
Published as a conference paper at ICLR 2023

MLPINIT: EMBARRASSINGLY SIMPLE GNN TRAIN-
ING ACCELERATION WITH MLP INITIALIZATION

Xiaotian Han1∗ Tong Zhao2 Yozen Liu2 Xia Hu3 Neil Shah2

1Texas A&M University 2Snap Inc. 3Rice University
han@tamu.edu {tzhao,yliu2,nshah}@snap.com xia.hu@rice.edu

ABSTRACT

Training graph neural networks (GNNs) on large graphs is complex and extremely
time consuming. This is attributed to overheads caused by sparse matrix multipli-
cation, which are sidestepped when training multi-layer perceptrons (MLPs) with
only node features. MLPs, by ignoring graph context, are simple and faster for
graph data, however they usually sacrifice prediction accuracy, limiting their ap-
plications for graph data. We observe that for most message passing-based GNNs,
we can trivially derive an analog MLP (we call this a PeerMLP) with an equivalent
weight space, by setting the trainable parameters with the same shapes, making
us curious about how do GNNs using weights from a fully trained PeerMLP per-
form? Surprisingly, we find that GNNs initialized with such weights significantly
outperform their PeerMLPs, motivating us to use PeerMLP training as a precursor,
initialization step to GNN training. To this end, we propose an embarrassingly
simple, yet hugely effective initialization method for GNN training acceleration,
called MLPInit. Our extensive experiments on multiple large-scale graph datasets
with diverse GNN architectures validate that MLPInit can accelerate the training
of GNNs (up to 33× speedup on OGB-products) and often improve prediction
performance (e.g., up to 7.97% improvement for GraphSAGE across 7 datasets
for node classification, and up to 17.81% improvement across 4 datasets for link
prediction on metric Hits@10). The code is available at https://github.com/snap-
research/MLPInit-for-GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Zhang et al., 2018; Zhou et al., 2020; Wu et al., 2020) have
attracted considerable attention from both academic and industrial researchers and have shown
promising results on various practical tasks, e.g., recommendation (Fan et al., 2019; Sankar et al.,
2021; Ying et al., 2018; Tang et al., 2022), knowledge graph analysis (Arora, 2020; Park et al.,
2019; Wang et al., 2021), forecasting (Tang et al., 2020; Zhao et al., 2021; Jiang & Luo, 2022) and
chemistry analysis (Li et al., 2018b; You et al., 2018; De Cao & Kipf, 2018; Liu et al., 2022). How-
ever, training GNN on large-scale graphs is extremely time-consuming and costly in practice, thus
spurring considerable work dedicated to scaling up the training of GNNs, even necessitating new
massive graph learning libraries (Zhang et al., 2020; Ferludin et al., 2022) for large-scale graphs.

Recently, several approaches for more efficient GNNs training have been proposed, including novel
architecture design (Wu et al., 2019; You et al., 2020d; Li et al., 2021), data reuse and partitioning
paradigms (Wan et al., 2022; Fey et al., 2021; Yu et al., 2022) and graph sparsification (Cai et al.,
2020; Jin et al., 2021b). However, these kinds of methods often sacrifice prediction accuracy and
increase modeling complexity, while sometimes meriting significant additional engineering efforts.

MLPs are used to accelerate GNNs (Zhang et al., 2021b; Frasca et al., 2020; Hu et al., 2021) by
decoupling GNNs to node features learning and graph structure learning. Our work also leverages
MLPs but adopts a distinct perspective. Notably, we observe that the weight space of MLPs and
GNNs can be identical, which enables us to transfer weights between MLP and GNN models. Hav-
ing the fact that MLPs train faster than GNNs, this observation inspired us to raise the question:

∗This work was done while the first author was an intern at Snap Inc.

1

https://github.com/snap-research/MLPInit-for-GNNs
https://github.com/snap-research/MLPInit-for-GNNs

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30 35 40 45 50

Epoches

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

u
ra

cy

OGB-arXiv (GCN)

Random

MLPInit

0 5 10 15 20 25 30 35 40 45 50

Epoches

0.625

0.650

0.675

0.700

0.725

A
cc

u
ra

cy

OGB-arXiv (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoches

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (ClusterGCN)

3. 𝟗𝟒×	
Speedup

0 5 10 15 20 25 30 35 40 45 50

Epoches

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (GraphSAINT)

𝟐.𝟒𝟖×	
Speedup

𝟐.𝟎𝟔×	
Speedup

1. 𝟗𝟏×	
Speedup

Figure 1: The training speed comparison of the GNNs with Random initialization and MLPInit.
indicates the best performance that GNNs with random initialization can achieve. indicates the
comparable performance of the GNN with MLPInit. Speedup indicates the training time reduced
by our proposed MLPInit compared to random initialization. This experimental result shows that
MLPInit is able to accelerate the training of GNNs significantly.

Can we train GNNs more efficiently by leveraging the weights of converged MLPs?

To answer this question, we first pioneer a thorough investigation to reveal the relationship between
the MLPs and GNNs in terms of trainable weight space. For ease of presentation, we define the
PeerMLP of a GNN1 so that GNN and its PeerMLP share the same weights 2. We find that interest-
ingly, GNNs can be optimized by training the weights of their PeerMLP. Based on this observation,
we adopt weights of converged PeerMLP as the weights of corresponding GNNs and find that these
GNNs perform even better than converged PeerMLP on node classification tasks (results in Table 2).

Motivated by this, we propose an embarrassingly simple, yet remarkably effective method to accel-
erate GNNs training by initializing GNN with the weights of its converged PeerMLP. Specifically, to
train a target GNN, we first train its PeerMLP and then initialize the GNN with the optimal weights
of converged PeerMLP. We present the experimental results in Figure 1 to show the training speed
comparison of GNNs with random initialization and with MLPInit. In Figure 1, Speedup shows the
training time reduced by our proposed MLPInit compared to random initialized GNN, while achiev-
ing the same test performance. This experimental result shows that MLPInit is able the accelerate the
training of GNNs significantly: for example, we speed up the training of GraphSAGE, GraphSAINT,
ClusterGCN, GCN by 2.48×, 3.94×, 2.06×, 1.91× on OGB-arXiv dataset, indicating the superior-
ity of our method in GNNs training acceleration. Moreover, we speed up GraphSAGE training more
than 14× on OGB-products. We highlight our contributions as follows:

• We pioneer a thorough investigation to reveal the relationship between MLPs and GNNs in terms
of the trainable weight space through the following observations: (i) GNNs and MLPs have the
same weight space. (ii) GNNs can be optimized by training the weights of their PeerMLPs. (iii)
GNN with weights from its converged PeerMLP surprisingly performs better than the perfor-
mance of its converged PeerMLP on node classification tasks.

• Based on the above observations, we proposed an embarrassingly simple yet surprisingly effective
initialization method to accelerate the GNNs training. Our method, called MLPInit, initializes the
weights of GNNs with the weight of their converged PeerMLP. After initialization, we observe
that GNN training takes less than half epochs to converge than those with random initialization.
Thus, MLPInit is able to accelerate the training of GNNs since training MLPs is cheaper and faster
than training GNNs.

• Comprehensive experimental results on multiple large-scale graphs with diverse GNNs validate
that MLPInit is able to accelerate the training of GNNs (up to 33× speedup on OGB-products)
while often improving the model performance 3 (e.g., 7.97% improvement for node classification
on GraphSAGE and 17.81% improvement for link prediction on Hits@10).

• MLPInit is extremely easy to implement and has virtually negligible computational overhead com-
pared to the conventional GNN training schemes. In addition, it is orthogonal to other GNN accel-
eration methods, such as weight quantization and graph coarsening, further increasing headroom
for GNN training acceleration in practice.

1The formal definition of PeerMLP is in Section 3.
2By share the same weight, we mean that the trainable weights of GNN and its PeerMLP are the same in

terms of size, dimension, and values.
3By performance, we refer to the model prediction quality metric of the downstream task on the correspond-

ing test data throughout the discussion.

2

Published as a conference paper at ICLR 2023

2 PRELIMINARIES

Notations. We denote an attributed graph G = (X,A), where X = {x1,x2, · · · ,xN} ∈ RN×D

is the node feature matrix and A = {0, 1}N×N is the binary adjacency matrix. N is the number
of nodes, and D is the dimension of node feature. For the node classification task, we denote the
prediction targets by Y ∈ {0, 1, . . . , C − 1}N , where C is the number of classes. We denote a
GNN model as fgnn(X,A;wgnn), and an MLP as fmlp(X;wmlp), where wgnn and wmlp denote
the trainable weights in the GNN and MLP, respectively. Moreover, w∗

gnn and w∗
mlp denote the fixed

weights of optimal (or converged) GNN and MLP, respectively.

Graph Neural Networks. Although various forms of graph neural networks (GNNs) exist, our
work refers to the conventional message passing flavor (Gilmer et al., 2017). These models work by
learning a node’s representation by aggregating information from the node’s neighbors recursively.
One simple yet widely popular GNN instantiation is the graph convolutional network (GCN), whose
multi-layer form can be written concisely: the representation vectors of all nodes at the l-th layer
are Hl = σ(AHl−1Wl), where σ(·) denotes activation function, Wl is the trainable weights of
the l-th layer, and Hl−1 is the node representations output by the previous layer. Denoting the
output of the last layer of GNN by H, for a node classification task, the prediction of node label
is Ŷ = softmax(H). For a link prediction task, one can predict the edge probabilities with any
suitable decoder, e.g., commonly used inner-product decoder as Â = sigmoid(H · HT) (Kipf &
Welling, 2016b).

3 MOTIVATING ANALYSES

In this section, we reveal that MLPs and GNNs share the same weight space, which facilitates the
transferability of weights between the two architectures. Through this section, we use GCN (Kipf &
Welling, 2016a) as a prototypical example for GNNs for notational simplicity, but we note that our
discussion is generalizable to other message-passing GNN architectures.

Motivation 1: GNNs share the same weight space with MLPs. To show the weight space of
GNNs and MLPs, we present the mathematical expression of one layer of MLP and GCN (Kipf &
Welling, 2016a) as follows:

GNN: Hl = σ(AHl−1Wl
gnn), MLP: Hl = σ(Hl−1Wl

mlp), (1)

where Wl
gnn and Wl

mlp are the trainable weights of l-th layer of MLP and GCN, respectively. If
we set the hidden layer dimensions of GNNs and MLPs to be the same, then Wl

mlp and Wl
gnn will

naturally have the same size. Thus, although the GNN and MLP are different models, their weight
spaces can be identical. Moreover, for any GNN model, we can trivially derive a corresponding
MLP whose weight space can be made identical. For brevity, and when the context of a GNN model
is made clear, we can write such an MLP which shares the same weight space as a PeerMLP, i.e.,
their trainable weights can be transferred to each other.

Motivation 2: MLPs train faster than GNNs. GNNs train slower than MLPs, owing to their
non-trivial relational data dependency. We empirically validate that training MLPs is much faster
than training GNNs in Table 1. Specifically, this is because MLPs do not involve sparse matrix
multiplication for neighbor aggregation. A GNN layer (here we consider a simple GCN layer, as
defined in Equation (1)) can be broken down into two operations: feature transformation (Z =
Hl−1Wl) and neighbor aggregation (Hl = AZ) (Ma et al., 2021). The neighbor aggregation and
feature transformation are typically sparse and dense matrix multiplications, respectively. Table 1
shows the time usage for these different operations on several real-world graphs. As expected,
neighbor aggregation in GNNs consumes the large majority of computation time. For example, on
the Yelp dataset, the neighbor aggregation operation induces a 3199× time overhead.

Given that the weights of GNNs and their PeerMLP can be transferred to each other, but the PeerMLP
can be trained much faster, we raise the following questions:

1. What will happen if we directly adopt the weights of a converged PeerMLP to GNN?
2. To what extent can PeerMLP speed up GNN training and improve GNN performance?

In this paper, we try to answer these questions with a comprehensive empirical analysis.

3

Published as a conference paper at ICLR 2023

Table 1: Comparison of the running time of forward and backward for different operations (i.e.,
feature transformation and neighbor aggregation) in GNNs. The time unit is milliseconds (ms).

Operation OGB-arXiv Flickr Yelp

#Nodes 169343 89250 716847
#Edges 1166243 899756 13954819

Forward Backward Total Forward Backward Total Forward Backward Total

Z = XW 0.32 1.09 1.42 0.28 0.97 1.26 1.58 4.41 5.99
H = AZ 1.09 1028.08 1029.17 1.01 836.95 837.97 9.74 19157.17 19166.90

724× 665× 3199×

w∗
mlp w∗

gnn

Figure 2: The relation of GNN and MLP during the training of PeerMLP. Left: Cross-Entropy loss
of fgnn(X,A;wmlp) (GNN) and fmlp(X;wmlp) (PeerMLP) on training set over training epochs of
PeerMLP. In this experiment, GNN and PeerMLP share the same weight wmlp, which are trained
by the PeerMLP. Middle: training trajectory of PeerMLP on its own loss landscape. Right: training
trajectory of GNN with weights from PeerMLP on GNN’s loss landscape. The figures show that
training loss of GNN with weights trained from MLP will decrease. The details are presented in Ap-
pendix D.2. We also present loss curves on validation/test sets and accuracy curves in Appendix A.4.

4 WHAT WILL HAPPEN IF WE DIRECTLY ADOPT THE WEIGHTS OF A
CONVERGED PEERMLP TO GNN?

To answer this question, we conducted comprehensive preliminary experiments to investigate weight
transferability between MLPs and GNNs. We made the following interesting and inspiring findings:

Observation 1: The training loss of GNN will decrease by optimizing the weights of its
PeerMLP. We conducted a verification experiment to investigate the loss changes of the GNNs with
the weights trained from its PeerMLP and present the results in Figure 2. In this experiment, we have
two models, a GNN and its corresponding PeerMLP, who share the same weights wmlp. That is, the
PeerMLP is fmlp(X;wmlp) and the GNN is fgnn(X,A;wmlp). We optimize the weights wmlp by
training the PeerMLP, and the loss curve of fmlp(X;wmlp) is the blue line in the left figure in Fig-
ure 2. We also compute the loss of GNN fgnn(X,A;wmlp) with the weights from PeerMLP. The
loss curve of fgnn(X,A;wmlp) is shown in the red line. Figure 2 shows the surprising phenomenon
that the training loss of GNN with weights trained from PeerMLP decreases consistently. Impres-
sively, these weights (wmlp) were derived without employing neighbor aggregation in training.

Table 2: The performance of GNNs and its
PeerMLP with the weights of a converged
PeerMLP on test data.

Methods PeerMLP GNN Improv. MLPInit

OG
B-

ar
Xi

v GraphSAGE 56.04±0.27 62.87±0.95 ↑ 12.18% 72.25±0.30

GraphSAINT 53.88±0.41 63.26±0.71 ↑ 17.41% 68.80±0.20

ClusterGCN 54.47±0.41 60.81±1.30 ↑ 11.63% 69.53±0.50

GCN 56.31±0.21 56.28±0.89 ↓ 0.04% 70.35±0.34

OG
B-

pr
od

uc
ts GraphSAGE 63.43±0.14 74.32±1.04 ↑ 17.16% 80.04±0.62

GraphSAINT 57.29±0.32 69.00±1.54 ↑ 20.44% 74.02±0.19

ClusterGCN 59.53±0.46 71.74±0.70 ↑ 20.51% 78.48±0.64

GCN 62.63±0.15 71.11±0.10 ↑ 13.55% 76.85±0.34

Observation 2: Converged weights from
PeerMLP provide a good GNN initialization.
As PeerMLP and GNN have the same weight
spaces, a natural follow-up question is whether
GNN can directly adopt the weights of the con-
verged PeerMLP and perform well. We next aim
to understand this question empirically. Specifi-
cally, we first trained a PeerMLP for a target GNN
and obtained the optimal weights w∗

mlp. Next, we
run inference on test data using a GNN with w∗

mlp

of PeerMLP, i.e., applying fgnn(X,A;w∗
mlp).

Table 2 shows the results of fmlp(X;w∗
mlp) and

fgnn(X,A;w∗
mlp). We can observe that the

GNNs with the optimal weights of PeerMLP consistently outperform PeerMLP, indicating that the
weights from converged PeerMLP can serve as good enough initialization of the weights of GNNs.

4

Published as a conference paper at ICLR 2023

4.1 THE PROPOSED METHOD: MLPINIT

The above findings show that MLPs can help the training of GNNs. In this section, we formally
present our method MLPInit, which is an embarrassingly simple, yet extremely effective approach to
accelerating GNN training.

The basic idea of MLPInit is straightforward: we adopt the weights of a converged PeerMLP to initial-
ize the GNN, subsequently, fine-tune the GNN. Specifically, for a target GNN (fgnn(X,A;wgnn)),
we first construct a PeerMLP (fmlp(X,A;wmlp)), with matching target weights. Next, we optimize
the weight of the PeerMLP model by training the PeerMLP solely with the node features X for m
epochs. Upon training the PeerMLP to convergence and obtaining the optimal weights (w∗

mlp), we
initialize the GNN with w∗

mlp and then fine-tune the GNN with n epochs. We present PyTorch-style
pseudo-code of MLPInit in node classification setting in Algorithm 1.

Algorithm 1 PyTorch-style Pseudocode of MLPInit

f_gnn: graph neural network model
f_mlp: PeerMLP of f_gnn

Train PeerMLP for N epochs
for X, Y in dataloader_mlp:

P = f_mlp(X)
loss = nn.CrossEntropyLoss(P, Y)
loss.backward()
optimizer_mlp.step()

Initialize GNN with MLPInit
torch.save(f_mlp.state_dict(), "w_mlp.pt")
f_gnn.load_state_dict("w_mlp.pt")

Train GNN for n epochs
for X, A, Y in dataloader_gnn:

P = f_gnn(X, A)
loss = nn.CrossEntropyLoss(P, Y)
loss.backward()
optimizer_gnn.step()

Training Acceleration. Since training of
the PeerMLP is comparatively cheap, and the
weights of the converged PeerMLP can pro-
vide a good initialization for the corresponding
GNN, the end result is that we can significantly
reduce the training time of the GNN. Assum-
ing that the training of GNN from a random
initialization needs N epochs to converge, and
N >> n, the total training time can be largely
reduced given that MLP training time is neg-
ligible compared to GNN training time. The
experimental results in Table 3 show that N is
generally much larger than n.

Ease of Implementation. MLPInit is extremely
easy to implement as shown in Algorithm 1.
First, we construct an MLP (PeerMLP), which
has the same weights with the target GNN.
Next, we use the node features X and node labels Y to train the PeerMLP to converge. Then,
we adopt the weights of converged PeerMLP to the GNN, and fine-tune the GNN while additionally
leveraging the adjacency A. In addition, our method can also directly serve as the final, or deployed
GNN model, in resource-constrained settings: assuming n = 0, we can simply train the PeerMLP
and adopt w∗

mlp directly. This reduces training cost further, while enabling us to serve a likely higher
performance model in deployment or test settings, as Table 2 shows.

4.2 DISCUSSION

In this section, we discuss the relation between MLPInit and existing methods. Since we position
MLPInit as an acceleration method involved MLP, we first compare it with MLP-based GNN accel-
eration methods, and we also compare it with GNN Pre-training methods.

Comparison to MLP-based GNN Acceleration Methods. Recently, several works aim to sim-
plify GNN to MLP-based constructs during training or inference (Zhang et al., 2022; Wu et al.,
2019; Frasca et al., 2020; Sun et al., 2021; Huang et al., 2020; Hu et al., 2021). Our method is
proposed to accelerate the message passing based GNN for large-scale graphs. Thus, MLP-based
GNN acceleration is a completely different line of work compared to ours since it removes the mes-
sage passing in the GNNs and uses MLP to model graph structure instead. Thus, MLP-based GNN
acceleration methods are out of the scope of the discussion in this work.

Comparison to GNN Pre-training Methods. Our proposed MLPInit are orthogonal to the GNN
pre-training methods(You et al., 2020b; Zhu et al., 2020b; Veličković et al., 2018b; You et al., 2021;
Qiu et al., 2020; Zhu et al., 2021; Hu et al., 2019). GNN pre-training typically leverages graph
augmentation to pretrain weights of GNNs or obtain the node representation for downstream tasks.
Compared with the pre-training methods, MLPInit has two main differences (or advantages) that
significantly contribute to the speed up: (i) the training of PeerMLP does not involve using the graph
structure data, while pre-training methods rely on it. (ii) Pre-training methods usually involve graph
data augmentation (Qiu et al., 2020; Zhao et al., 2022a), which requires additional training time.

5

Published as a conference paper at ICLR 2023

Table 3: Speed improvement when MLPInit achieves comparable performance with random initial-
ized GNN. The number reported is the training epochs needed. (—) means our method can not reach
comparable performance. The epoch used by Random/MLPInit is denoted as / in Figure 1. The
detailed speedup computation method are presented in Appendix D.3.

Methods Flickr Yelp Reddit Reddit2 A-products OGB-arXiv OGB-products Avg.

SA
G

E Random() 45.6 44.7 36.0 48.0 48.9 46.7 43.0 44.7
MLPInit () 39.9 20.3 7.3 7.7 40.8 22.7 2.9 20.22
Improv. 1.14× 2.20× 4.93× 6.23× 1.20× 2.06× 14.83× 2.21×

SA
IN

T Random 31.0 35.8 40.6 28.3 50.0 48.3 44.9 40.51
MLPInit 14.1 0.0 21.8 6.1 9.1 19.5 16.9 14.58
Improv. 2.20× — 1.86× 4.64× 5.49× 2.48× 2.66× 2.77×

C
-G

C
N Random 15.7 40.3 46.2 47.0 37.4 42.9 42.8 38.9

MLPInit 7.3 18.0 12.8 17.0 1.0 10.9 15.0 11.7
Improv. 2.15× 2.24× 3.61× 2.76× 37.40× 3.94× 2.85× 3.32×

G
C

N Random 46.4 44.5 42.4 2.4 47.7 46.7 43.8 45.35
MLPInit 30.5 23.3 0.0 0.0 0.0 24.5 1.3 19.9
Improv. 1.52× 1.91× — — — 1.91× 33.69× 2.27×

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.00

1.25

1.50

1.75

2.00

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.0

1.5

2.0

2.5

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

ogbn-arXiv (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

ogbn-arXiv (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.625

0.650

0.675

0.700

0.725

A
cc

u
ra

cy

ogbn-arXiv (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

u
ra

cy

ogbn-arXiv (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.0

1.2

1.4

1.6

1.8

2.0

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.9

1.0

1.1

1.2

1.3

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (GraphSAGE)

Figure 3: The training curves of different GNNs on OGB-arXiv. GNN with MLPInit generally
obtains lower loss and higher accuracy than those with the random initialization and converges faster.
The training curves are depicted based on ten runs. More experiment results are in Appendix A.

5 EXPERIMENTS

In the next subsections, we conduct and discuss experiments to understand MLPInit from the follow-
ing aspects: (i) training speedup, (ii) performance improvements, (iii) hyperparameter sensitivity,
(iv) robustness and loss landscape. For node classification, we consider Flickr, Yelp, Reddit,
Reddit2, A-products, and two OGB datasets (Hu et al., 2020), OGB-arXiv and OGB-products as
benchmark datasets. We adopt GCN (w/ mini-batch) (Kipf & Welling, 2016a), GraphSAGE (Hamil-
ton et al., 2017), GraphSAINT(Zeng et al., 2019) and ClusterGCN (Chiang et al., 2019) as GNN
backbones. The details of datasets and baselines are in Appendices C.1 and C.2, respectively. For
the link prediction task, we consider Cora, CiteSeer, PubMed, CoraFull, CS, Physics, A-Photo,
and A-Computers as our datasets. Our link prediction setup is using as GCN as an encoder which
transforms a graph to node representation H and an inner-product decoder Â = sigmoid(H ·HT)
to predict the probability of the link existence, which is discussed in Section 2.

5.1 HOW MUCH CAN MLPINIT ACCELERATE GNN TRAINING?

In this section, we compared the training speed of GNNs with random initialization and MLPInit.
We computed training epochs needed by GNNs with random initialization to achieve the best test
performance. We also compute the running epochs needed by GNNs with MLPInit to achieve com-
parable test performance. We present the results in Table 3. We also plotted the loss and accuracy
curves of different GNNs on OGB-arXiv in Figure 3. We made the following major observations:

6

Published as a conference paper at ICLR 2023

Table 4: Performance improvement when GNN with random initialization and with MLPInit achieve
best test performance, respectively. Mean and standard deviation are calculated based on ten runs.
The best test performance for the two methods is independently selected based on validation data.

Methods Flickr Yelp Reddit Reddit2 A-products OGB-arXiv OGB-products Avg.
SA

G
E Random 53.72±0.16 63.03±0.20 96.50±0.03 51.76±2.53 77.58±0.05 72.00±0.16 80.05±0.35 70.66

MLPInit 53.82±0.13 63.93±0.23 96.66±0.04 89.60±1.60 77.74±0.06 72.25±0.30 80.04±0.62 76.29
Improv. ↑ 0.19% ↑ 1.43% ↑ 0.16% ↑ 73.09% ↑ 0.21% ↑ 0.36% ↓ 0.01% ↑ 7.97%

SA
IN

T Random 51.37±0.21 29.42±1.32 95.58±0.07 36.45±4.09 59.31±0.12 67.95±0.24 73.80±0.58 59.12
MLPInit 51.35±0.10 43.10±1.13 95.64±0.06 41.71±1.25 68.24±0.17 68.80±0.20 74.02±0.19 63.26
Improv. ↓ 0.05% ↑ 46.47% ↑ 0.06% ↑ 14.45% ↑ 15.06% ↑ 1.25% ↑ 0.30% ↑ 7.00%

C
-G

C
N Random 49.95±0.15 56.39±0.64 95.70±0.06 53.79±2.48 52.74±0.28 68.00±0.59 78.71±0.59 65.04

MLPInit 49.96±0.20 58.05±0.56 96.02±0.04 77.77±1.93 55.61±0.17 69.53±0.50 78.48±0.64 69.34
Improv. ↑ 0.02% ↑ 2.94% ↑ 0.33% ↑ 44.60% ↑ 5.45% ↑ 2.26% ↓ 0.30% ↑ 6.61%

G
C

N Random 50.90±0.12 40.08±0.15 92.78±0.11 27.87±3.45 36.35±0.15 70.25±0.22 77.08±0.26 56.47
MLPInit 51.16±0.20 40.83±0.27 91.40±0.20 80.37±2.61 39.70±0.11 70.35±0.34 76.85±0.34 64.38
Improv. ↑ 0.51% ↑ 1.87% ↓ 1.49% ↑ 188.42% ↑ 9.22% ↑ 0.14% ↓ 0.29% ↑ 14.00%

Table 5: The performance of link prediction task. The results are based on ten runs. The experiments
on other datasets are presented in Table 6. More experiments are presented in Appendix A.1.

Methods AUC AP Hits@10 Hits@20 Hits@50 Hits@100

Pu
bM

ed

MLPrandom 94.76±0.30 94.28±0.36 14.68±2.60 24.01±3.04 40.02±2.75 54.85±2.03
GNNrandom 96.66±0.29 96.78±0.31 28.38±6.11 42.55±4.83 60.62±4.29 75.14±3.00
GNNmlpinit 97.31±0.19 97.53±0.21 37.58±7.52 51.83±7.62 70.57±3.12 81.42±1.52

Improvement ↑ 0.68% ↑ 0.77% ↑ 32.43% ↑ 21.80% ↑ 16.42% ↑ 8.36%

DB
LP

MLPrandom 95.20±0.18 95.53±0.25 28.70±3.73 39.22±4.13 53.36±3.81 64.83±1.95
GNNrandom 96.29±0.20 96.64±0.23 36.55±4.08 43.13±2.85 59.98±2.43 71.57±1.00
GNNmlpinit 96.67±0.13 97.09±0.14 40.84±7.34 53.72±4.25 67.99±2.85 77.76±1.20

Improvement ↑ 0.39% ↑ 0.47% ↑ 11.73% ↑ 24.57% ↑ 13.34% ↑ 8.65%

A-
Ph

ot
o MLPrandom 86.18±1.41 85.37±1.24 4.36±1.14 6.96±1.28 12.20±1.24 17.91±1.26

GNNrandom 92.07±2.14 91.52±2.08 9.63±1.58 12.82±1.72 20.90±1.90 29.08±2.53
GNNmlpinit 93.99±0.58 93.32±0.60 9.17±2.12 13.12±2.11 22.93±2.56 32.37±1.89

Improvement ↑ 2.08% ↑ 1.97% ↓ 4.75% ↑ 2.28% ↑ 9.73% ↑ 11.32%

Ph
ys

ic
s MLPrandom 96.26±0.11 95.63±0.15 5.38±1.32 8.76±1.37 15.86±0.81 24.70±1.11

GNNrandom 95.84±0.13 95.38±0.15 6.62±1.00 10.39±1.04 18.55±1.60 26.88±1.95
GNNmlpinit 96.89±0.07 96.55±0.11 8.05±1.44 13.06±1.94 22.38±1.94 32.31±1.43

Improvement ↑ 1.10% ↑ 1.22% ↑ 21.63% ↑ 25.76% ↑ 20.63% ↑ 20.20%

Avg. ↑ 1.05% ↑ 1.10% ↑ 17.81% ↑ 20.97% ↑ 14.88% ↑ 10.46%

Observation 3: MLPInit can significantly reduce the training time of GNNs. In this experiment,
we summarize the epochs needed by GNN with random initialization to obtain the best performance,
and then we calculate the epochs needed by GNN with MLPInit to reach a comparable performance
on par with the randomly initialized GNN. We present the time speedup of MLPInit in Table 3.
Table 3 shows MLPInit speed up the training of GNNs by 2−5 times generally and in some cases even
more than 30 times. The consistent reduction of training epochs on different datasets demonstrates
that MLPInit can generally speed up GNN training quite significantly.

5.2 HOW WELL DOES MLPINIT PERFORM ON NODE CLASSIFICATION AND LINK PREDICTION
TASKS?

In this section, we conducted experiments to show the superiority of the proposed method in terms
of final, converged GNN model performance on node classification and link prediction tasks. The
reported test performances of both random initialization and MLPInit are selected based on the vali-
dation data. We present the performance improvement of MLPInit compared to random initialization
in Tables 4 and 5 for node classification and link prediction, respectively.

Observation 4: MLPInit improves the prediction performance for both node classification and
link prediction task in most cases. Table 4 shows our proposed method gains 7.97%, 7.00%, 6.61%
and 14.00% improvements for GraphSAGE, GraphSAINT, ClusterGCN, and GCN on average cross

7

Published as a conference paper at ICLR 2023

Random Init MLPInit

O
G
B
-p
ro
du
ct
s

O
G
B
-a
rX
iv

Figure 5: The loss landscape of GNN trained
with random initialization (left) and MLPInit
(right). The low-loss area of GNNs with MLPInit
is larger than that with random initialization.

Random Init MLPInit

O
G
B
-p
ro
du
ct
s

O
G
B
-a
rX
iv

Figure 6: The training trajectory of the GNN
with random initialization (left) and MLPInit
(right). The first-phase training of GNNs can
be taken over by lightweight MLPs.

all the datasets for the node classification task. The results in Table 5 and Table 6 show our proposed
method gains 1.05%, 1.10%, 17.81%, 20.97%, 14.88%,10.46% on average cross various metrics
for the link prediction task.

5.3 IS MLPINIT ROBUST UNDER DIFFERENT HYPERPARAMETERS?

In practice, one of the most time-consuming parts of training large-scale GNNs is hyperparameter
tuning (You et al., 2020a). Here, we perform experiments to investigate the sensitivity of MLPInit to
various hyperparameters, including the architecture hyperparameters and training hyperparameters.

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (ClusterGCN)

Random-test

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.0

0.2

0.4

0.6

A
cc

u
ra

cy

OGB-arXiv (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.4

0.6

A
cc

u
ra

cy

OGB-arXiv (GraphSAINT)

A
rc

hi
te

ct
ur

e
H

P
T

ra
in

in
g

H
P

Figure 4: Training curves of GNNs with var-
ious hyperparameters. GNNs with MLPInit
consistently outperform random initializa-
tion and have a smaller standard deviation.

Observation 5: MLPInit makes GNNs less sensi-
tive to hyperparameters and improves the overall
performance across various hyperparameters. In
this experiment, we trained PeerMLP and GNN with
different “Training HP” (Learning rate, weight de-
cay, and batch size) and “Architecture HP” (i.e., lay-
ers, number of hidden neurons), and we presented
the learning curves of GNN with different hyperpa-
rameters in Figure 4. One can see from the results
that GNNs trained with MLPInit have a much smaller
standard deviation than those trained with random
initialization. Moreover, MLPInit consistently out-
performs random initialization in task performance.
This advantage allows our approach to saving time in
searching for architectural hyperparameters. In prac-
tice, different datasets require different hyperparam-
eters. Using our proposed method, we can generally
choose random hyperparameters and obtain reason-
able and relatively stable performance owing to the PeerMLP’s lower sensitivity to hyperparameters.

5.4 WILL MLPINIT FACILITATE BETTER CONVERGENCE FOR GNNS?

In this experiment, we performed experiments to analyze the convergence of a fine-tuned GNN
model. In other words, does this pre-training actually help find better local minima?

Observation 6: MLPInit finds larger low-loss area in loss landscape for GNNs. The geometry of
loss surfaces reflects the properties of the learned model, which provides various insights to assess
the generalization ability (Fort et al., 2019; Huang et al., 2019; Wen et al., 2018) and robustness (Fort
et al., 2019; Liu et al., 2020; Engstrom et al., 2019) of a neural network. In this experiment, we plot
the loss landscape of GNN (GraphSAGE) with random weight initialization and MLPInit using the
visualization tool introduced in Li et al. (2018a). The loss landscapes are plotted based on the
training loss and with OGB-arXiv and OGB-products datasets. The loss landscapes are shown in

8

Published as a conference paper at ICLR 2023

Figure 5. For the fair comparison, two random directions of the loss landscape are the same and the
lowest values of losses in the landscape are the same within one dataset, 1.360 for OGB-arXiv and
0.340 for OGB-products. From the loss landscape, we can see that the low-loss area of MLPInit
is larger in terms of the same level of loss in each dataset’s (row’s) plots, indicating the loss land-
scape of the model trained with MLPInit results in larger low-loss area than the model with random
initialization. In summary, MLPInit helps larger low-loss areas in loss landscape for GNNs.

Observation 7: MLPInit speeds up the optimization process for GNNs. To further understand
the training procedure of MLPInit, we visualize the training trajectories along with loss landscapes
through tools (Li et al., 2018a) in Figure 6. In this experiment, we use GraphSAGE on OGB-arXiv
and OGB-products datasets, we first train a PeerMLP and then use the weights of the converged
PeerMLP to initialize the GraphSAGE and fine-tune it. Then we plot the training trajectories of
PeerMLP and GraphSAGE on the loss landscape of GraphSAGE. The red line indicates the training
trajectories of the training of PeerMLP and the blue line indicates the fine-tuning of GNNs. We
can see that the end point of the training of MLP (red line) is close to the minima area in the loss
landscape. The training trajectory clearly shows the reason why MLPInit works, i.e., the first-phase
training of GNNs can be taken over by lightweight MLPs.

6 RELATED WORK

In this section, we present several lines of related work and discuss their difference and relation to
our work. Also appearing at the same conference as this work, (Yang et al., 2023) concurrently
found a similar phonnomenia as our findings and provided a theoretical analysis of it.

Message passing-based GNNs. Graph neural networks typically follow the message passing mech-
anism, which aggregates the information from node’s neighbors and learns node representation for
downstream tasks. Following the pioneering work GCN (Kipf & Welling, 2016a), several other
works (Veličković et al., 2018a; Xu et al., 2018; Balcilar et al., 2021; Thorpe et al., 2021; Brody
et al., 2021; Tailor et al., 2021) seek to improve or better understand message passing-based GNNs.

Efficient GNNs. In order to scale GNNs to large-scale graphs, the efficiency of GNNs has attracted
considerable recent attention. Subgraph sampling technique (Hamilton et al., 2017; Chiang et al.,
2019; Zeng et al., 2019) has been proposed for efficient mini-batch training for large-scale graphs.
All of these methods follow the message passing mechanism for efficient GNN training. There is
another line of work on scalable GNNs, which uses MLPs to simplify GNNs (Zhang et al., 2022; Wu
et al., 2019; Frasca et al., 2020; Sun et al., 2021; Huang et al., 2020; Hu et al., 2021). These methods
aim to decouple the feature aggregation and transformation operations to avoid excessive, expensive
aggregation operations. We compared our work with this line of work in Section 4.2. There are also
other acceleration methods, which leverage weight quantization and graph sparsification (Cai et al.,
2020). However, these kinds of methods often sacrifice prediction accuracy and increase modeling
complexity, while sometimes meriting significant additional engineering efforts.

GNN Pre-training. The recent GNN pretraining methods mainly adopt contrastive learning (Has-
sani & Khasahmadi, 2020; Qiu et al., 2020; Zhu et al., 2020b; 2021; You et al., 2021; 2020c; Jin
et al., 2021a; Han et al., 2022; Zhu et al., 2020a). GNN pretraining methods typically leverage graph
augmentation to pretrain weights of GNNs or obtain the node representation for downstream tasks.
For example, Zhu et al. (2020b) maximizes the agreement between two views of one graph. GNN
pre-training methods not only use graph information for model training but also involve extra graph
data augmentation operations, which require additional training time and engineering effort.

7 CONCLUSION

This work presents a simple yet effective initialization method, MLPInit, to accelerate the training of
GNNs, which adopts the weights from their converged PeerMLP initialize GNN and then fine-tune
GNNs. With comprehensive experimental evidence, we demonstrate the superiority of our proposed
method on training speedup (up to 33× speedup on OGB-products), downstream task performance
improvements(up to 7.97% performance improvement for GraphSAGE), and robustness improve-
ments (larger minimal area in loss landscape) on the resulting GNNs. Notably, our proposed method
is easy to implement and employ in real applications to speed up the training of GNNs.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive suggestions and fruitful discussion. Xiao-
tian would like to thank Zirui Liu from Rice University for the discussion about the training time for
MLP and GNN. He would also like to thank Kaixiong Zhou from Rice University and Keyu Duan
from National University of Singapore for the discussion about the GNN training on large-scale
graphs. Xiaotian would also like to thank Hanqing Zen from Meta Inc., for his valuable feedback
and suggestions on the manuscript of this work. We thank Jingyuan Li from the Department of
Electrical and Computer Engineering at the University of Washington for identifying a typo in our
paper. Portions of this research were conducted with the advanced computing resources provided
by Texas A&M High Performance Research Computing. This work is, in part, supported by NSF
IIS-1750074 and IIS-1900990. The views and conclusions contained in this paper are those of the
authors and should not be interpreted as representing any funding agencies.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments and benefit the research community, we provide
the source code at https://github.com/snap-research/MLPInit-for-GNNs. The hyper-parameters and
other variables required to reproduce our experiments are described in Appendix D.

REFERENCES

Siddhant Arora. A survey on graph neural networks for knowledge graph completion. arXiv preprint
arXiv:2007.12374, 2020.

Muhammet Balcilar, Renton Guillaume, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In ICLR, 2018.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2021.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In Interna-
tional Conference on Learning Representations, 2020.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
257–266, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and
rethinking. In Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Ex-
ploring the landscape of spatial robustness. In International conference on machine learning, pp.
1802–1811. PMLR, 2019.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

10

https://github.com/snap-research/MLPInit-for-GNNs

Published as a conference paper at ICLR 2023

Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-
Gonzalez, Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al. Tf-gnn: Graph
neural networks in tensorflow. arXiv preprint arXiv:2207.03522, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning, pp. 3294–3304. PMLR, 2021.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Fed-
erico Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198,
2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, pp. 1024–1034, 2017.

Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Qingquan Song, Jundong Li, and Xia Hu. Geometric
graph representation learning via maximizing rate reduction. In Proceedings of the ACM Web
Conference 2022, pp. 1226–1237, 2022.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
node classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

W Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K Terry, Furong Huang,
and Tom Goldstein. Understanding generalization through visualizations. arXiv preprint
arXiv:1906.03291, 2019.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, pp. 117921, 2022.

Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. Self-
supervised learning on graphs: Deep insights and new direction. In WWW Workshop, 2021a.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph con-
densation for graph neural networks. In International Conference on Learning Representations,
2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

11

Published as a conference paper at ICLR 2023

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018b.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. Advances in Neural
Information Processing Systems, 33:21476–21487, 2020.

Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In Proceedings of the 28th ACM SIGKDD international con-
ference on knowledge discovery & data mining, 2022.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on
graph neural networks as graph signal denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1202–1211, 2021.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 43–52, 2015.

Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos. Estimating node
importance in knowledge graphs using graph neural networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 596–606, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1150–1160, 2020.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with self-
label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Shyam A Tailor, Felix Opolka, Pietro Lio, and Nicholas Donald Lane. Do we need anisotropic graph
neural networks? In International Conference on Learning Representations, 2021.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on social
apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 2269–2279, 2020.

Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story ranking with
edge-contextual local graph convolutions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 1007–1015, 2022.

12

Published as a conference paper at ICLR 2023

Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher,
and Bao Wang. Grand++: Graph neural diffusion with a source term. In International Conference
on Learning Representations, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018a.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2018b.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-gcn: Efficient full-graph
training of graph convolutional networks with partition-parallelism and random boundary node
sampling. Proceedings of Machine Learning and Systems, 4:673–693, 2022.

Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature multi-relational
graph neural network for knowledge graph completion. In Proceedings of the Web Conference
2021, pp. 1761–1771, 2021.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout:
Smoothing out sharp minima to improve generalization in deep learning. arXiv preprint
arXiv:1805.07898, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In ICML, pp. 6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. International Conference on Learning
Representations, 2023.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd ICML, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009–17021, 2020a.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020b.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision help
graph convolutional networks? In ICML, pp. 10871–10880. PMLR, 2020c.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn: Layer-wise and learned
efficient training of graph convolutional networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2127–2135, 2020d.

13

Published as a conference paper at ICLR 2023

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang Ji. Graphfm: Im-
proving large-scale gnn training via feature momentum. In International Conference on Machine
Learning, pp. 25684–25701. PMLR, 2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2019.

Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Zhiqiang Zhang,
Lin Wang, Jun Zhou, Yang Shuang, et al. Agl: a scalable system for industrial-purpose graph
machine learning. arXiv preprint arXiv:2003.02454, 2020.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. In International Conference on Learning Representations, 2021b.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: Algo-
rithms, applications and open challenges. In International Conference on Computational Social
Networks, pp. 79–91. Springer, 2018.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang,
and Bin Cui. Graph attention multi-layer perceptron. arXiv preprint arXiv:2206.04355, 2022.

Tong Zhao, Bo Ni, Wenhao Yu, Zhichun Guo, Neil Shah, and Meng Jiang. Action sequence augmen-
tation for early graph-based anomaly detection. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 2668–2678, 2021.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günneman, Neil Shah, and
Meng Jiang. Graph data augmentation for graph machine learning: A survey. arXiv preprint
arXiv:2202.08871, 2022a.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022b.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

Qikui Zhu, Bo Du, and Pingkun Yan. Self-supervised training of graph convolutional networks.
arXiv:2006.02380, 2020a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020b.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080, 2021.

14

Published as a conference paper at ICLR 2023

CONTENTS OF APPENDIX

A Additional Experiments 16

A.1 Additional experimental link prediction . 16

A.2 Additional hyperparameter sensitivity . 16

A.3 Additional training curves . 16

A.4 Additional loss/accuracy curves of PeerMLP and GNN 16

A.5 Training curves of link prediction task . 17

B More Experiments 21

B.1 The Performance of GCN with the weight of PeerMLP 21

B.2 Weight difference of GNNs with random initialization and MLPInit 21

B.3 Running time comparison of MLP and GNN . 22

B.4 Comparison to GNN pre-training methods . 22

B.5 Experiments on more complicated aggregators . 23

B.6 Results on graph sampling methods and GNN architectures 24

B.7 Experiments on datasets where node features are less important 24

B.8 Deriving the PeerMLP . 25

B.8.1 Two Methods to Derive the PeerMLP . 25

B.8.2 Discussion about the efficiency of PeerMLP deriving 26

C Datasets and Baselines 28

C.1 Datasets for node classification . 28

C.2 Baselines for node classification . 28

C.3 Datasets for link prediciton . 29

C.4 Baselines for link prediciton . 29

D Implementation Details 30

D.1 Running environment . 30

D.2 Experiment setting for Figure 2 . 30

D.3 Experiment setting for Figures 3, 8 and 9 and Tables 3 and 4 30

D.4 Experiment setting for Table 2 . 30

D.5 Experiment setting for Tables 5 and 6 . 30

D.6 Experiment setting for Figure 4 . 30

15

Published as a conference paper at ICLR 2023

A ADDITIONAL EXPERIMENTS

In this appendix, we present additional experiments to show the superiority of our proposed method,
MLPInit, including additional results for link prediction and training curves. We also present more
analysis on the weights distribution changes of MLPInit.

A.1 ADDITIONAL EXPERIMENTAL LINK PREDICTION

Here, we present the additional experiment results on the link prediction task in Table 6, which is
similar to our results in Table 5, but on more datasets. In general, we observe that GNN with MLPInit
outperforms that with random initialization on the link prediction tasks on these additional datasets.
MLPInit does not gain better performance on A-products dataset. We conjecture that the reason for
this is that node features may contain less task-relevant information on A-products.

Table 6: The performance of link prediction task. The results are based on ten runs.

Methods AUC AP Hits@10 Hits@20 Hits@50 Hits@100

Co
ra

MLPrandom 91.87±1.25 92.16±0.99 46.98±4.33 58.05±6.44 76.03±4.17 86.28±3.05

GNNrandom 91.80±1.39 92.68±1.28 51.48±7.57 63.04±6.12 78.12±4.06 86.07±2.77

GNNmlpinit 92.93±0.88 93.36±0.86 53.72±7.43 68.65±4.22 80.30±2.35 89.37±2.21

Improvement ↑ 1.23% ↑ 0.74% ↑ 4.35% ↑ 8.91% ↑ 2.79% ↑ 3.84%

Ci
te

Se
er

MLPrandom 90.10±0.99 90.65±0.98 46.64±5.11 57.21±4.84 71.45±3.15 81.93±2.24

GNNrandom 89.86±1.18 90.88±0.99 49.98±5.54 58.02±5.00 71.65±3.50 82.11±2.84

GNNmlpinit 90.51±1.07 90.96±0.80 50.02±3.09 58.77±4.48 71.78±4.12 82.66±2.53

Improvement ↑ 0.73% ↑ 0.08% ↑ 0.09% ↑ 1.29% ↑ 0.18% ↑ 0.67%

CS

MLPrandom 96.29±0.12 95.79±0.13 13.36±1.49 19.67±2.21 33.46±2.17 46.82±1.91

GNNrandom 96.11±0.08 95.75±0.10 14.27±2.77 22.57±2.52 35.40±2.01 48.21±2.00

GNNmlpinit 96.72±0.10 96.49±0.14 16.96±3.37 25.44±3.00 40.69±2.99 53.78±2.00

Improvement ↑ 0.63% ↑ 0.77% ↑ 18.81% ↑ 12.70% ↑ 14.96% ↑ 11.55%

A-
Co

mp
ut

er
s MLPrandom 81.85±0.79 82.41±0.69 2.10±0.48 4.13±0.86 7.83±0.95 12.18±1.01

GNNrandom 91.78±0.48 91.94±0.42 7.60±1.47 11.10±1.74 18.64±1.94 25.42±2.15

GNNmlpinit 90.76±1.61 91.06±1.47 6.76±3.27 11.11±1.82 17.40±2.58 24.59±2.56

Improvement ↓ 1.11% ↓ 0.96% ↓ 11.04% ↑ 0.16% ↓ 6.65% ↓ 3.26%

Co
ra

Fu
ll

MLPrandom 95.72±0.18 95.55±0.23 19.38±4.71 27.83±3.27 42.98±2.01 57.20±1.27

GNNrandom 95.87±0.36 95.77±0.42 21.33±4.77 30.57±3.49 45.08±3.46 59.58±2.53

GNNmlpinit 96.71±0.16 96.73±0.22 25.78±4.92 36.68±5.36 53.81±2.34 66.73±1.96

Improvement ↑ 0.87% ↑ 1.01% ↑ 20.87% ↑ 19.98% ↑ 19.37% ↑ 12.01%

A.2 ADDITIONAL HYPERPARAMETER SENSITIVITY

In this appendix, we present the additional results to explore the sensitivity to the various hyperpa-
rameters. The results are the full version of Figure 7.

A.3 ADDITIONAL TRAINING CURVES

In this appendix, we present the additional training curves of other datasets in Figure 8 and Figure 9,
which are additional experimental results of Figure 3. The results comprehensively show the training
curves on various datasets. As we can see from Figure 8 and Figure 9 that MLPInit consistently
outperforms the random initialization and is able to accelerate the training of GNNs.

A.4 ADDITIONAL LOSS/ACCURACY CURVES OF PEERMLP AND GNN

In this appendix, we plotted the loss and accuracy curves of PeerMLP and GNN on training/valida-
tion/test set and presented the results in Figure 10, which are the additional experimental results to

16

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (ClusterGCN)

Random-test

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.4

0.6

A
cc

u
ra

cy

OGB-arXiv (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

0.6

0.7

A
cc

u
ra

cy

OGB-arXiv (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.0

0.2

0.4

0.6

A
cc

u
ra

cy

OGB-arXiv (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.4

0.6

A
cc

u
ra

cy

OGB-arXiv (GCN)

A
rc

hi
te

ct
ur

e
H

P
T

ra
in

in
g

H
P

Figure 7: The training curves of the GNNs with different hyperparameters on OGB-arXiv dataset.
The training curves of GNN with MLPInit generally obtain lower loss and higher accuracy than
those with the random initialization and converge faster. The training curves are depicted based on
ten runs.

Figure 2. The results surprisingly show that GNN using the weight from trained PeerMLP has worse
cross-entropy loss but better prediction accuracy than PeerMLP. The reason would be that GNN can
smooth the prediction logit, making loss worse but accuracy better.

A.5 TRAINING CURVES OF LINK PREDICTION TASK

To further investigate the training process of the link prediction task, we present the training curves
for the link prediction task for each metric we used. The metrics we used are AUC, AP, Hits@K,
which are commonly used to evaluate the performance of link prediction (Zhang & Chen, 2018;
Zhang et al., 2021a; Zhao et al., 2022b). AUC and AP measure binary classification, reflecting the
value of loss for link prediction, and Hits@K is the count of how many positive samples are ranked
in the top-K positions against a bunch of negative samples.

The results show that the AUC and AP are easy to train, while the Hits@K is harder to train. The
GNN with random initialization needs much more time than MLPInit to obtain a good Hits@K.
Since Hits@K is a more realistic metric, the results demonstrate the superiority of our method in
the link prediction task. These experimental results also show that node features are important for
link prediction task since we can obtain a good performance only with MLP, therefore, MLPInit is
beneficial for link prediction since the MLPInit used node feature information only to train PeerMLP.

17

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

Yelp (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.16

0.18

0.20

0.22

0.24

C
ro

ss
-e

nt
ro

py
L
os

s

Yelp (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.3

0.4

A
cc

u
ra

cy

Yelp (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.235

0.240

0.245

0.250

0.255

C
ro

ss
-e

nt
ro

py
L
os

s

Yelp (GCN)

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.40

0.45

0.50

0.55

0.60

0.65

A
cc

u
ra

cy

Yelp (GraphSAGE)
0 5 10 15 20 25 30 35 40 45 50

Epoch

0.15

0.16

0.17

0.18

0.19

0.20

C
ro

ss
-e

nt
ro

py
L
os

s

Yelp (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.15

0.20

0.25

0.30

A
cc

u
ra

cy

Yelp (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.22

0.24

0.26

0.28

0.30

0.32

C
ro

ss
-e

nt
ro

py
L
os

s

Yelp (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.44

0.46

0.48

0.50
A

cc
u
ra

cy

Flickr (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.46

0.48

0.50

0.52

A
cc

u
ra

cy

Flickr (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.40

1.45

1.50

C
ro

ss
-e

nt
ro

py
L
os

s

Flickr (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.44

0.46

0.48

0.50

0.52

0.54

A
cc

u
ra

cy

Flickr (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.35

1.40

1.45

1.50

1.55

C
ro

ss
-e

nt
ro

py
L
os

s

Flickr (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.3

0.4

0.5

A
cc

u
ra

cy

Flickr (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.4

1.5

1.6

1.7
C

ro
ss

-e
nt

ro
py

L
os

s
Flickr (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.4

1.5

1.6

1.7

C
ro

ss
-e

nt
ro

py
L
os

s

Flickr (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Reddit (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

1.0

1.5

2.0

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

Reddit (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.25

0.50

0.75

1.00

1.25

1.50

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.92

0.93

0.94

0.95

0.96

0.97

A
cc

u
ra

cy

Reddit (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.15

0.20

0.25

0.30

0.35

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

Reddit (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.4

0.6

0.8

1.0

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit (GraphSAINT)

Figure 8: The training curves of GNN with random initialization and MLPInit on Yelp, Flickr,
Reddit datasets.

18

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

Reddit2 (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

1

2

3

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit2 (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.4

0.6

0.8

A
cc

u
ra

cy

Reddit2 (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

1.0

1.5

2.0

2.5

3.0

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit2 (GCN)

0 5 10 15 20 25 30 35 40 45 50
Epoch

0.4

0.6

0.8

A
cc

u
ra

cy

Reddit2 (GraphSAGE)
0 5 10 15 20 25 30 35 40 45 50

Epoch

1

2

3

4

5

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit2 (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

Reddit2 (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

2.5

3.0

3.5

C
ro

ss
-e

nt
ro

py
L
os

s

Reddit2 (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.6

0.7

0.8

0.9
A

cc
u
ra

cy

OGB-product (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

1.0

1.5

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-product (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

OGB-product (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

1.0

1.5

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-product (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

OGB-product (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.25

0.50

0.75

1.00

1.25

1.50

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-product (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

OGB-product (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-e

nt
ro

py
L
os

s
OGB-product (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.450

0.475

0.500

0.525

0.550

A
cc

u
ra

cy

AmazonProducts (ClusterGCN)

Random-val

Random-test

MLPInit-val

MLPInit-test

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.034

0.036

0.038

0.040

C
ro

ss
-e

nt
ro

py
L
os

s

AmazonProducts (ClusterGCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.25

0.30

0.35

0.40

A
cc

u
ra

cy

AmazonProducts (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.06

0.08

0.10

0.12

C
ro

ss
-e

nt
ro

py
L
os

s

AmazonProducts (GCN)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.60

0.65

0.70

0.75

A
cc

u
ra

cy

AmazonProducts (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.020

0.025

0.030

C
ro

ss
-e

nt
ro

py
L
os

s

AmazonProducts (GraphSAGE)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.0

0.2

0.4

0.6

A
cc

u
ra

cy

AmazonProducts (GraphSAINT)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.04

0.06

0.08

0.10

0.12

C
ro

ss
-e

nt
ro

py
L
os

s

AmazonProducts (GraphSAINT)

Figure 9: The training curves of GNN with random initialization and with MLPInit on Reddit2,
OGB-products, A-products datasets.

19

Published as a conference paper at ICLR 2023

0 10 20 30 40 50

Epoch

1.5

2.0

2.5

3.0

3.5
C

ro
ss

-e
nt

ro
py

L
os

s

OGB-arXiv (Train)

0 10 20 30 40 50

Epoch

1.5

2.0

2.5

3.0

3.5

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (Validation)

0 10 20 30 40 50

Epoch

2.0

2.5

3.0

3.5

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (Test)

0 10 20 30 40 50

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

u
ra

cy

fmlp(X; wmlp)

fgnn(X,A; wmlp)

0 10 20 30 40 50

Epoch

0.0

0.2

0.4

0.6

A
cc

u
ra

cy

0 10 20 30 40 50

Epoch

0.0

0.2

0.4

0.6

A
cc

u
ra

cy

Figure 10: The relation of GNN and MLP during the training of PeerMLP. We report the cross-
entropy loss and accuracy on the training/validation/test sets.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.70

0.75

0.80

0.85

0.90

C
ro

ss
-e

nt
ro

py
L
os

s

CiteSeer (AP)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.7

0.8

0.9

C
ro

ss
-e

nt
ro

py
L
os

s

CiteSeer (AUC)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

C
ro

ss
-e

nt
ro

py
L
os

s

CiteSeer (Hits@20)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

C
ro

ss
-e

nt
ro

py
L
os

s

CiteSeer (Hits@100)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.70

0.75

0.80

0.85

0.90

0.95

C
ro

ss
-e

nt
ro

py
L
os

s

Cora (AP)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.7

0.8

0.9

C
ro

ss
-e

nt
ro

py
L
os

s

Cora (AUC)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.2

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py
L
os

s

Cora (Hits@20)
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py
L
os

s

Cora (Hits@100)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.85

0.90

0.95

C
ro

ss
-e

nt
ro

py
L
os

s

PubMed (AP)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.85

0.90

0.95

C
ro

ss
-e

nt
ro

py
L
os

s

PubMed (AUC)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.2

0.4

0.6

C
ro

ss
-e

nt
ro

py
L
os

s

PubMed (Hits@20)

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Epoch

0.2

0.4

0.6

0.8

C
ro

ss
-e

nt
ro

py
L
os

s

PubMed (Hits@100)

Random-val

Random-test

MLPInit-val

MLPInit-test

Figure 11: The training curves for link prediction task on Cora, CiteSeer, PubMed datasets. GNN
with MLPInit generally obtains higher metrics for link prediction task than those with random ini-
tialization and converge faster.

20

Published as a conference paper at ICLR 2023

B MORE EXPERIMENTS

In this appendix, we conducted additional experiments to further analyze our proposed method
MLPInit. We conducted experiments to show that training MLP is much cheaper than training GNN.
The results show that the running time of MLP can be negligible compared to that of GNNs. We
compare the efficiency of our method to GNN pre-training methods. The comparison to GNN pre-
training methods demonstrates the superiority of MLPInit in effectiveness and efficiency. We conduct
experiments to investigate the effectiveness of MLPInit on GNN with more complicated aggregators.
We provided the new form of our results in Table 4 to show the performance improvements for graph
sampling methods and GNN architectures separately.

B.1 THE PERFORMANCE OF GCN WITH THE WEIGHT OF PEERMLP

In this experiment, we aimed to verify Observation 2: Converged weights from PeerMLP provide a
good GNN initialization from Section 4 by evaluating the performance of GCN with the weight of
PeerMLP on the Cora, CiteSeer, and PubMed datasets. We trained the PeerMLP for GCN, and then
calculated the accuracy of the GCN using the well-trained PeerMLP weights (without fine-tuning).
We used the public split for these three datasets in a semi-supervised setting. The evaluated models
are described in detail below and the results are presented in Table 7.

• PeerMLP: the well-trained PeerMLP for GCN on different datasets.

• GCN w/ wpeermlp: the GCN with the weight of well-trained PeerMLP, without fine-tuning.

• GCN: the well-trained graph convolutional neural network.

Table 7: The performance of GNNs and its PeerMLP with the weights of a converged PeerMLP on
test data. The accuracy are in percentage (%).

PeerMLP GCN w/ wpeermlp Improv. GCN

Cora 58.50 77.60 ↑ 32.64% 82.60
CiteSeer 60.50 69.70 ↑ 15.20% 71.60
PubMed 73.60 78.10 ↑ 6.11% 79.80

The results show that the GNN w/ wpeermlp significantly outperforms the PeerMLP, even though the
weight wpeermlp is trained on PeerMLP. The performance improvements are notable, with increases
of 32.64%, 15.20%, and 6.11% on Cora, CiteSeer, and PubMed datasets, respectively. The results
would be additional evidence for Observation 2: Converged weights from PeerMLP provide a good
GNN initialization.

Moreover, this intriguing phenomenon implies a relationship between MLPs and GNNs that could
potentially shed light on the generalization capabilities of GNNs. We believe that our findings will
be of significant interest to researchers and practitioners in the field of graph neural networks, and
we hope that our work will inspire follow-up research to further explore the relationship between
MLPs and GNNs.

B.2 WEIGHT DIFFERENCE OF GNNS WITH RANDOM INITIALIZATION AND MLPINIT

Prior work (Li et al., 2018a) suggests that “small weights still appear more sensitive to perturbations,
and produce sharper looking minimizers.” To this end, we explore the distribution of weights of
GNNs with both random initialization and MLPInit, and present the results in Figure 12. We can
observe that with the same number of training epochs, the weights of GraphSAGE with MLPInit
produce more high-magnitude (both positive and negative) weights, indicating the MLPInit can help
the optimization of GNN. This difference stems from a straightforward reason: MLPInit provides
a good initialization for GNNs since the weights are trained by the PeerMLP before (also aligning
with our observations in Section 5.4).

21

Published as a conference paper at ICLR 2023

−0.2 0.0 0.2
Weight

0

1

2

3

4

5

N
u

m
b

er

×104

(a) OGB-arXiv

−0.2 0.0 0.2
Weight

0

2

4

6

8

N
u

m
b

er

×104

Random

MLPInit

(b) OGB-products

Figure 12: Weight histograms of GraphSAGE model weights with random initialization (blue) and
MLPInit (red) on OGB-arXiv (left) and OGB-products (right). The results are plotted based on 20
epochs after training GraphSAGE with zero weight decay. Note that MLPInit produces more weights
of higher magnitude.

B.3 RUNNING TIME COMPARISON OF MLP AND GNN

We conducted experiments to compare the running time of MLP and GNN (GraphSAGE in this
experiment) and presented the running time needed by training MLP and GraphSAGE for one epoch
in Table 8. In this experiment, MLP is trained in a full-batch way, and training node features are
stored in GPU memory. We adopted the official example code of GraphSAGE 4. The running time
of MLP only needs 1/147 and 1/2303 of that of GraphSAGE on OGB-arXiv and OGB-products
datasets. The results show that training MLP is much cheaper than training GNN. In practice, MLP
usually only needs to be trained less than 50 epochs to converge. Thus, the training time of MLP in
MLPInit is negligible compared to the training time of GNNs.

Table 8: The comparison of the running time of MLP and GraphSAGE. We report the running time
of one epoch for MLP, GraphSAGE, and their ratio. The results show that training MLP is much
cheaper than training GrapSAGE, especially for the large graph.

Dataset MLP GraphSAGE MLP/GraphSAGE Ratio

OGB-arXiv 0.035±0.000 5.170±0.313 1/147
OGB-products 0.076±0.000 175.758±9.560 1/2303

B.4 COMPARISON TO GNN PRE-TRAINING METHODS

In this appendix, we compare the efficiency of our method to GNN pre-training methods. In this
experiment, we adopt DGI (Veličković et al., 2018b) as the pre-training method to pretrain the weight
of GNN. DGI maximizes the mutual information between patch representations and corresponding
high-level summaries of graphs. Since the output of DGI is a hidden representation, we leverage
DGI to pretrain weights of the GNN except for the last layer (classification head). We report the
final prediction performance of GNN with MLPInit and DGI in Table 9 and reported the running
time of MLPInit and DGI in Table 10. The experimental results show that MLPInit obtains rank 1.28
and 1.42 on GraphSAGE and GCN, demonstrating MLPInit outperforms DGI slightly. This might
be because the additional classification head for DGI is not pretrained. It is worth noting that DGI
is much more time-consuming than MLPInit, as Table 10 show that MLPInit only needs 1/6.59 and
1/1017.41 running time of DGI. The comparison to GNN pre-training methods demonstrates the
superiority of MLPInit in effectiveness and efficiency.

4https://github.com/pyg-team/pytorch_geometric/blob/2.0.4/examples/ogbn_products_
sage.py

22

https://github.com/pyg-team/pytorch_geometric/blob/2.0.4/examples/ogbn_products_sage.py
https://github.com/pyg-team/pytorch_geometric/blob/2.0.4/examples/ogbn_products_sage.py

Published as a conference paper at ICLR 2023

Table 9: The comparison of the performance of MLPInit and DGI. The best performance is in bold-
face. The Avg.Rank is the average performance rank over 7 datasets.

Methods Flickr Yelp Reddit Reddit2 A-products OGB-arXiv OGB-products Avg. Rank
SA

G
E Random 53.72±0.16 63.03±0.20 96.50±0.03 51.76±2.53 77.58±0.05 72.00±0.16 80.05±0.35 3.00

DGI 53.97±0.13 62.53±0.31 96.57±0.03 54.82±1.42 77.11±0.08 71.86±0.33 80.24±0.57 1.71
MLPInit 53.82±0.13 63.93±0.23 96.66±0.04 89.60±1.60 77.74±0.06 72.25±0.30 80.04±0.62 1.28

G
C

N Random 50.90±0.12 40.08±0.15 92.78±0.11 27.87±3.45 36.35±0.15 70.25±0.22 77.08±0.26 3.00
DGI 51.23±0.07 38.24±0.54 94.14±0.02 66.98±1.22 35.54±0.05 69.40±0.35 77.15±0.21 1.57
MLPInit 51.16±0.20 40.83±0.27 91.40±0.20 80.37±2.61 39.70±0.11 70.35±0.34 76.85±0.34 1.42

Table 10: The comparison of the running time of MLPInit and DGI. We report the running time
of one epoch for MLPInit and DGI in the pretraining stage and their ratio. The results show that
training MLP is much cheaper than DGI, especially for the large graph.

Dataset MLPInit(ours) DGI MLPInit/DGI Ratio

OGB-arXiv 0.035±0.000 4.794±0.055 1/137
OGB-products 0.076±0.000 1892.386±46.176 1/24798

B.5 EXPERIMENTS ON MORE COMPLICATED AGGREGATORS

Information aggregators play a vital role in graph neural networks, and recent work proposed com-
plicated aggregators to improve the performance of graph neural networks. In this appendix, we
conducted experiments to investigate the effectiveness of MLPInit on GNN with more complicated
aggregators. We explore the acceleration effect and prediction accuracy improvement of MLPInit
on GNN with more complicated aggregators. The adopted aggregators include Mean, Sum, Max,
Median, and Softmax. Their details are presented as follows:

• Mean is a commonly used aggregation operator that averages features across neighbors.

• Max, Median (Corso et al., 2020) are aggregation operators that take the feature-wise
maximum/median across neighbors. The mathematical expressions of Max, Median are
maxxi∈X xi. medianxi∈Xxi.

• Softmax (Li et al., 2020) is a learnable aggregation operator, which normalizes the
features of neighbors based on a learnable temperature term, as softmax(X|t) =∑

xi∈X
exp(t·xi)∑

xj∈X exp(t·xj)
·xi where t controls the softness of the softmax when aggregating

neighbors’ features.

We reported the performance improvement, training speedup, and training curves in Table 11, Ta-
ble 12 and Figure 13. Generally, MLPInit is effective for other aggregators. MLPInit speed up the
training of GNNs by 2.06× over four aggregators. Moreover, MLPInit improves the prediction per-
formance by 0.75% over four aggregators. The training curves in Figure 13 show that GNN with
MLPInit generally obtain lower loss and higher accuracy than those with random initialization and
converge faster.

Table 12: Speed improvement when MLPInit achieves comparable performance with a randomly
initialized GNN using various information aggregators. The number reported is the number of
training epochs needed.

Methods Mean Max Median Softmax Avg.

OG
B-

ar
Xi

v Random 46.7 37.1 40.9 42.0 41.6
MLPInit 22.7 22.4 27.2 8.8 20.2
Improv. 2.06× 1.66× 1.50× 4.77× 2.06×

23

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (Max)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.0

1.2

1.4

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (Meadian)

0 5 10 15 20 25 30 35 40 45 50

Epoch

1.0

1.2

1.4

1.6

C
ro

ss
-e

nt
ro

py
L
os

s

OGB-arXiv (Softmax)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

u
ra

cy

OGB-arXiv (Max)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.60

0.65

0.70

A
cc

u
ra

cy

OGB-arXiv (Meadian)

0 5 10 15 20 25 30 35 40 45 50

Epoch

0.600

0.625

0.650

0.675

0.700

0.725

A
cc

u
ra

cy

OGB-arXiv (Softmax)

Random-val

Random-test

MLPInit-val

MLPInit-test

Figure 13: The training curves for GraphSAGE using different aggregators with random initializa-
tion and MLPInit.

Table 11: Performance improvement when GNN (GraphSAGE) uses different aggregators with ran-
dom initialization. Mean, and standard deviation are calculated based on ten runs.

Methods Mean Max Median Softmax Avg.

OG
B-

ar
Xi

v Random 72.00±0.16 68.31±1.00 69.97±0.29 71.05±0.20 70.33
MLPInit 72.25±0.30 69.30±0.56 69.95±0.36 71.94±0.18 70.86
Improv. ↑ 0.36% ↑ 1.44% ↓ 0.02% ↑ 1.25% ↑ 0.75%

B.6 RESULTS ON GRAPH SAMPLING METHODS AND GNN ARCHITECTURES

In this appendix, we provided the new form of our results in Table 4 to show the performance
improvements for graph sampling methods and GNN architectures separately in Tables 13 and 14.

From the new form of our results, we observed that 1) MLPInit improves the performance of dif-
ferent graph sampling methods as it improves the performance of GraphSAGE, GraphSAINT, and
ClusterGCN by 7.96%, 7.00% and 6.62%. 2) MLPInit improves the performance of different graph
neural network layers, as it improves the performance of SAGEConv, GCNConv by 6.62%, 14.00%.

B.7 EXPERIMENTS ON DATASETS WHERE NODE FEATURES ARE LESS IMPORTANT

Our proposed method does depend on a tendency towards node feature-label correlation. Thus, it
would likely suffer if features provided less or no information about labels. In this appendix, we
conducted experiments on synthetic graphs. The synthetic graphs have differing degrees of correla-
tion between node features and labels. We generated the synthetic graph node features Xsynthetic

by mixing the original features and random features for each node in the graph as follows:

Xsynthetic = λXoriginal + (1− λ)Xrandom

where Xoriginal and Xrandom are the original features of OGB-arXiv and random features, and λ
mediates the two. λ shows different levels of association between node features and labels. When
λ = 0, the synthetic node features will be the original features of OGB-arXiv. When λ = 1, the
synthetic node features will be completely random features, which are totally uncorrelated to the
node labels. We change the value of λ to explore the behavior of MLPInit. Note that we initially

24

Published as a conference paper at ICLR 2023

Table 13: Performance improvements for various graph sampling methods. The improvement is the
overall accuracy performance improvement across all the datasets.

Sampling Methods Flickr Yelp Reddit Reddit2 A-products OGB-arXiv OGB-products Improv.

GraphSAGE Random 53.72 63.03 96.50 51.76 77.58 72.00 80.05 ↑ 7.96%MLPInit 53.82 63.93 96.66 89.60 77.74 72.25 80.04

GraphSAINT Random 51.37 29.42 95.58 36.45 59.31 67.95 73.80 ↑ 7.00%MLPInit 51.35 43.10 95.64 41.71 68.24 68.80 74.02

Cluster-GCN Random 49.95 56.39 95.70 53.79 52.74 68.00 78.71 ↑ 6.62%MLPInit 49.96 58.05 96.02 77.77 55.61 69.53 78.48

Table 14: Performance improvements for various GNN architectures. The improvement is the over-
all accuracy performance improvement across all the datasets.

GNN layers Methods Flickr Yelp Reddit Reddit2 A-products OGB-arXiv OGB-products Improv.

SAGEConv Random 49.95 56.39 95.70 53.79 52.74 68.00 78.71 ↑ 6.62%MLPInit 49.96 58.05 96.02 77.77 55.61 69.53 78.48

GCNConv Random 50.90 40.08 92.78 27.87 36.35 70.25 77.08 ↑ 14.00%MLPInit 51.16 40.83 91.40 80.37 39.70 70.35 76.85

conducted the experiments on λ = [0.0, 0.1, 0.2, ..., 1.0], and we observed that performance on
λ = 0.1 is much lower than other values, thus we conducted more on λ = [0.05, 0.15] around 0.1.

The results shows that

• If node features are uncorrelated to the node labels (λ < 0.2), GNN with the weights of
PeerMLP will not outperform the PeerMLP.

• If the node features are correlated to the node labels (λ > 0.2), GNN with the weights of
PeerMLP will consistently outperform the PeerMLP.

• Overall, MLPInit obtains a better (0.74% average improvement) final accuracy than Random
Init over 13 different λs.

B.8 DERIVING THE PEERMLP

In this appendix, we discuss two potential methods to derive the PeerMLP, and discuss their advan-
tages and disadvantages.

B.8.1 TWO METHODS TO DERIVE THE PEERMLP

The two potential methods are as follows:

1. Remove the information aggregation operation in GNN. In this way, we construct a new
neural network (PeerMLP, which may contain skip-connections or other complexities of the
GNN layer) by entirely removing the neighbor aggregation operation; hence, the trainable
weights of PeerMLP will be the same as GNN by design. We need to build a dataloader for
it (Algorithm 1). The advantage of this strategy is that it is efficient, since the PeerMLP is
a ”pure” MLP (no aggregation required by design).

2. Change the adjacency matrix to an identity matrix In this way, we use the original GNN
architecture, but pretend the set of edges is a set of self-loops on each of the nodes. The
advantage of this strategy is that the same dataloader and model structure for GNN can be
used for MLP – we don’t need to change the input of PeerMLP, which are node features
and adjacency matrix (changed to an identity matrix). This facilitates code reuse and ease
of engineering/development. However, since we also must use the GNN dataloader and
associated model forward operations, we pay for some more training time owing to these
operations (graph sampling and identity aggregation).

25

Published as a conference paper at ICLR 2023

Table 15: Performance of PeerMLP and GNN with converged weights (w∗
mlp) of PeerMLP on dif-

ferent λ on dataset OGB-arXiv. The accuracy in percentage is based on 5 runs.

λ 0.0 (0.05) 0.1 (0.15) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PeerMLP 5.95 6.63 11.88 16.39 19.82 23.59 25.63 31.19 40.65 48.74 53.40 55.67 56.23
GNN w/ w∗

mlp 5.86 5.86 5.89 8.82 24.10 32.87 40.67 51.41 55.99 59.05 61.30 62.14 62.43

Improv. −1.53% −11.59% −50.43% −46.16% 21.58% 39.37% 58.71% 64.81% 37.73% 21.15% 14.79% 11.63% 11.03%

Table 16: Performance of GNN trained with Random Init and MLPInit with different λ on
OGB-arXiv. The accuracy in percentage is the best performance of the two methods and is based
on 5 runs.

λ 0.0 (0.05) 0.1 (0.15) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg.
GNN w/ Random Init 60.03 59.22 60.71 63.24 64.71 67.46 69.02 70.05 70.72 71.31 71.76 71.70 72.00 67.07
GNN w/ MLPInit 59.78 60.47 62.53 64.49 65.94 67.84 69.11 70.47 70.70 71.45 71.50 71.92 72.25 67.57

Improv. −0.42% 2.12% 3.01% 1.98% 1.91% 0.57% 0.13% 0.59% −0.03% 0.20% −0.36% 0.29% 0.34% 0.74%

Table 17: Comparison of the running time of forward and backward for different operations (i.e.,
X ·W, A · Z and I · Z) in GNNs. The time unit is milliseconds (ms).

OGB-arXiv Flickr Yelp

#Nodes 169343 89250 716847
#Edges 1166243 899756 13954819

Forward Backward Total Forward Backward Total Forward Backward Total

Z = X ·W 0.56 1.31 1.87 0.51 1.80 2.31 3.10 9.14 12.24
H = A · Z 1.47 1285.86 1287.33 1.16 842.49 843.65 13.19 16956.19 16969.38
H = I · Z 1.32 112.82 114.13 0.70 63.55 64.25 5.61 440.51 446.12

Table 18: Comparison of the running time of forward and backward for different methods (i.e.,
W ·X, A ·W ·X and I ·W ·X). The time unit is milliseconds (ms).

OGB-arXiv Flickr Yelp

Forward Backward Total Forward Backward Total Forward Backward Total
X ·W 0.56 1.31 1.87 0.51 1.80 2.31 3.10 9.14 12.24

A ·X ·W 2.03 1287.17 1289.2 1.67 844.29 845.96 16.29 16965.33 16981.62
I ·X ·W 1.88 114.13 116 1.21 65.35 66.56 8.71 449.65 458.36

ratio of (X ·W):(A ·X ·W) — — 1:689 — — 1:366 — — 1:1387
ratio of (X ·W):(I ·X ·W) — — 1:62 — — 1:28 — — 1:37

For more complex graph convolution layers, we take a layer with skip-connection in GNN, Hl =
σ(AHl−1Wl

gnn+Hl−1), as an example. To derive the PeerMLP for the layer with skip-connection,
Method 1 directly removes the adjacency matrix A to yield Hl = σ(Hl−1Wl

gnn + Hl−1). Thus,
the PeerMLP will also contain a skip-connection operation. Method 2 can be easily and directly
adopted since it just alters the adjacency matrix in a trivial way. Hl = σ(Hl−1 ·Wl

gnn +Hl−1).

B.8.2 DISCUSSION ABOUT THE EFFICIENCY OF PEERMLP DERIVING

Firstly, Method 1 and Method 2 are mathematically equivalent.

Secondly, in the sense of producing computational graphs, they are different. In the next, we only
consider the terms Hl−1 · Wl

gnn and I · Hl−1 · Wl
gnn in Method 1 and 2 since the rest terms are

the same. For operation Hl−1 ·Wl
gnn in Method 1, it only has one dense matrix multiplication. For

operation I · Hl−1 · Wl
gnn in Method 2, it has two steps, one is dense matrix multiplication (Z =

Hl−1 ·Wl
gnn), the other is a sparse matrix multiplication (I · Z). Thus they will produce different

computational graphs (using torch geometric). Typically, sparse matrix multiplication needs much

26

Published as a conference paper at ICLR 2023

more time than dense matrix multiplication (in the case that the sparse matrix is an identity matrix,
this still holds if the computation package has no special optimization for the identity matrix).

To investigate the efficiency of these two methods in production environments, we conducted exper-
iments to present the running time of different operations (X · W, A · Z and I · Z) and different
methods (X ·W, A ·X ·W and I ·X ·W). X ·W is dense matrix multiplication, A ·Z and I ·Z
are sparse matrix multiplication. The experiments are conducted with an NVIDIA RTX A5000. The
softwares and their version in this experiment are cudatoolkit (11.0.221), PyTorch (1.9.1), torch-
sparse (0.6.12). The results are presented in Tables 17 and 18. From the results, we have the
following observation:

• Table 17 shows that I ·Z (sparse matrix multiplication) takes much more time than X ·W
(dense matrix multiplication).

• Table 18 shows that I · X · W takes much more time than X · W, where the ratio of the
running time for (X ·W):(I ·X ·W) are 1 : 62, 1 : 28, and 1 : 37 for OGB-arXiv, Flickr
and Yelp, respectively. The results indicate that the I ·X ·W is not equivalent to X ·W
in the sense of producing computational graph (at least for the sparse matrix multiplication
in torch-sparse package).

• The choice between the two ultimately boils down to the intended setting. Method 2 is
easier for development, and Method 1 is more optimized for speed (and thus useful in
resource-constrained settings, or for efficiency in production environments).

27

Published as a conference paper at ICLR 2023

C DATASETS AND BASELINES

In the appendix, we present the details of datasets and baselines for node classification and link
prediction tasks.

C.1 DATASETS FOR NODE CLASSIFICATION

The details of datasets used for node classification are listed as follows:

• Yelp (Zeng et al., 2019) contains customer reviewers as nodes and their friendship as edges.
The node features are the low-dimensional review representations for their reviews.

• Flickr (Zeng et al., 2019) contains customer reviewers as nodes and their common prop-
erties as edges. The node features the 500-dimensional bag-of-word representation of the
images.

• Reddit, Reddit2 (Hamilton et al., 2017) is constructed by Reddit posts. The node in this
dataset is a post belonging to different communities. Reddit2 is the sparser version of
Reddit by deleting some edges.

• A-products (Zeng et al., 2019) contains products and its categories.

• OGB-arXiv (Hu et al., 2020) is the citation network between all arXiv papers. Each node
denotes a paper and each edge denotes citation between two papers. The node features are
the average 128-dimensional word vector of its title and abstract.

• OGB-products (Hu et al., 2020; Chiang et al., 2019) is Amazon product co-purchasing
network. Nodes represent products in Amazon, and edges between two products indicate
that the products are purchased together. Node features in this dataset are low-dimensional
representations of the product description text.

We present the statistics of datasets used for node classification task in Table 19.

Table 19: Statistics for datasets used for node classification.

Dataset # Nodes. # Edges # Classes # Feat Density

Flickr 89,250 899,756 7 500 0.11‰
Yelp 716,847 13,954,819 100 300 0.03‰

Reddit 232,965 114,615,892 41 602 2.11‰
Reddit2 232,965 23,213,838 41 602 0.43‰

A-products 1,569,960 264,339,468 107 200 0.11‰
OGB-arXiv 169,343 1,166,243 40 128 0.04‰

OGB-products 2,449,029 61,859,140 47 218 0.01‰

C.2 BASELINES FOR NODE CLASSIFICATION

We present the details of GNN models as follows:

• GCN (Kipf & Welling, 2016a; Hamilton et al., 2017) is the original graph convolution
network, which aggregates neighbor’s information to obtain node representation. In our
experiment, we train GCN in a mini-batch fashion by adopting a subgraph sampler from
Hamilton et al. (2017).

• GraphSAGE (Hamilton et al., 2017) proposes a graph sampling-based training strategy to
scale up graph neural networks. It samples a fixed number of neighbors per node and trains
the GNNs in a mini-batch fashion.

• GraphSAINT (Zeng et al., 2019) is a graph sampling-based method to train GNNs on
large-scale graphs, which proposes a set of graph sampling algorithms to partition graph
data into subgraphs. This method also presents normalization techniques to eliminate bi-
ases during graph sampling.

28

Published as a conference paper at ICLR 2023

• ClusterGCN (Chiang et al., 2019) is proposed to train GCNs in small batches by using
the graph clustering structure. This approach samples the nodes associated with the dense
subgraphs identified by the graph clustering algorithm. Then the GCN is trained by the
subgraphs.

C.3 DATASETS FOR LINK PREDICITON

For link prediction task, we consider Cora, CiteSeer, PubMed, CoraFull, CS, Physics, A-Photo.
and A-Computers as our baselines. The details of the datasets used for node classification are listed
as follows:

• Cora, CiteSeer, PubMed (Yang et al., 2016) are representative citation network datasets.
These datasets contain a number of research papers, where nodes and edges denote docu-
ments and citation relationships, respectively. Node features are low-dimension represen-
tations for papers. Labels indicate the research field of documents.

• CoraFull (Bojchevski & Günnemann, 2018) is a citation network that contains papers and
their citation relationship. Labels are generated based on topics. This dataset is the original
data of the entire network of Cora, and Cora dataset in Planetoid is its subset.

• CS, Physics (Shchur et al., 2018) are from Co-author dataset, which is co-authorship graph
based on the Microsoft Academic Graph from the KDD Cup 2016 challenge. Nodes in this
dataset are authors, and edges indicate co-author relationships. Node features represent
paper keywords. Labels indicate the research field of the authors.

• A-Photo, A-Computers (Shchur et al., 2018) are two datasets from Amazon co-purchase
dataset (McAuley et al., 2015). Nodes in this dataset represent products, while edges repre-
sent the co-purchase relationship between two products. Node features are low-dimension
representations of product reviews. Labels are categories of products.

We also present the statistics of datasets used for link prediction task in Table 20.

Table 20: Statistics for datasets used for link prediction.

Dataset # Nodes # Edges # Feat Density

Cora 2,708 5,278 1,433 0.72‰
CiteSeer 3,327 4,552 3,703 0.41‰
PubMed 19,717 44,324 500 0.11‰
DBLP 17,716 105,734 1,639 0.34‰

CoraFull 19,793 126,842 8,710 0.32‰
A-Photo 7,650 238,162 745 4.07‰

A-Computers 13,752 491,722 767 2.60‰
CS 18,333 163,788 6,805 0.49‰

Physics 34,493 495,924 8,415 0.14‰

C.4 BASELINES FOR LINK PREDICITON

Our link prediction setup is consistent with our discussion in Section 2, in which we use an inner-
product decoder Â = sigmoid(H·HT) to predict the probability of the link existence. We presented
the results in Tables 5 and 6. Following standard benchmarks (Hu et al., 2020), the evaluation metrics
adopted are AUC, Average Precision (AP), are hits ratio (Hit@#). The experimental details of link
prediction are presented in Appendix D.5.

29

Published as a conference paper at ICLR 2023

D IMPLEMENTATION DETAILS

In this appendix, we present the hyperparameters used for the node classification task and link
prediction task for all models and datasets.

D.1 RUNNING ENVIRONMENT

We run our experiments on the machine with one NVIDIA Tesla T4 GPU (16GB memory) and
60GB DDR4 memory to train the models. For A-products and OGB-products datasets, we run
the experiments with one NVIDIA A100 GPU (40GB memory). The code is implemented based
on PyTorch 1.9.0 (Paszke et al., 2019) and PyTorch Geometric 2.0.4 (Fey & Lenssen, 2019). The
optimizer is Adam (Kingma & Ba, 2015) to train all GNNs and their PeerMLPs.

D.2 EXPERIMENT SETTING FOR FIGURE 2

In this experiment, we use GraphSAGE as GNN on OGB-arXiv dataset. We construct that
PeerMLP(fmlp(X;wmlp)) for GraphSAGE (fgnn(X,A;wmlp)) and train it for 50 epochs. From
the mathematical expression, GraphSAGE and its PeerMLP share the same weights wmlp and the
weights wmlp are only trained by PeerMLP. We use the trained weights for GraphSAGE to make
inference along the training procedure. For the landscape, suppose we have two optimal weight
w∗

gnn and w∗
mlp for GraphSAGE and its PeerMLP, the middle one is the loss landscape based on the

PeerMLP with optimal with w∗
mlp while the right one is the loss landscape based the GraphSAGE

with optimal weights w∗
gnn.

D.3 EXPERIMENT SETTING FOR FIGURES 3, 8 AND 9 AND TABLES 3 AND 4

In this appendix, we present the detailed experiment setting for our main result Figures 3, 8 and 9
and Tables 3 and 4. We construct the PeerMLP for each GNN. We first train the PeerMLP for
50 epochs and save the best model with the best validation performance. And then, we use the
weight trained by PeerMLP to initialize the GNNs, then fine-tune the GNNs. To investigate the
performance of GNNs, we fine-tune the GNNs for 50 epochs. We list the hyperparameters used in
our experiments. We borrow the optimal hyperparameters from paper (Duan et al., 2022). And our
code is also based on the official code 5 of paper (Duan et al., 2022). For datasets not included in
paper (Duan et al., 2022), we use the heuristic hyperparameter setting for them.

D.4 EXPERIMENT SETTING FOR TABLE 2

The GNN used in Table 2 is GraphSAGE. We construct the PeerMLP for GraphSAGE on OGB-arXiv
and OGB-products datasets. We first train the PeerMLP for 50 epochs and save the best model
with the best validation performance. And then we infer the test performance with PeerMLP and
GraphSAGE with the weight trained by PeerMLP and we report the test performance in Table 2.

D.5 EXPERIMENT SETTING FOR TABLES 5 AND 6

In this appendix, we present the detailed experiment setting for the link prediction task. We adopt
the default setting for the official examples 6 of PyTorch Geometric 2.0.4. The GNN used for the
link prediction task is a 2-layer GCN, and the decoder is the commonly used inner-product decoder
as Â = sigmoid(H ·HT) (Kipf & Welling, 2016b).

D.6 EXPERIMENT SETTING FOR FIGURE 4

We explore two kinds of hyperparameters “Training HP” (Learning rate, weight decay, batch size,
and dropout) and “Architecture HP” (i.e., layers, number of hidden neurons), in this experiment.

• Training Hyperparameter (Training HP), total combinations: 2× 2× 2× 2 = 16

5https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking
6https://github.com/pyg-team/pytorch_geometric/blob/2.0.4/examples/link_pred.py

30

https://github.com/VITA-Group/Large_Scale_GCN_Benchmarking
https://github.com/pyg-team/pytorch_geometric/blob/2.0.4/examples/link_pred.py

Published as a conference paper at ICLR 2023

Table 21: Training configuration for GNNs training in Figures 3, 8 and 9 and Tables 3 and 4.

Model Dataset #Layers #Hidden Learning rate Batch size Dropout Weight decay Epoch
G

ra
ph

SA
G

E
Flickr 4 512 0.0001 1000 0.5 0.0001 50
Yelp 4 512 0.0001 1000 0.2 0 50

Reddit 4 512 0.0001 1000 0.2 0 50
Reddit2 4 512 0.0001 1000 0.2 0 50

A-products 4 512 0.001 1000 0.5 0 50
OGB-arXiv 4 512 0.001 1000 0.5 0 50

OGB-products 4 512 0.001 1000 0.5 0 50

G
ra

ph
SA

IN
T

Flickr 4 512 0.001 5000 0.2 0.0004 50
Yelp 2 128 0.01 5000 0.7 0.0002 50

Reddit 2 128 0.01 5000 0.7 0.0002 50
Reddit2 2 128 0.01 5000 0.7 0.0002 50

A-products 2 128 0.01 5000 0.2 0 50
OGB-arXiv 2 128 0.01 5000 0.2 0 50

OGB-products 2 128 0.01 5000 0.2 0 50

C
lu

st
er

G
C

N

Flickr 2 256 0.001 5000 0.2 0.0002 50
Yelp 4 256 0.0001 2000 0.5 0 50

Reddit 4 256 0.0001 2000 0.5 0 50
Reddit2 4 256 0.0001 2000 0.5 0 50

A-products 4 128 0.001 2000 0.2 0.0001 50
OGB-arXiv 4 128 0.001 2000 0.2 0.0001 50

OGB-products 4 128 0.001 2000 0.2 0.0001 50

G
C

N

Flickr 2 512 0.0001 1000 0.5 0.0001 50
Yelp 2 512 0.0001 1000 0.2 0 50

Reddit 2 512 0.0001 1000 0.2 0 50
Reddit2 2 512 0.0001 1000 0.2 0 50

A-products 2 512 0.001 1000 0.5 0 50
OGB-arXiv 2 512 0.001 1000 0.5 0 50

OGB-products 2 512 0.001 1000 0.5 0 50

– Learning rate: {0.001, 0.0001}
– Weight decay: {1e− 4, 4e− 4}
– Batch size: {500, 1000}
– Dropout: {0.2, 0.5}

• Architecture Hyperparameter (Architecture HP), total combinations: 3× 5 = 15

– Number of layers: {2, 3, 4}
– number of hidden neurons: {32, 64, 128, 256, 512}

In Figures 4 and 7, we plotted the learning curves based on the mean and standard deviation over all
the hyperparameters combinations.

31

	Introduction
	Preliminaries
	Motivating Analyses
	What will happen if we directly adopt the weights of a converged PeerMLP to GNN?
	The Proposed Method: MLPInit
	Discussion

	Experiments
	How much can MLPInit accelerate GNN training?
	How well does MLPInit perform on node classification and link prediction tasks?
	Is MLPInit robust under different hyperparameters?
	Will MLPInit facilitate better convergence for GNNs?

	Related Work
	Conclusion
	I
	Additional Experiments
	Additional experimental link prediction
	Additional hyperparameter sensitivity
	Additional training curves
	Additional loss/accuracy curves of PeerMLP and GNN
	Training curves of link prediction task

	More Experiments
	The Performance of GCN with the weight of PeerMLP
	Weight difference of GNNs with random initialization and MLPInit
	Running time comparison of MLP and GNN
	Comparison to GNN pre-training methods
	Experiments on more complicated aggregators
	Results on graph sampling methods and GNN architectures
	Experiments on datasets where node features are less important
	Deriving the PeerMLP
	Two Methods to Derive the PeerMLP
	Discussion about the efficiency of PeerMLP deriving

	Datasets and Baselines
	Datasets for node classification
	Baselines for node classification
	Datasets for link prediciton
	Baselines for link prediciton

	Implementation Details
	Running environment
	Experiment setting for
	Experiment setting for
	Experiment setting for
	Experiment setting for
	Experiment setting for

