
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Multi-Scale Patch Transformer Network for Satellite 

Image Time Series Classification 

Jifeng Suo 

School of Control Science and Engineering 

Dalian University of Technology 

Dalian, China 

suojifeng@mail.dlut.edu.cn 

Degang Wang 

School of Control Science and Engineering 

Dalian University of Technology 

Dalian, China 

wangdg@dlut.edu.cn

 

Abstract—With the increasing availability of high-quality 

earth observation data, satellite image time series (SITS) 

classification has become a hot topic. In this paper, a multi-scale 

patch Transformer model (PatchSITS) for SITS classification is 

proposed. First, SITS samples are segmented into patch sequences 

of varying patch lengths using k-means clustering. Subsequently, 

the enhanced Transformer is proposed to capture temporal 

features at various scales. To capture inter-band relationships and 

enhance critical band information, the gated channel attention 

mechanism is applied to obtain dynamic weights between bands. 

Furthermore, a multi-scale weighted fusion strategy is proposed 

to integrate these multi-scale features.  And broad learning system 

(BLS) is utilized for SITS classification. Numerical simulations 

demonstrate that the PatchSITS model exhibits excellent 

classification performance on the BreizhCrops dataset. 

Keywords—multi-scale temporal patching, crop classification, 

satellite image time series, transformer, k-means cluster 

I. INTRODUCTION  

With continuous advancements in remote sensing 
technology and the growing number of satellites, high-quality 
earth observation data can be obtained conveniently, which 
provides a vast development space for SITS classification. The 
SITS is utilized to analyze crop growth cycles and 
environmental changes, which can help agricultural 
management and improve the accuracy of crop classification. 

To address the crop classification problem in SITS, 
numerous methods have been proposed. Due to the advantages 
in extracting and classifying features, various deep learning 
models are widely applied in SITS data analysis ([1]). Recurrent 
neural networks (RNNs) are specifically designed for handling 
temporal data and capturing contextual information in SITS. 
Bidirectional long short-term memory networks (LSTM) are 
applied to identify temporal patterns and trends in SITS 
classification ([2]). To address the common issues of gradient 
vanishing and explosion in deep RNN architectures for crop 
classification, a novel stackable RNN unit called StarRNN is 
proposed to capture long-term dependencies ([3]). In contrast to 
recurrent neural networks that employ an encoder only, an 
encoder-decoder structure based on RNN sequences is designed 
to approximate the growth model of vegetation classes ([4]). 
Given the good performance of convolutional neural networks 
(CNNs) in capturing spatial features of remote sensing data, 
TempCNN is designed to extract temporal and spectral features 
from SITS data through convolution operations across the 

temporal and spectral dimensions ([5]). In addition, a temporal 
convolutional network (CA-TCN) based on channel attention 
and temporal convolution module is proposed for crop 
classification ([6]). A multi-scale temporal Transformer 
convolution (Ms-TTC) network model is designed to integrate 
multi-scale global and local information for effective processing 
of complex SITS data ([7]). To further address the challenge of 
single-level category prediction, a convolutional LSTM model 
is implemented with the goal of predicting hierarchical labels for 
each pixel ([8]).   

Due to the strong capability of attention-based networks in 
capturing global information, a Transformer network is 
specifically developed to model long-term dependencies and 
global features for crop classification ([9]). In contrast to 
conventional Transformers, the temporal attention encoder 
model combines pixel-set encoders with temporal self-attention 
mechanisms to effectively capture both global and local features 
in SITS data. To improve the extraction of local semantic 
information, the patch Transformer (PatchTST) model segments 
multivariate time series data into smaller patches for more 
effective modeling ([11]). Based on this framework, the multi-
resolution time series Transformer model incorporates a 
Transformer architecture with relative position encoding, 
thereby enhancing its ability to process multivariate time series 
data across various temporal resolutions ([12]). 

Now, remote sensing data can be available for a period of 
time, hence how to effectively utilize multi-scale temporal 
information for improving classification performance is an 
interesting question. In this paper, a multi-scale patch 
Transformer model is designed to extract the feature of SITS and 
BLS ([13]) is considered for the classifier. The main 
contributions are that: 

• A multi-scale Patch Transformer feature extraction 
model, with scales determined using k-means clustering, 
is proposed to effectively capture the temporal 
information in satellite image time series. 

• A multi-scale weighted feature fusion classification 
model is designed to effectively utilize multi-scale 
temporal remote sensing information and improve the 
accuracy of the classification process. 

This paper is organized as follows. In Section Ⅱ, the feature 
extraction method for multi-scale patch sequences in SITS is 



designed. In Section III, a multi-scale weighted feature fusion 
method is designed and BLS is considered as a classifier for crop 
remote sensing data. Numerical experiments are presented in 
Section Ⅳ.  Conclusions are summarized in Section Ⅴ. 

II. MULTI-SCALE PATCH SEQUENCE FEATURE EXTRACTION 

IN SATELLITE IMAGE TIME SERIES 

 In Section Ⅱ, a feature extraction method for multi-scale 
patch sequences based on the enhanced Transformer model is 
designed. The specific architecture of the PatchSITS model is 
illustrated in Fig. 1. The model primarily consists of the 
following components: the multi-scale patch embedding module, 
the enhanced Transformer module, and the multi-scale feature 
fusion module.  

 

Fig. 1. Architecture of the PatchSITS model. 

In the patch embedding module, the input satellite image 
time series is divided into multi-scale sub-sequence patches, 
where the length of the patch is computed by the k-means 
clustering algorithm ([14]). The enhanced Transformer module 
is used for multi-scale feature extraction, effectively capturing 
both local and global temporal information. A gated channel 
attention is designed to dynamically obtain the dynamic weights 
between bands.   

A. K-means Clustering and Patch Embedding 

In the task of crop classification, the types of crops can be 
identified through the segmentation of SITS which captures the 
local changes in the crop growth cycle. Since single-scale patch 
segmentation cannot fully capture crop growth information, the 
multi-scale patch segmentation strategy is proposed. 

The set of multi-scale patch lengths is determined by 
applying a k-means clustering algorithm to features with 
different patch lengths. The input SITS samples 𝑿 =
[𝒙1, 𝒙2, … , 𝒙𝑇]

T ∈ ℝ𝑇×𝐶  consist of 𝑇  time steps, where 𝒙𝑡 ∈
ℝ1×𝐶 represents the feature vector at time step 𝑡(𝑡 = 1,2, … , 𝑇), 
and 𝐶 represents the number of bands at each time step.  

To determine the optimal patch length for segmentation, a 
set of pre-selected patch lengths is defined as {𝑃1 , 𝑃2… , 𝑃𝐺}, 
where 𝑃𝐺 = 𝑇 2⁄ . The clustering process for the patch length 𝑃𝑔 

is taken as an example. The input samples 𝑿 are transformed 

into a sequence of patches 𝑿𝑔 ∈ ℝ
𝐶×𝑁𝑔×𝑃𝑔  using the sliding 

window method, where 𝑁𝑔 represents the number of patches 

and  𝑃𝑔  denotes the patch length. 𝑁𝑔  is calculated by the 

following equation: 

𝑁 = ⌊
𝑇 − 𝑃

𝑆
⌋ + 2 (1) 

For the patch sequence 𝑿𝑔, the corresponding sub-patch 

sequences are denoted by 𝑿𝑔,𝑖 . The relevant clustering features 

�̂�𝑔,𝑖  are calculated, including the band mean 𝑿𝑔,𝑖,𝑚𝑒𝑎𝑛 , band 

variance 𝑿𝑔,𝑖,𝑣𝑎𝑟 , Fourier coefficients 𝑿𝑔,𝑖,𝑓𝑓𝑡, and normalized 

difference vegetation index 𝑿𝑔,𝑖,𝑛𝑑𝑣𝑖. The band mean 𝑿𝑔,𝑖,𝑚𝑒𝑎𝑛 

represents the average value across different bands. The band 
variance 𝑿𝑔,𝑖,𝑣𝑎𝑟  refers to the variance across the bands. The 

calculation equations are as follows: 

𝑿𝑔,𝑖,𝑚𝑒𝑎𝑛 = 1 𝑃𝑔⁄ ∑ 𝑿𝑔,𝑖
𝑃𝑔

𝑖=1
(2) 

𝑿𝑔,𝑖,𝑣𝑎𝑟 = 1 𝑃𝑔⁄ ∑ (𝑿𝑔,𝑖 − 𝑿𝑔,𝑖,𝑚𝑒𝑎𝑛)
2

𝑃𝑔

𝑖=1
(3) 

𝑿𝑔,𝑖,𝑓𝑓𝑡 = mean(|𝐹𝐹𝑇(𝑿𝑔,𝑖)|) (4) 

𝑿𝑔,𝑖,𝑛𝑑𝑣𝑖 = 𝑁𝐼𝑅𝑔,𝑖 − 𝑅𝐸𝐷𝑔,𝑖 𝑁𝐼𝑅𝑔,𝑖 + 𝑅𝐸𝐷𝑔,𝑖⁄ (5) 

Thus, the clustering features �̂�𝑔,𝑖 for the patch sub-

sequences 𝑿𝑔,𝑖 are represented by concatenating: 

�̂�𝑔,𝑖 = (𝑿𝑔,𝑖,𝑚𝑒𝑎𝑛 , 𝑿𝑔,𝑖,𝑣𝑎𝑟 , 𝑿𝑔,𝑖,𝑓𝑓𝑡 , 𝑿𝑔,𝑖,𝑛𝑑𝑣𝑖) (6) 

Similar patches are clustered using the k-means clustering 

algorithm based on the feature �̂�𝑔,𝑖. The quality of clustering is 

evaluated using the Silhouette score 𝑆𝑔 for the patch length 𝑃𝑔, 

which is computed by averaging the Silhouette scores 𝑆𝑔,𝑖 of all 

patches within each cluster, where 𝑖 = 1,2, … , 𝑁𝑔 . The 

Silhouette score 𝑆𝑔,𝑖 is calculated as follows: 

𝑆𝑔,𝑖 =
𝑎𝑔,𝑖 − 𝑏𝑔,𝑖

𝑚𝑎𝑥(𝑎𝑔,𝑖 , 𝑏𝑔,𝑖)
(7) 

where 𝑎𝑔,𝑖 denotes the average feature distance between the 𝑖-th 

patch and all other patches within the same cluster, while 𝑏𝑔,𝑖 
represents the minimum average distance between the 𝑖-th patch 
and the patches in any other cluster. 

{
 
 

 
 𝑎𝑔,𝑖 =

1

|𝐶𝑖| − 1
∑ 𝑑

𝑗∈𝐶𝑖,𝑗≠𝑖
(�̂�𝑔,𝑖 , �̂�𝑔,𝑗)

𝑏𝑔,𝑖 = min𝑘≠𝐶𝑖(
1

|𝐶𝑘|
∑ 𝑑

𝑗∈𝐶𝑘

(�̂�𝑔,𝑖 , �̂�𝑔,𝑗))

(8) 

where 𝐶𝑖 denotes the cluster to which the 𝑖-th sample belongs, 
𝐶𝑘 denotes clusters other than the one to which the 𝑖-th sample 

belongs, �̂�𝑔,𝑖 and �̂�𝑔,𝑗 are the feature vectors of the 𝑖-th and 𝑗-th 

samples, and 𝑑(�̂�𝑔,𝑖 , �̂�𝑔,𝑗) denotes the distance between them. A 

higher Silhouette score means that the selected patch length can 
effectively capture the primary patterns in the data. 

Based on the pre-selected patch length set {𝑃1, 𝑃2… , 𝑃𝐺}, a 
set of Silhouette scores {𝑆1, 𝑆2… , 𝑆𝐺} can be obtained. The top 
𝐿 patch lengths with the highest Silhouette scores are selected to 
form the multi-scale patch length set 𝑷 = {𝑃1, 𝑃2… , 𝑃𝐿}.  

The steps for selecting patch lengths through clustering are 
summarized as follows: 



• Step 1. Define the SITS sample set 𝓧 = {𝑿1, 𝑿2, … , 𝑿𝑀} 
and a set of pre-selected patch lengths {𝑃1, 𝑃2… , 𝑃𝐺}. 

• Step 2. For each patch length in {𝑃1, 𝑃2… , 𝑃𝐺}, extract 
and standardize features from the samples in 𝓧. 

• Step 3. Compute the Silhouette scores for each patch 
length in {𝑃1, 𝑃2… , 𝑃𝐺}. 

• Step 4. Rank the patch lengths based on their Silhouette 
scores, and select the top 𝐿  patch lengths to form the 
multi-scale patch set 𝑷 = {𝑃1, 𝑃2… , 𝑃𝐿}. 

Through the above steps, the multi-scale patch set 𝑷 =
{𝑃1, 𝑃2… , 𝑃𝐿}  is selected. The input SITS data 𝑿 ∈ ℝ𝑇×𝐶  is 

divided into patch data of various scales {�̂�1, �̂�2… , �̂�𝐿}, where 

�̂�𝑙 ∈ ℝ
𝐶×𝑁𝑙×𝑃𝑙 represents a sequence of 𝑁𝑙 patches. The value 

of 𝑁𝑙 is calculated by equation (1).  

 The single-channel strategy is used to extract the unique 
information from each band, ensuring that the specific 
characteristics of each band are fully captured. In this approach, 

the single-band satellite image time series �̂�𝑙,𝑐 ∈ ℝ
𝑁𝑙×𝑃𝑙  is used 

as the input for the 𝑐-th band feature (where 𝑐 = 1,2, … , 𝐶). �̂�𝑙,𝑐 
is input into the projection mapping layer to increase the 
flexibility of the PatchSITS model in processing data. This 

process maps the input �̂�𝑙,𝑐 to the latent vector �̃�𝑙,𝑐 ∈ ℝ
𝑁𝑙×𝐷 by 

the following equation: 

�̃�𝑙,𝑐 = �̂�𝑙,𝑐𝑾𝑙 +𝑾𝑝𝑜𝑠 (9) 

where 𝑾𝑙 ∈ ℝ
𝑃𝑙×𝐷  is the weight parameter, 𝑾𝑝𝑜𝑠 ∈ ℝ

𝑁𝑙×𝐷  is 

the position encoding, and 𝑁𝑙 is the number of patches after 𝑙-
scale division. The position encoding 𝑾𝑝𝑜𝑠 simulates positional 

information by mapping each patch to a fixed vector with 
distinct frequencies ([15]) as follows: 

𝑾𝑝𝑜𝑠 = {
𝑠𝑖𝑛(𝑝𝑜𝑠 100002𝑘 𝐷⁄⁄ ) 𝑖𝑓 𝑖 = 2𝑘

𝑐𝑜𝑠(𝑝𝑜𝑠 100002𝑘 𝐷⁄⁄ ) 𝑖𝑓 𝑖 = 2𝑘 + 1
(10) 

where 𝑝𝑜𝑠 is the position index in the current patch sequence, 𝑖 
represents the feature dimension index, and 𝐷 is the dimension 
of the latent vector.  

B. Enhanced Transformer 

The enhanced Transformer layer primarily comprises of the 
multi-head attention layer, the feed-forward network layer, and 
the gated channel attention layer.  

The multi-head attention mechanism employs ℎ  parallel 
attention heads to capture various aspects of SITS and enhance 

feature representation, using �̃�𝑙 = (�̃�𝑙,1, �̃�𝑙,2, … �̃�𝑙,𝑐)  as the 

input. Similarity between patches in the output data sequence is 
determined by equations (11) and (12). Three independent linear 
transformations are applied to create the query matrix, the key 
matrix, and the value matrix, thereby capturing various features 
and patterns in the data. For the ℎ -th attention head, the 

equations for the query matrix 𝑸𝑙,𝑐,ℎ ∈ ℝ
𝑁𝑙×𝑑𝑘 , the key matrix 

𝑲𝑙,𝑐,ℎ ∈ ℝ
𝑁𝑙×𝑑𝑘 , and the value matrix 𝑽𝑙,𝑐,ℎℝ

𝑁𝑙×𝑑𝑣  are as 

follows: 

𝑸𝑙,𝑐,ℎ = �̃�𝑙,𝑐𝑾ℎ
𝑄 , 𝑲𝑙,𝑐,ℎ = �̃�𝑙,𝑐𝑾ℎ

𝐾 , 𝑽𝑙,𝑐,ℎ = �̃�𝑙,𝑐𝑾ℎ
𝑉 (11) 

where 𝑾ℎ
𝑄 ∈ ℝ𝐷×𝑑𝑘 , 𝑾ℎ

𝐾 ∈ ℝ𝐷×𝑑𝑘 , 𝑾ℎ
𝑉 ∈ ℝ𝐷×𝑑𝑣  are weight 

parameters, 𝑑𝑣 = 𝑑𝑘 = 𝐷 ℎ⁄ . The attention output 𝑶𝑙,𝑐,ℎ ∈
ℝ𝑁𝑙×𝑑𝑣  for the ℎ-th attention head is computed by the attention 
function using the query matrix 𝑸𝑙,𝑐,ℎ the key matrix 𝑲𝑙,𝑐,ℎ, and 

the value matrix 𝑽𝑙,𝑐,ℎ: 

𝑶𝑙,𝑐,ℎ = 𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸𝑙,𝑐,ℎ𝑲𝑙,𝑐,ℎ

T

√𝑑𝑘
)𝑽𝑙,𝑐,ℎ (12) 

where 𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅)is the softmax function.  

 To obtain the multi-head attention output, the outputs from 
single attention heads are combined along the dimension ℎ and 
subsequently passed through a linear transformation. This 
process enhances the learning capability of the model and enrich 
feature representation. The output of multi-head attention 𝑶𝑙,𝑐 ∈
ℝ𝑁𝑙×𝐷 can be determined using the following equation: 

𝑶𝑙,𝑐 = (𝑶𝑙,𝑐,1, 𝑶𝑙,𝑐,2, … , 𝑶𝑙,𝑐,ℎ)𝑾
𝑂 (13) 

where the weight parameter of the linear transformation is 𝑾𝑂 ∈
ℝ𝐷×𝐷. The residual connection is used to connect the input data 

�̃�𝑙,𝑐  with the output data 𝑶𝑙,𝑐 for addressing the vanishing 

gradients and enhancing model performance. The combined 

result �̃�𝑙,𝑐 ∈ ℝ
𝑁𝑙×𝐷 is passed through a normalization layer to 

standardize the data: 

�̃�𝑙,𝑐 = 𝜑(𝑶𝑙,𝑐 + �̃�𝑙,𝑐) (14) 

where 𝜑(⋅)  represents the LayerNorm normalization layer, 
which is used to adjust the feature distribution. Given the input 
vector 𝑶𝑙,𝑐 ∈ ℝ

𝑁𝑙×𝐷 , the normalized result is calculated as 

follows: 

𝜑(𝑶𝑙,𝑐) = 𝛾
(𝑶𝑙,𝑐 − 𝜇𝑶𝑙,𝑐)

√𝜎𝑶𝑙,𝑐
2 + 𝜀

+ 𝛽 (15)
 

where 𝜇𝑶𝑙,𝑐 and 𝜎𝑶𝑙,𝑐
2  represent the mean and variance of the 

input vector 𝑶𝑙,𝑐 across the 𝐷 dimension. The parameters 𝛾 and 

𝛽 are applied to scale and shift the normalized features. 

Additionally, the normalized output data �̃�𝑙,𝑐 is input into a 

feedforward network layer to extract more complex features. 
This network consists of two linear layers with weight 

parameters 𝑾1 ∈ ℝ
𝐷×𝑑𝑓𝑓  and 𝑾2 ∈ ℝ

𝑑𝑓𝑓×𝐷 , and bias are 𝑏1 
and 𝑏2. The dimension of the hidden layer is 𝑑𝑓𝑓. The output 

𝒁𝑙,𝑐 of the feedforward network is calculated as follows: 

𝒁𝑙,𝑐 = 𝜙𝐺𝐸𝐿𝑈(�̃�𝑙,𝑐𝑾1 + 𝑏1)𝑾2 + 𝑏2 (16) 

where 𝜙𝐺𝐸𝐿𝑈(⋅) is the GELU activation function. The output 

data �̃�𝑙,𝑐 is combined with the output data 𝒁𝑙,𝑐  through a 

residual connection to address vanishing gradients and then 

passed through normalization layer to produce �̃�𝑙,𝑐  for further 

processing in the network.  The output data �̃�𝑙,𝑐 is computed as 

follows: 

�̃�𝑙,𝑐 = 𝜑(𝒁𝑙,𝑐 + �̃�𝑙,𝑐) (17) 

In this way, the single-band satellite image time series 

feature representations �̃�𝑙,𝑐  are concatenated along the band 

dimension 𝐶 to produce the output feature representations for 



all bands 𝒁𝑙 = (�̃�𝑙,1, �̃�𝑙,2, … �̃�𝑙,𝐶). 

C. Gated Channel Attention 

In crop classification tasks, neglecting the relationships 
between bands can lead to the loss of semantic information. 
Therefore, a gated channel attention mechanism is integrated 
into the Transformer framework to effectively capture these 
inter-band relationships by dynamically adjusting their weights. 
By assigning varying levels of importance to different bands, 
the channel attention mechanism enhances the significance of 
critical band information, thereby improving crop classification 
performance. 

For the output data 𝒁𝑙 = [𝒁𝑙,1, 𝒁𝑙,2, …𝒁𝑙,𝑁𝑙], each the 𝑛-th 

(𝑛 = 1,… , 𝑁𝑙)  patch sequence is denoted by 𝒁𝑙,𝑛 ∈ ℝ
𝐷×𝐶 . 

Initially, a linear transformation is performed on 𝒁𝑙,𝑛 . The 

weight 𝑾𝐴 ∈ ℝ
𝐷×𝐶  for the spectral band dimension is 

calculated as follows: 

𝑾𝐴 = 𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒁𝑙,𝑛𝑾𝐶 + 𝑏𝐶) (18) 

where the weight parameters of the linear transformation are 

𝑾𝐶 ∈ ℝ
𝐶×𝐶  and the bias 𝑏𝐶 . The weighted output feature �̃�𝑙,𝑛 

is obtained by dynamically weighting the input data 𝒁𝑙,𝑛 , as 

follows: 

�̃�𝑙,𝑛 = 𝒁𝑙,𝑛⨀𝑾𝐴 (19) 

where the symbol ⨀  denotes the Hadamard product, 
representing the element-wise multiplication of two matrices. 

The feature representation �̃�𝑙,𝑛 ∈ ℝ
𝐷×𝐶  is transformed by the 

1 × 1 convolutional layer to obtain the output 𝒀𝑙,𝑛, enhancing 

the capability of capturing non-linear patterns. 

𝒀𝑙,𝑛 = 𝜙𝐺𝐸𝐿𝑈(�̃�𝑙,𝑛 ∗ 𝑾conv1 + 𝒃conv1) ∗ 𝑾conv2 + 𝒃conv2(20) 

where 𝑾conv1 ∈ ℝ
2𝐶×𝐶×𝑘  and 𝑾conv2 ∈ ℝ

𝐶×2𝐶×𝑘 are the 
weight parameters of the convolutional layers, 𝒃conv1  and 
𝒃conv2 are bias, the symbol ∗ denotes the convolution operation, 
and 𝑘  is the convolution kernel size. The feature 
representations of all patch sequences are concatenated to 

obtain the output 𝒀𝑙 = (𝒀𝑙,1, 𝒀𝑙,2, …𝒀𝑙,𝑁𝑙).  

The input 𝒁𝑙  and the output 𝒀𝑙 of the convolution layer are 
combined through a residual connection and then passed 
through the normalization layer to obtain the output feature 

representation �̃�𝑙. The calculation of �̃�𝑙 is as follows:  

�̃�𝑙 = 𝜑(𝒀𝑙 + 𝒁𝑙) (21) 

where 𝜑(⋅) represents the LayerNorm normalization layer. The 
enhanced Transformer is different from the original 
Transformer network described in ([15]) by incorporating the 
gated channel attention mechanism. In this way, the multi-scale 
feature can be extracted by the PatchSITS model. 

III. MULTI-SCALE WEIGHTED FEATURE FUSION 

CLASSIFICATION 

A. Multi-Scale Feature Fusion 

The multi-scale feature fusion network is designed to 
provide a thorough understanding of SITS data by capturing the 
significance of features across different scales. This fusion 

network dynamically adjusts the weights of features on 
different scales.  

For the input data 𝑿 ∈ ℝ𝑇×𝐶 , multi-scale patch feature 
extraction produces the multi-scale feature representations 

{�̃�1, �̃�2… , �̃�𝐿} , where the patch length set is denoted by 

{𝑃1, 𝑃2… , 𝑃𝐿}. The feature representation with the single scale 

�̃�𝑙 ∈ ℝ
𝑁𝑙×𝐷×𝐶  is flattened to obtain �̃�𝑙,𝑓𝑙𝑎𝑡𝑡𝑒𝑛 ∈ ℝ

1×𝑁𝑙⋅𝐷⋅𝐶 . In 

order to simplify processing and reduce complexity, �̃�𝑙,𝑓𝑙𝑎𝑡𝑡𝑒𝑛 is 

mapped to 𝐷 feature dimensions through a linear transformation. 

The output �̂�𝑙 ∈ ℝ
1×𝐷 is calculated by the following equation: 

�̂�𝑙 = �̃�𝑙,𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑾𝑙 + 𝑏𝑙 (22) 

where the weight parameter of the linear transformation is 

𝑾𝑙 ∈ ℝ
𝑁𝑙⋅𝐷⋅𝐶×𝐷 . The multi-scale feature {�̂�1, �̂�2… , �̂�𝐿}  are 

concatenated to obtain the combined feature representation  

�̂� = (�̂�1, �̂�2, … , �̂�𝐿) ∈ ℝ
𝐿×𝐷 . Then, the average pooling is 

applied along the scale dimension 𝐿  to obtain the feature 

representation �̂�𝑚𝑒𝑎𝑛 ∈ ℝ
1×𝐷, as shown in Fig. 2:  

 

Fig. 2. Architecture of the multi-scale feature fusion network. 

This mean feature representation �̂�𝑚𝑒𝑎𝑛 is processed by a 
fully connected network to learn the importance weight at 
different scales. The importance weights 𝜶 ∈ ℝ1×𝐿  is 
calculated by the following equation: 

𝜶 = 𝜙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜙𝐺𝐸𝐿𝑈(�̂�𝑚𝑒𝑎𝑛𝑾3 + 𝑏3)𝑾4 + 𝑏4) (23) 

where 𝑾3 ∈ ℝ
𝐷×𝐷  and 𝑾4 ∈ ℝ

𝐷×𝐿  are the fully connected 
network weight parameters, with 𝑏3  and 𝑏4  are bias. A 
weighted aggregation layer is then used to obtain the multi-
scale feature fusion representation 𝒀𝑤 ∈ ℝ

1×𝐷: 

𝒀𝑤 = 𝜙𝑅𝑒𝐿𝑈 (∑  
𝐿

𝑙=1
𝛼[𝑙] × �̂�𝑙) (24) 

where 𝜙𝑅𝑒𝐿𝑈(⋅)  is the ReLU activation function. The multi-
scale feature fusion representation 𝒀𝑤  is passed through a 
linear layer 𝒀𝐾 = 𝒀𝑤𝑾5 + 𝑏5  to obtain a predicted category 
vector 𝒀𝐾 ∈ ℝ

1×𝐾 , where 𝑾5 ∈ ℝ
𝐷×𝐾  are the linear layer 

weight parameters and 𝐾 is the number of crop classification 
categories. 

To obtain the classification result, the predicted category 
vector 𝒀𝐾  is converted into a class probability distribution 
𝑷𝐾 = [𝑝1, 𝑝2, ⋯ , 𝑝𝐾] ∈ ℝ

1×𝐾 through the softmax function. By 
analyzing this class probability 𝑷𝐾 distribution, the preferences 
for crop classification can be identified. The prediction 
equation is as follows: 



𝑷𝐾 = 𝜙𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒀𝐾) (25) 

Thus, the predicted class probability distribution 𝑷𝐾 ∈
ℝ1×𝐾 for the satellite image time series sample 𝑿 is obtained. 

B. Broad Learning System for Classification Based on 

Feature Fusion 

Given a SITS sample set 𝓧 = {𝑿1, 𝑿2, … , 𝑿𝑀}  with 𝑀 

samples, the predicted probability 𝑷𝑖,𝐾 = [𝑝𝑖,1, 𝑝𝑖,2, ⋯ , 𝑝𝑖,𝐾] for 

the 𝑖-th sample 𝑿𝑖  is obtained through the category probability 
prediction using equation (25). Here, 𝑝𝑖,𝑘 is the probability that 

the SITS sample 𝑿𝑖  is classified into the 𝑘-th category. The 
cross-entropy loss function ([16]) for the true category 
distribution 𝑞𝑖,𝑘 is defined as follows: 

ℒ = 𝐿𝐶𝐸 = −∑ ∑ 𝑞𝑖,𝑘 log(𝑝𝑖,𝑘)
𝐾

𝑘=1

𝑀

𝑖=1
(26) 

The backpropagation algorithm is employed to minimize 
the ℒ. Gradients are computed to update the model parameters 
𝓦 , which include the weights and biases of the patch 
embedding layer, the enhanced Transformer layer, and multi-
scale feature fusion layer. The most optimal 𝓦∗ are optimized 
by minimizing the cross-entropy loss ℒ: 

𝓦∗ = argmin𝓦ℒ(𝓦) (27) 

The optimization problem (27) is addressed using the 
AdamW algorithm ([17]), with parameter updates defined by 
the following equation: 

𝓦𝜏 = 𝓦𝜏−1 − 𝜂 (𝒎𝜏 √𝒗𝜏 + 𝜀)⁄ − 𝜆𝓦𝜏−1 (28)

where 𝜂  represents the learning rate, 𝜀  represents a minimal 
value employed to avoid excessively large results, and 𝜆 
signifies the weight decay coefficient. The terms 𝒎𝜏  and 𝒗𝜏 
correspond to the first-order and second-order moment 
estimates of the gradient 𝝁𝜏, calculated as follows: 

        𝒎𝜏 = (𝛽𝑚𝒎𝜏−1 + (1 − 𝛽𝑚)𝝁𝜏)/(1 − 𝛽𝑚
𝜏) (29) 

𝒗𝜏 = (𝛽𝑣𝒎𝜏−1 + (1 − 𝛽𝑣)𝝁𝜏
2)/(1 − 𝛽𝑣

𝜏) (30) 

where 𝛽𝑚  and 𝛽𝑣  are the respective weight parameters. The 
first-order moment 𝒎𝜏−1  and the second-order moment 𝒗𝜏−1 
are computed during the (𝜏 − 1) -th iteration. The gradient 𝝁𝜏 
is defined as 𝝁𝜏 = ∇𝓦ℒ(𝓦𝜏−1). Finally, the optimal parameter 
𝓦∗ of the model is determined.  

 Further, BLS is selected as the classifier, as illustrated in 
Fig. 3. The features of the SITS sample set 𝓧 =
{𝑿1, 𝑿2, … , 𝑿𝑀}  with 𝑀  samples are represented by 𝒀𝑤 =
(𝒀1,𝑤, 𝒀2,𝑤, … , 𝒀𝑀,𝑤) ∈ ℝ

𝑀×𝐷.   

First, the mapped features 𝑭𝑖 ∈ ℝ
𝑀×𝑞𝑖 can be obtained by 

𝑭𝑖 = 𝜙(𝒀𝑤𝑾𝐹,𝑖 + 𝜷𝐹,𝑖)  for 𝑖 = 1,… ,𝑀𝑄 , where 𝑾𝐹,𝑖 

represents the weight parameters, 𝜙(⋅)  is the nonlinear 
activation function, and 𝜷𝐹,𝑖 denotes the bias. After executing 

𝑄  feature mapping operations, the total feature nodes 𝑭 =
(𝑭1, 𝑭2, … , 𝑭𝑀𝑄) ∈ ℝ

𝑀×𝑄 is achieved through the combination 

of all the mapped features. 

The enhancement features 𝑬𝑗 ∈ ℝ
𝑀×𝑟𝑗  are computed by 

𝑬𝑗 = 𝜙(𝑭𝑾𝐸,𝑗 + 𝜷𝐸,𝑗)  for 𝑗 = 1, … ,𝑀𝑅 , where 𝑾𝐸,𝑗  is the 

weight parameters and 𝜷𝐸,𝑗  is the bias. After performing 𝑅 

enhancement operations, the total enhancement nodes 𝑬 =
(𝑬1, 𝑬2, … , 𝑬𝑀𝑅) ∈ ℝ

𝑀×𝑅 can be obtained by concatenating all 

enhancement features. Subsequently, the extended matrix 𝑽 =
(𝑭, 𝑬) ∈ ℝ𝑀×(𝑄+𝑅)  is formed by concatenating 𝑭 and 𝑬. The 

output data �̃�𝑤 is defined as follows: 

�̃�𝑤  = 𝑽𝑾𝑣 (31) 

where 𝑾𝑣 = (𝛼𝑰 + 𝑽𝑽𝑻)−1𝑽𝑻𝑷  with  𝛼  as the regularization 
parameter and  𝑷  as the label matrix.  

 

Fig. 3. Architecture of the broad learning system. 

Therefore, the crop classification outputs for the SITS set 
𝓧 = {𝑿1 , 𝑿2, … , 𝑿𝑀} are derived using BLS. 

IV. EXPERIMENTS 

A. Dataset Introduction 

The BreizhCrops dataset ([9]) is sourced from Sentinel-2 
L1C level remote sensing time series data of the Brittany region 
in northwestern France from 2017. The area is split into four 
subareas (FRH01, FRH02, FRH03, and FRH04), encompassing 
a total of 768,175 parcels. Each parcel is averaged and 
combined into a feature vector, as illustrated by the example 
from the BreizhCrops dataset in Fig. 4. The feature vector 
contains 13 spectral bands and 45 time-steps. For model 
selection, FRH01 and FRH02 are utilized for training, and 
FRH03 serves as the validation set. For model evaluation, both 
FRH01 and FRH02, along with FRH03, are employed for 
training, leaving FRH04 as the test set. 

 

Fig. 4. Example from the BreizhCrops dataset. 

This dataset mainly contains 9 crop categories: wheat, barley, 
corn, rapeseed, sunflower, orchard, nut, temporary meadow, and 
permanent meadow. The precise number of crops is presented in 
the subsequent table. 



TABLE I.  NUMBER OF CROPS IN THE BREIZHCROPS DATASET 

ID CropType FRH01 FRH02 FRH03 FRH04 

1 barely 13046 10733 7148 5978 

2 wheat 30368 15005 27189 16993 

3 rapeseed 5593 2346 3557 3236 

4 corn 43990 36593 41992 31333 

5 sunflower 1 6 10 2 

6 orchards 944 350 1223 553 

7 nuts 10 18 10 11 

8 permanent meadows 32650 36512 32534 26117 

9 temporary meadows 52011 39082 52728 38391 

 total 178613 140645 166391 122614 

B. Comparison Method 

The presented PatchSITS model is compared with the 
following six models to evaluate its classification accuracy: 
TempCNN, StarRNN, Bi-LSTM, Transformer, PatchTST and 
CA-TCN.  

The hyperparameters of the TempCNN, StarRNN, Bi-
LSTM, and Transformer models are consistent with those in [9]. 
The TempCNN model utilizes a kernel size of 7 in its 
convolutional layers and comprises 128 hidden units. Its 
architecture consists of three convolutional layers. The StarRNN 
model comprises of three layers with a hidden state dimension 
of 128. The Bi-LSTM model is composed of four stacked 
bidirectional LSTM layers, each with 128 hidden units. The 
Transformer model employs 3 stacked modules which contains 
8 multi-head attention mechanisms. The PatchTST model uses 
a 3-layer Transformer network, and each layer consisting of 16 
multi-head attention modules. The PatchTST model selects the 
best classification result from patch lengths of {4,8,16,32}. The 
CA-TCN model is constituted by four layers, each featuring 64 
hidden units. Additionally, the CA-TCN model incorporates 
channel attention with a reduction factor of 4. The primary 
parameters utilized in the experiments for the PatchSITS model 
are presented in Table II. 

TABLE II.  MAIN PARAMETER CONFIGURATIONS OF THE EXPERIMENTS 

Parameter Value Description 

𝐸 100  The total training epochs 

𝐵 64 The size of each batch 

𝑁 4 Number of layers in Transformer module 

𝜂 0.001 The learning rate of the optimizer 

𝑷 {3,4,6} The multi-scale patch set  

𝑑 0.1 The dropout rate parameter 

ℎ 16 The multi-head number 

𝐷 128 The dimensionality of the hidden layers 

 

All deep learning models are implemented using the 
PyTorch and optimized with the AdamW method. The training 
procedure is executed over 100 epochs. The efficacy of the 
classification results is assessed through the use of three key 
metrics: overall accuracy (OA), the Kappa coefficient, and the 
average F1 score. The Kappa coefficient assesses the 
consistency between the classification results and the expected 
outcomes derived from random chance. The mean F1 score is 
computed by averaging the F1 scores. The results of the 

experiment are presented in Tab. III. 

TABLE III.  CLASSIFICATION RESULTS ON THE BREIZHCROPS DATASET 

Class 
Temp

CNN 

Star

RNN 

BiLS

TM 

Transf

ormer 

Patch

TST 

CA-

TCN 

([5]) 

Patch

SITS 

1 93.71 92.67 91.50 92.65 86.99 94.01 94.81 

2 96.86 97.77 97.92 96.82 94.07 97.59 97.92 

3 96.66 95.77 97.23 96.91 95.02 97.58 97.03 
4 97.67 97.99 97.59 97.45 96.47 97.78 97.62 

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 4.33 0.00 7.78 7.41 0.00 16.27 12.12 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8 49.37 53.51 57.21 61.46 46.43 57.92 58.04 

9 78.08 72.82 72.62 70.93 75.64 73.80 74.68 

OA 80.48 79.87 80.50 80.73 78.01 81.20 81.36 

Kappa 74.46 68.93 74.59 74.91 71.29 75.52 75.69 

mF1 57.55 50.34 58.42 58.84 54.10 57.76 59.80 

 
The classification results for all models on the BreizhCrops 

dataset are presented in Tab. III. Compared to the baseline 
models, the PatchSITS model achieves the best overall 
accuracy, Kappa score, and mean F1 score. This experimental 
result indicates that the PatchSITS model can effectively 
capture the multi-scale time-dependent features and improve 
the crop classification accuracy. 

C. Hyperparameter experiment 

In the PatchSITS model, a series of hyperparameter 
experiments are conducted to explore the parameters that can 
influence the  classification accuracy, including the number of 
layers and attention heads in the Transformer model. The model 
layers are systematically varied among the values {1,2,3,4}, 
while the number of attention heads is evaluated at {4,8,16,32}. 
The learning rate is set to 0.001 and the dropout rate is set to 0.1. 
The results of the hyperparameter experiment are presented in 
Fig. 5. 

 

Fig. 5. Results of the hyperparameter experiment. 

The experimental results show that the classification 
accuracy is best with 4 layers and 16 attention heads. As the 
number of attention heads increases, the PatchSITS model can 
better capture the key features and the complex relationships in 
SITS data. Meanwhile, increasing the number of Transformer 
layers can enhance both the representational capacity and the 
feature extraction capacity of the model, thereby improving the 
crop classification accuracy. 

D. Ablation Experiments 

In addition, an ablation study is conducted to evaluate the 



impact of gated channel attention (GCA) and multi-scale 
feature fusion (MSF) on the performance of the PatchSITS 
model. Three types of variant models are designed: removal of 
gated channel attention, removal of multi-scale feature fusion, 
and removal of both. Simulation experiments are performed on 

the BreizhCrops dataset. In the Tab. Ⅳ, √ represents the use 

of the corresponding module, and × represents the removal of 
the corresponding module. 

TABLE IV.  ABLATION EXPERIMENT RESULTS 

Module Performance metric 

GCA MSF OA Kappa mF1 

× × 80.10 73.97 57.74 

√ × 80.39 74.42 58.23 

× √ 80.46 74.50 58.25 

√ √ 81.36 75.69 59.80 

 
According to the results presented in Tab. Ⅳ, the 

PatchSITS model achieves the highest scores in overall 
accuracy (OA), kappa coefficient, and average F1 score when 
both GCA and MSF modules are employed. This ablation study 
demonstrates that the integration of both the GCA and MSF 
modules can enhance the classification accuracy by effectively 
capturing and fusing critical features within the dataset. 

V. CONCLUSIONS 

This paper proposes a multi-scale patch Transformer model 
for SITS classification. By extracting multi-scale features, both 
local and global temporal information are effectively utilized to 
improve classification performance. Future research will focus 
on more efficient multi-scale segmentation methods for SITS 
classification. 
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