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Abstract
Fine-tuning on agent-environment interaction001
trajectory data holds significant promise for sur-002
facing generalized agent capabilities in open-003
source large language models (LLMs). In this004
work, we introduce AGENTBANK, by far the005
largest trajectory tuning data collection featur-006
ing more than 50k diverse high-quality inter-007
action trajectories which comprises 16 tasks008
covering five distinct agent skill dimensions.009
Leveraging a novel annotation pipeline, we are010
able to scale the annotated trajectories and gen-011
erate a trajectory dataset with minimized dif-012
ficulty bias. Furthermore, we fine-tune LLMs013
on AGENTBANK to get a series of agent mod-014
els, SAMOYED. Our comparative experiments015
demonstrate the effectiveness of scaling the in-016
teraction trajectory data to acquire generalized017
agent capabilities. Additional studies also re-018
veal some key observations regarding trajectory019
tuning and agent skill generalization.1020

1 Introduction021

An agent is an entity that possesses the capabil-022

ity for volition, decision-making, action-taking ,023

and, most critically, environment perception (Jen-024

nings et al., 1998). In the realm of cognitive sci-025

ence, previous literature has suggested that interac-026

tion with environment derives an agent’s general-027

ized intelligence, and intelligent behavior emerges028

from a synergistic blend of simpler behaviors, in-029

cluding reasoning, programming, and game play-030

ing (Brooks, 1991). The proprietary large lan-031

guage models (LLMs), such as GPT-3.5 (OpenAI,032

2022) and GPT-4 (OpenAI, 2023), have demon-033

strated strong capabilities in instruction following,034

reasoning, and planning, which encourage many035

attempts to build autonomous agent systems uti-036

lizing LLMs as core controllers (Richards, 2023;037

Nakajima, 2023). However, comprehensive evalua-038

tions have shown that the majority of open-sourced039

1The AGENTBANK dataset and evaluation framework are
released at anonymous link

LLMs fall short in agent capabilities when com- 040

pared with GPTs (Liu et al., 2023; Wang et al., 041

2023). 042

Previous research pointed out that learning from 043

gold interaction trajectories, a process we term Tra- 044

jectory Tuning, could enhance the capabilities of 045

weaker agents (Brooks, 1991; Hussein et al., 2017). 046

Early studies heavily focus on specialized agents 047

designed for particular tasks. Existing attempts 048

are exemplified by Chen et al. (2023a) and Yin 049

et al. (2023), who build agent trajectory data from 050

teacher agents (e.g., GPT-4) and fine-tune open- 051

source LLMs to improve specific agent abilities 052

like reasoning. Taking a step further, Zeng et al. 053

(2023) adopt a multi-task tuning approach called 054

AgentTuning. However, trained on a small trajec- 055

tory dataset comprising six tasks with 1.8k trajec- 056

tories, Zeng et al. (2023) struggle to enhance the 057

generalized agent capability, especially in the case 058

of 7B and 13B models. 059

To explore the impacts of incorporating interac- 060

tion trajectory data on agent ability generalization, 061

we construct AGENTBANK, the largest agent in- 062

teraction trajectory dataset to date. AGENTBANK 063

features 16 distinct tasks across five agent skill 064

dimensions and contains over 50,000 trajectories, 065

each annotated with high-quality chain-of-thought 066

(CoT) rationale for every step of action. Leverag- 067

ing a novel annotation pipeline that fully exploits 068

the capability of LLMs, the trajectory collection 069

process is highly scalable and adaptable to diverse 070

agent environments. In contrast to prior studies that 071

have relied on successful trajectories of GPTs for 072

training data (Chen et al., 2023a; Zeng et al., 2023), 073

AGENTBANK stands out with its exceptional qual- 074

ity and mitigated susceptibility to the difficulty bias 075

issue. 076

We further develop SAMOYED, a suite of models 077

with enhanced agent capabilities, through the trajec- 078

tory tuning of Llama-2 (Touvron et al., 2023) using 079

AGENTBANK. Our evaluations on both held-in and 080
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AGENTBANK FireAct AgentInstruct Agent-FLAN AgentOhana
(this work) (Chen et al., 2023a) (Zeng et al., 2023) (Chen et al., 2024) (Zhang et al., 2024)

Number of tasks 16 3 6 7 10
Number of trajectories 51287 1344 1866 24703 42600
Average interaction turns 3.9 - 5.2 3.7 3.1
No difficulty bias? ✓ ✗ ✗ ✗ ✗

Open-sourced? ✓ ✓ ✓ ✓ ✗

Reasoning ✓ ✓ ✗ ✗ ✓

Math ✓ ✗ ✗ ✗ ✗

Programming ✓ ✗ ✓ ✓ ✓

Web ✓ ✗ ✓ ✓ ✓

Embodied AI ✓ ✗ ✓ ✓ ✓

Table 1: A comparison of AGENTBANK with other datasets for agent trajectory tuning.

unseen held-out tasks suggest that by fine-tuning081

on extensive multi-task trajectories, our models ex-082

hibit remarkable agent intelligence in comparison083

with untuned ones. Specifically, SAMOYED outper-084

forms GPT-3.5-Turbo on average on held-in tasks,085

which can be attributed to the in-domain trajectory086

tuning. Furthermore, our models also demonstrate087

superior performance on held-out tasks, underscor-088

ing the efficacy of large-scale trajectory tuning in089

acquiring generalized agent capabilities.090

To trace the emergence of agent capabilities gen-091

eralization, we follow the initial evaluation with092

a systematic analysis across various dimensions.093

Initially, we delineate the scaling trends of tasks094

alongside the quantity of trajectories. Next, we095

conduct an ablation study that merges generalist in-096

struction data and code data to examine the benefits097

of hybrid training. This study uncovers further en-098

hancements in the agent capabilities and mitigates099

catastrophic forgetting. Furthermore, our findings100

underscore the pivotal role of CoT rationale in the101

acquisition of generalized agent capability.102

Our contributions are summarized as follows:103

• The release of AGENTBANK, a dataset of over104

50,000 high-quality agent interaction trajectories,105

spanning 16 tasks across five skill dimensions.106

We also present a novel annotation pipeline, of-107

fering scalability and a marked reduction in diffi-108

culty bias, surpassing previous methods.109

• The development of SAMOYED, the most power-110

ful open-source LLM suite at the 7B/13B scale111

optimized for agent tasks. Trained through trajec-112

tory tuning, SAMOYED demonstrates exceptional113

performance, showcasing transferable agent in-114

telligence on unseen tasks.115

• We conduct comprehensive experiments and in-116

depth analysis on agent intelligence acquisition,117

including the relations with instruction following 118

and code capability, scaling law of interaction 119

trajectories, and the effectiveness of training with 120

CoT. 121

2 Related Work 122

2.1 Instruction Tuning 123

Instruction tuning is a simple yet powerful 124

approach to align LLMs with human prefer- 125

ences (Zhang et al., 2023). Previous studies have 126

primarily focus on improving general-purpose in- 127

struction following capabilities of LLMs. FLAN se- 128

ries (Wei et al., 2021; Chung et al., 2022), T0 (Sanh 129

et al., 2021), and NaturalInstruction (Wang et al., 130

2022b) scale up the instruction datasets to activate 131

the generalized instruction following capabilities of 132

LLMs. More recently, utilizing synthetic instruc- 133

tion following data distilled from GPTs to align 134

open-source LLMs has also been proposed (Taori 135

et al., 2023; Chiang et al., 2023). Furthermore, 136

multiple works have shown the promise of instruc- 137

tion tuning in enhancing the specialized abilities 138

of LLMs, such as math (Yu et al., 2023; Yue et al., 139

2023), reasoning (Lee et al., 2023), and agent 140

tasks (Chen et al., 2023a; Zeng et al., 2023). 141

2.2 LLM-based Agent 142

Modern LLMs have demonstrated various emer- 143

gent abilities that encourage researchers to build 144

agent systems based on LLMs. ReAct (Yao 145

et al., 2022b) combines CoT reasoning with agent 146

actions to accomplish tasks such as QA. Auto- 147

GPT (Richards, 2023) harnesses LLMs as the core 148

controllers to constitute powerful agent frameworks 149

capable of solving real-world complex problems. 150

While advanced proprietary models exampled by 151

GPT-3.5/4 have shown strong performances on 152

agent tasks, their open-source counterparts still lag 153
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Programming Embodied AI

···

+

Task: I need some whitening toothpaste,
and price lower than 40$. 
Thought: I should search for "whitening
toothpaste" first
Action: search[whitening toothpaste]
Observation: <searching results>

Thought: this product seems suitable
Action: click[buy now]

(after n turns)···

Figure 1: Overview of the construction process of AGENTBANK and the training procedure of SAMOYED

far behind (Liu et al., 2023; Wang et al., 2023). In154

response, recent studies including FireAct (Chen155

et al., 2023a), AgentTuning (Zeng et al., 2023) and156

AgentOhana (Zhang et al., 2024) collect agent tra-157

jectory data from teacher agents (e.g., GPT-4) and158

fine-tune open-source LLMs (e.g., Llama series)159

with the data. However, limited by the number of160

tasks and expert trajectories, existing research has161

not yet exhaustively explored whether open-source162

LLMs can acquire generalized agent abilities, a gap163

that this study aims to bridge.164

3 Preliminary165

3.1 Agent Task Formulation166

Given an agent task described by the instruction167

u, an LLM agent generates an action a1 based on168

its policy. Next, an environment receives the ac-169

tion, transfers to a new latent state, and provides170

an observation oi in natural language format. Sub-171

sequently, the agent generates another action for172

the next step, ai+1, and repeats this circle of inter-173

action with the task environment until either the174

task is completed or the maximum number of steps175

is reached. This “conversation” between the agent176

with the environment is denoted as the interaction177

trajectory (u, a1, o1, ..., an). Finally, a final reward178

r ∈ [0, 1] is returned depending on the task com-179

pletion status.180

Chain-of-Thought (CoT) (Wei et al., 2022; Ko-181

jima et al., 2022) is an effective approach to en-182

hance the inferential capabilities of LLMs by a183

step-by-step reasoning process. We employ Re-184

Act (Yao et al., 2022b) as the agent tasking frame-185

work, which outputs rationale before the action.186

3.2 Challenges in Trajectory Collection 187

Previous works (Chen et al., 2023a; Zeng et al., 188

2023) have employed GPT-4 as teacher agents to 189

interact with the environment and collect success- 190

ful interaction trajectories. To ensure the quality 191

of generated data, a failure filtering mechanism is 192

used to remove the cases where GPT failed. How- 193

ever, this GPT-exploration pipeline automates the 194

trajectory construction at some significant cost. 195

Hard to Scale-Up The quality of data is essential 196

for agent training, and training with failure trajec- 197

tories will lead to performance degradation (Zeng 198

et al., 2023). Therefore, scaling up this process to 199

a larger trajectory amount is challenging due to the 200

low success rate of GPT-4. For instance, AgentIn- 201

struct (Zeng et al., 2023) discards more than 90% 202

generated trajectories due to GPT failures. 203

Difficulty Bias Even worse, GPT-exploration 204

pipelines will inevitably introduce difficulty bias 205

to the final training data. Essentially, a trajectory 206

filtering strategy can be regarded as grouping the 207

instances based on whether GPT is capable of solv- 208

ing them. Discarding failed trajectories leads to a 209

skewed distribution of “difficulty”, resulting in a 210

training set with much easier instances than those in 211

the test set. This violation of the i.i.d. assumption 212

may hurt the generalization ability of the trained 213

agents. In Appendix B, we conduct an experiment 214

to show this bias. 215

4 AGENTBANK 216

In response to the challenges of previous trajectory 217

collection pipeline, we propose a new trajectory 218

annotation pipeline and construct AGENTBANK 219

trajectory dataset. 220
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Skill Dim. Task Action Space Tool #Inst. Avg. Turns Action Annotation

Reasoning
HotpotQA (Yang et al., 2018) Continuous Search 4273 3.1 Explore
StrategyQA (Geva et al., 2021) Continuous Search 1267 3.6 Explore
TriviaQA (Joshi et al., 2017) Continuous Search 4134 2.5 Explore

Math
GSM8K (Cobbe et al., 2021) Continuous Calculator 7471 4.5 Reformat
MathQA (Amini et al., 2019) Continuous Python 4000 2.0 Explore
MATH (Hendrycks et al., 2021) Continuous Python, Wiki 2312 2.5 Explore

Programming

IC-SQL (Yang et al., 2023) Continuous MySQL 4540 4.8 Explore+Answer Force
APPS (Hendrycks et al., 2021) Continuous Python 4408 1.0 Reformat
HumanEval (Chen et al., 2021) Continuous Python 134 2.7 Explore+Answer Force
MBPP (Austin et al., 2021) Continuous Python 608 2.2 Explore+Answer Force

Web
Mind2Web (Deng et al., 2023) Discrete - 7770 1.0 Reformat
WebArena (Zhou et al., 2023) Discrete - 657 1.0 Reformat
WebShop (Yao et al., 2022a) Discrete - 5315 3.4 Explore & Reformat

Embodied
ALFWorld (Shridhar et al., 2020b) Discrete - 3554 10.1 Reformat
RoomR (Weihs et al., 2021) Discrete - 300 30.2 Search+Reformat
IQA (Gordon et al., 2018) Discrete - 1627 28.4 Search+Reformat

Total (AGENTBANK) - - 51287 3.9 -

Table 2: Overview of AGENTBANK dataset. It compiles 16 agent tasks covering 5 skill dimensions, formulating the
largest interaction trajectory dataset. “Inst.” and “Traj.” refer to instruction and interaction trajectory.

4.1 Task and Instruction Collection221

A generalized agent needs to possess a wide range222

of capabilities across various dimensions. To this223

end, as shown in Table 2, we curate 16 publicly224

available agent datasets to lay the foundation of225

AGENTBANK and categorize specific tasks into five226

skill dimensions: reasoning, math, programming,227

web navigation, and embodied tasks. Additionally,228

some tasks aggregated in AGENTBANK involve229

the usage of external tools, such as search engine,230

calculator, and code interpreter, as the ability to231

effectively operate tools is also a crucial aspect for232

generalized agents. From the perspective of action233

space, tasks in AGENTBANK can be classified into234

two types: those with a continuous action space (in-235

cluding natural language and code) and those with236

a predefined discrete action space. Our dataset also237

covers a broad range of interaction turns, ranging238

from 1 to 30. Note that some tasks are originally239

evaluated in a single-turn QA style, such as Hot-240

potQA (Yang et al., 2018) and MATH (Hendrycks241

et al., 2021). Following Wang et al. (2023), we242

modify these datasets to accommodate multi-turn243

interaction environments with tool usage.244

Since most of the original benchmarks have a245

training set, we use them to construct our dataset.246

To balance data sources, we down-sample some247

tasks which have a huge training set. See Appendix248

A for detailed descriptions of each dataset.249

4.2 Action Annotation 250

To tackle the challenges in trajectory collection, 251

unlike previous methods that generate action and 252

CoT simultaneously, we separate the annotation 253

of gold actions and their corresponding rationales, 254

fully leveraging of the capability of LLMs. 255

Specifically tailored to the specific nature of dif- 256

ferent tasks, our approach involves several tech- 257

niques to obtain high-quality action sequences ac- 258

cordingly. 259

Answer Forcing For tasks characterized by a 260

continuous natural language or code action space, 261

such as IC-SQL, we introduce an answer forcing 262

action annotation strategy as an extension to GPT- 263

exploration pipeline. This strategy aims to mitigate 264

the bias introduced by failure filtering. Initially, 265

we use GPT-4 to interact with the environment 266

and gather interaction trajectories. For failed tra- 267

jectories, rather than directly discarding them, we 268

prompt GPT with the failed trajectory and the gold 269

final answer to generate a new interaction trajectory. 270

Then we validate the correctness of new trajectories 271

by executing the actions within real agent environ- 272

ments. This answer forcing process is used in an 273

iterative manner to re-annotate failure trajectories 274

and generate a substantial number of gold action 275

sequences. See Appendix C for the re-annotation 276

prompt. 277

Heuristic Action Search For tasks with a dis- 278

crete action space, exemplified by embodied AI 279
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tasks (Weihs et al., 2021; Gordon et al., 2018), we280

are able to access both the environment’s source281

code and its complete execution state. Leverag-282

ing this access, we employ the heuristic depth-first283

search algorithm to efficiently get the optimal ac-284

tion sequences.285

Reformat Some tasks have already provided286

official solving trajectories. For instance,287

GSM8K (Cobbe et al., 2021) offers ground-truth288

intermediate reasoning steps. For these tasks, fol-289

lowing (Yin et al., 2023), we exploit GPT as a style290

transfer tool to transform reasoning process into291

agent interaction action sequences.292

4.3 Rationale Annotation293

Give the instructions and gold action sequences, we294

directly prompt GPT to generate the corresponding295

CoT rationale of each action step. Since providing296

explanation for gold actions is relatively easy task,297

we employ GPT-3.5-Turbo as the primary LLM in298

the rationale annotation process. The rationale gen-299

eration prompt is shown in Appendix C. We also300

compare rationales generated by different LLMs in301

Appendix D.302

For tasks with a huge number of instructions303

and GPT-4 have a high success rate, such as Strat-304

egyQA (Geva et al., 2021) and WebShop (Yao305

et al., 2022a), we directly use the GPT-exploration306

pipeline as Zeng et al. (2023).307

The overview of AGENTBANK is shown in Ta-308

ble 2. See the Appendix A for more details about309

the annotation process of each task. A human eval-310

uation assessing the quality of our dataset can be311

found in Appendix E.312

5 Train SAMOYED with AGENTBANK313

To initialize the training of SAMOYED, we314

formulate agent interaction trajectories in315

AGENTBANK into a chatbot-style schema316

(u, a1, o1..., ai, oi, ..., an), where u is the task317

instruction, oi and ai denote the observation from318

the task environment and the corresponding action319

with rationale generated by the agent in the i-th320

round. During the training process, we feed the321

entire interaction trajectory into a decoder-only322

LLM, where only the auto-regressive loss on323

tokens of ground-truth responses Y = {a1, ..., an}324

is counted. We mask all tokens belonging to the325

instruction and observations from the environment326

to prevent them from loss computation. Concretely,327

Task Skill Dim. #Inst. Metric

Held-in Tasks

HotpotQA (Yang et al., 2018) Reasoning 100 Exact Match
StrategyQA (Geva et al., 2021) Reasoning 100 Exact Match
GSM8K (Cobbe et al., 2021) Math 100 Exact Match
MATH (Hendrycks et al., 2021) Math 100 Exact Match
IC-SQL (Yang et al., 2023) Programming 100 Avg. Reward
MBPP (Austin et al., 2021) Programming 100 Success Rate
Mind2Web (Deng et al., 2023) Web 1173 Step SR
WebShop (Yao et al., 2022a) Web 200 Avg. Reward
ALFWorld (Shridhar et al., 2020b) Embodied 134 Success Rate

Held-out Tasks

Bamboogle (Press et al., 2022) Reasoning 126 Exact Match
TheoremQA (Chen et al., 2023b) Math 100 Exact Match
IC-Bash (Yang et al., 2023) Programming 200 Avg. Reward
MiniWoB++ (Kim et al., 2023) Web 460 Success Rate
ScienceWorld (Wang et al., 2022a) Embodied 270 Avg. Reward

Table 3: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

the loss function is defined as: 328

L = −
∑
j

log pθ(tj |t<j)× 1(tj ∈ Y ), (1) 329

where tj denotes the j-th input token and 1 is the 330

indicator function. 331

Recent studies (Yang et al., 2024; Zeng et al., 332

2023) suggest that hybrid training with generalist 333

instruction data and code data may improve the gen- 334

eralized ability of LLM agents. Following them, 335

we adopt a mixture of AGENTBANK Dagent, the 336

general domain instruction dataset Dgeneral, and 337

the code dataset Dcode for fine-tuning. We perform 338

detailed ablation experiments to explore the effec- 339

tiveness of generalist and code data in Section 7.2. 340

6 Experiments 341

6.1 Experimental Setup 342

Base LLMs and Baselines We use several 343

LLMs to conduct experiments, including Llama-2- 344

Chat (Touvron et al., 2023), CodeLlama (Roziere 345

et al., 2023), Mistral (Jiang et al., 2023), and Llama- 346

3-Instruct (Meta, 2024). However, since most base- 347

lines, including AgentLM (Zeng et al., 2023) and 348

Agent-FLAN (Chen et al., 2024) are tuned from 349

Llama-2-Chat, we mainly use Llama-2-Chat as 350

our base model for a fair comparison. Due to 351

our limited resources, we use 7B and 13B mod- 352

els for our experiments, leaving the comparison at 353

a larger scale (e.g., Lemur-70B (Xu et al., 2023b) 354

and xLAM-8×7B (Zhang et al., 2024)) for the fu- 355

ture work. We also select GPT-3.5-Turbo (OpenAI, 356

2022) and GPT-4 (OpenAI, 2023) as strong base- 357

lines. For all LLMs, the decoding temperature is 358

set to 0 for the most deterministic generation. 359
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Model Held-in Tasks Held-out Tasks

Reason Math Program Web Embodied Avg. Reason Math Program Web Embodied Avg.

Closed-Source Model

GPT-4 61.6 73.0 54.9 40.6 77.8 59.8 41.6 51.0 69.4 69.4 36.4 53.6
GPT-3.5-Turbo 41.0 41.5 51.2 42.0 10.5 40.2 32.0 32.0 54.8 66.7 21.2 41.3

7B Open-Source Model

Llama-2-7B-Chat 4.0 7.5 2.5 13.9 0.0 6.2 4.0 8.0 7.0 0.4 7.8 5.5
Vicuna-7B 29.0 2.0 19.0 24.2 6.0 17.1 8.8 14.0 19.0 18.2 12.8 14.6
CodeLlama-7B 3.5 3.5 1.5 24.8 0.0 7.4 1.0 13.0 21.8 41.3 5.5 16.5
AgentLM-7B 29.5 10.0 12.0 37.2 63.4 26.7 19.2 13.0 50.5 13.5 13.3 21.9
Agent-FLAN-7B 31.0 10.5 13.1 35.4 65.3 27.3 22.2 11.0 53.1 17.9 14.1 23.7

SAMOYED-7B 48.0 30.5 41.6 36.4 61.2 41.6 32.0 18.0 59.2 24.2 14.2 29.5

13B Open-Source Model

Llama-2-13B-Chat 12.5 10.5 8.2 11.2 0.0 9.4 9.6 11.0 33.0 17.6 7.3 15.7
Vicuna-13B 25.5 6.5 30.4 34.2 2.2 21.7 24.8 17.0 37.0 34.2 14.8 25.6
CodeLlama-13B 13.5 18.5 5.1 15.3 0.0 11.7 6.4 16.0 11.1 46.5 5.5 17.1
AgentLM-13B 38.0 13.5 22.8 38.1 52.2 30.8 20.8 13.0 46.6 21.6 14.6 23.3

SAMOYED-13B 54.5 38.5 55.4 40.9 72.4 50.1 35.0 23.0 62.4 38.9 18.4 35.5

Table 4: Performance comparison of SAMOYED and baseline LLMs on held-in and held-out tasks. Due to the space
constraint, we group the held-in tasks according to the skill dimensions and report the average scores. The top-2
best of each model group are highlighted in bold and underlined respectively. See Appendix G for complete results.

Training Setup We use AdamW optimizer with360

a learning rate of 5e-5 and a cosine scheduler. The361

models are trained for 3 epochs with 3% warm-up362

steps. The batch size is set to 128 and the sequence363

length is 2048. We choose ShareGPT2 as the gen-364

eralist instruction data, and Evol-CodeAlpaca (Luo365

et al., 2023) as the code data. The mixture ra-366

tio of Dagent, Dgeneral, and Dcode is 80%, 10%,367

10%. A corresponding data contamination analysis368

can be found in Appendix F. All experiments are369

conducted on 8 NVIDIA A100 80G GPUs. We370

use FastChat (Zheng et al., 2023a) and PyTorch371

FSDP (Paszke et al., 2019) for efficient training.372

Held-in/out Tasks In an effort to balance the re-373

liability and efficiency of the evaluation, we select374

nine tasks from AGENTBANK to form the held-in375

test set. For tasks with a huge test set, following376

Wang et al. (2023), we randomly sample a subset377

from the original test set. To evaluate the general-378

ized agent intelligence of SAMOYED, we addition-379

ally compile five unseen held-out tasks that do not380

exist in AGENTBANK but still fall into the five skill381

dimensions of a foundation agent. The held-in and382

held-out evaluation tasks used in the experiments383

are listed in Table 3. For all evaluated tasks, 1-shot384

in-context example is provided in prompts. We also385

report the results on AgentBench (Liu et al., 2023),386

another agent benchmark, in Appendix H.387

2https://sharegpt.com/

6.2 Main Results 388

Table 4 shows the results of different models on 389

held-in and held-out tasks. Due to the space con- 390

straint, we grouped the held-in tasks according to 391

skill dimensions and report the average scores. In 392

Figure 2, we show the results of trajectory tuning 393

on different base LLMs. 394

Massive trajectory tuning enables general- 395

ization to unseen tasks The performance of 396

SAMOYED has a remarkable improvement on held- 397

out unseen tasks, which demonstrates a substan- 398

tial boost in agent capabilities through large-scale 399

trajectory tuning. Surprisingly, SAMOYED-7B 400

exhibits an even greater enhancement compared 401

to SAMOYED-13B. Our models also outperform 402

AgentLM and Agent-FLAN which are tuned on 403

less trajectories, demonstrating the effectiveness of 404

scaling up the tuning trajectories. 405

Comparison among baselines The experiment 406

yields several noteworthy model-wise observations. 407

We find that CodeLlama, benefiting from code pre- 408

training, excels in web browsing tasks. Vicuna 409

exhibits strong abilities through fine-tuning on gen- 410

eralist instruction data, demonstrating impressive 411

performance on both held-in/out tasks. Remark- 412

ably, the performance of Vicuna-13B even sur- 413

passes AgentLM-13B. It is important to highlight 414

that AgentLM’s training set comprises 80% gener- 415

alist instruction data, suggesting that the held-out 416

6
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Figure 2: The results of different base models. “Base”
denotes untrained LLMs. “+SuperAgent” denotes mod-
els after training on AGENTBANK.

task performance of AgentLM largely comes from417

the enhanced capability of instruction following.418

Effectiveness of trajectory tuning on different419

base models As illustrated in Figure 2, after420

large-scale trajectory tuning, all LLMs yield sig-421

nificant performance improvements on held-in and422

held-out tasks. We also notice some interesting423

outcomes. CodeLlama’s superior performance in-424

dicates that code training can enhance agent ca-425

pabilities. As for Mistral and Llama-3, although426

fine-tuning on AGENTBANK also yields improve-427

ments, the performance gain is relatively modest428

compared with the substantial improvement seen429

on Llama-2. This finding indicates that weaker430

LLMs may benefit more from massive trajectory431

tuning than their stronger counterparts.432

7 Further Analysis433

7.1 Scaling Trends of Generalization434

We investigate the generalization performance of435

trajectory tuning with respect to two scaling fac-436

tors: the number of training tasks and the number437

of training trajectories. Figure 3 illustrates the per-438

formance changes on held-out tasks when scaling439

each of these factors.440

To explore the impact of task scaling, we mod-441

ify the number of tasks in each skill dimension442

while ensuring that the skill coverage of the sub-443

sets remains consistent. We observe that increasing444
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(b)
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Llama-2-13B

Figure 3: Scaling trends of the number of tasks and
interaction trajectories.

the number of tasks used for training results in 445

improved performance on held-out tasks. This find- 446

ing suggests that by scaling the number of distinct 447

tasks for trajectory tuning, the model can enhance 448

its generalized agent capabilities. 449

As shown in Figure 3b, a comparison between 450

the performance using 1k trajectories and that with 451

50k+ cases reveals a marked decrease in the gen- 452

eralized ability of the agent, highlighting the im- 453

portance of scaling the amount of interaction data 454

for better performance. However, the trajectory 455

of performance improvement is gradually plateau- 456

ing, particularly noticeable with the 13B model, 457

suggesting the necessity for more advanced agent 458

training techniques beyond SFT. 459

7.2 The Effect of Data Mixture 460

Mixture Training leads to better generalization. 461

When training SAMOYED, we mix 10% general- 462

ist instruction data and 10% code data. Here we 463

conduct ablation study to investigate the effect of 464

mixture training. Specifically, we vary the mixture 465

ratio of ShareGPT and code data and train Llama- 466

2-7B-Chat for 1000 steps. As shown in Figure 4a, 467

a relatively low proportion of generalist data leads 468

to improved agent performance on unseen tasks. 469

Nevertheless, as the amount of generalist data con- 470

tinues to increase, the performance on held-out 471

tasks dramatically degrades. Moreover, disagreed 472

with Zeng et al. (2023) who find that training with 473

only interaction trajectory data will lead to perfor- 474

mance degradation on held-out tasks, SAMOYED 475

trained on solely AGENTBANK shows performance 476

improvement on held-out tasks instead. 477

The ablation on code data also shows a lower 478

ratio of code data will benefit the generalization 479

ability of the agents. Code data, comprising stan- 480

dard syntax and logical abstraction, has the poten- 481

tial to enhance the planning and decision-making 482

capabilities of LLM agents (Yang et al., 2024). 483

7



0.0 0.2 0.4 0.6 0.8 1.0
Mix Rate

0

10

20

30

40
Av

g.
 S

co
re

Llama-2-7B-Chat Held-out: 5.5
Llama-2-7B-Chat Held-in: 6.2

(a) ShareGPT Ablation

Held-in
Held-out

0.0 0.2 0.4 0.6 0.8 1.0
Mix Rate

0

10

20

30

40

Llama-2-7B-Chat Held-out: 5.5
Llama-2-7B-Chat Held-in: 6.2

(b) Code Ablation

Held-in
Held-out

Figure 4: Ablation study on data mixture.

Model Reason Math Program Web Embodied

Llama-2-7B-Chat 4.0 8.0 7.0 0.4 7.8
+AGENTBANK 32.0 18.0 59.2 24.2 14.2

CodeLlama-7B 1.0 13.0 21.8 41.3 5.5
+AGENTBANK 29.6 16.0 67.7 42.2 14.8

Table 5: The held-out task performance of Llama-2 and
CodeLlama.

Code pretraining benefits web tasks. To fur-484

ther analyse the effect of code training, in Table485

5, we compare the distinctions between agents486

based on Llama-2-Chat and CodeLlama. Unsur-487

prisingly, due to its extensive code training, CodeL-488

lama demonstrates excellent performance in pro-489

gramming tasks. Training with extensive interac-490

tion trajectories can further elevate its coding pro-491

ficiency. Additionally, CodeLlama shows excep-492

tional competence in web navigation tasks, likely493

attributed to the abundance of web pages present494

in its pretraining datasets.495

Mixture training alleviates catastrophic forget-496

ting. Supervised fine-tuning LLMs on down-497

stream tasks will lead to catastrophic forgetting on498

general capabilities. Here, we select three widely499

used benchmarks, MMLU (Hendrycks et al., 2020),500

MT-Bench (Zheng et al., 2023a), AlpacaEval 2 (Li501

et al., 2023), to evaluate the general capabilities of502

the trained agents. As shown in Table 6, since the503

agent trajectory often presented in specific ReAct504

formats, the models are easily to get overfitting on505

this style when training solely on agent data. Sim-506

ply incorporating generalist instruction data during507

training proves to be an effective strategy in miti-508

gating catastrophic forgetting.509

7.3 The Effect of CoT Rationale510

Chain-of-Thought (CoT) plays an vital role in LLM511

reasoning and planning (Wei et al., 2022; Kojima512

et al., 2022). In our experiments, agents are trained513

with GPT-generated rationales for each action step514

Model MMLU MT-Bench AlpacaEval 2

Llama-2-7B-Chat 48.3 6.2 5.4

SAMOYED-7B 47.7 6.1 5.0
w/o ShareGPT 23.1 2.6 1.9
w/o Code 48.1 5.9 5.1

Table 6: Performance on general tasks.

Base Model w/ CoT? Held-In Held-Out

Llama-2-7B-Chat
✓ 41.6 29.5
✗ 41.2 22.8

Mistral-7B
✓ 45.2 30.0
✗ 45.5 27.5

Llama-3-8B-Instruct
✓ 45.4 36.1
✗ 43.6 31.8

Table 7: Ablation study on CoT rationale.

and are deployed under ReAct framework (Yao 515

et al., 2022b). In this section, we conduct an abla- 516

tion study to examine the effectiveness of CoT. 517

As shown in Table 7, when it comes to held- 518

in tasks, training without rationales has a mini- 519

mal impact on performance. Mistral-based agent 520

without CoT even slightly surpasses the one with 521

CoT. Nonetheless, for unseen held-out tasks, train- 522

ing without rationale results in a significant per- 523

formance decline. Explanation traces provide a 524

detailed step-by-step thought processes, enabling 525

agents to learn from the underlying and planning 526

process (Mukherjee et al., 2023). Moreover, with- 527

out rationale, the agents tend to mimic the style and 528

get overfitting on held-in tasks. 529

8 Conclusion 530

In this work, we explore the acquisition of gener- 531

alized agent capabilities through fine-tuning open- 532

source LLMs on massive interaction trajectories. 533

We introduce by far the largest interaction trajec- 534

tory dataset AGENTBANK, comprising over 50k 535

trajectories that encompass 16 tasks across five 536

distinct agent skill dimensions. Building upon 537

AGENTBANK, we fine-tune Llama-2 to develop 538

SAMOYED, an open-source LLM series specialized 539

for agent tasks. Evaluations on both held-in and 540

held-out tasks show that SAMOYED significantly 541

outperforms strong baselines in terms of general- 542

ized agent capabilities. Comprehensive analysis 543

also reveals the effectiveness of data mixture and 544

plots the scaling law of trajectories. We hope this 545

work to serve as a catalyst for further exploration 546

in the development of more powerful agents. 547
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Limitations548

We conclude the limitations of this work as follows:549

• Due to the resource constraints, we only con-550

duct experiments and analysis on 7B and 13B551

models. The extent to which larger models can552

benefit from large-scale trajectory tuning remains553

unknown.554

• We have not fully explored the potential of equip-555

ping our SAMOYED with more sophisticated556

agent mechanisms, such as Reflexion (Shinn557

et al., 2023) and ReWOO (Xu et al., 2023a). Fur-558

ther investigation into these mechanisms could559

yield valuable insights.560

• This study primarily focuses on improving561

the agent’s performance via supervised fine-562

tuning on expert trajectories. How to exploit563

exploration-based methods (Song et al., 2024)564

to further optimize the agents is left for future565

investigation.566

• This work is centered around building strong567

ReAct-style single-agent models. However,568

multi-agent collaboration framework has demon-569

strated impressive performance in handling realis-570

tic tasks. The development of strong generalized571

multi-agent systems based on open-source LLMs572

is still an under-explored area.573
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This work fully complies with the ACL Ethics Pol-575

icy. We declare that there are no ethical issues in576

this paper, to the best of our knowledge.577
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A Details of Tasks in AGENTBANK873

Reasoning Tasks HotpotQA (Yang et al., 2018)874

is a question answering dataset featuring multi-hop875

reasoning. StrategyQA (Geva et al., 2021) is an-876

other question answering task where the required877

reasoning steps are implicit in the question and878

should be inferred using a strategy. TriviaQA (Joshi879

et al., 2017) is a dataset consisting of complex com-880

positional questions that require multi-evidence881

reasoning. In our work, we repurpose these three882

datasets to interaction environments by incorpo-883

rating a search engine tool. We employ the GPT-884

exploration pipeline and filter out failed cases to885

build the gold trajectories.886

For our held-out evaluation, we use Bam-887

boogle (Press et al., 2022), which is made up of888

questions that need compositional reasoning and889

are unable to be directly answered by Google.890

Math Tasks GSM8K (Cobbe et al., 2021) is a891

dataset of diverse grade school math problems cre-892

ated by humans. Each problem in GSM8K comes893

with an official solution path. In our work, we lever-894

age the power of GPT-3.5-Turbo to transform these895

solution paths into interaction trajectories.896

MathQA (Amini et al., 2019) is a large-scale897

multiple-choice math problem dataset covering898

multiple math domains. MATH (Press et al., 2022)899

contains challenging mathematics problems from900

high school math competitions. To adapt these901

two datasets into interaction environments, we em-902

ploy a Python interpreter and employ the GPT-903

exploration pipeline to construct the trajectories.904

For the held-out task, we use TheoremQA (Chen905

et al., 2023b), a theorem-driven question answer-906

ing dataset composing of high-quality questions907

from math, physics, EE&CS, and finance. We im-908

plement Python interpreter and Wikipedia tools909

to construct the corresponding interactive environ-910

ment.911

Programming Tasks InterCode (Yang et al.,912

2023) is a benchmark for evaluating language mod-913

els on interactive programming tasks. In this task,914

agents are required to respond to natural language915

requests by interacting with a software system,916

such as a database or terminal. Our work focuses917

on evaluating the programming ability of agents918

using two environments: IC-Bash and IC-SQL. IC-919

Bash is specifically used for the held-out evaluation920

of agents.921

APPS (Hendrycks et al., 2021) is a benchmark922

focused on Python code generation, encompassing 923

a range of difficulty levels from introductory to 924

competition level. We utilize GPT-3.5-Turbo to 925

reformat the instances in this dataset and construct 926

the trajectories. 927

HumanEval (Chen et al., 2021) is a dataset de- 928

signed to measure functional correctness for synthe- 929

sizing programs from docstrings. MBPP (Austin 930

et al., 2021) consists of around 1,000 crowd- 931

sourced Python programming problems. For both 932

of these datasets, we employ the GPT-exploration 933

pipeline to annotate the interaction trajectories. 934

Subsequently, we employ the answer forcing 935

method to re-annotate the cases where GPT failed. 936

Web Tasks Mind2Web (Deng et al., 2023) is a 937

dataset for developing and evaluating generalist 938

agents for the web that can follow language instruc- 939

tions to complete complex tasks on any website. 940

WebArena (Zhou et al., 2023) builds realistic web 941

environments for agents to execute tasks. Even 942

GPT-4 struggles with these tasks, so we utilize a 943

teacher forcing and break down the complete inter- 944

action trajectory into multiple single steps. Then 945

GPT-3.5-Turbo is employed to annotate the ratio- 946

nales. 947

WebShop (Yao et al., 2022a) is a simulated e- 948

commerce website environment with real-world 949

products and crowd-sourced text instructions. For 950

1571 official human annotated trajectories, we em- 951

ploy GPT-3.5-Turbo to reformat them and anno- 952

tate rationales. Additionally, we incorporate trajec- 953

tories generated through GPT-exploration, which 954

have final rewards exceeding 0.3. 955

For our held-out task, we utilize Mini- 956

WoB++ (Kim et al., 2023), a diverse collection 957

of over 100 web interaction environments, to for- 958

mulate our benchmark. 959

Embodied AI Tasks ALFWorld (Shridhar et al., 960

2020b) contains interactive TextWorld environ- 961

ments that parallel embodied worlds in the AL- 962

FRED dataset (Shridhar et al., 2020a). This dataset 963

provides human-annotated gold trajectories for im- 964

itation learning. RoomR (Weihs et al., 2021) is an 965

embodied AI dataset which requires agents to re- 966

store the initial configurations of all objects within 967

a room. IQA (Gordon et al., 2018) is a question 968

answering task that requires an agent to interact 969

with a dynamic visual environment. In our work, 970

we utilize the text versions of RoomR and IQA 971

developed by Zheng et al. (2023b). We employ a 972

depth-first-search algorithm to build the gold action 973
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Dataset Model Rtrain Rpseudo Rtest ∆1 ∆2

AgentInstruct (Zeng et al., 2023)
Llama-2-7B-Chat 17.8 17.5 15.8 -0.3 -2.0
+Dtrain 72.5 72.6 62.4 +0.1 -10.1

AGENTBANK (Ours)
Llama-2-7B-Chat 16.2 16.5 16.0 +0.3 -0.2
+Dtrain 73.3 62.3 62.8 -11.0 -10.5

Table 8: The average reward of WebShop on different instruction sets. We compare the reward Rtrain, Rpseudo,
Rtest on the training set Dtrain, a pseudo test set held-out from the original training set Dpseudo, and original test
set Dtest respectively. We also reports two key metrics: ∆1 = Rpseudo −Rtrain and ∆2 = Rtest −Rtrain, as the
indicators of the difficulty differences between datasets.

sequences for RoomR and IQA. We then leverage974

GPT-3.5-Turbo to annotate the corresponding ratio-975

nales.976

For the held-out evaluation, we utilize Science-977

World (Wang et al., 2022a), a text-based virtual en-978

vironment which encompasses various elementary979

science experiment tasks, including thermodynam-980

ics and electrical circuits.981

B Difficulty Bias in Trajectory Collection982

In this section, we conduct a experiment to verify983

the existence of difficulty bias introduced by the984

trajectory annotation pipeline widely used in re-985

cent studies (Chen et al., 2023a; Zeng et al., 2023).986

Specifically, we choose WebShop trajectories in987

AGENTBANK and AgentInstruct (Zeng et al., 2023)988

to conduct the experiment. For AgentInstruct and989

AGENTBANK, we select 300 instances as the train-990

ing set Dtrain, 50 instances as the pseudo test set991

Dpseudo. We also include the original WebShop992

test set Dtest.993

For a dataset conforming to the i.i.d. assumption,994

the instances in Dtrain, Dpseudo, Dtest are sampled995

from the same distribution. Therefore, the expected996

behavior is that the evaluation results on Dpseudo997

and Dtest should be consistent. Furthermore, an998

agent trained on Dtrain should ideally perform bet-999

ter on Dtrain compared to Dpseudo and Dtest.1000

Table 8 illustrates the performance of untrained1001

Llama-2-7B-Chat and the trained agent on different1002

sets. For AgentInstruct, both models exhibit worse1003

performance on Dtest compared to Dpseudo, indi-1004

cating that instances in AgentInstruct are consider-1005

ably easier than those in the original test set. Con-1006

versely, for AGENTBANK, the agents have close1007

performance on Dpseudo and Dtest, aligning with1008

our expectations. The agent trained on our dataset1009

also outperforms the agent trained on AgentInstruct1010

when evaluated on Dtest. These experiments high-1011

light that the GPT-exploration trajectory annotation1012

Rationale IC-SQL WebShop

GPT-4 58.5 63.4
GPT-3.5-Turbo 58.8 63.2

Table 9: Comparison of rationales generated by different
LLMs.

pipeline can introduce difficulty bias in the training 1013

set, potentially compromising the generalizability 1014

of trained agents. 1015

C Prompts for Trajectory Annotation 1016

D CoT Rationales Generated by Different 1017

LLMs 1018

Since providing explanation for gold actions is rel- 1019

atively easy task, we employ GPT-3.5-Turbo as 1020

the primary LLM in the rationale annotation pro- 1021

cess for AGENTBANK. Here we compare the dif- 1022

ference of rationale generated by different LLMs. 1023

Specifically, we select IC-SQL and WebShop to 1024

conduct the experiments. As shown in Table 9, 1025

agents training with rationale generated by GPT-4 1026

and GPT-3.5-Turbo have little performance gap. 1027

E Quality Control of AGENTBANK 1028

In Section 4.2, we incorporate heuristic and GPT- 1029

based methods to construct AGENTBANK, which 1030

can mitigate the difficulty bias problem in the previ- 1031

ous annotation pipeline. In this section, we propose 1032

to perform a human evaluation to assess the quality 1033

of AGENTBANK. To achieve this, we employ 5 1034

human annotators who are instructed to choose the 1035

better trajectory from two anonymous candidate 1036

options. Here, we select two representative tasks: 1037

IC-SQL to assess the quality of answer forcing 1038

annotation, and WebShop to evaluate the quality 1039

of trajectory reformatting. For IC-SQL, we com- 1040

pare 100 trajectories generated by answer forcing 1041
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Dataset Win Lose Tie Total

IC-SQL 11 16 73 100
WebShop 12 10 58 80

Table 10: Human evaluation of the data quality for
AGENTBANK. For IC-SQL, we compare trajectories
generated through answer forcing with those generated
through exploration. For WebShop, we compare our
constructed trajectories with the trajectories constructed
by Zeng et al. (2023).

with those generated through GPT exploration. For1042

WebShop, we select 80 trajectories from AGENT-1043

BANK and Zeng et al. (2023) which correspond to1044

the same task instance.1045

As shown in Table 10, for most cases, trajecto-1046

ries generated by answer forcing or reformatting1047

have the same quality as GPT exploration. There-1048

fore, we can conclude that our trajectory annotation1049

process can achieve comparable quality with previ-1050

ous methods (Chen et al., 2023a; Zeng et al., 2023)1051

while mitigating the difficulty bias.1052

F Data Contamination1053

When training SAMOYED, we construct a data mix-1054

ture consisting of trajectory data (AGENTBANK),1055

generalist instruction data (ShareGPT), and code1056

data (Evol-CodeAlpaca). However, it is important1057

to address the concern of potential data contami-1058

nation, which could result in an overestimation of1059

performance. Therefore, we perform a contamina-1060

tion analysis by comparing our evaluation set with1061

AGENTBANK, ShareGPT, and Evol-CodeAlpaca.1062

Following Liang et al. (2022), we heuristically1063

match 9-grams and 13-grams from the instances1064

in the test set with the training set data. Table 111065

displays the proportion of instances which exhibit1066

an overlap with the training data.1067

First, we observe a high contamination rate for1068

held-in tasks with AGENTBANK. After manually1069

examining these instances, we have some findings.1070

In the case of StrategyQA, we discovered that all1071

instances followed a question format that could be1072

answered with a simple "yes" or "no," potentially1073

resulting in a high n-gram overlap. For WebShop1074

and ALFWorld, we found that the contamination1075

may be attributed to the template-based data con-1076

struction process. For instance, in WebShop, in-1077

structions consistently followed specific formats1078

like “I would like <product> that is <size> and is1079

the color <color>, and price lower than <price>1080

dollars”. Additionally, we observed that MBPP 1081

suffers from data contamination issues across all 1082

three training sets. After manual inspection, we 1083

determined that most of the overlap occurs in im- 1084

porting Python packages and commonly used code 1085

snippets, such as loops. 1086

In summary, it can be concluded that the data 1087

contamination has a minimal impact on the experi- 1088

mental results. While some overlap exists between 1089

the held-in tasks and the training set, this is pri- 1090

marily a result of their data construction process. 1091

Moreover, by adhering to the original train-test split 1092

of the datasets, the extent of performance overesti- 1093

mation is reduced. Most importantly, the held-out 1094

tasks, which are used to assess the agents’ gener- 1095

alized capabilities, do not suffer from the issue of 1096

data contamination. This ensures the trustworthi- 1097

ness and robustness of our evaluation. 1098

G Complete Experimental Results 1099

Table 12 shows the complete results on held-in 1100

tasks. 1101

H Evaluation on AgentBench 1102

AgentBench (Liu et al., 2023) is another evalua- 1103

tion benchmark for LLM agents, encompassing 1104

8 agent tasks. However, it is worth noting that 1105

some tasks in AgentBench are already covered by 1106

AGENTBANK, and some tasks may pose a risk of 1107

data contamination with our dataset. Nevertheless, 1108

to provide a comprehensive perspective, we have 1109

included the results of SAMOYED on AgentBench 1110

as a point of reference in Table 13. 1111
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Dataset #Inst AGENTBANK ShareGPT Evol-CodeAlpaca

9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate

Held-in Tasks

HotpotQA 100 1% 0% 0% 0% 0% 0%
StrategyQA 100 20% 12% 0% 0% 0% 0%
GSM8K 100 3% 0% 0% 0% 0% 0%
MATH 100 15% 4% 0% 0% 2% 0%
IC-SQL 100 7% 0% 0% 0% 1% 0%
MBPP 100 12% 1% 7% 3% 18% 4%
Mind2Web 1173 8% 3% 0% 0% 0% 0%
WebShop 200 41% 14% 0% 0% 0% 0%
ALFWorld 134 14% 8% 0% 0% 0% 0%

Held-out Tasks

Bamboogle 126 0% 0% 0% 0% 0% 0%
ThreomQA 100 0% 0% 0% 0% 0% 0%
IC-Bash 200 0% 0% 0% 0% 0% 0%
MiniWoB++ 460 0% 0% 0% 0% 2% 0%
SciWorld 270 0% 0% 0% 0% 0% 0%

Table 11: Data contamination analysis.

Model Held-in Tasks

HotpotQA StrategyQA GSM8K MATH IC-SQL MBPP Mind2Web WebShop ALFWorld Avg.

Closed-Source Model

GPT-4 52.1 71.0 87.0 59.0 37.8 72.0 22.6 58.6 77.8 59.8
GPT-3.5-Turbo 24.0 58.0 65.0 18.0 38.5 64.0 21.7 62.4 10.5 40.2

7B Open-Source Model

Llama-2-7B-Chat 3.0 5.0 15.0 0.0 4.0 1.0 11.9 15.8 0.0 6.2
Vicuna-7B 11.0 47.0 1.0 3.0 17.3 21.0 14.8 33.5 6.0 17.2
CodeLlama-7B 2.0 5.0 7.0 0.0 3.0 0.0 17.0 32.5 0.0 7.4
AgentLM-7B 10.0 49.0 14.0 6.0 13.9 10.0 10.6 63.7 63.4 26.7

SAMOYED-7B 30.0 66.0 43.0 18.0 59.2 24.0 12.2 60.5 61.2 41.6

13B Open-Source Model

Llama-2-13B-Chat 6.0 19.0 18.0 3.0 3.0 13.4 17.2 5.3 0.0 9.4
Vicuna-13B 15.0 36.0 9.0 4.0 37.0 23.7 15.2 53.3 2.2 21.7
CodeLlama-13B 7.0 20.0 29.0 8.1 3.0 7.2 7.6 23.0 0.0 11.7
AgentLM-13B 24.0 52.0 21.0 6.1 25.7 20.0 11.1 65.0 52.2 30.8

SAMOYED-13B 41.0 68.0 53.0 24.0 67.7 43.0 18.6 63.1 72.4 50.1

Table 12: Performance of SAMOYED and baseline LLMs on held-in tasks.

Model Code-grounded Game-grounded Web-grounded Overall
OS† DB† KG† DCG LTP HH‡ WS‡ WB‡

GPT-4 42.4 32.0 58.8 74.5 16.6 78.0 61.1 29.0 4.01
GPT-3.5-Turbo 32.6 36.7 25.9 33.7 10.5 16.0 64.1 20.0 2.32

Llama-2-7B-Chat 4.2 8.0 2.1 6.9 0.0 0.0 11.6 7.0 0.34
Vicuna-7B 9.7 8.7 2.5 0.3 6.4 0.0 2.2 9.0 0.56
CodeLlama-7B 4.9 12.7 8.2 0.0 0.0 2.0 25.2 12.0 0.50

SAMOYED-7B 11.8 9.7 2.7 1.9 8.2 68.0 60.5 12.2 1.60

Table 13: Performance of SAMOYED and baseline LLMs on AgentBench (Liu et al., 2023). † means the test set may
suffer data contamination with AGENTBANK. ‡ means the task is already covered by AGENTBANK.
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