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ABSTRACT

Contrastive learning has emerged as a powerful method for learning unsupervised
representations of data that maximize similarity between “related” pairs of data
and minimize similarity between unrelated pairs. Many contrastive losses depend
heavily on the batch size, as larger batch sizes significantly improve model intelli-
gence. However, modern backbones are memory intensive and limit the practical
batch size one can train with. To alleviate this issue, we introduce a new frame-
work to scale contrastive batch sizes by two orders of magnitude. This allows us to
improve the performance of any contrastive learner. Our training framework con-
sists of three phases—Pretrain, Adapt, and Fuse. In the Pretrain phase, we train
a standard contrastive learner with conventional batch sizes. In the Adapt phase,
we freeze the backbone and train a small number of later layers with very large
batches, exposing these late-stage parameters to significantly larger batches and
accelerated training. Finally, in the Fuse phase, we transfer large-batch adapter
gradients back into the backbone with a modified version of backpropagation. We
evaluate methods with audio-video contrastive learning on the Audioset dataset.
We show that our multi-phase training pipeline significantly improves retrieval
performance and outperforms baseline approaches in both speed and accuracy.
By exposing the model to substantially more negatives we make each contrastive
judgment orders of magnitude more challenging, encouraging models to develop
more sophisticated and intelligent representations.

1 INTRODUCTION

Contrastive learning is one of the most effective methods to learn unsupervised representations of
data across a wide variety of modalities. In contrastive learning, models learn to pull together similar,
positive examples while pushing apart dissimilar, negative ones. Common contrastive loss functions,
such as the InfoNCE (van den Oord et al., 2019), phrase this problem as a multi-way classification
problem, where a model aims to distinguish positive pairs of data from negative pairs formed by
combining random pairs of data in a batch. As one increases the batch size, one effectively increases
the number of choices in this multi-class classification problem, boosting the probability of sampling
hard negatives and yielding a much more challenging task. These especially challenging examples
lead a model to develop more intelligent representations and help methods achieve state-of-the-art
performance (Chen et al., 2020).

However, naively scaling the batch size of models comes with significant overhead, both in time and
memory usage. Often, model creators are left with a difficult decision between scaling the model
size, the batch size, or their number of GPUs (and hence the bill). Memory-intensive models that use
contrastive methods face a key challenge: limited batch sizes directly restrict contrastive learning
performance.

To address this limitation, we propose a method to scale contrastive batch sizes by over two orders
of magnitude without requiring additional hardware. We introduce a novel multi-phase training
framework – Pretrain, Adapt, and Fuse – that jointly trains a large backbone model and a lightweight
contrastive head (Figure 1). The backbone and contrastive head are first pretrained by co-training on
small batches to establish a strong joint initialization. Then, the contrastive head alone is trained with
very large batches, up to two orders of magnitude larger than the initial batch size. We then calculate
large-batch gradients from the contrastive head and propagate them in micro batches through the
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Figure 1: Phase-by-phase overview of the HyperBatch training framework.

backbone. This effectively fuses rich contrastive information into the backbone without exceeding
memory limits. With this training framework, we multiply batch size by a scale of hundreds to
thousands. This technique significantly expands the pool of negative pairs that the backbone learns
from. We also leverage the lightweight nature of the contrastive head to reduce the speed of training
while flooding training with “hard” negatives that sharpen the model. Our main contributions are as
follows:

• We achieve large-batch benefits under the original memory budget by exposing the head to a vast
negatives pool and distilling that signal back through the backbone.

• Our training framework accelerates contrastive learning by cheaply scoring massive batches,
which translate to rapid accuracy gains.

• Our three phase design drops into any contrastive framework and backbone, requiring only a
lightweight contrastive head.

2 RELATED WORK

Contrastive Learning. Contrastive learning has expanded significantly from vision-centric tasks
to multimodal audio-visual learning. Early works exploited audio-visual synchrony without explicit
supervision (Arandjelovic & Zisserman, 2017), inspiring cross-modal methods like XDC (Alwassel
et al., 2020), which utilized pseudo-labeling from modality clustering. Modern methods (Morgado
et al., 2021; Akbari et al., 2021; Nagrani et al., 2022; Guzhov et al., 2021; Girdhar et al., 2023) fur-
ther advanced cross-modal retrieval and video understanding. Recently, DenseAV (Hamilton et al.,
2024) introduced fine-grained spatial correspondences, achieving strong retrieval and segmentation
performance by aligning dense audio-visual representations.

Batch Size and Memory Efficiency. Large batch sizes significantly enhance contrastive learning,
as initially demonstrated by SimCLR (Chen et al., 2020). However, hardware constraints necessitate
memory-efficient strategies. MoCo (He et al., 2020) introduced momentum encoders and memory
queues, enabling large effective negative pools with small batch sizes. Other methods (Zbontar
et al., 2021; Bardes et al., 2022; Caron et al., 2020) used novel loss objectives to prevent collapse
without large batches or negative samples. Negative-free methods like BYOL and SimSiam (Grill
et al., 2020; Chen & He, 2021) further reduced computational overhead. Additional memory op-
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timization strategies include gradient accumulation, activation checkpointing (Chen et al., 2016a),
and reversible networks (Chen et al., 2017).

Adapters for Parameter Efficiency. Adapters have emerged as a lightweight method for efficient
training. Early adapter modules (Sylvestre-Alvise Rebuffi, 2017) integrated small, task-specific
residual layers within frozen models. Subsequent methods, such as LoRA (Hu et al., 2022) and
IA³ (Liu et al., 2022), exploited low-rank decompositions and scalar parameterizations, significantly
reducing memory and computational costs. Recent variants have effectively adapted visual and
audio-visual transformers (Chen et al., 2022; Gao et al., 2025; Jia et al., 2022; Lin et al., 2023;
Abduljalil Radman, 2023; Wang et al., 2024), facilitating efficient multimodal contrastive training.
Generally, adapter-like modules can add only a few trainable objectives (Mahmud et al., 2024; Duan
et al., 2023; Cheng et al., 2024) to inject cross-modal interactions into contrastive learning frame-
works.

Teacher-Student Frameworks. Teacher-student architectures provide stable training signals by
leveraging slowly updated teacher networks, minimizing reliance on negatives. Methods such as
MoCo and BYOL (He et al., 2020; Grill et al., 2020) demonstrated robust embeddings with minimal
negative sampling. Semi-supervised variants like Noisy Student (Xie et al., 2020) utilized iterative
pseudo-labeling processes. Subsequent extensions using vision transformers (Caron et al., 2021;
Zhou et al., 2022; Chen et al., 2021a; Oquab et al., 2024) and multimodal tasks (Radford et al.,
2021; Li et al., 2021; Chen et al., 2021b) illustrate broad applicability and effectiveness across
diverse computational setups.

3 METHODS

We propose a three-phase training framework–Pretrain, Adapt, and Fuse–which progressively op-
timizes the backbone and contrastive head with each phase. Our method fine-tunes later layers on
huge batches and then tranfers that signal into the backbone. This enables the backbone to reach
large-batch performance without directly training on larger batches.

3.1 MODEL ARCHITECTURE

The model architecture consists of two primary components:

1. Memory-Intensive Backbone: A model that extracts representations from audio and visual
inputs.

2. Contrastive Head: A lightweight module consisting of multi-layer perceptron (MLP) to
improve on the backbone’s audiovisual representations.

The backbone uses parallel image and audio featurizers to generate class tokens. HuBERT (Hsu
et al., 2021) is used as the audio backbone, and DINO (Caron et al., 2021) is used as the image
backbone. In both the audio and visual branches, we then channel-normalize the class token and
apply a linear layer to bring the class tokens into a joint embedding space and reduce training insta-
bility.

The contrastive head applies parallel MLPs to the features generated by the backbone. These resid-
ual modifications are added to the original features from the backbone. In this way, these later
layers learn corrective adjustments that optimize for the contrastive learning objective, refining the
backbone’s representations.

The full model output can be represented as

z = y + gθ(y), y = fϕ(x)

where x represents the input data, fϕ denotes the backbone with parameters ϕ, and gθ represents the
contrastive head with parameters θ. The final output z is used to compute a contrastive loss L. The
total loss aggregates the InfoNCE loss (van den Oord et al., 2019) of retrieving audio from image
with the loss from retrieving image from audio.
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3.2 FRAMEWORK

We outline the forward and backward propagation procedures for each of the phases below.

3.2.1 PRETRAIN

In the first phase, we jointly warm-start the backbone fϕ and contrastive head gθ under the small-
batch memory budget, establishing initial representations and a stable training configuration. Each
Pretrain step uses standard backpropagation techniques on a single small batch.

Forward pass. For a small batch x,

y = fϕ(x), z = y + gθ(y), L = L(z),

where L is the weighted sum of the audio-to-image and image-to-audio InfoNCE losses.

Backward pass. The MLP parameters θ and the backbone parameters ϕ are updated as

∇θL =
∂L

∂z

∂z

∂θ
,

∇ϕL =
∂L

∂z

∂z

∂y

∂y

∂ϕ
.

3.2.2 ADAPT

This phase exploits very large batch sizes to learn strong contrastive structure in the head while
keeping memory bounded by freezing the backbone and training only gθ on backbone-featurized
data.

We construct a large effective batch X = {xk}nk=1 and featurize with the Pretrain-trained backbone
to obtain

Y = concat
(
fϕ(x1), . . . , fϕ(xn)

)
.

To further increase speedup during this phase, Y is precomputed and cached.

Forward pass. The MLPs produce

Z = Y + gθ(Y ), L = L(Z).

Backward pass. With ϕ frozen and Y treated as constant, θ can be updated as

∇θL =
∂L

∂Z

∂Z

∂θ
,with fϕ(X) fixed and ϕ remaining frozen.

3.2.3 FUSE

Fuse transfers large-batch contrastive information gathered by the contrastive head back into the
memory-limited backbone. We do this by computing the loss and gradients on a large effective batch,
then propagating the resulting intermediate gradients through the backbone in small microbatches.
This mechanism transforms the conventional training pipeline into a hybrid model, transferring the
head’s large-batch learning to the backbone in a memory-efficient manner. We pick up the state of
the backbone from the Pretrain phase and the state of the MLPs from the Adapt phase.

Forward pass. Let X = {xk}nk=1 be a large batch partitioned into n microbatches. We sequen-
tially featurize xk through fϕ and concatenate to form Y :

Y = concat(fϕ(x1), ..., fϕ
(
xk)).

We then compute Z and L:

Z = Y + gθ(Y ), L = L(Z).
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Backward pass: contrastive head and intermediate gradient. We first update the contrastive
head on the large batch and compute the gradient w.r.t. the large-batch backbone output Y :

∇θL =
∂L

∂Z

∂Z

∂θ
, ∇Y L =

(∂Z
∂Y

)⊤
∇ZL.

For the contrastive head Z = Y + gθ(Y ),
∂Z

∂Y
= I + Jgθ (Y ), ⇒ ∇Y L = ∇ZL + Jgθ (Y )⊤∇ZL,

where Jgθ (Y ) is the Jacobian of gθ at Y .

Backward pass: backbone in microbatches. We distribute ∇Y L across the concatenated slices
to obtain per-microbatch signals {∇yk

L}nk=1 aligned with yk = fϕ(xk). For each microbatch
k = 1, . . . , n we run a backward pass through fϕ:

∇ϕL
(k) =

(
∇yk

L
)⊤ ∂yk

∂ϕ
.

At a high level, within each Fuse iteration over X we perform:

1. Large-batch forward: build Y , compute Z, L.
2. Contrastive head step: backpropagate L to update θ and obtain ∇Y L.
3. Backbone micro-steps: for k = 1 . . . n, backpropagate ∇yk

L through fϕ to update ϕ;
accumulate gradients to an effective batch of |X|.

We avoid reusing stale ∇Y L across multiple backbone updates: the MLPs are updated once per
large batch (Step 2), after which the backbone is updated exactly once via the n microbackward
passes (Step 3). This minimizes staleness while respecting memory limits.

Gradient Checkpointing We utilize gradient checkpointing (Chen et al., 2016b) to streamline
the microbatch forward and backward passes. Microbatch forwards through fϕ are wrapped in
activation checkpoints; during Step 3, each ∇yk

L triggers a recomputation of the k-th microbatch
activations for fϕ only, keeping memory bounded while preserving exact gradients.

3.3 TRAINING

We train and experiment with our three-phase approach on the AudioSet Dataset (Gemmeke et al.,
2017). Our image processing pipeline is as follows: We randomly sample a single video frame and
apply random resizing, color jittering, random grayscaling, and random flipping as augmentations
on the training dataset. All audio is first resampled to 16KHhZ to be compatible with HuBERT. We
then apply a series of augmentations: additive noise, gain perturbation, pitch shift, and reverberation.
We train on 4 A100 GPUs. We use a micro batch size of 40 for the Pretrain phase, and we experiment
with batch sizes ranging from 1000 to 50,000 for the Adapt phase. For the Fuse phase, we use a
large batch size of 1000, and a micro batch size of 40. A comparison of different batch sizes used in
the Adapt phase are in Table 2.

4 RESULTS

We evaluate on cross-modal retrieval using 1,000 clips derived from AudioSet. Given each sample
in one modality, we rank all 1,000 candidates from the opposite modality. We report Recall@k for
k = 1, 5, 10, which is the percentage of queries whose ground-truth pair ranked in the top-k. Image-
to-audio recall ranks audio clips given a fixed image, and audio-to-image recall ranks images given
a fixed audio clip.

Figure 2 illustrates the R@1 trajectories across the three training phases. Our approach yields a
clear boost in performance at each new training phase. As a training phase converges, the subsequent
phase drives the model to a new spike in performance. Table 1 reports the best R@k achieved in
each phase under a fixed total of 130,000 steps. The total step count breaks down to 95k steps for
Pretrain, 25k steps for Adapt, and 10k steps for Fuse. Improvements in parentheses are relative to
Pretrain. We also report recall against a baseline to highlight gains over gradient accumulation.
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Figure 2: Top-1 audio-to-image validation recall across phases.

Table 1: Image-to-audio and audio-to-image retrieval accuracies on the AudioSet dataset.

I → A Pretrain Adapt Fuse Baseline
R@1 16.67 18.93 (+2.26) 24.58 (+7.91) 22.52
R@5 38.85 41.04 (+2.19) 46.25 (+7.40) 44.60
R@10 49.06 51.56 (+2.50) 55.42 (+6.36) 54.13

A → I Pretrain Adapt Fuse Baseline
R@1 13.96 17.19 (+3.23) 22.60 (+8.64) 20.02
R@5 35.73 39.38 (+3.65) 44.27 (+8.54) 42.52
R@10 47.19 51.46 (+4.27) 53.54 (+6.35) 52.35

4.1 GRADIENT ACCUMULATION COMPARISON

As a strong baseline, we implement gradient accumulation across microbatches. The InfoNCE loss
is computed separately on each microbatch, and the optimizer is stepped once every k microbatches
such that the effective batch size matches the huge batch size used in the Adapt and Fuse phases.
With microbatch size b = 40 under backbone memory constraints and target effective batch B =
1000, we set k = 25 accumulation steps, so the optimizer updates once per k microbatches. Training
for the baseline resumes from the same Pretrain checkpoint as Adapt picks up from.

In this setting, each microbatch forms a b× b similarity matrix and contributes b2− b negative pairs;
across the k microbatches this totals to k(b2 − b) negatives per step. In the MLP updates of the
Adapt and Fuse phases, we assemble a single B × B similarity matrix over the full effective batch,
yielding B2 −B negatives per step. The exact ratio of negative pairs per optimizer step is

B2 −B

k(b2 − b)
=

kb− 1

b− 1
= k +

k − 1

b− 1
.

This ratio that our negative pool grows by is strictly greater than k, and even larger when k > b.
Geometrically, the baseline covers only the k diagonal b × b blocks of the full B × B matrix,
whereas our method uses the entire matrix including off-diagonal interactions (Figure 3). This loss-
time exposure to off-diagonal interactions, not achievable by accumulation, is the key driver of the
consistent gains in Table 1.
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Figure 3: Visual comparison of negative pool between Hyperbatch and gradient accumulation.

Table 2: Comparison of batch sizes used in the Adapt phase.

Batch Size R@1 R@5 R@10 Wall Time
1000 18.93 41.04 51.56 1h 16m

10,000 19.47 42.16 53.01 4h 31m
50,000 19.83 42.37 53.50 1d 9h 22m

4.2 ADAPT PHASE BATCH SIZE

We experiment with Adapt-phase batch sizes from 1000 to 50,000 (i.e., 25 to 1250 times larger than
the Pretrain phase micro batch size b = 40). Table 2 reports image to audio recall accuracy and wall
time. All runs resume from the same Pretrain checkpoint at 95k steps.

Increasing the Adapt batch size B yielded consistent, though sub-linear, accuracy gains. This aligns
with the saturation of the InfoNCE partition function as negatives become plentiful. In practice,
B = 10k offers a favorable accuracy to time compromise, while B = 50k maximizes accuracy
under a longer wall time.

The accuracy gains from increasing batch size capture how our Pretrain-Adapt-Fuse design allows us
to materialize very large-batch contrastive losses. The Adapt phase circumvents memory constraints
by computing the InfoNCE objective over a true large batch at the level of the contrastive head,
where the gradients are memory-cheap. Unlike memory-bank or queue approaches, Adapt uses the
contrastive head to score a single-step, in-batch objective over the entire large batch and avoids
staleness from long-lived keys. Unlike pure gradient accumulation, Adapt’s negative set is the full
batch at loss time, exposing the head to a much dense hard-negative distribution.

5 CONCLUSION

We introduce Pretrain–Adapt–Fuse, a three-phase training framework that makes abundant hard-
negative sampling practical for contrastive learning under strict memory budgets. Our framework
leverages the idea of decoupling where large batches are scored from where gradients are stored.
In Pretrain, we co-train a memory-intensive backbone with a lightweight head on small batches to
establish stable features and a strong initialization. In Adapt, we freeze the backbone and train only
the head on true large batches—scaling batch size by two orders of magnitude to expose the model
to a much dense distribution of hard negatives. Finally, in Fuse, we push the large-batch signal back
into the backbone through modified backpropagation. In doing so, we transfer large-batch structure
into a memory-constrained backbone.

Empirically, this framework boosts retrieval accuracy at each phase on AudioSet. Relative to Pre-
train, Adapt and Fuse deliver consistent gains from where the Pretrain phase converges, with R@1
improving 16.67 to 24.58 for image to audio retrieval and 13.96 to 22.60 for audio to image retrieval
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under a fixed total step budget. We also find that increasing Adapt batch size monotonically im-
proves accuracy, matching the intuition that more negatives increase the chance of sampling harder
ones. Our method outperforms a strong gradient-accumulation baseline matched for effective batch
size by capturing off-diagonal negative pairs that accumulation never sees within the same step.

Practically, our three phase training framework is simple to integrate and broadly applicable: it treats
the classification head as a low-memory “contrastive amplifier” for large-batch learning, then fuses
that signal back to the backbone. By scaling batch size by hundreds to thousands without enlarging
the backbone’s activation footprint, we enable richer, harder negative sampling and faster accuracy
gains per optimizer step. The result is a drop-in training scheme that preserves the benefits of
massive contrastive batches while respecting memory constraints, that can be used across contrastive
frameworks and modalities.
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