer. In this way, we are able to implement the main components of connectionist learning, i.e., backward propagation and gradient-based weight update, in the context of agent training using language-based loss, gradients, and weights. We implement the loss function, back-propagation, and weight optimizers in the context of agent training with carefully designed LLM workflows. Specifically, for a training example, our framework first conducts the "forward pass" (agent execution) and stores the input, output, prompts, and tool usage in each node in a "trajectory". We then use an LLM-based loss function to evaluate the outcome following recent LLM-as-a-judge framework [\(Zheng et al.,](#page-13-2) [2023\)](#page-13-2), resulting in a text-based loss. Then we back-propagate the text-based loss from the last to the first node along the trajectory, resulting in natural language analysis and reflection for the symbolic components within each node including the prompts and tool descriptions. We refer to these reflections and analyses as "language gradients" since they carry the same role as conventional gradients in the training of neural nets: guide the direction to which optimizers should

108 109 110 111 112 change the weights so that the overall loss is minimized. Finally, we update all symbolic components in each node, as well as the computational graph consisting of the nodes and their connections, according to the language gradients using LLMs with carefully designed prompts and workflows. Our approach also naturally supports optimizing multi-agent systems by considering nodes as different agents or allowing multiple agents to take actions in one node.

113 114 115 116 117 118 119 120 121 The agent symbolic learning framework is an agent learning framework that mimics the standard connectionist learning procedure. In contrast to existing methods that either optimize single prompt or tool in a separate manner, the agent symbolic learning framework jointly optimizes all symbolic components within an agent system, including prompts, tools, and the workflow that stacks them into an agent system. This top-down optimization scheme also enables the agent symbolic learning framework to optimize the agent system "holistically", avoiding local optimum for each separated component. This makes it possible for language agents targeting complex real-world problems to effectively *learn from data*, opening up the possibility to transform the current state of language agent research from engineering-centric to data-centric.

122 123 124 125 126 127 128 129 130 In sum, by learning from LLM-generated critics (language-based loss) and reflections (languagebased gradients), the agent symbolic learning framework has the following advantages compared to conventional frameworks for language agents in which the prompts, tools, and workflows are static and require human expert efforts for optimization: first, agent symbolic learning enables the agent system to learn from failure or unstable cases and update the prompts by adding few-shot examples or principles; second, it enables the system to include new nodes (subtasks) and adjust the workflow to improve the overall performance or handle some common failure patterns; third, our approach enables the agent system to update the tool descriptions and implementation or implement new tools for improved performance.

131 132 133 134 135 Moreover, since the language-based loss function does not require ground-truth when generating the language loss and the optimization framework only requires calling of LLM APIs instead of tons of GPUs, our framework enables language agents to *learn from experience* and *actively* update all their symbolic components after being created and deployed in the wild, enabling "self-evolving agents"^{[1](#page-2-0)}. We believe this could be very helpful in the pursuit of artificial general intelligence.

136 137 138 139 140 As a proof-of-concept, we conduct a series of experiments on both standard LLM benchmarks and complex agentic tasks. Our results demonstrate the effectiveness of the proposed agent symbolic learning framework on optimizing and designing prompts and tools, as well as updating the overall agent workflow, by data-centric learning. We will open-source all codes and prompts in the agent symbolic learning framework to facilitate future research on *data-centric* agent learning.

141 142

143 144 145

2 RELATED WORK

2.1 LANGUAGE MODELS, PROMPTS, AND LANGUAGE AGENTS

146 147 148 149 150 151 152 Language model is a family of machine learning model that is trained to evaluate the probability of sequences of words or tokens. Large language models (LLMs) [\(Radford et al.,](#page-11-0) [2018;](#page-11-0) [2019;](#page-11-1) [Brown et al.,](#page-9-0) [2020;](#page-9-0) [Ouyang et al.,](#page-11-2) [2022;](#page-11-2) [OpenAI,](#page-11-3) [2023;](#page-11-3) [Touvron et al.,](#page-12-0) [2023a](#page-12-0)[;b\)](#page-12-1) often refer to language models that adopt the autoregressive probability factorization scheme, parametrized by the Transformer architecture [\(Vaswani et al.,](#page-12-5) [2017\)](#page-12-5), consists of a large amount of parameters, and trained on large-scale corpus. With scaling of model size, training data, and computation, LLMs have demonstrated remarkable capabilities in generating human-like texts and understanding context.

153 154 155 156 157 158 159 Prompts, on the other hand, is the key for unleashing the capabilites of LLMs. Prompts are critical components in controlling the behavior and output of LLMs and serve as the interface between human and LLMs. The design of prompts significantly impacts the performance of language models and a number of progress have been made on prompt engineering, including in-context learning [\(Brown](#page-9-0) [et al.,](#page-9-0) [2020\)](#page-9-0), chain-of-thought prompting [\(Nye et al.,](#page-10-5) [2022;](#page-10-5) [Wei et al.,](#page-12-6) [2022\)](#page-12-6), ReAct [\(Yao et al.,](#page-12-7) [2022\)](#page-12-7), self-refine [\(Madaan et al.,](#page-10-6) [2023\)](#page-10-6), self-consistency [\(Wang et al.,](#page-12-8) [2023\)](#page-12-8), recurrent prompting [\(Zhou](#page-13-3) [et al.,](#page-13-3) [2023a\)](#page-13-3), etc.

160 161

¹Agents can also collect training data in the wild and update the LLM backbone via fine-tuning. In this way, all components in the agent can be updated. We leave this for future work.

162 163 164 165 166 Language agents further extend the functionality of language models beyond simple prompting by allowing LLMs to use tools [\(Schick et al.,](#page-11-5) [2023\)](#page-11-5) and integrating LLMs into broader systems capable of executing multi-step tasks [\(Park et al.,](#page-11-4) [2023;](#page-11-4) [Hong et al.,](#page-10-0) [2023;](#page-10-0) [Zhou et al.,](#page-13-0) [2023b;](#page-13-0) [Chen et al.,](#page-10-1) [2023b;](#page-10-1) [Xie et al.,](#page-12-2) [2023\)](#page-12-2). By stacking prompts and tools into carefully designed workflows, agents are versatile in various applications, from customer service automation to advanced data analysis.

167 168

169

2.2 FROM AUTOMATED PROMPT ENGINEERING TO AGENT OPTIMIZATION

170 171 172 173 174 With the increasing popularity of prompt engineering in both academic and industry, a number of recent work investigated methods to automate the prompt engineering process. For example, [Pryzant](#page-11-6) [et al.](#page-11-6) [\(2020\)](#page-11-6) and [Yang et al.](#page-12-9) [\(2024\)](#page-12-9) uses carefully designed prompts to unleash LLMs' ability to do prompt engineering for themselves. On the other hand, [Prasad et al.](#page-11-7) [\(2023\)](#page-11-7) and [Guo et al.](#page-10-7) [\(2024\)](#page-10-7) employs different search algorithms such as genetic algorithms for prompt optimization.

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 Since prompts are critical components of agents, the success of automated prompt engineering opens up the possibility of automated agent optimization. Similar to the case in automated prompt engineering, methods for agent optimization can also be categorized into two categories: *promptbased* and *search-based*. For example, Agent-pro [\(Zhang et al.,](#page-12-3) [2024b\)](#page-12-3) and AgentOptimizer [\(Zhang](#page-12-4) [et al.,](#page-12-4) [2024a\)](#page-12-4) leverage carefully designed prompts to optimize either the prompts or the tools in a node of the agent workflow. These methods work on isolated components within an agent. Another line of research explored search-based agent optimization algorithms. [Sordoni et al.](#page-11-8) [\(2023\)](#page-11-8) uses variational inference to optimize stacked LLMs. DSpy [\(Khattab et al.,](#page-10-2) [2023\)](#page-10-2) uses search algorithms to find the best prompts or nodes in a combinatory space. GPTSwarm [\(Zhuge et al.,](#page-13-1) [2024\)](#page-13-1) further improved the search algorithm for the combinatory optimization problem. These approaches have a few major limitations. First, the search algorithm mainly works when the metric can be defined numerically with equations that can be coded. However, most agentic tasks are real-world complex problems of which the success can not be defined by some equations, such as software development or creative writing. Second, these approaches update each component separately and therefore suffer from the local optimum of each node or component. These approaches also lack the functionality of adding nodes in the workflow or implementing new tools. Our proposed agent symbolic learning framework, on the other hand, is the first agent learning method that optimize the agent system "holistically" and is able to optimize prompts, tools, nodes, as well as the way they are stacked into agents.

192 193 194 195 196 Furthermore, a number of recent efforts have been done on synthesizing data to fine-tune the LLM backbone of an agent [\(Chen et al.,](#page-10-8) [2023a;](#page-10-8) [Qiao et al.,](#page-11-9) [2024;](#page-11-9) [Song et al.,](#page-11-10) [2024\)](#page-11-10). This line of research is orthogonal to our work and we believe they can be complementary to each other. ICE [\(Qian et al.,](#page-11-11) [2024\)](#page-11-11) is also a related work investigating inter-task transfer learning for language agents, which can be complementary with our method for building self-evolving agents.

197 198

3 AGENT SYMBOLIC LEARNING

199 200 201

202

210

3.1 PROBLEM FORMULATION

203 204 205 We first formulate the agent symbolic learning framework by drawing analogies to the components and procedures used in neural network training. We define the key components of the framework and explain the notations used throughout this section.

206 207 208 209 The agent symbolic learning framework, as illustrated in Figure [2](#page-5-0) and described in Algo [1,](#page-4-0) is inspired by the connectionist learning procedures used for training neural nets [\(Hinton,](#page-10-4) [1990\)](#page-10-4). We first introduce the notations for key concepts by making analogies to that in the connectionist learning framework:

211 212 213 214 215 • Agent Workflow \mathcal{A} : Similar to the computational graph in neural nets that represents the structure of layers and their connections, *agent workflow* represents the sequence of nodes (or steps) through which the agent processes input data. A sequence of nodes $\{N_1, N_2, \ldots, N_n\}$ that process the input data through various stages. Note that in some agent frameworks, the agent workflow is input-dependent since the nodes are dynamically assigned during execution, which is similar to the case of dynamic neural nets.

Forward Pass The forward pass is almost identical to standard agent execution. The main difference is that we store the input, prompts, tool usage, and the output to the trajectory, which is

268 269

 ${}^{2}T_{n}$ consists of the input and output for tool usage, and the implementation of the tool itself.

Figure 2: Illustration of the agent symbolic learning framework.

used for language gradient back-propagation. This is similar to deep learning frameworks such as PyTorch [\(Paszke et al.,](#page-11-12) [2019\)](#page-11-12) and TensorFlow [\(Abadi et al.,](#page-9-1) [2016\)](#page-9-1) that store the intermediate outputs and activation in the computation graph of the neural network.

Language Loss Computation After the forward pass, we compute the language loss for a training example by feeding the trajectory into an LLM using a carefully designed prompt template \mathcal{P}_{loss} :

$$
\mathcal{L}_{\text{lang}} = \text{LLM}(\mathcal{P}_{\text{loss}}(\tau))
$$
\n(1)

302 303 304 305 306 307 308 309 310 311 312 The key is the design for the prompt template, which is expected to *holistically* evaluate how the agent performs with respect to the input, environment, and task requirements. To this end, we carefully design a prompt template for language loss computation consisting of the following components: task description, input, trajectory, few-shot demonstrations, principles, and output format control. Among them, task description, input, and trajectory are data-dependent while the few-shot demonstrations, principles, and output format control are fixed for all tasks and training examples. The language loss consists of both natural language comments and a numerical score (also generated via prompting). We can optionally feed the ground-truth label for the input when generating the language loss. We call this scenario *supervised agent learning*. It can also generate language loss without ground-truth by evaluating the output and trajectory according to the task description. In this case, we can say that the agent is doing *unsupervised agent learning*, which enables language agents to self-evolving. We present the detailed implementation of this prompt template in the Appendix.

313

319 320

314 315 316 317 318 Back-propagation of Language Gradients In standard connectionist learning, the goal of gradient back-propagation is to calculate the impact of the weights with respect to the overall loss so that the optimizers can update the weights accordingly. Similarly, in our framework, we also design a "back-propagation" algorithm for language gradients. Specifically, we iterate from the last node to the first node and compute the gradient for each node with LLMs using a carefully designed prompt:

$$
\nabla_{\text{lang}}^n = \text{LLM}(\mathcal{P}_{\text{gradient}}(\nabla_{\text{lang}}^{n+1}, \mathcal{I}_n, \mathcal{O}_n, \mathcal{P}_n, \mathcal{T}_n, \mathcal{L}_{\text{lang}}))
$$
(2)

321 322 323 The prompt template $\mathcal{P}_{gradient}$ is designed to instruct the LLM to generate language gradients that are analyses and reflections for the symbolic components within the node. Inspired by the idea of back-propagation, we give the language gradients of the node executed after the current node, as well as the information on the execution of the current node, which is stored in the trajectory. That's to **324 325 326 327 328 329** say, when doing analysis and reflection, the LLM not only needs to consider how the prompts and tools suit the subgoal of the current node but also has to consider how they affect the accomplishment of the subgoal of the next node. By chaining from top to bottom, the language gradients for all nodes are relevant and responsible for the overall success of the agent. This method effectively reduces the risk of optimizing toward the local optimum for each isolated prompt and tool, leading to the overall performance of agent systems.

330 331 332

333 334 335

Language Gradient-based Update The final step in the framework is to update the prompts and tools in each node and optimize the overall agent workflow with the help of language gradients. This is accomplished via "symbolic optimizers". Symbolic optimizers are carefully designed prompt workflows that can optimize the symbolic weights of an agent. We create three types of symbolic optimizers: PromptOptimizer, ToolOptimizer, and WorkflowOptimizer. We present detailed implementation of these prompts in the Appendix.

PromptOptimizer: To facilitate prompt optimization, we split prompts into different components, including task description, few-shot examples, principles, and output format control. We then design separate prompts tailored for the optimization of each prompt component. All prompts share a detailed explanation and demonstration of how the LLM should focus on the language gradients when reasoning about how to edit the original prompt components.

ToolOptimizer: The ToolOptimizer is a workflow of prompts that first instructs the LLM to decide the kind of operation it should use: whether the tools should be improved (by editing the tool description used for function calling), deleted, or new tools need to implement. Then the ToolOptimizer calls different prompts specifically designed for tool editing, deletion, and creation.

349 350

351 352 353 354 355 356 357 358 Workflow Optimizer: The goal of the Workflow Optimizer is to optimizer the agent workflow consisting of nodes and their connections. The prompt is designed to first introduce the agent programming language used to define the agent workflow (we use the agent programming language introduced in [Zhou et al.](#page-13-0) [\(2023b\)](#page-13-0)). Then the prompt describes the definition of a few atomic operations that the LLM can use to update the workflow, including adding, deleting, and moving the nodes. It then instructs the LLM to first analyze how the workflow could be improved and then implement the update using the atomic operations. Detailed descriptions of the agent programming language and the atomic operations used to update the agent workflow are available in the Appendix.

359 360 361 362 363 364 365 Since all aforementioned optimizers operate in natural language space and some optimization operations need to be done in code space, we use a simple strategy that retries any illegal update up to three times and discards the update if the error persists. We also use a rollback strategy that re-runs the current example after optimization and rolls back to the original agent if the performance evaluated using the language-based loss function drops. Furthermore, we also include a "learning rate" component for each prompts in the optimizers which controls how aggressive the LLM should be when optimizing prompts, tools, and agent workflows.

366

367 368 369 370 371 372 Batched Training The aforementioned optimization scheme works with one training example at a time, which resembles stochastic gradient descent. Inspired by the fact that mini-batch stochastic gradient descent works better, or more stably, in practice, we also devise a batched training variant for symbolic optimizers. Specifically, we conduct forward pass, loss computation, and back-propagation for each example separately. Then we feed a batch of language gradients for the same node, and prompt the LLM to holistically consider all these language gradients when updating the agent.

373 374

375 376 377 Cost and Efficiency Compared to conventional static agent frameworks, agent symbolic learning does not involve additional compute or API costs during inference time. As for training time, for each training example, the agent symbolic learning framework requires roughly 3 to 5 times the API costs (in terms of the number of input and output tokens) compared to that required for inference time.

378 379 4 EXPERIMENTS

4.1 SETTINGS

406

419

4.1.1 TASKS

We conduct experiments on both standard LLM benchmarks and more complex agentic tasks. We describe the tasks, datasets, and evaluation metrics as follows:

Methods	HotPotQA		MATH		HumanEval	
	GPT-3.5	$GPT-4$	GPT-3.5	$GPT-4$	GPT-3.5	$GPT-4$
GPTs	24/38.8	33/44.3	23.2	53.1	59.2	71.7
Agents	27/37.5	39/49.8	23.8	56.0	59.5	85.0
Agents w/ AutoPE	29/39.8	38/50.3	22.5	57.2	63.5	82.3
DSPy	35/43.9	40/50.5	17.3	48.4	66.7	77.3
Ours	35/44.8	41/54.0	38.8	60.7	64.5	85.8

Table 1: Results on standard LLM benchmarks.

398 399 400 401 402 403 404 405 Standard Benchmarks We conduct experiments on standard benchmarks for LLMs including HotpotQA [\(Yang et al.,](#page-12-10) [2018\)](#page-12-10), MATH [\(Hendrycks et al.,](#page-10-9) [2021\)](#page-10-9), and HumanEval [\(Chen et al.,](#page-10-10) [2021\)](#page-10-10). HotPotQA is a multi-hop QA task challenging for rich background knowledge. We use the "hard" split in the dataset since we find it to be more challenging for language agents. MATH is a collection of challenging competition mathematics problems. HumanEval is an evaluation set that requires LLMs or agents to synthesize programs from docstrings. As for evaluation metrics, we use F1 and exact match for HotPotQA, accuracy for MATH, and Pass@1 for HumanEval. Tools are disabled in these datasets to ensure the comparison of the results is meaningful with existing literature on these tasks.

407 408 409 410 411 412 413 414 415 416 417 Complex Agent Tasks We consider creative writing and software development as two complex agentic tasks. For the creative writing task, we follow [Yao et al.](#page-12-11) [\(2023\)](#page-12-11) and give 4 random sentences to the agents and ask them to write a coherent passage with 4 paragraphs that end in the 4 input sentences respectively. Such a task is open-ended and exploratory and challenges creative thinking as well as high-level planning. We use GPT-4 score to evaluate the passages following [\(Yao et al.,](#page-12-11) [2023\)](#page-12-11). The software development task, on the other hand, requires the agent system to develop an *executable* software given a simple product requirement document (PRD). We evaluate the compared agents according to the *executability* of the generated software, which is quantified by numerical scores ranging from 1 to 4, corresponding to increasing levels of execution capability. Specifically, a score of 1 signifies execution failure, 2 denotes successful code execution, 3 represents conformance to the anticipated workflow, and 4 indicates flawless alignment with expectations.

418 4.1.2 BASELINES

420 We compare our proposed method against the following baselines:

- GPTs: a simple baseline that uses GPT and a carefully designed prompt following the way OpenAI implements GPTs agents;
- Agents: a language agent method implemented using the Agents [\(Zhou et al.,](#page-13-0) [2023b\)](#page-13-0) $framework³$ $framework³$ $framework³$ with carefully designed prompts, tools, and workflows;
- DSpy: an LLM workflow optimization framework that can search the best combination of prompt components. It is not directly applicable for complex agent tasks where the evaluation metric can not be defined in equation and code;
- • Agents + AutoPE: a variant where the prompt in each node of the agent workflow is optimized by an LLM following the method described in [Yang et al.](#page-12-9) [\(2024\)](#page-12-9). Compared
	- ³We have tested with other agent frameworks such as OpenAgents and AgentVerse and got similar results.

with our approach, this baseline does not involve language gradient back-propagation and language gradient-based optimization.

435 436 437 438 439 We conduct the experiments with both GPT-3.5 and GPT-4. We use the $qpt-3.5-turb-0125$ endpoint for GPT-3.5 and the $qpt-4-turbo-0409$ endpoint for GPT-4. As for our approach, we start with the Agents baseline and then conduct agent symbolic learning on top of it. All agent systems included in the experiments are implemented and optimized with the best efforts from the same group of engineers with good proficiency on agent development.

4.2 RESULTS

432 433 434

Table 2: Results on software development.

Table 3: Results on creative writing.

453 454 455 456 457 458 459 460 Results on LLM Benchmarks The results on standard LLM benchmarks are shown in Table [1.](#page-7-1) We can see that the proposed agent symbolic learning framework consistently improves over all compared methods. The performance improvement on MATH, a competition-level benchmark, is especially large. In contrast, the conventional LLM-based prompt optimization method (Agents w/ AutoPE) and the search-based prompt optimization approach (DSPy) are not as stable: they results in good performance improvements in some cases but lead to significant performance degradation in some other cases. This suggests that the agent symbolic learning framework is more robust and can optimize the overall performance of language agents more effectively.

461 462 463 464 465 466 467 468 469 470 471 Results on Complex Tasks We present the results on software development and creative writing in Table $2 \& 3$ $2 \& 3$, respectively. We can see that our approach significantly outperforms all compared baselines on both tasks with an even larger performance gap compared to that on conventional LLM benchmarks. Interestingly, our approach even outperforms tree-of-thought, a carefully designed prompt engineering and inference algorithm, on the creative writing task. We find that our approach successfully finds a "plan, write, and revision" workflow for professional creative writing, and the prompts are very well optimized in each step. We also find that the agent symbolic learning framework recovers a similar standard operation procedure developed in MetaGPT [\(Hong et al.,](#page-10-0) [2023\)](#page-10-0), an agent framework specifically designed for software development. This confirms the effectiveness of the proposed agent symbolic learning framework on real-world tasks where there is no ground truth and the overall performance cannot be calculated by equations or codes, as contrary to search-based algorithms such as DSPy.

472 473

474

4.3 CASE STUDY & ANALYSIS

475 476 477 478 479 We then show a case study for the optimization dynamics of the agent symbolic learning framework in Figure [3.](#page-9-2) We can see that our approach can effectively do prompt engineering and designing of the agent workflow in the way a human expert develops language agents. Specifically, agent symbolic learning successfully adds an "edit" or "revision" node in the workflow of a creative writing agent and substantially improves the design of the prompts.

480 481 482 483 484 485 Moreover, we find that the initialization of the agent system has non-negligible impacts on the final performance, just as the initialization of neural nets is important for training. In general, we find that it is generally helpful to initialize the agent in the simplest way and let the symbolic optimizers to do the optimization. In contrast, the performance tends to become unstable if the initial agent system is over-engineered. A natural extension of this observation is that maybe we can do some kind of pre-training on large-scale and diverse tasks as a versatile initialization for general-purpose agents and then adapt it to specialized tasks with agent symbolic learning. We also find that the success of

Figure 3: A case study conducted on creative writing task.

our approach is more significant and stable on complex real-world tasks compared to that on standard benchmarks where the performance is evaluated by traditional metrics such as accuracy or F1. This suggests that future research on agent learning should focus more on real-world tasks, and the agent research community should work on building a benchmark focusing on agent learning evaluation that consists of diverse complex agentic tasks and investigating robust approaches to measure progress.

5 CONCLUSION

509 510 511 512 513 514 515 516 517 518 519 This paper introduces agent symbolic learning, a framework for agent learning that jointly optimizes all symbolic components within an agent system. The agent symbolic learning framework draws inspiration from standard connectionist learning procedure to do symbolic learning. It uses languagebased loss, gradients, and optimizers to optimize prompts, tools, and the agent workflow with respect to the overall performance of the agent system. The proposed framework is among the first attempts to optimize agents that can solve complex real-world tasks using sophisticated workflows. Our frameworks enables language agents to "learn from data" and perform "self-evolve" after being created and deployed in the wild. We conduct several proof-of-concept experiments and show that the agent symbolic learning framework can effectively optimize agents across different task complexity. We believe this transition from model-centric to data-centric agent research is a meaningful step towards approaching artificial general intelligence and open-source the codes and prompts for the agent symbolic learning framework to accelerate this transition.

520 521 522

6 LIMITATIONS & BOARDER IMPACT

The scope of experiments in this paper is not super large enough to cover most agentic tasks in the real world. They are rather proof-of-concept experiments showcasing the effectiveness of the proposed method. We believe the community on agent research should work on a standard evaluation procedure to facilitate future research. Another limitation is that the experiments are done with text-only models and tasks, while experiments with multi-modal agents and tasks would be very interesting.

529 530 531 As for the boarder impact, we would like to point out that enabling language agents to self-evolve in the wild poses certain safety risks. We believe it is important to reveal these potential risks to the agent research & development community and we need to discuss methods for effective regulation.

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine learning. In *12th USENIX symposium on operating systems design and implementation (OSDI 16)*, pages 265–283, 2016.

539 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

- **540 541 542 543 544 545 546** Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL [https://proceedings.neurips.](https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf) [cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf](https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf).
- **547 548 549** Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fireact: Toward language agent fine-tuning, 2023a.
- **550 551 552 553 554 555 556 557 558 559 560** Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL [https://arxiv.](https://arxiv.org/abs/2107.03374) [org/abs/2107.03374](https://arxiv.org/abs/2107.03374).
- **561 562 563 564** Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. *arXiv preprint arXiv:2308.10848*, 2023b.
- **565 566 567 568** Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful prompt optimizers. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=ZG3RaNIsO8>.
- **569 570 571 572** Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- **573 574** Geoffrey E Hinton. Connectionist learning procedures. In *Machine learning*, pages 555–610. Elsevier, 1990.
- **575 576 577** Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. *science*, 313(5786):504–507, 2006.
- **578 579 580 581** Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent collaborative framework, 2023.
- **582 583 584 585** Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-improving pipelines. *arXiv preprint arXiv:2310.03714*, 2023.
- **586 587 588 589 590** Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback, 2023.
- **591 592 593** Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus Odena. Show your work: Scratchpads for intermediate computation with language models, 2022. URL <https://openreview.net/forum?id=iedYJm92o0a>.

594 595 OpenAI. GPT-4 technical report, 2023.

602 603 604

609

596 597 598 599 600 601 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=TG8KACxEON>.

- Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023.
- **605 606 607 608** Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
- **610 611 612 613 614 615** Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. GrIPS: Gradient-free, edit-based instruction search for prompting large language models. In Andreas Vlachos and Isabelle Augenstein, editors, *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pages 3845–3864, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.277. URL <https://aclanthology.org/2023.eacl-main.277>.
- **616 617 618 619 620 621 622** Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi, Dan Jurafsky, and Diyi Yang. Automatically neutralizing subjective bias in text. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020*, pages 480–489. AAAI Press, 2020. doi: 10.1609/AAAI.V34I01.5385. URL [https://doi.org/10.1609/](https://doi.org/10.1609/aaai.v34i01.5385) [aaai.v34i01.5385](https://doi.org/10.1609/aaai.v34i01.5385).
	- Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu, and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-evolution, 2024.
- **627 628 629 630** Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei Lv, and Huajun Chen. AUTOACT: automatic agent learning from scratch via selfplanning. *CoRR*, abs/2401.05268, 2024. doi: 10.48550/ARXIV.2401.05268. URL [https:](https://doi.org/10.48550/arXiv.2401.05268) [//doi.org/10.48550/arXiv.2401.05268](https://doi.org/10.48550/arXiv.2401.05268).
	- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
	- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
	- Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=Yacmpz84TH>.
- **642 643 644** Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-based trajectory optimization for LLM agents. *CoRR*, abs/2403.02502, 2024. doi: 10. 48550/ARXIV.2403.02502. URL <https://doi.org/10.48550/arXiv.2403.02502>.
- **645 646 647** Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimization of stacked LLMs using variational inference. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=iImnbUVhok>.
- **648 649 650 651** Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a.
- **652 653 654 655 656 657 658 659 660 661 662 663 664** Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023b.
- **665 666 667 668** Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- **669 670 671 672** Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=1PL1NIMMrw>.
- **674 675 676** Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.

673

690

699

- **677 678 679 680** Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild, 2023.
- **681 682 683** Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Bb4VGOWELI>.
- **684 685 686 687 688 689** Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii, editors, *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259>.
- **691 692 693** Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*, 2022.
- **694 695 696** Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
- **697 698** Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu. Offline training of language model agents with functions as learnable weights, 2024a.

700 701 Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li, Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and optimization, 2024b.

A IMPLEMENTATION DETAILS

We adopt the agent programming language and framework introduced in Agents [\(Zhou et al.,](#page-13-0) [2023b\)](#page-13-0), a language agent framework that enables developers to build language agents that stacks prompts and tools together into complex pipelines. The main advantage of the Agents framework is that it enables developers to use a config file to define the agent system, which makes it easier for the symbolic optimizers in the agent symbolic learning framework to perform update operations on the agent system.

B PROMPT TEMPLATES

Note: The suggestions provided need to be in one or more of the five aspects mentioned above.

Table 6: Prompt Template for Optimizers