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ABSTRACT

Large Language Models (LLMs) have demonstrated exceptional performance
across diverse tasks, yet their training remains highly resource-intensive and sus-
ceptible to critical challenges such as training instability. A predominant source of
this instability stems from gradient and loss spikes, which disrupt the learning pro-
cess, often leading to costly interventions like checkpoint recovery and experiment
restarts, further amplifying inefficiencies. This paper presents a comprehensive
investigation into gradient spikes observed during LLM training, revealing their
prevalence across multiple architectures and datasets. Our analysis shows that
these spikes can be up to 1000× larger than typical gradients, substantially deteri-
orating model performance. To address this issue, we propose Spike-Aware Adam
with Momentum Reset (SPAM), a novel optimizer designed to counteract gradi-
ent spikes through momentum reset and spike-aware gradient clipping. Extensive
experiments, including both pre-training and fine-tuning, demonstrate that SPAM
consistently surpasses Adam and its variants across a range of model scales. Ad-
ditionally, SPAM facilitates memory-efficient training by enabling sparse momen-
tum, where only a subset of momentum terms are maintained and updated. When
operating under memory constraints, SPAM outperforms state-of-the-art memory-
efficient optimizers such as GaLore and Adam-Mini. Our work underscores the
importance of mitigating gradient spikes in LLM training and introduces an ef-
fective optimization strategy that enhances both training stability and resource
efficiency at scale.

1 INTRODUCTION

Large Language Models (LLMs) have become fundamental in advancing state-of-the-art AI sys-
tems. Scaling LLMs, such as GPT-3 (Brown, 2020) and LLaMA (Touvron et al., 2023), has show-
cased unprecedented capabilities. However, training these large-scale models is fraught with chal-
lenges, particularly training instability. A major factor contributing to this instability is the occur-
rence of gradient and loss spikes during training, which disrupt the learning process at unpredictable
intervals (Chowdhery et al., 2023; Zhang et al., 2022; Le Scao et al., 2023).

While architectural innovations have been proposed to mitigate these issues (Nguyen & Salazar,
2019; Shoeybi et al., 2019; Zeng et al., 2022; Ding et al., 2021; Wang et al., 2024; Dettmers et al.,
2021; Scao et al., 2022; Takase et al., 2023), none can completely prevent the occurrence of spikes.
In practice, the most widely adopted solution is to manually intervene by restarting training from a
previous checkpoint and skipping data affected by the spike (Chowdhery et al., 2023). This method
is resource-intensive, requiring frequent checkpoint saves, manual monitoring, and repeated experi-
ment runs - all inefficient and undesirable.

Moreover, the sheer scale of LLMs necessitates vast computational resources. For example, training
LLaMA required over 2048 A100-80GB GPUs (Touvron et al., 2023), posing significant environ-
mental and financial costs (Rillig et al., 2023; Patterson et al., 2021). These challenges highlight
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the need for more efficient training paradigms that reduce resource consumption without sacrificing
performance.
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Figure 1: Perplexity of LLaMA models on C4 trained with various optimizers.

In this paper, we approach the issue from an optimization perspective rather than an architectural
one. We first conduct an in-depth investigation of loss and gradient spikes during the training of
various LLM architectures, spanning models from 60M to 1B parameters. Furthermore, we in-
troduce Spike-Aware Adam with Momentum Reset (SPAM), an optimizer designed to counteract
the negative effects of gradient spikes. SPAM introduces two key innovations: (1) periodic reset
of the first and second moments to eliminate the harmful accumulation of spiked gradients, and
(2) identification and adaptive re-scaling of spiked gradients to manageable levels, preserving their
directional information while mitigating their magnitude. We validate SPAM through extensive ex-
periments, demonstrating its superior performance across various LLM sizes in both pre-training
and fine-tuning tasks.

Furthermore, momentum reset enables the development of sparse momentum, where only a selected
subset of momentum terms is computed and stored during training, drastically reducing memory
costs. Our results show that SPAM surpasses leading memory-efficient optimizers such as GaLore
(Zhao et al., 2024) and Adam-Mini (Zhang et al., 2024a) with good margins, even under memory
constraints.

2 GRADIENT SPIKES

In this section, we formally define gradient spikes and then present the intriguing findings from our
investigation into the training loss and gradient dynamics during LLM training.

Gradient spikes refer to a phenomenon that occurs during training where the magnitude of certain
gradients significantly exceeds their historical values. To more precisely identify and analyze in-
stances of gradient spikes, we introduce the Gradient Spike Score as a measurement of the deviation
of a gradient’s magnitude from its typical behavior over time. Please refer to the Appendix P for
the mathematical definition. By quantifying this relative change, we can monitor the dynamics of
gradients during training.

2.1 PRESENCE OF GRADIENT SPIKES DURING LLM TRAINING

Building upon the above concepts, we further explore the presence of gradient spikes during LLM
training. Specifically, we monitor the gradients of the entire model over the initial 1, 000 training
steps and identify gradient spikes using the condition GSS(gi) > 50. Our investigation encompasses
two widely adopted LLM architectures, LLaMA (Touvron et al., 2023)1 and Pythia (Biderman et al.,
2023), with model sizes varying from 60M to 1B parameters. Experiments were conducted on two
datasets: the well-known C4 dataset (Raffel et al., 2020) and a cleaner high-quality dataset, SlimPa-
jama (Soboleva et al., 2023). Please refer to Appendix D for more details. Our key observations can
be summarized as follows:

1We adopt the LLaMa models used in Lialin et al. (2023b); Zhao et al. (2024).
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① Loss bumps accompanying gradient spikes occur irregularly during LLM training. Al-
though we do not observe severe loss spikes that lead to catastrophic divergence (Takase et al.,
2023; Chowdhery et al., 2023), we do observe subtle loss bumps that happen quite frequently. For
instance, Figure 2-top illustrates the training loss of LLaMA-60M, 350M, and 1B models, where
several loss bumps can be seen during training, marked with red circles. We further investigate the
model’s gradients at these moments and observe that gradient spikes coincide with the loss bumps,
as demonstrated in Figure 2-bottom. While gradients remain small for most of the training, they
suddenly become extremely large when loss spikes occur.

② Gradient spikes are widely presented in different layers, across different architectures,
model sizes, and datasets. Overall, we observed many gradient spikes across all layer types, as
detailed in Figure 3-(4) and Appendix A & B, with LayerNorm layers, in particular, experiencing
an exceptionally high frequency of spikes. Figure 2 demonstrates that models of varying sizes, from
60M to 1B, all exhibit gradient spikes. To verify whether architecture is the root cause of these
spikes, we conducted experiments with Pythia-70M, which also suffers from numerous gradient
anomalies, as shown in Figure 3. Additionally, we found that gradient spikes occur even when using
cleaner, high-quality datasets such as SlimPajama, although the frequency of spikes is reduced with
this cleaner dataset.

③ Advanced spike mitigation approaches cannot completely eliminate gradient spikes. We
also evaluate whether previously proposed techniques for addressing spikes can eliminate gradi-
ent spikes. Specifically, we assess multiple approaches, including Scaled Initialization (Nguyen &
Salazar, 2019; Shoeybi et al., 2019), Embed LN (Dettmers et al., 2021), Scaled Embed (Takase
et al., 2023), and Embed Detach (Zeng et al., 2022). The results in Figure 4 show that while some
approaches perform better than others, they cannot completely eliminate gradient spikes. More
specifically, we find that Scaled Embed and Embed LN significantly reduce the number of gradient
spikes, while the other methods offer little to no improvement, consistent with the findings reported
in Takase et al. (2023).
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Figure 2: Training loss lumps and their corresponding gradient spikes. Gradient trajectories are
collected with LLaMa-60M, 350M, 1B models on C4 datasets. Gradient spikes are detected using
GSS(gi) > 50.

Figure 3: Spike gradients present across different architectures and datasets. (1) − (3): Plots
of 100 randomly selected spike gradients (using GSS(gi) > 50) of LLaMa-60M and Pythia-70M
on C4 and SlimPajama datasets. (4): Number of spiked gradients every 5 layers during the first 1K
steps in LLaMa-60M on C4.
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Figure 4: Advanced spike mitigation approaches can not completely eliminate gradient spikes.
Gradient trajectories are collected with LLaMa-60M on C4. The spike gradient is detected via
GSS(gi) > 50.

2.2 EFFECTS OF GRADIENT SPIKES ON LLM TRAINING
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Figure 5: Left: Perplexity of the final model after zeroing out spiked gradients using various
θ,GSS(gi) > θ. Experiments are conducted using LLaMa-60M on C4. Middle and Right: Impact
of spiked Gradients on the first and second Moments. Simulated gradients (gi ∼ N (µ, σ2) are used
to visualize the prolonged effects of gradient spikes on the first and second moments, with a large
spike noise introduced at the 30th step.

After identifying the presence of gradient spikes during training, a crucial question arises: are these
gradient spikes detrimental or, perhaps counterintuitively, beneficial to the training of LLMs? To
address this, we conducted a series of experiments as follows. Our findings confirm that gradient
spikes are indeed harmful to LLM training, exerting prolonged negative effects on both the first and
second moments, as discussed below.

Gradient spikes negatively impact LLM training. One direct way to assess the impact of gradient
spikes is by nullifying the spiked gradients during training and observing the final training perfor-
mance. We first detect spiked gradients using various thresholds θ and then set those gradients to
zero. Figure 5-Left reports the results of LLaMA-60M on C4. Surprisingly, zeroing out these spiked
gradients leads to improved model performance, evidenced by a reduction in perplexity. This obser-
vation clearly indicates that gradient spikes hinder effective training, and their removal is beneficial
to overall model performance.

Gradient spikes have prolonged detrimental effects on the first and second moments. Due to the
exponential averaging of the momentum mechanism, the influence of a gradient spike decays slowly
over time. To demonstrate this, we conduct a simulation experiment using Adam. In this experiment,
we model the gradients as random variables drawn from a Gaussian distribution with mean µ = 0.1
and variance σ2 = 0.1, i.e., gi ∼ N (µ, σ2). We sample gradients and track their corresponding
moments over 200 steps, introducing a gradient spike at step 30 with a large magnitude of 10. As
shown in Figure 5-Middle and Right, the spike’s amplification persists, influencing both moments
across subsequent steps. For example, it takes approximately 50 steps for the first moment to recover
from the spike, while the second moment takes significantly longer, with the effect persisting beyond
200 steps. Two key factors plausibly contribute to this difference: (1) the second moment typically
employs a larger exponential decay rate than the first (0.999 vs. 0.9); and (2) the second moment
depends on the squared gradients, making it more sensitive to large spikes.
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3 SPIKE-AWARE ADAM WITH WITH MOMENTUM RESET (SPAM)

In this section, we introduce Spike-Aware Adam with Momentum Reset (SPAM). Unlike previous
solutions that introduce architectural innovations to mitigate the decremental effects of gradient
spikes (Nguyen & Salazar, 2019; Zeng et al., 2022; Dettmers et al., 2021; Takase et al., 2023), we
attempt to address this issue from an optimization perspective. Concretely, we integrate Momentum
Reset and Spike-Aware Clipping into Adam to deal with gradient spikes. In addition, we introduce
a memory-efficient version of SPAM, which incorporates Sparse Momentum, significantly reducing
the memory footprint during LLM training. Please refer to the appendix N for the detailed descrip-
tion of SPAM. Pseudocode of SPAM is in Algorithm 1.

Table 1: Comparison with various optimizers on pre-training
various sizes of LLaMA models on C4. Perplexity is reported.

Model Size 60M 130M 350M 1B
Adam-mini 34.10 24.85 19.05 16.07
Adam 34.09 24.91 18.77 16.13
Adam+Gradient-Clip-Value 33.65 24.72 18.52 15.77
Adam+Gradient-Clip-Norm 33.33 24.88 18.51 15.22
Adafactor 32.57 23.98 17.74 15.19
SPAM 30.46 23.36 17.42 14.66
Training Tokens 1.1B 2.2B 6.4B 11.6B

Table 2: Perplexity of Applying Advanced
Techniques on LLaMA-60M. Perplexity is re-
ported.

Optimizer Perplexity

Adam 34.09
Adam+Embed LN 33.61
Adam+Embed Detach 34.48
Adam+Scaled Embed 33.87
Adam+Scaled Initalization 34.29
SPAM 30.46

4 EXPERIMENTS

To demonstrate the efficacy of our proposed method, we conduct experiments on both pre-training
and supervised fine-tuning using various sizes of the LLaMA model on C4 dataset. Please refer to
the appendix O for the detailed experimental settings.

Standard Pre-training. We report the training curves of various LLaMA models on the C4 dataset
as well as the final perplexity in Figure 1 and Table 1, respectively. Overall, we observe that SPAM
consistently achieves superior performance. As a memory-efficient approach, Adam-mini performs
on par with Adam, consistent with the results reported in Zhang et al. (2024a). Commonly used
gradient clipping techniques such as Value Clip and Norm Clip improve performance over Adam,
with the latter achieving slightly better results. Adafactor further outperforms the aforementioned
approaches, demonstrating its effectiveness. SPAM consistently outperforms all baselines across
various LLaMA model sizes, highlighting the benefits of integrating momentum reset and spike-
aware clipping techniques. All spike mitigation approaches fall short of SPAM as shown in Table 2.
Additionally, Appendix E shows that SPAM can perform on par with or better than Adam in vision
tasks.

Table 3: Comparison with memory-efficient algorithms on pre-training various sizes of LLaMA models on C4
dataset. Validation perplexity is reported, along with a memory estimate of the total of parameters, optimizer
states based on BF16 format.The results of GaLore, Full-Rank, LoRA and ReLoRA are obtained from Zhao
et al. (2024).

60M 130M 350M 1B
Adam 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)

ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
LoRA 34.99 (0.26G) 33.92 (0.54G) 25.58 (1.08G) 19.21 (6.17G)
GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
SPAM 32.39 (0.24G) 23.98 (0.52G) 18.28 (1.22G) 15.60 (4.38G)

Training Tokens 1.1B 2.2B 6.4B 11.6B

Memory-efficient Pre-training. We evaluate SPAM by specifying d% such that its memory usage,
including both parameters and optimizer states, matches that of Galore. For Galore, LoRA, and
ReLoRA baselines, we set the ranks r = 128, 256, 256, 512 for the 60M, 130M, 350M, and 1B
models, respectively, following the setup in Galore (Zhao et al., 2024). The results in Table 3
show that SPAM consistently outperforms all the baselines by a good margin, demonstrating its
effectiveness as a memory-efficient optimizer.
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5 CONCLUSION

In this paper, we presented a comprehensive study of gradient and loss spikes in LLM training,
demonstrating their detrimental impact on training stability and performance across a variety of
architectures and datasets. To address this issue, we propose Spike-Aware Adam with Momentum
Reset (SPAM), a novel optimizer designed to counteract gradient spikes through momentum reset
and spike-aware gradient clipping.
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A STATISTICS ANALYSIS OF GRADIENT SPIKES ACROSS VARIOUS TYPES OF
LAYERS

It is important to examine whether gradient spikes exhibit a preference for certain layers. To do
so, we report the number of gradient spikes across various types of layers and the ratio of gradient
spikes to the number of parameters in five types of layers: Embedding Layer, Attention Layer, FFN
Layer, LayerNorm Layer, and LM Head Layer. The experiments were conducted with LLaMA-60M
on the C4 dataset, with gradient spikes detected over 1000 training steps. The detailed statistics are
provided in Table 4. We observe the following: ❶ The Embedding Layer exhibits the highest number
of gradient spikes, also it has the largest parameter count. ❷ The LayerNorm Layer, however,
experiences an exceptionally high frequency of spikes, even with the smallest number of parameters.

Table 4: Number and Ratio of Gradient Spikes in each layer style of LLaMA. #Spikes are collected
from 1000 training steps. Experiments are conducted with LLaMA-60M on C4.

Module Name #Total Spikes #Total Params #Total Spikes
#Total Params

Embed 11954001 16384000 0.729
Attention 86302 8388608 0.010
FFN 105415 16908288 0.006
LayerNorm 949302 8704 109.06
LM Head 13893 16384000 0.000848

B LOCATIONS OF LOSS BUMPS AND GRADIENT SPIKES

To further investigate the correlation between loss bumps and gradient spikes, we present the lo-
cations of gradient spikes associated with the loss bumps in Table 5. The results reveal two key
findings: ❶ Gradient spikes are presented in different layers associated with the loss bump; ❷ Gra-
dient spikes typically occur before loss bumps, indicating that these gradient spikes may trigger loss
bumps.

Table 5: Location of Spike Gradient at Each Layer for Different Tasks. The spike gradient is detected
via GSS(gi) > 50. The experiments are based on LLaMA-60M and Pythia-70M.

Model Training Step When Training Step When Spike Gradient Occurs in Each Layer
Loss Bump Occurs 0th 5th 10th 15th 20th 25th 30th 35th 40th 45th 50th 55th

LLaMA-60M (C4)

198 202 196 197 197 196 196 197 197 197 197 197
197 205 197 197 198 205 198 198 198
198 278 198 198 201 199

202 199 205

LLaMA-60M (SlimPajama)

207 206 206 206 205 206 206 206 206 206 392 206
328 207 206 207 207 210 207 393 207
394 207 209 209 394

209 328

Pythia-70M (C4)

358 571 573 357 357
578 577 577 571 358

578 577 574
578 576

577
578
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C PSEUDOCODE

Algorithm 1: SPAM
Input: A layer weight matrix w ∈ Rm×n, learning rate α, decay rates β1 = 0.9, β2 = 0.999, initial

parameters w0, randomly initialize mask M with d density for each layer, the first moment m, the
second moment v, threshold θ for GSS, momentum rerest interval ∆T , warmup scale total steps
N , small constant ϵ = 1× 10−6. T is total training steps.

Output: optimized parameters wT .
while t < T do

Get gt ∈ Rm×n ← −∇Wϕt(wt) ▷Generate Gradients
warmup scale = 1− CosineAnnealing(Mod(t,∆T ), N )
if Mod (t,∆T ) = 0 then

M← random.rand(θ.shape) < d ▷ Random initialize the binary mask
m← zeros like(θ[M]) ▷ reset the first moment to zero
v← zeros like(θ[M]) ▷ reset the second moment to zero

Spike M = gt[M] ∗ ∗2 > θ ∗ v ▷ Detect spiked gradients
if sum(Spike M) > 0 then

gt[M][Spike M] = sign(gn[M][Spike M]) ·
√

θ ∗ v[Spike M] ▷ Spike Gradients CLIP
mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g

2
t

m̂t =
mt

1−βt
1

v̂t =
vt

1−βt
2

wt = wt−1 − α ∗ warmup scale ∗ m̂t√
v̂t+ϵ

t=t+1
Return: optimized parameters wT

D ARCHITECTURE AND HYPERPARAMETERS

We introduce details of the LLaMA architecture and hyperparameters used for pre-training, follow-
ing Lialin et al. (2023a); Zhao et al. (2024). Table 6 shows the most hyperparameters of LLaMA
models across model sizes. We use a max sequence length of 256 for all models, with a batch size
of 512, with a batch size of 131K tokens. For all experiments, we adopt learning rate warmup of
1000 training steps, and use cosine annealing for the learning rate schedule, decaying to 10% of the
initial learning rate.

Table 6: Configurations of LLaMA models used in this paper. Data amount are specified in #tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3B
130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8B
1 B 2048 5461 24 32 89K 11.6B

For all methods across each model size (from 60M to 1B), we tune the learning rates from 1e− 4 to
1e−3 with an increasing step of 2×10−4 for pre-training tasks, and the best learning rate is selected
based on the validation perplexity. We find that the hyperparameters, Interval ∆T and warmup step
N , are insensitive to model size and remain stable with the same learning rate across different model
sizes. The detailed hyperparameter of SPAM on pre-training and fine-tuning are reported in Table 7
and Table 8.
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Table 7: Hyperparameters of SPAM for pre-training experiments in this paper.

Hyper-Parameters LLaMA-60M LLaMA-130M LLaMA-350M LLaMA-1B

Standard Pretraining

Learning rate 1e− 3 8e− 4 4e− 4 2e− 4
Interval ∆T 500 500 500 500
Threshold θ 5000 5000 5000 5000

Warmup steps N 150 150 150 150

Memory-Efficient Pretraining

Learning rate 4e− 3 4e− 3 2e− 3 5e− 4
Interval ∆T 500 500 500 1000
Threshold θ 5000 5000 5000 5000

Warmup steps N 150 150 150 300

Table 8: Hyperparameters of SPAM for fine-tuning experiments in this paper.

Hyper-Parameters LLaMA2-7B

Standard Fine-tuning

Learning rate 5e− 5
Interval ∆T 1000
Threshold θ 5000

Warmup steps N 300

Memory-Efficient Fine-tuning

Learning rate 1e− 4
Interval ∆T 250
Threshold θ 5000

Warmup steps N 5

E VISION TASKS

We further evaluate SPAM on vision task. Specifically, we conducted experiments on ImageNet-1K
using ConvNeXt-Tiny (Liu et al., 2022b) and ViT-Tiny (Touvron et al., 2021). We adopt the default
training recipe from the official code of ConvNeXT2 and train all models for 120 epochs. We set
∆T = 25K, N = 20 and θ = 5000 for SPAM. The results in Table 9 demonstrate that SPAM can
achieve on par or better performance than vanilla AdamW.

Table 9: SPAM performs on par or better than AdamW on vision tasks.

Optimizer Model Metric 25% steps 50% steps 75% steps 100% steps

AdamW ConNeXt-T Test Acc (↑) 68.15 74.00 78.83 80.89
SPAM ConNeXt-T Test Acc (↑) 68.36 73.63 78.85 81.04

AdamW ViT-Tiny Test Acc (↑) 48.09 56.93 65.06 69.71
SPAM ViT-Tiny Test Acc (↑) 47.34 56.47 65.57 69.98

2https://github.com/facebookresearch/ConvNeXt
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F MORE ABLATION STUDY OF SUBSET SELECTIOIN STRATEGIES

Key questions surrounding sparse momentum include how to effectively select parameter subset and
whether to retain momentum for weights that are sampled multiple times. To answer this questions,
we conduct comparative studies based on LLaMA-60M and C4 and the results are shown in Figure 6.
Figure 6-Left shows the performence of three subset selection strategies where we will reset all
moments after each momentum reset and keep gradients for all unselected parameters. Figure 6-
Middle shows the performence of three subset selection strategies where we will keep the overlapped
moments after each momentum reset and keep gradients for all unselected parameters. Figure 6-
Right shows the performence of three subset selection strategies where we will reset all the moments
after each momentum reset and drop gradients for all unselected parameters in each updating step.
We observe the following: ❶ Among the three subset selection strategies—Max weight magnitude-
based, Max gradient magnitude-based, and Random selection—the Random selection consistently
outperforms the other two approaches. ❷ Comparing Figure 6-Left and Figure 6-Right, we see
that resetting all moments after each momentum reset yields better performance than preserving
overlapping moments.
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Figure 6: Ablations for subset selection strategies. The experiments are conducted with LLaMA-
60M on C4.

G EXPERIMENTS ON TIME SERIES DATA

To showcase SPAM’s ability to mitigate gradient spikes across a broader range of applications,
we conducted additional experiments on time-series prediction tasks. In these experiments, we
intentionally introduced anomalous data with a 10% probability to simulate gradient anomalies.
Experiments are conducted with 10 repeated runs on Weather time series data3 using PatchTST (Nie
et al., 2023) model. The results are presented in Figure 7

The findings demonstrate that as the severity of anomalous data increases, SPAM’s performance
advantage over Adam becomes more pronounced, highlighting its effectiveness in mitigating the
adverse impact of gradient spikes.

H PROLONGED DETRIMENTAL EFFECTS OF GRADIENT SPIKES DURING
REAL TRAINING

We also measure the values of gradient, first moment, and second moment during the training of
LLaMA-60M on the C4 dataset. The results are now presented in Figure 8.

From the figure, we observe that during actual training, gradient spikes also have a significant and
prolonged detrimental impact on moments, especially on the second moment, providing further
evidence to support our claims.

3https://www.bgc-jena.mpg.de/wetter/
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Figure 7: Test Loss during Training Process on Weather Time-series Data. Anomalous data
is generated by adding Gaussian noise to 10% of randomly selected input values. Specifically, the
anomalies data are conducted with X = X + Gaussin(0,Severity ∗ Max(X)) where X is the
inputs.
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Figure 8: Gradient spikes have prolonged detrimental effects on the first and second moments.
Experiments are conducted on C4 dataset with LLaMA-60M.

I SENSITIVITY ANALYSIS OF HYPERPARAMETER θ ON LLM
ARCHITECTURES

We conducted experiments to evaluate the sensitivity of the gradient spike clipping threshold, θ,
across three widely used LLM architectures: LLaMA, Pythia, and OPT. These experiments were
performed on pre-training tasks using the C4 dataset. The final perplexity is reported in Table 10.

The results indicate that the gradient spike clipping threshold is not highly sensitive to the choice of
LLM architecture. SPAM consistently outperforms Adam across a wide range of θ. Furthermore,
the optimal range for θ lies between 1000 and 5000.

Table 10: Sensitivity Analysis of Hyperparameter θ on LLM architectures. Perplexity is reported.

Architectures θ = 500 θ = 1000 θ = 2500 θ = 5000 θ = 10000 Adam

LLaMA-60M 30.77 30.59 30.57 30.46 30.82 34.09
Pythia-70M 34.4 34.1 34.1 34.2 35.1 38.34
OPT-125M 28.7 28.4 28.5 28.6 29.0 32.20

J GSS VS. DISTRIBUTION BASED CLIPPING

We conducted an experiment using an outlier detection mechanism based on the assumption that
stochastic gradient distributions follow a Gaussian distribution, as suggested in (Simsekli et al.,
2019; Chaudhari & Soatto, 2018; Mandt et al., 2016):

Gbatch ∼ N (G, δ2I),

where Gbatch is the stochastic gradient, G represents the gradient over the entire dataset, and
δ2 is the variance. Since calculating G on-the-fly during training is computationally infeasible,
we approximate it using the moving average of Gbatch. The variance δ2 is estimated online as:
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δ2 = 1
N

∑N
n=1

(
G

(n)
batch −G(n)

)2

, where N is the total training steps. Gradients are then evaluated

element-wise, and any element G(n)
batch satisfying: |G(n)

batch − G(n)| > 3δ is identified as an outlier.
Such outlier elements are clipped to satisfy: |G(n)

batch −G(n)| = 3δ.

We conducted experiments using LLaMA-60M and LLaMA-130M to evaluate the performance of
this Gaussian-based Clipping and compare it with our proposed GSS-based clipping. The results are
reported in Table 11. As the table indicates, Gaussian-based clipping falls short of our GSS-based
clipping. One possible explanation is that stochastic gradient distributions are very complex and
Gaussian distribution can not reflect the true distribution.

Table 11: Comparison between SPAM with spike-aware clipping and Gaussian-based clipping.

Methods LLaMA-60M LLaMA-130M

SPAM w/GSS based clipping 30.46 23.36
SPAM w/ Gaussian based Clipping 30.83 25.93

K GSS BASED CLIPPING VS. NULLIFYING

We conducted experiments on LLaMA-60M and LLaMA-130M to compare the performance of
Spike-Aware Clipping and Nullifying Gradient Spikes. As shown in Table 12 and Table 13, SPAM
with Spike-Aware Clipping outperforms SPAM with Nullifying on both pre-training and fine-tuning
tasks, demonstrating the effectiveness of Spike-Aware Clipping.

Table 12: Comparison between SPAM w/ spike-aware clipping and SPAM w/ nullifying gradient spikes.

Methods LLaMA-60M LLaMA-130M
SPAM w/ Spike Aware Clipping 30.46 23.36
SPAM w/ Nullifying 30.86 23.62

Table 13: Comparison between SPAM w/ spike-aware clipping and SPAM w/ nullifying gradient spikes on
fine-tuning task. The experiments are based on a pre-trained OPT-1.3B model.

Methods WinoGrande COPA
SPAM w/ Spike Aware Clipping (d=100%) 59.4 79.0
SPAM w/ Spike Aware Clipping (d=0.25%) 58.3 75.0
SPAM w/ Nullifying(d=100%) 58.0 78.0
SPAM w/ Nullifying (d=0.25%) 57.4 75.0

L COMPUTATIONAL ANALYSIS

We measured the running time per iteration for both LLaMA-60M and LLaMA-130M. The results,
presented in Table 14, indicate that SPAM incurs a slightly higher computational overhead compared
to Adam, Adam-mini, and Adafactor. This overhead is primarily due to the gradient spike detection
operation and the gradient selection based on sparse masks. However, we believe that such a small
overhead is negligible compared to the overall pre-training time which can be dozens or hundreds
of hours.

M PRELINMINARY ANALYSIS WITH THEORY IMPLICATIONS

We hereby provide a very preliminary analysis to help probe why gradient spikes have a significant
impact on the regret bound of Adam-like algorithms. We strictly follow the setting and notations
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Table 14: Running Time per Iteration (second). The runtime is measured by the average of 100
iterations under one H100 GPU.

Method Time per Iteration (LLaMA-60M) Time per Iteration (LLaMA-130M)

Adam 0.3666 (s) 0.6397 (s)
Adam-mini 0.3614 (s) 0.6472 (s)
Adafactor 0.3778 (s) 0.6565 (s)
GaLore (rank=128) 0.3871 (s) 0.6702 (s)
SPAM(d=100%) 0.3814 (s) 0.6683 (s)
SPAM(d=25%) 0.3799 (s) 0.6658 (s)

used in Alacaoglu et al. (2020). Specifically, referring to Theorem 1 in the paper, the regret bound
consists of two main terms:

R(T ) ≤ D2
√
T

2α(1− β1)

d∑
i=1

v̂
1/2
T,i +

α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

g2t,i,

where γ =
β2
1

β2
. Gradient spikes directly affect these terms by increasing the magnitudes of the

gradients gt. In their Lemma 3, it is shown that the norm ∥mt∥2
v̂
−1/2
t

depends on the accumulated

gradients:

∥mt∥2v̂−1/2
t

≤ (1− β1)
2√

(1− β2)(1− γ)

d∑
i=1

t∑
j=1

βt−j
1 |gj,i|.

When gradient spikes occur, the values of gj,i become significantly larger for some j and i, which
in turn increases the bound on ∥mt∥2

v̂
−1/2
t

. This enlargement propagates through the analysis, par-

ticularly affecting the accumulation term
∑T

t=1 αt∥mt∥2
v̂
−1/2
t

in their Lemma 4, which is bounded

by:

T∑
t=1

αt∥mt∥2v̂−1/2
t

≤ (1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

g2t,i.

Here, gradient spikes increase
∑T

t=1 g
2
t,i significantly, especially in the coordinates where the spikes

occur, leading to a larger bound.

Finally, in the main regret bound (Equation (9) in the paper), these enlarged terms result in a
looser (larger) overall regret bound due to the presence of gradient spikes. The increased v̂

1/2
T,i and∑T

t=1 g
2
t,i directly contribute to the regret bound becoming less tight. This theoretical implication

highlights that while adaptive algorithms like AMSGRAD adjust learning rates based on gradient
history, they may perform worse in terms of regret when large gradient spikes are present due to the
increased cumulative squared gradients and decreased effective learning rate.

It is important to note that our goal is not to claim theoretical innovations, but rather to quantita-
tively assess how gradient spikes degrade Adam-like optimization, and that is only explored in a
very limited context. We would like to clarify the limitations of this analysis: (1) The analysis as-
sumes convexity, which may not apply in non-convex settings (but is often mitigated by assuming
Polyak-Lojasiewicz condition or so). (2) The assumption ∥gt∥∞ ≤ G, where G denotes the maxi-
mum allowable gradient bound, may be in conflict with the presence of gradient spikes if G is not
sufficiently large to capture them. (3) There is a significant dependence on G, and if G is set too high
to accommodate spikes, the constants in the regret bound grow disproportionately, potentially mak-
ing the bound meaningless. Nonetheless, we find that our analysis aligns well with our experimental
results, and we leave a more rigorous theoretical exploration for future work.
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N SPAM

Momentum Reset. To mitigate the detrimental effects of gradient spikes on training stability, we
introduce Momentum Reset. Momentum Reset involves periodically resetting the accumulated first
and second moments used by adaptive optimizers such as Adam. These optimizers rely on exponen-
tial moving averages of past gradients to inform parameter updates. However, when a gradient spike
occurs, it can significantly inflate these moments, causing the impact of the spike to persist over
many subsequent iterations. By resetting the momentum terms at regular intervals of ∆T training
iterations, we can prevent the lingering influence of anomalously large gradients on the optimizer’s
state. This practice ensures that parameter updates are based on recent, more normal gradients rather
than being skewed by gradient spikes. To mitigate potential instability caused by momentum reset,
we perform N steps (N = 150 by default) of cosine warmup following each reset operation.

Spike-Aware Clipping. To further mitigate gradient spikes during intervals, we introduce Spike-
Aware Clipping. While our initial experiments indicate that setting spiked gradients to zero can
enhance performance, this approach completely removes the learning signal for those parameters,
including valuable directional information critical to the optimization process. To address this, SPAM
identifies gradients that exceed a predefined threshold θ and scales them to a manageable value,
preserving their directional information while controlling their magnitude.

Detecting gradient spikes using GSS defined in Definition P.1 would require knowing and storing
all gradients in advance—a method that is impractical for LLM training due to memory constraints.
We adopt a more memory-efficient, on-the-fly approach by leveraging the components already cal-
culated by Adam. Formally, we detect gradient spikes by identifying gradients gi that meet the
following condition: G =

{
gi | g2

i

Vi
> θ

}
where Vi is the second moment of Adam and θ is the

threshold used for the approximate GSS =
g2
i

Vi
. Note that we only use GSS defined in Definition P.1

for the gradient spike analysis in Section 2. For real training, we employ the above approximation
version. Since Vi is essentially the moving average of g2i , this method efficiently identifies spikes
without incurring additional overhead or the need to store the entire gradient history. Once detected,
these spikes are clipped by scaling them to a manageable value. Specifically, for each spike gradient,
we apply the operation: gi = sign(gi) ·

√
θVi. This technique is particularly useful when combined

with Momentum Reset. By incorporating these strategies, SPAM effectively mitigates the negative
impact of gradient spikes, improving training stability and performance.

Note that unlike the Update Clipping used in Adafactor (Shazeer & Stern, 2018), which is applied
to the whole weight update matrix when its Root Mean Square is larger than 1, our spike-aware
clipping is directly applied to the spiked gradients gi whose magnitudes are significantly larger than
its

√
vi, e.g., > 50×.

Sparse Momentum. Momentum reset paves the way for the development of sparse momentum,
a technique designed to reduce memory usage and computation during the training of LLMs. In
traditional momentum-based optimizers, such as Adam, momentum is updated and stored for all
parameters, which can be memory-intensive for large-scale models. Sparse momentum offers a
more memory-efficient alternative by updating and maintaining only a dynamically selected subset
of moments at each iteration. The percentange of selected subset is denoted by %d.

Key questions surrounding sparse momentum include how to effectively select parameter subsets,
how to determine the sampling frequency, and whether to retain momentum for weights that are
sampled consecutively . Our empirical analysis shows that random sampling is the most effective
strategy for selecting subsets of parameters. For the other questions, we find that they align well
with the momentum reset strategy. Specifically, setting the sampling frequency to match the mo-
mentum reset frequency, and resetting the momentum of all weights, even when they are sampled
consecutively, yield the most robust results.

O EXPERIMENTAL SETTING

Baselines. We adopt several widely-used optimizers as our baselines. Since SPAM is built upon
Adam, Adam serves as our most direct baseline. We also incorporate two common gradient clip-
ping approaches with Adam: (1) Value Clip, which clips all gradients when their absolute value
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exceeds a threshold; and (2) Norm Clip, which scales the entire gradient if the L2 norm of the
gradient vector exceeds a certain threshold. Additionally, we compare against another widely-used
optimizer, Adafactor (Shazeer & Stern, 2018). In terms of spike mitigation techniques, we eval-
uate SPAM against previous approaches, including Scaled Initialization (Nguyen & Salazar, 2019;
Shoeybi et al., 2019), Embed LN (Dettmers et al., 2021), Scaled Embed (Takase et al., 2023), and
Embed Detach (Zeng et al., 2022). For memory-efficient optimization methods, we include Adam-
Mini (Zhang et al., 2024a), Galore (Zhao et al., 2024), LoRA (Hu et al., 2021), and ReLoRA (Lialin
et al., 2023a).

Architecture and hyperparameters. Following (Lialin et al., 2023a; Zhao et al., 2024), we conduct
our experiments using the LLaMA-based architecture with various sizes from 60M to 1B parameters,
incorporating RMSNorm (Shazeer, 2020) and SwiGLU activations (Zhang & Sennrich, 2019). For
each model size, we use the same set of hyperparameters across methods, varying only the learning
rate, where we sweep over a set of learning rates from 1e − 4 to 1e − 3, incrementing by 2e − 4
for each optimizer. All experiments are conducted using the BF16 format. We set clip threshold
as 1 and 1e − 3 for Norm Clip and Value Clip, respectively, following the setting in Takase et al.
(2023). We set hyper-parameters for Adafactor following the original paper (Shazeer & Stern, 2018)
where ϵ1 = 10−30, ϵ2 = 10−3 and d = 1.0. For SPAM, we set reset intervals ∆T = 500, lr
warmup step N = 150 and GSS threshold θ = 5000. Detailed descriptions of our task setups and
hyperparameters are provided in the Appendix D.

P DEFINITION OF GRADIENT SPIKE SCORE

Definition P.1 (Gradient Spike Score). Let {g0, g1, . . . , gT−1, gT } be the sequence of gradient
obtained during the training process from time step 0 to T . The Spike Score of the gradient at the
ith step, denoted as GSS(gi), is defined as the ratio of the magnitude of the gradient at that step to
the average magnitude of the gradients across all steps:

GSS(gi) =
|gi|

1
T+1

∑T
j=0|gj |

A gradient gi is considered a spiked gradient if its GSS(gi) exceeds a predetermined threshold θ,
i.e., GSS(gi) > θ indicating a significant increase from typical fluctuations, often amounting to
increases of two or three orders of magnitude.

Q EXTRA EXPERIMENTS

Q.1 PERFORMANCE OF LLM FINE-TUNING

In this section, we evaluate the effectiveness of SPAM for supervised fine-tuning. Following Li et al.
(2024), we fine-tune LLaMA2-7B on Commonsense170K (Hu et al., 2023) and test on 8 downstream
tasks. We do not apply layer-wise weight updates for GaLore and SPAM. The rank is set to 8 for all
low-rank baselines. Correspondingly, the density of SPAM is set to 0.25% to maintain a comparable
memory cost. The results are reported in Table 15. We observe that SPAM substantially outperforms
other memory-efficient methods, exceeding full fine-tuning by a notable margin.

Table 15: Fine-tuning performance of LLaMa2-7B on various downstream tasks. The “Mem.”
denotes the running GPU memory. The mean and standard deviation of 10 repeated experiments are
reported.

Method Mem. BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Adam (Full FT) 61G 79.7±0.1 79.1±0.1 51.3±0.05 58.5±0.02 74.8±0.2 79.2±0.1 48.2±0.01 36.2±0.2 63.4±0.1
LoRA 26G 75.8±0.4 79.0±0.1 56.3±0.1 59.9±0.04 79.6±0.2 77.6±0.1 46.9±0.1 34.4±0.3 63.7±0.2
GaLore 36G 82.8±0.7 78.4±0.2 55.8±0.4 56.3±0.5 79.0±0.1 75.9±0.4 46.2±0.5 34.2±0.1 63.6±0.4
SPAM (d = 0.25%) 36G 85.0±0.2 78.9±0.2 55.7±0.2 57.8±0.1 78.9±0.2 76.5±0.2 47.3±0.2 35.1±0.3 64.4±0.2
SPAM (d = 100%) 61G 87.1±0.2 79.5±0.1 58.3±0.1 58.1±0.04 83.3±0.2 79.2±0.2 48.6±0.1 40.1±0.2 66.7±0.1

R ABLATION STUDY
Selection strategy for sparse momentum. Many strategies have been proposed to select subsets of
parameters for sparse training, such as random selection (Liu et al., 2022a), max weight magnitude
(Mocanu et al., 2018), and max gradient magnitude (Evci et al., 2020). Among these strategies, the
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Figure 9: Ablations for sparse subset selection strategy, momentum reset inteval, GSS threshold and
warmup steps. “None” denote that the spike-aware clipping is not applied.

most effective approach for sparse momentum training remains unclear. To investigate this, we con-
duct experiments with LLaMA-60M on the C4 dataset. The results are reported in Figure 9-(1). In-
terestingly, we find that randomly selecting subsets of parameters performs significantly better than
the other two strategies for our sparse momentum. One plausible explanation for this discrepancy
is that random selection allows for rapid exploration across all model parameters, whereas gradient-
or weight-based strategies might be confined to the same subset of parameters during training.

Momentum reset interval ∆T . To investigate the impact of interval ∆T , we conduct experiments
based on LLaMA-130M and C4 with varying ∆T fromm 50 to 2500. The warmup steps is set to
150 and the thresthold θ is set to 5000. The results are reported in Figure 9-(2). We observe a
performance improvement as the interval ∆T decreases from 2500 to 500. However, when ∆T is
further shortened, performance begins to degrade. This suggests that while momentum resets can
enhance performance, excessively frequent resets may be detrimental to overall results.

GSS threshold θ. Threshold θ decides which gradient are detected as spikes. To illustrate the
impact of θ on SPAM, we present the results of LLaMA-130M in Figure 9-(3) with varying θ from
20000 to 10. The warmup steps is set to 150 and the interval ∆T is set to 500. We observe that
performance improves as θ is reduced from extremely large values to smaller values, such as 1000,
indicating that spike gradient clipping and momentum reset techniques have a mutually reinforcing
effect. However, excessively small θ may interfere with the true gradient, ultimately leading to a
degradation in performance.

Warmup steps N . We assess the impact of the warmup procedure following each momentum reset
by presenting the performance of LLaMA-130M with different warmup steps, ranging from 0 to
200, in Figure 9-(4). The results indicate a significant performance drop when no warmup is applied
(N = 0), compared to when a warmup is used. In addition, performance reach to optimal when the
warmup duration is set to approximately 150 steps.

S RELATED WORK

Instability of Training Large Language Models. LLMs are well-known for their training insta-
bility (Molybog et al., 2023), often experiencing irregular loss spikes that can lead to catastrophic
divergence (Chowdhery et al., 2023). To address this issue, researchers have developed various sta-
bilization techniques. While we outline several key approaches, we acknowledge that this overview
may not cover all significant contributions in the field.

One prominent approach involves architectural modifications. Xiong et al. (2020) demonstrated that
using Post-LN in Transformers leads to larger gradients near the output layer, resulting in training
instability, especially with large learning rates. In contrast, Pre-LN helps maintain well-behaved
gradients during initialization, promoting more stable training. Embed LN, introduced by Dettmers
et al. (2021), adds an additional LayerNorm after the embedding layer to improve stability, though
it may cause performance degradation, as noted by Scao et al. (2022). Embed Detach, proposed
by Ding et al. (2021) and further extended by Zeng et al. (2022) for LLMs, addresses loss spikes
by shrinking embedding gradients. DeepNorm, developed by Wang et al. (2024), enhances stability
in deep Transformers by scaling up the residual connection before applying LayerNorm. Addition-
ally, αReparam (Zhai et al., 2023) re-parameterizes all linear layers using spectral normalization to
prevent attention entropy collapse.
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Another set of approaches focuses on improving initialization to mitigate training instability. Scaled
Embed, proposed by Takase et al. (2023), scales up embeddings to stabilize LayerNorm gradients.
Scaled Initialization (Nguyen & Salazar, 2019) introduces a parameter initialization strategy using a
smaller normal distribution N (0,

√
2/5d/

√
2N) to stabilize training dynamics. Additionally, Fixup

(Zhang et al., 2019; Huang et al., 2020) claims that proper initialization can entirely eliminate the
need for LayerNorm.

Momentum Reset. Momentum reset is not a new approach. It has been used in Gu et al. (2013);
Nesterov (2013) to solve the rippling behavior of Nesterov’s Accelerated Gradient (NAG) (Nesterov,
1983) in the high-momentum regime, particularly in the context of convex optimization problems.
O’donoghue & Candes (2015) further proposed adaptive reset where the momentum will be reset
when an increase in the function value is observed. Unlike these earlier work, we leverage mo-
mentum reset to mitigate the detrimental effects of gradient spikes that arise during the training of
billion-parameter language models, which present a large-scale, non-convex optimization challenge.

Memory-Efficient Optimizers. There have been several efforts to reduce Adam’s memory foot-
print. SM3 (Anil et al., 2019), a lightweight variant of AdaGrad (Duchi et al., 2011), selects the
learning rate for the i-th parameter by taking the minimum value from a set of candidates, each
associated with the maximum squared gradient under a predetermined cover. Adafactor (Shazeer
& Stern, 2018) and its variant CAME (Luo et al., 2023) utilize non-negative low-rank factorization
over Adam’s second-moment estimate, v. Adam-mini (Zhang et al., 2024a) partitions the parameters
into blocks and assigns a single learning rate v to each block to reduce memory. Similar approaches
were proposed in (Zheng & Kwok, 2019; Ginsburg et al., 2019). Low-precision optimizers are stud-
ied in (Dettmers et al., 2021). Recently, GaLore (Zhao et al., 2024; Zhang et al., 2024b) enables the
full-parameter training of LLMs through low-rank gradient updates.
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