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Abstract

This survey provides an in-depth analysis of001
knowledge conflicts for large language models002
(LLMs), highlighting the complex challenges003
they encounter when blending contextual and004
parametric knowledge. Our focus is on three005
categories of knowledge conflicts: context-006
memory, inter-context, and intra-memory con-007
flict. These conflicts can significantly impact008
the trustworthiness and performance of LLMs,009
especially in real-world applications where010
noise and misinformation are common. By cat-011
egorizing these conflicts, exploring the causes,012
examining the behaviors of LLMs under such013
conflicts, and reviewing available solutions,014
this survey aims to shed light on strategies for015
improving the robustness of LLMs, thereby016
serving as a valuable resource for advancing017
research in this evolving area.018

1 Introduction019

Large language models (LLMs; Brown et al. 2020;020

Touvron et al. 2023; OpenAI 2024) are renowned021

for encapsulating a vast repository of world knowl-022

edge (Petroni et al., 2019; Roberts et al., 2020),023

referred to as parametric knowledge. These models024

excel in various knowledge-intensive tasks. Mean-025

while, LLMs continue to engage with external026

contextual knowledge after deployed (Pan et al.,027

2022), including user prompts (Liu et al., 2023a),028

documents from the Web (Shi et al., 2023c), or029

tools (Schick et al., 2023; Zhuang et al., 2023).030

Integrating contextual knowledge into LLMs en-031

ables them to keep abreast of current events (Ka-032

sai et al., 2022) and generate more accurate re-033

sponses (Shuster et al., 2021), yet it risks conflict-034

ing due to the rich knowledge sources. The dis-035

crepancies among the contexts and the model’s036

parametric knowledge are referred to as knowledge037

conflicts (Chen et al., 2022; Xie et al., 2023). In this038

paper, we categorize three distinct types of knowl-039

edge conflicts, as shown in Figure 1. Contextual040

Brazil holds the
record for the

most FIFA World
Cup wins…

…I think Argentina
has won the most
championships.

Italy is the most successful national team
in the history of the World Cup, having

won four titles (1934, 1938, 1982, 2006).

As of my last update in April 2023, the
national team with the most FIFA World
Cup championships is Brazil. They have

won the tournament a total of five times.

I. Contextual Knowledge (Context)

II. Parametric Knowledge (Memory)

Retrieved Documents User Prompt Dialogue

Question: Which team has won the most FIFA World Cup championships?

…, Germany has 
officially claimed

the title of the
most successful
national team…

With a staggering
total of five
World Cup 

triumphs, the
Brazilian…

Inter-context conflict
Intra-memory conflictContext-memory conflict

Figure 1: An LLM may encounter three types
of knowledge conflicts, stemming from knowledge
sources—either contextual (in yellow) or inherent to
the LLM’s parameters (in blue). When confronted with
a user’s question (in purple) entailing knowledge of
complex conflicts, the LLM is required to resolve these
discrepancies to deliver accurate responses.

knowledge (context, including user prompts, dia- 041

logue history, and retrieved documents) can conflict 042

with the parametric knowledge (memory), where 043

we term it as context-memory conflict. In the 044

meantime, the context might be fraught with noise 045

(Zhang and Choi, 2021) or even deliberately crafted 046

misinformation (Du et al., 2022b). The conflict 047

among contextual knowledge is dubbed as inter- 048

context conflict. To reduce uncertainties in re- 049

sponses, the user may pose the question in various 050

forms, resulting in the LLM’s parametric knowl- 051

edge in divergent responses. This variance may 052

stem from the inconsistencies present in the pre- 053

training data (Huang et al., 2023), which gives rise 054

to what we call intra-memory conflict. 055

Knowledge conflicts attract attention with the 056

advent of LLMs. Recent studies find that LLMs ex- 057

hibit both adherence to parametric knowledge and 058

susceptibility to contextual influences (Xie et al., 059

2023), which can be problematic when the context 060

is factually wrong (Pan et al., 2023b). Given the im- 061
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Figure 2: We view knowledge conflict not only as a standalone phenomenon but also as a nexus that connects
various causal triggers (causes) with the behaviors of LLMs.

plications for the trustworthiness (Du et al., 2022b),062

real-time accuracy (Kasai et al., 2022), and robust-063

ness (Ying et al., 2023) of LLMs, it is imperative064

to delve deeper into understanding such conflicts065

(Xie et al., 2023; Wang et al., 2023e). Existing066

reviews (Zhang et al., 2023d; Wang et al., 2023a;067

Feng et al., 2023) either touch upon knowledge068

conflicts as a subtopic within a broader context and069

primarily focus on specific scenarios (Feng et al.,070

2023). To fill the gap, we aim to provide a compre-071

hensive survey encompassing the categorization,072

cause and behavior analysis, and solutions for ad-073

dressing various knowledge conflicts.074

We conceptualize the lifecycle of knowledge con-075

flicts as both a cause leading to various behaviors,076

and an effect emerges from the intricate nature of077

knowledge as in Figure 2. Our research under-078

scores the significance of understanding the ori-079

gins of these conflicts. Although existing analyses080

(Chen et al., 2022; Xie et al., 2023; Wang et al.,081

2023e) tend to construct such conflicts artificially,082

we posit that these analyses do not sufficiently ad-083

dress the interconnectedness of the issue. Going084

beyond, we provide a systematic review of mitiga-085

tion strategies, which are employed to minimize the086

undesirable consequences of knowledge conflicts.087

Based on the timing relative to potential conflicts,088

such strategies are divided into pre-hoc and post-089

hoc strategies. The key distinction between them090

lies in whether adjustments are made before or after091

potential conflicts arise. We discuss three kinds of092

knowledge conflicts, detailing the causes, analysis093

of model behaviors, and available solutions accord-094

ing to their respective objectives. The taxonomy of095

knowledge conflicts is outlined in Figure 3.096

2 Context-Memory Conflict097

LLMs are characterized by fixed parametric knowl-098

edge, a result of the substantial pertaining pro-099

cess (Sharir et al., 2020; Hoffmann et al., 2022;100

Smith, 2023). This static parametric knowledge 101

stands in stark contrast to the dynamic nature of 102

external information, which evolves at a rapid 103

pace (De Cao et al., 2021; Kasai et al., 2022). 104

2.1 Causes 105

Temporal Misalignment. It naturally arises in 106

models trained on data collected in the past, as 107

they may not accurately reflect contemporary reali- 108

ties (Luu et al., 2021; Lazaridou et al., 2021; Liska 109

et al., 2022). Such misalignment can degrade the 110

model’s performance on various NLP tasks and 111

relevancy over time (Luu et al., 2021; Zhang and 112

Choi, 2021; Dhingra et al., 2022; Kasai et al., 2022; 113

Cheang et al., 2023), as it may fail to capture new 114

trends or shifts in language use. Furthermore, the 115

issue of temporal misalignment is expected to in- 116

tensify due to the pre-training paradigm and the 117

escalating costs associated with scaling up mod- 118

els (Chowdhery et al., 2023; OpenAI, 2024). 119

Prior works tackle temporal misalignment by 120

focusing on three lines of strategies: Knowledge 121

editing (KE) aims to directly update the parametric 122

knowledge (Sinitsin et al., 2020; Mitchell et al., 123

2021; Onoe et al., 2023). Retrieval-augmented gen- 124

eration (RAG) fetches relevant documents from 125

external sources to supplement the model’s knowl- 126

edge without altering its parameters (Karpukhin 127

et al., 2020; Guu et al., 2020; Lewis et al., 2020; 128

Lazaridou et al., 2022; Vu et al., 2023). Contin- 129

ual learning (CL) updates the internal knowledge 130

through continual training on updated data (Lazari- 131

dou et al., 2021; Jang et al., 2021, 2022). However, 132

KE can bring in side effects such as knowledge in- 133

consistency and may enhance the hallucination of 134

LLMs (Li et al., 2023f; Pinter and Elhadad, 2023). 135

RAG is inevitable to encounter conflicts since 136

model parameters are not updated (Chen et al., 137

2021; Zhang and Choi, 2021). CL suffers from the 138

issue of catastrophic forgetting and demands sig- 139
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nificant computational resources (De Lange et al.,140

2021; He et al., 2021; Wang et al., 2023d).141

Misinformation Pollution. Adversaries can ex-142

ploit this vulnerability by introducing misleading143

information into retrieved documents (Pan et al.,144

2023a,b; Weller et al., 2022) and user conversa-145

tions (Xu et al., 2023). Prompt injection attack (Liu146

et al., 2023b; Greshake et al., 2023; Yi et al., 2023;147

Xu et al., 2024) is one such technique, where mod-148

els may inadvertently spread misinformation if they149

use deceptive inputs (Pan et al., 2023b; Xu et al.,150

2023). Misinformation undermines the accuracy151

of automated fact-checking (Du et al., 2022b) and152

question-answering systems (Pan et al., 2023a,b).153

Recent studies highlight the model’s tendency to154

align with user opinions, a.k.a., sycophancy, fur-155

ther exacerbating the issue (Perez et al., 2022;156

Turpin et al., 2023; Wei et al., 2023; Sharma et al.,157

2023). Recently, there has been growing appre-158

hension regarding the potential generation of mis-159

information by LLMs (Ayoobi et al., 2023; Kidd160

and Birhane, 2023; Carlini et al., 2023; Zhou et al.,161

2023c; Spitale et al., 2023; Chen and Shu, 2023b).162

Researchers acknowledge the challenges associ-163

ated with detecting misinformation generated by164

LLMs (Tang et al., 2023; Chen and Shu, 2023a;165

Jiang et al., 2023), which underscores the urgency166

of addressing the nuanced challenges LLMs pose167

within contextual misinformation.168

Remarks. Temporal misalignment and misinfor-169

mation pollution are two separate scenarios that170

give rise to context-memory conflicts. For the for-171

mer, the up-to-date contextual information is con-172

sidered accurate. Conversely, for the latter, the con-173

textual information contains misinformation and is174

therefore considered incorrect.175

2.2 Analysis of Model Behaviors176

We summarize studies on how LLMs behave un-177

der context-memory conflicts within open-domain178

question answering (ODQA) and general setups.179

ODQA. Early effort (Longpre et al., 2021) explores180

how QA models act when the provided contextual181

information contradicts the memory. An automated182

framework first identifies QA instances with named183

entity answers, then substitutes mentions of the en-184

tity in the gold document with an alternate entity,185

thus creating the conflict context. Longpre et al.186

(2021) reveal a tendency of models to over-rely on187

parametric knowledge. Chen et al. (2022) report188

differing observations, they note that models pre-189

dominantly rely on contextual knowledge in their 190

best-performing settings. This divergence can be 191

attributed to two factors. Firstly, the entity substi- 192

tution approach (Longpre et al., 2021) potentially 193

reduces the semantic coherence of the perturbed 194

context. Secondly, Chen et al. (2022) utilize multi- 195

ple evidence rather than one (Longpre et al., 2021). 196

Recently, Tan et al. (2024) examine how large LMs 197

integrate context with generated memory. They 198

observe that LLMs tend to prioritize parametric 199

knowledge thanks to the greater similarity between 200

generated contents and input, as well as the often 201

incomplete nature of retrieved information. 202

General. LLMs exhibit a complex relationship 203

with conflicting information. While highly recep- 204

tive to convincing external evidence (Xie et al., 205

2023), they also demonstrate a strong confirma- 206

tion bias (Nickerson, 1998), favoring information 207

consistent with their memory. This leads to chal- 208

lenges in resolving such conflicts, as LLMs strug- 209

gle to pinpoint conflicting segments and provide 210

disentangled responses (Wang et al., 2023e). Re- 211

search exploring LLMs’ robustness under conflicts 212

reveals a susceptibility to misleading prompts, par- 213

ticularly in commonsense knowledge (Ying et al., 214

2023). Furthermore, LLMs often deviate from their 215

parametric knowledge when presented with direct 216

conflicts or contextual changes (Qian et al., 2023). 217

Studies investigating LLMs in interactive sessions 218

highlight a tendency to favor logically structured 219

knowledge, even when it is factual wrong (Xu et al., 220

2023). These findings underscore the need for fur- 221

ther research into the interaction between paramet- 222

ric and contextual knowledge for LLMs. 223

Remarks. Researchers analyze LLMs’ behavior 224

under conflicting knowledge by creating artificial 225

conflicts, initially through entity-level substitutions 226

and later by using LLMs to generate semantically 227

coherent conflicts. While no definitive rule exists 228

for prioritizing contextual or parametric knowledge, 229

LLMs tend to favor information that is semantically 230

coherent over generic conflicting information. 231

2.3 Solutions 232

Solutions are organized according to their objec- 233

tives, i.e., the desired behaviors we expect from 234

an LLM when it encounters conflicts. Existing 235

strategies can be categorized into the following 236

objectives: Faithful to context strategies aim to 237

align with contextual knowledge, focusing on con- 238

text prioritization. Discriminating misinformation 239
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strategies encourage skepticism towards dubious240

context in favor of parametric knowledge. Disen-241

tangling sources strategies treat context and knowl-242

edge separately and provide disentangled answers.243

Improving factuality strategies aim for an integrated244

response leveraging both context and parametric245

knowledge towards a more truthful solution.246

Faithful to Context. Several approaches have247

been proposed to achieve this goal. Fine-tuning ap-248

proaches like Knowledge Aware (Li et al., 2022a)249

incorporate counterfactual and irrelevant contexts250

into training data to enhance controllability and251

robustness. Similarly, TrueTeacher (Gekhman252

et al., 2023) focus on improving factual consistency253

in summarization by annotating model-generated254

summaries with LLMs. Prompting strategies (Zhou255

et al., 2023d) utilize opinion-based prompts and256

counterfactual demonstrations to enhance LLMs’257

adherence to context without additional training.258

Decoding techniques like Context-aware Decod-259

ing (Shi et al., 2023a) amplify the difference in out-260

put probabilities with and without context, prioritiz-261

ing relevant context over prior knowledge. Knowl-262

edge plug-in approaches, such as Continuously-263

updated QA (Lee et al., 2022a), use plug-and-264

play modules to store updated knowledge, solving265

knowledge conflicts without affecting the original266

model. Pre-training methods (Shi et al., 2023b)267

extend LLMs’ ability to handle long and varied268

contexts across multiple documents, potentially re-269

solving knowledge conflicts by synthesizing infor-270

mation from broader contexts. Finally, fact valid-271

ity prediction approaches (Zhang and Choi, 2023)272

identify and discard outdated facts in LLMs, im-273

proving performance on tasks like ODQA by ensur-274

ing adherence to up-to-date contextual information.275

Discriminating Misinformation. To combat mis-276

information, various defense strategies have been277

proposed. Pan et al. (2023b) advocates for misin-278

formation detection and vigilant prompting, aiming279

to improve the model’s faithfulness to factual infor-280

mation. Xu et al. (2023) employ a system prompt281

to encourage LLMs to be cautious about misin-282

formation and verify their memorized knowledge283

before responding, further enhancing faithfulness.284

Weller et al. (2022) leverage the redundancy of in-285

formation in large corpora to mitigate knowledge286

conflicts. Their approach involves query augmen-287

tation to retrieve diverse, less likely poisoned pas-288

sages, then compares the consistency of predicted289

answers across retrieved contexts. This strategy en-290

sures faithfulness by cross-verifying answers from 291

multiple sources. Hong et al. (2023) fine-tune a 292

smaller LM as a discriminator and integrate prompt- 293

ing techniques to enable the model to distinguish 294

between reliable and unreliable information. 295

Disentangling Sources. DisentQA (Neeman et al., 296

2022) trains a model that predicts two types of 297

answers for a given question: one based on contex- 298

tual knowledge and one on parametric knowledge. 299

Wang et al. (2023e) introduce a method to improve 300

LLMs’ handling of knowledge conflicts. Their 301

approach is a three-step process designed to help 302

LLMs detect conflicts, accurately identify the con- 303

flicting segments, and generate distinct, informed 304

responses based on the conflicting data, aiming for 305

more precise and nuanced model outputs. 306

Improving Factuality. Zhang et al. (2023e) 307

propose COMBO, a framework that pairs com- 308

patible generated and retrieved passages to re- 309

solve discrepancies. It uses discriminators trained 310

on silver labels to assess passage compatibil- 311

ity, improving ODQA performance by leveraging 312

both LLM-generated (parametric) and external re- 313

trieved knowledge. Jin et al. (2024a) introduces 314

a contrastive-decoding-based algorithm to maxi- 315

mize the difference between various logits under 316

knowledge conflicts and calibrates the model’s con- 317

fidence in the truthful answer. 318

Remarks. Current mitigation approaches for 319

knowledge conflicts are ineffective because they 320

fail to differentiate between the two underlying 321

causes. Blindly prioritizing either faithfulness to 322

context or knowledge is undesirable. Researchers 323

advocate for LLMs that empower users to make 324

informed decisions by providing distinct answers 325

based on both parametric and contextual informa- 326

tion (Wang et al., 2023e; Floridi, 2023). 327

3 Inter-Context Conflict 328

Inter-context conflicts manifest in LLMs when in- 329

corporating conflicting segments among external 330

information sources, a challenge accentuated by 331

the advent of RAG techniques. 332

3.1 Causes 333

Misinformation. Similar to context-memory con- 334

flict, this type of conflict can also affected by mis- 335

information and will not be discussed repeatedly. 336

Outdated Information. It is also important to 337

recognize that facts can evolve. Retrieved docu- 338

ments may contain updated and outdated informa- 339
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tion from the network simultaneously, leading to340

conflicts between these documents (Chen et al.,341

2021; Liska et al., 2022; Kasai et al., 2022).342

3.2 Analysis of Model Behaviors343

Performance Impact. Previous research has344

shown that LMs can be significantly influenced345

by misinformation or outdated information within346

a specific context (Zhang and Choi, 2021; Du et al.,347

2022b). Pan et al. (2023a) demonstrated that LLMs348

are susceptible to misinformation attacks, even349

when the fake articles are generated by models.350

Chen et al. (2022) investigated how LLMs handle351

contradictory contexts and found that inconsisten-352

cies across knowledge sources have a minimal ef-353

fect on their confidence levels. These models tend354

to favor context directly related to the query and355

context that aligns with their parametric knowledge.356

Xie et al. (2023) confirmed these findings, show-357

ing that LLMs exhibit a bias towards evidence that358

aligns with their parametric memory and a predis-359

position towards emphasizing information related360

to popular entities and answers corroborated by a361

larger volume of documents. Furthermore, they362

found that LLMs are sensitive to the order in which363

data is introduced. Jin et al. (2024a) discovered364

that LLMs struggle with reasoning as the number365

of conflicting hops increases.366

Detection Ability. Several studies highlight the367

challenges faced by LMs in identifying contradic-368

tions. Zheng et al. (2022) demonstrate that LMs369

struggle to detect contradictory statements within370

Chinese conversations. Li et al. (2023a) analyze371

the performance of LLMs in identifying contradic-372

tory documents across various sources, including373

news (Hermann et al., 2015), stories (Kočiský et al.,374

2018), and Wikipedia (Merity et al., 2017), finding375

that the average detection accuracy is low. They376

also observe that LLMs perform poorly when deal-377

ing with contradictions involving subjective emo-378

tions or perspectives. Wan et al. (2024) investigate379

the text features influencing LLMs’ assessment of380

document credibility in the presence of conflict-381

ing information, discovering that models prioritize382

relevance over stylistic features. Jin et al. (2024a)383

further highlight the difficulty LLMs encounter in384

distinguishing truthful information from misinfor-385

mation, showing a tendency to favor evidence that386

appears most frequently within the context.387

Remarks. Exploring responses to contextual nu-388

ances is essential, as variations in training data lead389

to differences in behavior. Despite some similari- 390

ties, LLMs’ methods of identifying misinformation 391

differ significantly from those of humans. 392

3.3 Solutions 393

Eliminating Conflict. Several approaches have 394

been proposed to address the challenge of elimi- 395

nating conflict in text. Specialized models, such as 396

the Pairwise Contradiction Neural Network (Hsu 397

et al., 2021), utilize fine-tuned Sentence-BERT em- 398

beddings to determine contradiction probabilities. 399

Pielka et al. (2022) emphasize the importance of 400

integrating linguistic knowledge into the learning 401

process to improve contradiction detection, as mod- 402

els like XLM-RoBERTa struggle with syntactic 403

and semantic features. Wu et al. (2022) propose 404

incorporating topological text representations into 405

language models to enhance contradiction detec- 406

tion, evaluating their approach on the MultiNLI 407

dataset (Williams et al., 2018). General models, 408

such as Chern et al. (2023)’s fact-checking frame- 409

work, integrate LLMs with various tools to detect 410

factual errors. Leite et al. (2023) leverage LLMs to 411

generate weak labels associated with credibility sig- 412

nals for input text, aggregating these labels through 413

weak supervision techniques to predict veracity. 414

Improving Robustness. To enhance robustness, 415

Hong et al. (2023) propose a fine-tuning method 416

that trains a discriminator and decoder simultane- 417

ously using a shared encoder, alongside strategies 418

involving prompting GPT-3 to identify perturbed 419

documents and integrating the discriminator’s out- 420

put into prompts. Weller et al. (2022) explore query 421

augmentation by prompting GPT-3 to generate new 422

questions based on the original query, evaluating 423

answer confidence through passage retrieval, and 424

deciding whether to rely on the original prediction 425

or aggregate predictions from high-confidence aug- 426

mented questions. While both approaches aim for 427

robustness, Hong et al. (2023)’s fine-tuning method 428

demonstrates the most promising results. 429

Remarks. Strategies for addressing inter-context 430

conflicts primarily rely on model knowledge or 431

leverage external knowledge such as retrieved doc- 432

uments. Moreover, augmenting LLM capabili- 433

ties with external tools has emerged as a novel 434

paradigm. Exploring the use of external tools to 435

support LLMs in resolving inter-context conflicts 436

is a promising approach. In addition, devising a 437

unified and efficient approach to handle various 438

conflict types remains a formidable challenge. 439
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4 Intra-Memory Conflict440

Consistent LLM outputs for identical inputs are441

essential. However, intra-memory conflicts, where442

LLMs generate differing responses to similar in-443

puts, undermine their reliability and utility by in-444

troducing undesirable uncertainty.445

4.1 Causes446

The following three factors respectively pertain to447

training, inference, and knowledge refinement.448

Bias in Training Corpora. While LLMs primarily449

acquire knowledge during pre-training (Zhou et al.,450

2023a; Kaddour et al., 2023; Naveed et al., 2023;451

Akyürek et al., 2022; Singhal et al., 2022), the452

vast and often unreliable nature of internet-sourced453

training data (Bender et al., 2021; Weidinger et al.,454

2021) can lead to the memorization and amplifica-455

tion of inaccuracies (Lin et al., 2022; Elazar et al.,456

2022; Lam et al., 2022; Grosse et al., 2023). This457

results in LLMs potentially harboring conflicting458

knowledge within their parameters. Furthermore,459

LLMs tend to encode superficial associations rather460

than true comprehension of training data (Li et al.,461

2022b; Kang and Choi, 2023; Zhao et al., 2023a;462

Kandpal et al., 2023), leading to predetermined re-463

sponses based on spurious correlations and poten-464

tially divergent answers for semantically equivalent465

but syntactically distinct prompts.466

Decoding Strategy. LLMs generate text by sam-467

pling from a probability distribution over potential468

next tokens. Stochastic sampling methods like top-469

k and top-p sampling are commonly used for decod-470

ing, introducing randomness in the generated con-471

tent (Jawahar et al., 2020; Massarelli et al., 2020;472

Fan et al., 2018; Holtzman et al., 2020). However,473

this randomness can cause intra-memory conflicts,474

where the model produces different outputs for the475

same input due to the left-to-right generation pat-476

tern and the influence of sampled tokens on subse-477

quent generations (Lee et al., 2022b; Huang et al.,478

2023; Dziri et al., 2021).479

Knowledge Editing. With the exponential increase480

of model parameters, fine-tuning LLMs become in-481

creasingly resource-intensive. In response to this,482

researchers explore knowledge editing techniques483

to efficiently modify a small scope of the knowl-484

edge in LLMs (Meng et al., 2022; Zhong et al.,485

2023). Ensuring the consistency of such modifi-486

cation poses a significant challenge. Due to the487

potential limitations inherent in the editing method,488

the modified knowledge cannot be generalized ef-489

fectively. This can result in LLMs producing in- 490

consistent responses when dealing with the same 491

piece of knowledge in varying situations (Li et al., 492

2023f; Yao et al., 2023). 493

Remarks. Intra-memory conflicts in LLMs arise 494

from three main causes at different stages. Train- 495

ing corpus bias is the primary catalyst, causing 496

inconsistencies in the model’s knowledge. The ran- 497

domness of the decoding process during inference 498

exacerbates these inconsistencies. Additionally, 499

knowledge editing can inadvertently introduce con- 500

flicting information. 501

4.2 Analysis of Model Behaviors 502

Self-Inconsistency. LLMs exhibit significant self- 503

inconsistency, as evidenced by multiple studies. 504

Elazar et al. (2021) found that BERT, RoBERTa, 505

and ALBERT struggle with knowledge consistency, 506

achieving accuracy rates barely exceeding 50-60%. 507

Hase et al. (2023), using a more diverse dataset, 508

confirmed these findings, highlighting the inconsis- 509

tency of RoBERTa-base and BART-base in para- 510

phrase contexts. Zhao et al. (2023b) revealed that 511

even GPT-4 displays a 13% inconsistency rate in 512

Commonsense Question-Answering tasks, partic- 513

ularly when dealing with uncommon knowledge. 514

Dong et al. (2023) further demonstrated that vari- 515

ous open-source LLMs exhibit strong inconsisten- 516

cies. Li et al. (2023d) identified another aspect 517

of inconsistency, where LLMs may initially an- 518

swer a question but subsequently deny the answer 519

when asked for confirmation. Li et al. (2022b) at- 520

tributed this inconsistency in encoder-based models 521

to their reliance on positionally close and highly co- 522

occurring words, leading to the generation of misin- 523

formation. Kang and Choi (2023) further explained 524

this phenomenon as a co-occurrence bias, where 525

LLMs prioritize frequently co-occurring words 526

over correct answers, particularly when recalling 527

facts with rarely co-occurring subject-object pairs 528

in the pre-training dataset, even after fine-tuning. 529

Latent Representation of Knowledge. Contempo- 530

rary LLMs, built on multi-layer transformer archi- 531

tectures, exhibit a complex inter-memory conflict 532

with distinct knowledge representations scattered 533

across layers. Research suggests that LLMs store 534

low-level information at shallower layers and se- 535

mantic information at deeper layers (Tenney et al., 536

2019; Rogers et al., 2020; Wang et al., 2019; Jawa- 537

har et al., 2019; Cui et al., 2020). Chuang et al. 538

(2023) demonstrate that factual knowledge is con- 539
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centrated within specific transformer layers, lead-540

ing to inconsistent knowledge across layers. Fur-541

thermore, Li et al. (2023c) highlight a discrepancy542

between knowledge storage and generation accu-543

racy. Their experiments reveal a 40% gap between544

the accuracy of a knowledge probe and the gener-545

ation accuracy, suggesting that while the correct546

knowledge is present within the parameters, it may547

not be effectively expressed during generation.548

Cross-lingual Inconsistency. While true knowl-549

edge should be universally accessible regardless550

of language variation (Ohmer et al., 2023), LLMs551

exhibit cross-lingual inconsistencies (Ji et al., 2023;552

Xue et al., 2024). This inconsistency arises from553

LLMs storing knowledge related to different lan-554

guages separately within their parameters (Wang555

et al., 2023c). Qi et al. (2023) propose RankC, a556

metric for evaluating cross-lingual consistency of557

factual knowledge, and reveals a strong language558

dependence in LLMs, with no improvement in con-559

sistency observed even with larger models.560

Remarks. The phenomenon of inter-memory con-561

flict in LLMs predominantly manifests through562

inconsistent responses to semantically identical563

queries. This inconsistency is primarily attributed564

to the suboptimal quality of datasets utilized during565

the pre-training phase. Addressing this challenge566

necessitates the development of efficient and cost-567

effective solutions, which remains a significant hur-568

dle. Additionally, LLMs are characterized by the569

presence of multiple knowledge circuits, which sig-570

nificantly influence their response mechanisms to571

specific inquiries. The exploration and detailed ex-572

amination of these knowledge circuits within LLMs573

represent a promising avenue for future research.574

4.3 Solutions575

Improving Consistency. Several approaches have576

been proposed to address the inconsistency issue577

in language models. Fine-tuning methods, such578

as those explored by Elazar et al. (2021) and Li579

et al. (2023d), aim to improve consistency by in-580

troducing loss functions that penalize inconsistent581

outputs or by selectively retaining only consistent582

response pairs for training. Jang and Lukasiewicz583

(2023) propose a plug-in method that leverages in-584

termediate training with word-definition pairs to585

enhance the model’s understanding of symbolic586

meanings, thereby mitigating inconsistency. Out-587

put ensemble approaches, such as those presented588

by Mitchell et al. (2022) and Zhao et al. (2023b),589

utilize multiple models to evaluate the consistency 590

of generated outputs. Mitchell et al. (2022) employ 591

a base model for generating potential answers and 592

a relation model for assessing their logical coher- 593

ence, while Zhao et al. (2023b) leverage LLMs to 594

rephrase questions and analyze the divergence of 595

corresponding answers to detect potential incon- 596

sistency. These diverse approaches highlight the 597

ongoing efforts to enhance the consistency and re- 598

liability of language models. 599

Improving Factuality. Chuang et al. (2023) and 600

Li et al. (2023c) propose methods that leverage the 601

inconsistency of knowledge across different lay- 602

ers. DoLa (Chuang et al., 2023) utilizes a dynamic 603

layer selection strategy, contrasting premature and 604

mature layers to determine the next word’s prob- 605

ability. ITI (Li et al., 2023c), on the other hand, 606

identifies truth-correlated attention heads based on 607

TruthfulQA (Lin et al., 2022) and shifts activations 608

along this direction during inference, repeating this 609

process autoregressively for each token. Both ap- 610

proaches aim to mitigate factual errors by effec- 611

tively utilizing the diverse knowledge representa- 612

tions within the model’s layers. 613

Remarks. The resolution of inter-memory conflict 614

in LLMs typically entails three phases: training, 615

generation, and post-hoc processing. The train- 616

ing phase method mainly focuses on mitigating 617

internal inconsistencies among model parameters. 618

Conversely, the generation and post-hoc phases 619

primarily involve algorithmic interventions aimed 620

at alleviating occurrences of inconsistent model 621

behavior. Nevertheless, the challenge persists in 622

addressing the inconsistency of parameter knowl- 623

edge without detrimentally impacting the overall 624

performance of LLMs. 625

5 Challenges and Future Directions 626

Knowledge Conflicts in the Wild. While current 627

research on knowledge conflicts primarily focuses 628

on artificially generated misinformation, real-world 629

conflicts often arise in retrieval-augmented LLMs 630

due to conflicting information retrieved from the 631

web. Existing analyses lack the realism of such 632

scenarios, potentially limiting the applicability of 633

their findings (Xie et al., 2023; Wang et al., 2023e). 634

Recent work has begun to address this gap by curat- 635

ing conflicting documents based on actual Google 636

search results for open-ended questions (Wan et al., 637

2024). Future research should prioritize evaluat- 638

ing LLMs in these real-world scenarios to better 639
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understand their capabilities and limitations.640

Solution at a Finer Resolution. Resolving knowl-641

edge conflicts presents a complex challenge, lack-642

ing a universal solution. Conflicting information643

can stem from misinformation, outdated facts, or644

partially correct data (Uscinski and Butler, 2013;645

Guo et al., 2022). Existing approaches often rely646

on simple prior assumptions (Shi et al., 2023b). A647

more nuanced approach is desired, considering the648

query’s nature, the type of conflict, and user expec-649

tations (Floridi, 2023), e.g., subjective or debatable650

questions inherently lead to conflicts due to multi-651

ple valid answers (Bjerva et al., 2020; Wan et al.,652

2024). Future solutions should acknowledge the653

diverse causes, manifestations, and potential user654

expectations, requiring collaboration between NLP655

and social science researchers for comprehensive656

investigation and effective solutions.657

Evaluation on Downstream Tasks. While re-658

search on knowledge conflicts primarily focuses659

on evaluating their performance on QA datasets,660

the broader implications of these conflicts remain661

underexplored. Their impact on downstream tasks,662

particularly those demanding high accuracy and663

consistency, such as legal document analysis (Shui664

et al., 2023; Martin et al., 2024), medical diag-665

nosis (Zhou et al., 2023b; Thirunavukarasu et al.,666

2023), financial analysis (Zhang et al., 2023a; Li667

et al., 2023e), and educational tools (Caines et al.,668

2023; Milano et al., 2023), is crucial. Unresolved669

knowledge conflicts could severely hinder the util-670

ity of these models in such applications.671

Interplay among the Conflicts. Current research672

primarily focuses on individual conflict types or673

a combined study of inter-context and context-674

memory conflicts. However, the interplay between675

intra-memory conflict and other types of conflicts676

remains unexplored. Notably, several studies have677

proposed the existence of knowledge circuits in678

LLMs (Chughtai et al., 2024; Huang et al., 2023),679

which are closely related to intra-memory con-680

flict. Understanding this interaction is crucial for681

comprehending the relationship between internal682

knowledge inconsistency and model behavior in683

response to context. Furthermore, exploring the684

synergistic effects of various conflict types could685

reveal underlying mechanisms of knowledge repre-686

sentation and processing in LLMs is vital.687

Explainability. While research has focused on ana-688

lyzing LLMs’ outputs when faced with knowledge689

conflicts, the internal mechanisms driving these de-690

cisions remain underexplored. Studies examining 691

model confidence through logits (Xu et al., 2023; 692

Jin et al., 2024a; Wang et al., 2024) offer some in- 693

sights, but a deeper understanding of how specific 694

attention heads or neuron activations contribute to 695

conflict resolution is needed. Jin et al. (2024b) 696

made progress by investigating the interpretability 697

of LLMs through information flow analysis, identi- 698

fying memory and context heads with opposing ef- 699

fects in later layers. However, further microscopic 700

examinations are required to fully comprehend how 701

LLMs navigate conflicting information. 702

Multilinguality. Current research has primarily 703

focused on English. Future research should expand 704

to address conflicts in non-English texts, lever- 705

aging multilingual LLMs like GPT-4 (OpenAI, 706

2024) and GLM (Zeng et al., 2022) to account 707

for language-specific characteristics. Additionally, 708

inter-context conflict, involving documents in dif- 709

ferent languages, requires solutions like translation 710

systems (Dementieva and Panchenko, 2021), lever- 711

aging high-resource language evidence for low- 712

resource languages (Xue et al., 2024), or employing 713

knowledge distillation techniques. 714

Multimodality. While current research mainly fo- 715

cuses on text modality, potential conflicts arises as 716

LLMs evolve to process information across vari- 717

ous formats, including text, images (Alayrac et al., 718

2022; Li et al., 2023b), video (Ju et al., 2022; Zhang 719

et al., 2023b), and audio (Borsos et al., 2023; Wu 720

et al., 2023). For example, an audio clip might 721

contradict an accompanying document. Future re- 722

search should focus on enhancing models’ ability 723

to navigate these complex multimodal dynamics, 724

developing targeted datasets for training and evalu- 725

ation, and exploring user perception of multimodal 726

conflicts to improve LLMs. 727

6 Conclusion 728

This paper delves into the multifaceted issue of 729

knowledge conflicts, analyzing the categorization, 730

causes, behavior, and mitigation. We demonstrate 731

that the type of conflict significantly influences a 732

model’s behavior and that these conflicts exhibit 733

complex interplays. Existing solutions, often fo- 734

cused on artificial scenarios and relying on priors, 735

lack the granularity and breadth needed to address 736

the increasing complexity of knowledge conflicts 737

in real-world applications. As retrieval-augmented 738

LLMs become more prevalent, comprehensive re- 739

search on knowledge conflicts is crucial. 740
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Limitations741

Considering the rapid expansion of research in the742

field of knowledge conflict and the abundance of743

scholarly literature, it is possible that we might744

have missed some of the most recent or less rele-745

vant findings. Nevertheless, we have ensured the746

inclusion of all essential materials in our survey.747

Ethics Statement748

We mainly searched for papers published after 2021749

using key terms including “knowledge conflict”,750

“knowledge inconsistency”, “knowledge gap”, inter751

alia, on Google Scholar and the ACL Anthology.752

After initially identifying these papers, the authors753

classified them through reading and continued to754

track related but overlooked papers using their ci-755

tations. We also used Google Scholar to follow up756

on the latest papers citing these to avoid omissions.757

For the quantitative analysis and comparison sec-758

tion (§ F), we did not conduct computational exper-759

iments but simply organized the result reported in760

other literature as is.761
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A Taxonomy of Knowledge Conflicts 1738

Figure 3 outlines the taxonomy we used in organize 1739

this survey. To start with, we classify knowledge 1740

conflicts into three categories based on the sources: 1741

context-memory conflict (§ 2), inter-context con- 1742

flict (§ 3), and intra-memory conflict (§ 4). Within 1743

each type of conflict, we sequentially present its 1744

causes, analysis of LLMs’ behaviors, and possible 1745

mitigation solutions. Each specific issue is further 1746

categorized according to its internal characteris- 1747

tics (e.g., solutions are categorized based on the 1748

characteristics of the strategies engaged). 1749

B Datasets of Knowledge Conflicts 1750

We list notable datasets employed in investigat- 1751

ing the three types of knowledge conflict in Ta- 1752

ble 1. It is worth noting that for all context-memory 1753

datasets, extra attention should be paid to their ap- 1754

plicability. This is because these datasets always 1755

need to be based on model-specific memories as a 1756

baseline when constructing conflicting knowledge. 1757

Obviously, this parameterized knowledge varies 1758

from model to model, greatly reducing the reusabil- 1759

ity of these datasets. Furthermore, the value of 1760

these datasets is further diminished by the exis- 1761

tence of model variants from different knowledge 1762

cutoff date (e.g., OpenAI’s GPT-4 family of mod- 1763

els). The parameterized knowledge varies from 1764

variant to variant due to different cutoff date. 1765

C Detailed Solutions for Context-Memory 1766

Conflict 1767

C.1 Faithful to Context 1768

Fine-tuning. Li et al. (2022a) argue that an LLM 1769

should prioritize context for task-relevant infor- 1770

mation and rely on internal knowledge when the 1771

context is unrelated. They name the two prop- 1772

erties controllability and robustness. They intro- 1773

duce Knowledge Aware FineTuning (KAFT) to 1774

strengthen the two properties by incorporating 1775

counterfactual and irrelevant contexts to standard 1776

training datasets. Gekhman et al. (2023) introduce 1777

TrueTeacher, which focuses on improving factual 1778

consistency in summarization by annotating model- 1779

generated summaries with LLMs. This approach 1780

helps in maintaining faithfulness to the context of 1781

the original documents, ensuring that generated 1782

summaries remain accurate without being misled 1783

by irrelevant or incorrect details. DIAL (Xue et al., 1784

2023) focuses on improving factual consistency in 1785
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Context-Memory
Conflict (§ 2)

Causes
(§ 2.1)

Temporal Misalignment
Lazaridou et al. (2021), Luu et al. (2021), Jang et al. (2021),
Jang et al. (2022), Liska et al. (2022), Dhingra et al. (2022),
Kasai et al. (2022), Margatina et al. (2023), Cheang et al. (2023)

Misinformation Pollution Du et al. (2022b), Pan et al. (2023a), Pan et al. (2023b),
Xu et al. (2023), Weller et al. (2022)

Analysis
(§ 2.2)

Open-domain QA Longpre et al. (2021), Chen et al. (2022), Tan et al. (2024)

General Xie et al. (2023), Wang et al. (2023e), Ying et al. (2023),
Qian et al. (2023), Xu et al. (2023), Jin et al. (2024a)

Solution
(§ 2.3)

Faithful to Context

Fine-tuning
KAFT (Li et al., 2022a) ,
TrueTeacher (Gekhman et al., 2023) ,
K-DIAL (Xue et al., 2023)

Prompting OPIN (Zhou et al., 2023d)

Decoding CAD (Shi et al., 2023a) ,

Knowledge Plug-in CuQA (Lee et al., 2022a)

Pre-training ICLM (Shi et al., 2023b)

Predict Fact Validity Zhang and Choi (2023)

Discriminating Misinformation
(Faithful to Memory)

Prompting Pan et al. (2023b) , Xu et al. (2023)

Query Augmentation Weller et al. (2022)

Training Discriminator Hong et al. (2023)

Disentangling Sources DisentQA (Neeman et al., 2022) , Wang et al. (2023e)

Improving Factuality COMBO (Zhang et al., 2023e) , CD2 (Jin et al., 2024a)

Inter-Context
Conflict (§ 3)

Causes
(§ 3.1)

Misinformation Chen and Shu (2023b), Vergho et al. (2024), Chen et al. (2023)

Outdated Information Zhang and Choi (2021), Kasai et al. (2022)

Analysis
(§ 3.2)

Performance Impact Chen et al. (2022), Xie et al. (2023), Pan et al. (2023a),
Zhang and Choi (2021), Du et al. (2022b), Jin et al. (2024a)

Detection Ability Li et al. (2023a), Zheng et al. (2022), Wan et al. (2024),

Solution
(§ 3.3)

Eliminating Conflict

Specialized Models PCNN (Hsu et al., 2021) , Pielka et al. (2022) ,
Wu et al. (2022)

General Models Leite et al. (2023) , Cheung and Lam (2023) ,
Chern et al. (2023)

Improving Robustness
Training Approach Hong et al. (2023)

Query Augmentation CAR (Weller et al., 2022)

Intra-Memory
Conflict (§ 4)

Causes
(§ 4.1)

Bias in Training Corpora Wang et al. (2023b), Xu et al. (2022),

Decoding Strategy Lee et al. (2022b), Huang et al. (2023)

Knowledge Editing Yao et al. (2023), Li et al. (2023f)

Analysis
(§ 4.2)

Self-Inconsistency
Dong et al. (2023), Zhao et al. (2023b), Manakul et al. (2023),
Dhuliawala et al. (2023), Zhang et al. (2023c), Mündler et al. (2023),
Agrawal et al. (2023), Hase et al. (2023)

Latent Representation
of Knowledge Chuang et al. (2023), Li et al. (2023c)

Cross-lingual Inconsistency Wang et al. (2023c), Qi et al. (2023)

Solution
(§ 4.3)

Improving Consistency

Fine-tuning Elazar et al. (2021) , Li et al. (2023d)

Plug-in CRM (Jang and Lukasiewicz, 2023)

Output Ensemble ConCoRD (Mitchell et al., 2022) ,
Zhao et al. (2023b)

Improving Factuality ITI (Li et al., 2023c) , DoLa (Chuang et al., 2023)

Figure 3: Taxonomy of knowledge conflicts. We mainly list works in the era of large language models. denotes
pre-hoc solution and denotes post-hoc solution.

dialogue systems via direct knowledge enhance-1786

ment and reinforcement learning for factual con-1787

sistency (RLFC) for aligning responses accurately1788

with provided factual knowledge.1789

Prompting. Zhou et al. (2023d) explores en-1790

hancing LLMs’ adherence to context through spe-1791

cialized prompting strategies, specifically opinion-1792

based prompts and counterfactual demonstrations.1793

These techniques are shown to significantly im-1794

prove LLMs’ performance in context-sensitive 1795

tasks by ensuring they remain faithful to relevant 1796

context, without additional training. 1797

Decoding. Shi et al. (2023a) introduce Context- 1798

aware Decoding (CAD) to reduce hallucinations 1799

by amplifying the difference in output probabilities 1800

with and without context, which is similar to the 1801

concept of contrastive decoding (Li et al., 2022c). 1802

CAD enhances faithfulness in LLMs by effectively 1803
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Dataset Approach1 Base2 Size Conflict

Xie et al. (2023) Gen PopQA (2023), STRATEGYQA ((Geva et al., 2021)) 20,091 CM3

KC (2023e) Sub N/A (LLM generated) 9,803 CM
KRE (2023) Gen MuSiQue (2022), SQuAD2.0 (2018), ECQA (2021), e-CARE (2022a) 11,684 CM
Farm (2023) Gen BoolQ (2019), NQ (2019), TruthfulQA (2022) 1,952 CM

Tan et al. (2024) Gen NQ (2019), TriviaQA (2017) 14,923 CM
WikiContradiction (2021) Hum Wikipedia 2,210 IC

ClaimDiff (2022) Hum N/A 2,941 IC
Pan et al. (2023a) Gen,Sub SQuAD v1.1 (2016) 52,189 IC

CONTRADOC (2023a) Gen CNN-DailyMail (2015), NarrativeQA (2018), WikiText (2017) 449 IC
CONFLICTINGQA (2024) Gen N/A 238 IC

PARAREL (2021) Hum T-REx (2018) 328 IM
1. Approach refers to how the conflicts are crafted, including entity-level substitution (Sub), generative approaches
employing an LLM (Gen), and human annotation (Hum).
2. Base refers to the base dataset(s) that serve as the foundation for generating conflicts, if applicable.
3. For CM datasets, conflicts are derived from a certain model’s parametric knowledge, which can vary between
models. Therefore, one should select a subset of the dataset that aligns with the tested model’s knowledge when using
CM datasets.

Table 1: Datasets on evaluating a large language model’s behavior when encountering knowledge conflicts. CM:
context-memory conflict, IC: inter-context conflict, IM: intra-memory conflict.

prioritizing relevant context over the model’s prior1804

knowledge, especially in tasks with conflicting in-1805

formation.1806

Knowledge Plug-in. Lee et al. (2022a) propose1807

Continuously-updated QA (CuQA) for improving1808

LMs’ ability to integrate new knowledge. Their1809

approach uses plug-and-play modules to store up-1810

dated knowledge, ensuring the original model re-1811

mains unaffected. Unlike traditional continue pre-1812

training or fine-tuning approaches, CuQA can solve1813

knowledge conflicts.1814

Pre-training. ICLM (Shi et al., 2023b) is a new1815

pre-training method that extends LLMs’ ability to1816

handle long and varied contexts across multiple1817

documents. This approach could potentially aid in1818

resolving knowledge conflicts by enabling models1819

to synthesize information from broader contexts,1820

thus improving their understanding and application1821

of relevant knowledge.1822

C.2 Discriminating Misinformation (Faithful1823

to Memory)1824

Prompting. To address misinformation pollution,1825

Pan et al. (2023b) propose defense strategies such1826

as misinformation detection and vigilant prompt-1827

ing, aiming to enhance the model’s ability to re-1828

main faithful to factual, parametric information1829

amidst potential misinformation. Similarly, Xu1830

et al. (2023) utilize a system prompt to remind the1831

LLM to be cautious about potential misinforma-1832

tion and to verify its memorized knowledge before1833

responding. This approach aims to enhance the1834

LLM’s ability to maintain faithfulness.1835

Query Augmentation. Weller et al. (2022) lever- 1836

age the redundancy of information in large corpora 1837

to defend misinformation pollution. Their method 1838

involves query augmentation to find a diverse set 1839

of less likely poisoned passages, coupled with a 1840

confidence method named Confidence from An- 1841

swer Redundancy (CAR), which compares the pre- 1842

dicted answer’s consistency across retrieved con- 1843

texts. This strategy mitigates knowledge conflicts 1844

by ensuring the model’s faithfulness through the 1845

cross-verification of answers in multiple sources. 1846

Training Discriminator. Hong et al. (2023) fine- 1847

tune a smaller LM as a discriminator and com- 1848

bine prompting techniques to develop the model’s 1849

ability to discriminate between reliable and unreli- 1850

able information, helping the model remain faithful 1851

when confronted with misleading context. 1852

C.3 Disentangling Sources 1853

DisentQA (Neeman et al., 2022) trains a model 1854

that predicts two types of answers for a given ques- 1855

tion: one based on contextual knowledge and one 1856

on parametric knowledge. Wang et al. (2023e) in- 1857

troduce a method to improve LLMs’ handling of 1858

knowledge conflicts. Their approach is a three-step 1859

process designed to help LLMs detect conflicts, 1860

accurately identify the conflicting segments, and 1861

generate distinct, informed responses based on the 1862

conflicting data, aiming for more precise and nu- 1863

anced model outputs. 1864
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C.4 Improving Factuality1865

Zhang et al. (2023e) propose COMBO, a frame-1866

work that pairs compatible generated and retrieved1867

passages to resolve discrepancies. It uses discrim-1868

inators trained on silver labels to assess passage1869

compatibility, improving ODQA performance by1870

leveraging both LLM-generated (parametric) and1871

external retrieved knowledge. Jin et al. (2024a)1872

introduce a contrastive-decoding-based algorithm,1873

namely CD2, which maximizes the difference be-1874

tween various logits under knowledge conflicts and1875

calibrates the model’s confidence in the truthful1876

answer.1877

D Detailed Solutions for Inter-Context1878

Conflict1879

D.1 Eliminating Conflict1880

Specialized Models. Hsu et al. (2021) develop1881

a model named Pairwise Contradiction Neural1882

Network (PCNN), leveraging fine-tuned Sentence-1883

BERT embeddings to calculate contradiction proba-1884

bilities of articles. Pielka et al. (2022) suggest incor-1885

porating linguistic knowledge into the learning pro-1886

cess based on the discovery that XLM-RoBERTa1887

struggles to effectively grasp the syntactic and se-1888

mantic features that are vital for accurate contradic-1889

tion detection. Wu et al. (2022) propose an innova-1890

tive approach that integrates topological represen-1891

tations of text into language models to enhance the1892

contradiction detection ability and evaluated their1893

methods on the MultiNLI dataset (Williams et al.,1894

2018).1895

General Models. Chern et al. (2023) propose a1896

fact-checking framework that integrates LLMs with1897

various tools, including Google Search, Google1898

Scholar, code interpreters, and Python, for detect-1899

ing factual errors in texts. Leite et al. (2023) em-1900

ploy LLMs to generate weak labels associated with1901

predefined credibility signals for the input text and1902

aggregate these labels through weak supervision1903

techniques to make predictions regarding the verac-1904

ity of the input.1905

D.2 Improving Robustness1906

Training Approach. Hong et al. (2023) present a1907

novel fine-tuning method that involves training a1908

discriminator and a decoder simultaneously using a1909

shared encoder. Additionally, the authors introduce1910

two other strategies to improve the robustness of1911

the model including prompting GPT-3 to identify1912

perturbed documents before generating responses1913

and integrating the discriminator’s output into the 1914

prompt for GPT-3. Their experimental results in- 1915

dicate that the fine-tuning method yields the most 1916

promising results. 1917

Query Augmentation. Weller et al. (2022) ex- 1918

plore a query augmentation technique that prompts 1919

GPT-3 to formulate new questions derived from 1920

the original inquiry. They then assess the confi- 1921

dence for each question’s answer by referencing 1922

the corresponding passages retrieved. Based on the 1923

confidence, they decide whether to rely on the orig- 1924

inal question’s prediction or aggregate predictions 1925

from the augmented questions with high confidence 1926

scores. 1927

E Detailed Solutions for Intra-Memory 1928

Conflict 1929

E.1 Improving Consistency 1930

Fine-tuning. Elazar et al. (2021) propose a consis- 1931

tency loss function and train the language model 1932

with the combination of the consistency loss and 1933

standard MLM loss. Li et al. (2023d) utilize one 1934

language model in dual capacities: as a generator to 1935

produce responses and as a validator to evaluate the 1936

accuracy of these responses. The process involves 1937

querying the generator for a response, which is sub- 1938

sequently assessed by the validator for accuracy. 1939

Only those pairs of responses deemed consistent 1940

are retained. This subset of consistent pairs is then 1941

used to fine-tune the model, aiming to increase the 1942

generation likelihood of consistent response pairs. 1943

Plug-in. Jang and Lukasiewicz (2023) leverage 1944

the technique of intermediate training, utilizing 1945

word-definition pairs from dictionaries to retrain 1946

language models and improve their comprehension 1947

of symbolic meanings. Subsequently, they propose 1948

an efficient parameter integration approach, which 1949

amalgamates these enhanced parameters with those 1950

of existing language models. This method aims to 1951

rectify the models’ inconsistent behavior by bol- 1952

stering their capacity to understand meanings. 1953

Output Ensemble. Mitchell et al. (2022) propose 1954

a method to mitigate the inconsistency of language 1955

models by leveraging a two-model architecture, in- 1956

volving the utilization of a base model responsible 1957

for generating a set of potential answers, followed 1958

by a relation model that evaluates the logical co- 1959

herence among these answers. The final answer is 1960

selected by considering both the base model’s and 1961

the relation model’s beliefs. Zhao et al. (2023b) in- 1962

troduce a method to detect whether a question may 1963
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cause inconsistency for LLMs. Specifically, they1964

first use LLMs to rephrase the original question and1965

obtain corresponding answers. They then cluster1966

these answers and examine the divergence. The1967

detection is determined based on the divergence1968

level.1969

E.2 Improving Factuality1970

Chuang et al. (2023) propose a novel contrastive1971

decoding approach named DoLa. Specifically, the1972

authors develop a dynamic layer selection strategy,1973

choosing the appropriate premature layers and ma-1974

ture layers. The next word’s output probability is1975

then determined by computing the difference in log1976

probabilities of the premature layers and the mature1977

layers. Li et al. (2023c) devise a similar method1978

named ITI. They first identify a sparse set of atten-1979

tion heads that exhibit high linear probing accuracy1980

for truthfulness, as measured by TruthfulQA (Lin1981

et al., 2022). During the inference phase, ITI1982

shifts activations along the truth-correlated direc-1983

tion, which is obtained through knowledge probing.1984

This intervention is repeated autoregressively for1985

every token during completion. Both DoLa and ITI1986

address the inconsistency of knowledge across the1987

model’s different layers to reduce factual errors.1988

F Quantitative Analysis and Comparison1989

In the context of a survey paper, while it is benefi-1990

cial to include quantitative results and analyses con-1991

cerning the impact of knowledge conflicts across1992

various types of conflicts and the performance com-1993

parison of different mitigation strategies, it is not a1994

strict requirement. We acknowledge the complex-1995

ity and impracticality involved in conducting such1996

quantitative experiments, particularly due to the use1997

of disparate datasets in behavioral analyses, as well1998

as the variance in the inherent knowledge of LLMs1999

across different knowledge cut-off snapshots, as2000

detailed in § B.2001

Moreover, establishing a “fair” comparison2002

within the mitigation strategies segment poses its2003

own set of challenges, given the diversity in objec-2004

tives influenced by various assumed priors, such2005

as the perceived accuracy of context or inherent2006

knowledge, as discussed in the main text. De-2007

spite these intricacies, we opt to present quantita-2008

tive results by compiling existing evaluations from2009

a range of papers. It is imperative, however, to2010

approach this analysis with caution, recognizing2011

that original authors may have employed different2012

datasets, LLMs variants, or even pursued contrast- 2013

ing objectives. 2014

F.1 Quantitative Results on the Impact of 2015

Knowledge Conflicts 2016

The comparison of quantitative results on the im- 2017

pact of the three types of knowledge conflicts is 2018

shown in Table 2. We pick the results of represen- 2019

tative behavior analysis literature for comparison. 2020

F.2 Quantitative Results on the Effectiveness 2021

of Mitigation Strategies 2022

The effectiveness of various mitigation strategies 2023

is quantitatively compared in Table 3. It is impor- 2024

tant to note that our analysis is limited to works 2025

addressing three predominant types of mitigating 2026

objectives within the context of memory conflicts. 2027

This selection is deliberate, as other types of miti- 2028

gating objectives in different conflict categories do 2029

not yet have a substantial body of work that would 2030

allow for a meaningful cross-method comparison. 2031
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Reference Model Dataset Quantitative Results
Context-memory conflict

Pan et al. (2023b) ChatGPT NQ-1500 and
CovidNews

Misinformation in the context can lead to a
significant degradation (up to 87%) in the

performance.

Xie et al. (2023) ChatGPT, GPT-4,
PaLM2, Qwen,
Llama2, and

Vicuna

POPQA and
STRATEGYQA

For entity substitution-based counter-memory, only
ChatGPT, GPT-4, and PaLM2 over 60%

probability of choosing parametric memory. For
generation-based counter-memory, all models have

more than 80% probability of choosing context
knowledge.

Xu et al. (2023) ChatGPT, GPT-4,
Llama2, and

Vicuna

Farm, BoolQ,
TruthfulQA and NQ

In multiple rounds of dialogue, as the number of
counter-memory context increases, the cumulative
proportion of belief alteration of LLMs spans from

20.7% to 78.2%

Inter-context conflict

Jin et al. (2024a) ChatGPT,
Llama2,

Baichuan2,
FLAN-UL2 and

FLAN-T5

NQ, TriviaQA, PopQA,
and MuSiQue

When faced with conflicting evidence, ChatGPT’s
recall declined the least, but more than 10%.

Chen et al. (2023) ChatGPT,
ChatGLM,

Vicuna, Qwen,
and BELLE

RGB As the noise in evidence increases, the
performance of models will gradually decrease.

When the noise rate exceeds 0.8, the performance
of all models decreases by more than 20%.

Li et al. (2023a) GPT-4, ChatGPT,
PaLM2, and

Llama2

CONTRADOC Faced with self-contradictory documents, gpt4 has
a more than 70% probability of determining the

occurrence of a contradiction, while other models
are less than 50%.

Intra-memory conflict

Mündler et al.
(2023)

GPT-4, ChatGPT,
Llama2, and

Vicuna

MainTestSet LLMs create contradictory content, with a
probability of between 15.7% and 22.9%. More

powerful models create fewer contradictory results.

Zhao et al.
(2023b)

ChatGPT, GPT-4,
Vicuna, and

Llama2

FaVIQ, ComQA,
GSM-8K, SVAMP,

ARCChallenge, and
CommonsenseQA

The findings of their research reveal that even
GPT-4 can exhibit an inconsistency rate of 32% in

FaVIQ.

Table 2: Comparison of quantitative results on the impact of various types of knowledge conflicts.
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Reference Model Dataset Quantitative Results
Faithful to context

Shi et al. (2023a) Llama, OPT,
GPT-Neo, and

FLAN

NQ-SWAP, MemoTrap,
and NQ

Their method improves GPT-Neo 20B by 54.4%
on Memotrap and by 128% on NQ-SWAP where

LLMs need to adhere to the given context.

Zhou et al.
(2023d)

ChatGPT and
Llama2

MRC and Re-TACRED Compared to the zero-shot base prompts, their
prompting method leads to a reduction of 32.2%
for maintaining parametric knowledge for MRC

and a 10.9% reduction for Re-TACRED on
GPT-3.5. Similarly, on Llama2, there is a 39.4%
reduction for MRC and a 57.3% reduction for

Re-TACRED.

Discriminating misinformation

Hong et al.
(2023)

ChatGPT and FiD NQ and TQA The authors train a discriminator with about 80%
F1 score and use it to improve models performance

above 5%.

Pan et al. (2023b) ChatGPT NQ-1500 and
CovidNews

The author’s mitigation method improves the
accuracy by more than 10%.

Disentangling sources

Wang et al.
(2023e)

ChatGPT KNOWLEDGE
CONFLICT

The authors’ method achieved over 80% F1 score
on contextual knowledge conflict detection.

Table 3: Comparison of quantitative results on the effectiveness of various mitigation strategies w.r.t. their objectives.
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