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THEORETICAL NOTE

Likelihood-Based Parameter Estimation and Comparison of Dynamical
Cognitive Models
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Sebastian Reich

University of Potsdam
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Dynamical models of cognition play an increasingly important role in driving theoretical and
experimental research in psychology. Therefore, parameter estimation, model analysis and compar-
ison of dynamical models are of essential importance. In this article, we propose a maximum
likelihood approach for model analysis in a fully dynamical framework that includes time-ordered
experimental data. Our methods can be applied to dynamical models for the prediction of discrete
behavior (e.g., movement onsets); in particular, we use a dynamical model of saccade generation in
scene viewing as a case study for our approach. For this model, the likelihood function can be
computed directly by numerical simulation, which enables more efficient parameter estimation
including Bayesian inference to obtain reliable estimates and corresponding credible intervals. Using
hierarchical models inference is even possible for individual observers. Furthermore, our likelihood
approach can be used to compare different models. In our example, the dynamical framework is
shown to outperform nondynamical statistical models. Additionally, the likelihood based evaluation
differentiates model variants, which produced indistinguishable predictions on hitherto used statis-
tics. Our results indicate that the likelihood approach is a promising framework for dynamical
cognitive models.

Keywords: likelihood, model fitting, dynamical model, eye movements, model comparison

The broad class of dynamical cognitive models (Van Gelder,
1998) provides a powerful framework for explaining behavioral
data. This modeling approach has been particularly successful in

sensorimotor control. For example, an early paradigmatic model
was proposed by Haken, Kelso, and Bunz (1985) who introduced
coupled nonlinear oscillators as a mathematical model for phase
transitions in human finger movements. Another general theory
was proposed by Erlhagen and Schöner (2002), who introduced a
flexible framework of movement preparation based on dynamical
equations for the temporal evolution of neural fields that specify
motor actions in space and time. With their decision field theory,
Busemeyer and Townsend (1993) developed a dynamical frame-
work for decision making in uncertain environments. These rep-
resentative examples indicate the broad range of dynamical models
in cognitive science.

A strength of the dynamical approach is to generate specific
predictions, including the dependencies between different data-
points over time. This, however, implies that the statistical
treatment of dynamical models requires the comparison of
model predictions for time-ordered and interdependent data,
which complicates parameter identification and model compar-
ison. As a result, dynamical models are often handled with
heuristic and approximate methods. In this article, we discuss
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an alternative to these heuristic approaches, namely a statisti-
cally well-founded analysis based on the likelihood framework.

An important application of the dynamical framework is the
modeling of eye movements. Human observers move their eyes
three to four times per second to shift gaze to regions of interest
within a given visual scene (Henderson, 2003; Yarbus, 1967;). Eye
movements are important because high-acuity vision is limited to
the fovea, a small region with a spatial extension of about 2
degrees of visual angle (Nicholls et al., 2012; von Helmholtz,
1924). The analysis of fixated regions permits conclusions on the
type of features that attract our gaze. For eye movements in natural
scenes, saliency models concentrate on predicting the fixation
density for large data sets (Itti & Koch, 2001). The density of
fixations provides only information where people look regardless
of serial order and durations of fixations. This research strategy
turned out to be very successful and a range of saliency models
was developed to predict fixation density for a given input image
(Borji & Itti, 2013; Kienzle, Franz, Schölkopf, & Wichmann,
2009; Kümmerer, Wallis, & Bethge, 2015).

Recently, there has been an increasing interest in cognitive
models that produce sequences of fixations, that is, a scanpath, on
a natural scene (Borji, Sihite, & Itti, 2014; Engbert, Trukenbrod,
Barthelmé, & Wichmann, 2015; Le Meur & Liu, 2015; Zelinsky,
2008). Related models aim at a more complete explanation of the
cognitive principles underlying the control of attention and eye
movements during exploration of natural scenes. Statistical mea-
sures include simple statistics like the distribution of saccade
lengths and angles between subsequent saccades (Klein & Ma-
cInnes, 1999; Smith & Henderson, 2009), but also more complex
spatial statistics that relate image properties to fixation density
(Barthelmé, Trukenbrod, Engbert, & Wichmann, 2013) or to spa-
tial correlation functions (Engbert et al., 2015).

In the traditional approach for the evaluation of scanpath mod-
els, researchers typically simulate scanpaths from their models and
compare simulated data to experimentally observed scanpaths us-
ing a broad range of statistics (Le Meur & Baccino, 2013). The
most common statistics are those associated with the observed
experimental data (e.g., distributions of saccade angle and saccade
amplitudes). Alternative methods are based on comparisons of
scanpaths that include string comparison methods based on the
Levenshtein distance (Levenshtein, 1966; von der Malsburg &
Vasishth, 2011) or vector-based methods (Jarodzka, Holmqvist, &
Nyström, 2010). However, each effect and each discriminating
statistic for scanpaths evaluates different aspects of the models.
Thus, ranking of model performance depends critically on which
effects are investigated and which statistics are applied. None of
the statistics used so far quantify the general agreement between
models and experimental data in a dynamical framework.

For saccade generation in dynamical cognitive models, a spa-
tiotemporal map of activations (Erlhagen & Schöner, 2002) is
built-up according to dynamical evolution equations (e.g., Jackson,
1992). When a saccade target is needed, the activation map is read
out to generate a target with a probability that equals the relative
activation as determined by the map at the time of saccadic
selection. We study a dynamical model of scanpath generation for
eye movements in scene viewing (Engbert et al., 2015). Although
we focus on this concrete example to illustrate the procedures of
model parameter identification and model comparison, the model
only serves as a representative example for the broad class of

dynamical cognitive models that are developed for the prediction
of sequences of discrete motor actions.

In the current study, we investigate the application of the like-
lihood function as a statistical measure of model performance. The
likelihood function of a model M is the probability that a given set
of experimental data was generated by the model and a corre-
sponding set of model parameters �. Therefore, the likelihood
function for a given model depends on the data set and the set of
model parameter values that specify the model’s behavior. The
likelihood is the most widely used measure of model performance
in mathematical statistics (Bickel & Doksum, 1977; Cox, 2006).
However, because its numerical computation is believed to be
difficult, the likelihood is not yet part of the standard toolbox for
dynamical models of cognition. Solving likelihood computation
for dynamical models of cognition is potentially very important
because likelihood is the starting point for many additional con-
cepts of statistical inference about model parameters and compar-
isons between different models, including Bayesian inference
(Gelman, Carlin, Stern, & Rubin, 2014).

The likelihood can be computed whenever the model can gen-
erate the observed data with a certain probability that is nonzero.
This is already guaranteed, if the probability for the next datum can
be calculated given the previous data and is greater than zero for
any observed datum. This means that the likelihood approach can
be applied to an extremely broad class of models.

To investigate how the analysis of dynamical models can benefit
from the likelihood approach, we demonstrate numerical compu-
tations for the recently published SceneWalk model of scanpath
generation in natural scene viewing (Engbert et al., 2015). The
general motivation for modeling human scanpaths is to derive the
rules for the sequential deployment of overt attention (i.e., gaze
position) in a natural scene-viewing task. The SceneWalk model
starts from a given spatial distribution of fixation positions (an
empirical saliency map). Thus, we assume to have perfect knowl-
edge about saliency (up to differences between observers). This is
not a strong limitation because the model could easily be combined
with one of the successful saliency models (see Borji & Itti, 2013,
for an overview). Thus, our modeling goal is to reproduce the key
statistics of human scanpaths (e.g., distribution of saccade lengths
and spatial correlations) for a given image, when the time-
independent, two-dimensional distribution of fixation positions is
known to a good approximation.

Likelihood Computation for Dynamical Models

Definition of Likelihood Function

The fundamental theoretical concept for our approach is the
likelihood LM(� | data) of a model M with parameters � given a
specific set of experimental data, which is defined as the condi-
tional probability density fM for observing the data in the context
of model M specified by parameters �, such that

LM(� | data) � fM(data | �) �
PM(data | �)

(�A)N . (1)

In our case, data are given by a sequence of fixations, for which
our models shall predict a density one after another. Each of these
densities can be approximated by the probabilities to observe the
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fixations exactly on a discrete grid, divided by the area each
gridpoint represents resulting in a denominator of (�A)N for N
fixations. We stay with this grid approximation to all likelihoods in
this article, as many models are themselves defined on grids,
including saliency models and the SceneWalk model that we
investigate in the current study. The grid approximation simplifies
numerical computations, because this probability is always defined
and all integrals reduce to summations over grid points.

Furthermore we set �A � 1, measuring area in grid points,
which works, because all models that we aim to compare to each
other make predictions on the same grid of possible fixation
locations. Measuring the area in grid independent units (cm, pixels,
degrees of visual angle, etc.) in principle enables comparisons
between models, which are defined on different grids. However,
the use of a coarser grid implicitly blurs model predictions for eye
movement models and a blurring of the final predictions may
change performance considerably (Judd, Ehinger, Durand, & Tor-
ralba, 2009). Thus, we think it is preferable to convert all model
predictions to the same grid making all necessary conversions
explicit.

The likelihood quantifies how well a model describes the data
and is the most common criterion for model evaluation in math-
ematical statistics. Therefore, maximizing the likelihood of a given
dataset by optimizing model parameters is a straightforward ap-
proach to model fitting.1 Applicability of the likelihood approach
depends on both the structure and complexity of a model M, that
is, whether the likelihood can be computed exactly (analytically or
via numerical simulation of the model) or whether we need to
introduce further approximations. If it is not practical to compute
the likelihood, likelihood-free strategies for parameter estimation
and model comparison have been proposed as an alternative (see
Discussion).

The Likelihood for Dynamical Models Based on
Discrete Observations

To calculate the likelihood for dynamical models based on
time-ordered experimental data and, specifically, for the Scene-
Walk model of eye movements in scene viewing (Engbert et al.,
2015), we split the likelihood into a product of probabilities for all
fixations fi � (xfi

, yfi
) given the previous fixations f1 . . . fi�1 in the

sequence, that is

LM(� | data) � LM(� | f1, f2, . . . , fn)

� PM(f1)�
i�2

n

PM(fi | f1, . . . , fi�1, �), (2)

where PM(f1) is the probability of the initial fixation starting at
time t � 0, which can be given by the experimental design or the
model. The conditional probabilities PM(fi | f1 . . . fi�1, �) can be
computed by enforcing the model to generate the sequence of
fixations f1, . . . fi�1 to obtain the probability for the ith fixation fi.
This is possible in dynamical models which generate a continuous-
time activation map u that translates into a fixation probability �
to place the next fixation at position fi at time t. During numerical
simulation, we force the model to generate a particular scanpath
prescribed by the data f1, f2, . . . , which translates into a certain
probability at each iteration and reduces the necessary computa-
tions to a single model run for a given scanpath. This procedure is
illustrated for the first fixations on an image in Figure 1.

For practical purposes, it is advantageous to use the logarithm of
the likelihood (log-likelihood):

lM(� | data) � log(LM(� | data)) (3)

� �
i�1

N

log(PM(fi | f1 . . . fi�1, �)) (4)

The log-likelihood can be calculated and optimized more
easily because it transforms the products over observations into
sums of terms and scales numerical values to a more feasible
range.

The log-likelihood characterizes model performance on the
whole dataset, in the current case the fixation sequence or
scanpath. Therefore, the log-likelihood of a scanpath given a
model depends on the length of the sequence or number of
fixations. To obtain a number that is easier to compare between
different realizations of scanpaths, it is more informative to
compute the log-likelihood per fixation, which turns out to
represent a sensitive measure of model performance as the
log-likelihood is added up over all fixations in a given se-
quence.

Thus, effectively, we compute the average probability of an
observed fixation, calculating the average as a geometric mean.
However, we express all likelihoods on a logarithmic scale. When
the log2 is used as we do in this article, the unit of the log-
likelihoods is a bit. A difference of 1 bit between two log-
likelihood values thus indicates that the corresponding likelihoods
differ by a factor of 2.

A log-likelihood of zero indicates that the model predicted the
observed data exactly and with probability one. This is a limiting
case and certainly not a realistic scenario for typical cognitive
models. Almost always models predict a distribution over multiple
possible outcomes, which each have smaller probabilities than one.
Therefore, log-likelihoods are almost always negative. Indeed the
log-likelihoods we calculate subsequently will usually be in the
range between �10bit

fix and �20bit
fix.2

Model Details

For the analysis of the likelihood of the SceneWalk model,
we need to compute the probability for the next fixation, given
all previous fixations in a given trial. In this section, we
describe how the SceneWalk model computes probability dis-
tributions. To explain this, we provide a short recap of the
model internals and describe the details of some variants of the
model used to exemplify the following model comparisons.

The SceneWalk model is based on two independent process-
ing streams for excitatory and inhibitory aspects of saccade
planning that are related to attentional deployment (Itti & Koch,

1 We consider only finite dimensional parameters and models in this
article. We know of no nonparametric models for scanpath generation. A
nonparametric model increases the complexity of the analysis consider-
ably. If the reader is interested in this, there is a broad literature on
nonparametric statistics in both frequentist (Conover & Conover, 1980)
and Bayesian statistics (Gershman & Blei, 2012).

2 Note that these reference values are specific for our choice of grid and area
unit, such that they cannot be compared with values obtained with a different
grid or area unit. Especially, densities and thus likelihoods can be larger than
1 and log-likelihoods larger than 0, depending on the measure of area chosen.
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2001; Itti, Koch, & Niebur, 1998) and inhibition-of-return
(Klein, 2000; Klein & MacInnes, 1999;), respectively (see
Figure 2). The excitatory pathway starts with a given fixation
density (empirical saliency), which is multiplied with a Gauss-
ian attention window around the current fixation location re-
sulting in a local saliency map. This localization step serves as
a first-order approximation to the peripheral loss in available
information, cortical processing, and visual attention. For the
inhibitory pathway we start with a simple Gaussian around the
current fixation marking the currently visited area. The local

saliency and the inhibitory Gaussian are both implicitly time-
dependent through changes of gaze position.

For a current fixation position xf � (xf, yf), we first compute
the two Gaussian distributions centered at xf on a grid of size
L � L. The attentional pathway uses a Gaussian aperture GA

with standard deviation �A to access the static empirical sa-
liency map. The pathway for inhibitory tagging uses a Gaussian
GF with standard deviation �F to build-up inhibition that drives
the model to new regions of the visual field. For a grid position
(x, y), these Gaussians are given by

Figure 1. Numerical calculation of the likelihood for an example of a fixation sequence. Panels (a) through (e):
Visualization of the probabilities of the first 5 fixations from a sequence as predicted from the SceneWalk model. We
compute the probability P(fi | f1 . . . fi�1, �) of the next fixation, which the human observer actually generated and force
the model to choose the fixation location accordingly. With this new location we can calculate the probability
distribution for the next saccade and can thus iterate through the observed scanpaths and calculate their probabilities
given by the model and its parameter values. Panel (f): The presented image with the scanpath overlayed. See the
online article for the color version of this figure.

Figure 2. Schematic illustration of the SceneWalk model (Engbert et al., 2015). The temporal evolution of two
independent processing streams for attention and inhibition-of-return is combined into the time-dependent potential
u(x, t) that determines the next saccade target. The saliency map is weighted by a Gaussian (attentional window)
placed at the current fixation. The resulting local saliency map is used as the input for the build-up of activation in
the attention map. An inhibition map is subtracted, which builds up more slowly using a constant-shape Gaussian
around the current fixation as input. Finally, thresholding and normalization yield the final distribution u(x, t) for the
probabilistic selection of the next saccade target. See the online article for the color version of this figure.
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GA ⁄F(x, y; xf, yf) � 1
2��A ⁄F

2 exp��
(x � xf)

2 � (y � yf)
2

2�A ⁄F
2 �. (5)

Next, we define the change over time of the attention map
A(t) � {Aij(t)} and the fixation map F(t) � {Fij(t)} with indices
1 � {i, j} � L running over the whole image. Two parameters �A

and �f scale the rates of activation change in the two maps and we
require the given time-independent salience map S � {Sij} and the
Gaussians GA and GF from Equation 5:

dAij(t)

dt � �	AAij(t) � 	A
Sij · GA(xi, yj; xf, yf)

�kl Skl · GA(xk, yl; xf, yf)
(6)

dFij(t)
dt � �	FFij(t) � 	F

GF(xi, yj; xf, yf)

�kl GF(xk, yl; xf, yf)
, (7)

where the � kl symbol denotes the sum over all grid-points (k, l).
These evolution equations were formulated as difference equa-

tions in Engbert et al. (2015). However, we moved to differential
equations here, as they can be solved analytically. By solving
Equations 6 and 7, we can exploit the fact that the input GA/F

changes only as a result of saccadic gaze shifts xf x xf
=. The

solution of the differential equations for initial maps A0 and F0 at
the start of the fixation at time t0 are given as

A(t) �
GAS

� GAS
� e�	A(t�t0)�A0 �

GAS

� GAS� (8)

and

F(t) �
GF

� GF

� e�	F(t�t0)�F0 �
GF

� GF
�, (9)

where indices have been dropped to simplify the presentation. As
a consequence of the linear dynamics of the maps, the solutions
describe exponential change from the map represented at the
beginning of the fixation toward the input map. Using these
equations, we can calculate the activities at the end of the fixation
directly. Another advantage is that this formulation prevents tem-
poral discretization errors (in the original model, a 10-ms temporal
discretization was used, see Engbert et al., 2015, for details).

At the first fixation the maps in the model need to be initialized.
The original model was initialized with zero activities of the maps
for attention and inhibitory tagging. For short durations of the first
fixation, however, this led to unintended behavior, as the maps are
normalized. Small activations on the maps are amplified by the
normalization which introduces unwanted starting effects. To pre-
vent this problem of the model’s initial conditions, we prepared the
maps with a uniform distribution of sum one and adjusted the
magnitude of the input such that the equilibrium size of the maps
was normalized to one as well. Thus, the sum of activation of the
attention map and of the map for inhibitory tagging remains at a
constant value of one throughout each simulated trial.

Finally, the two independent activation maps A(x, t) and F(x, t)
are combined into a map u(x, t), which is defined as the difference
of the attention and inhibition maps after thresholding and nor-
malization. To obtain a flexible relative weighting within each
map, numerical values of activations are raised to power 	 for the
attention map A and to power 
 for the fixation map F, respec-
tively. Next, each map is normalized to unit sum. Finally, the map

for inhibitory tagging is multiplied by a factor cF and subtracted
from the attention map. As a result, we obtain a time-dependent
potential uij(t) for target selection:

uij(t) �
[Aij(t)]




� kl[Akl(t)]



� cF

[Fij(t)]
�

� kl[Fkl(t)]
�
. (10)

Note that we introduced the factor cF as an additional parameter,
which was not present in the original model (Engbert et al., 2015).

Taking a power of the map at each point changes not only the
weighting between different peaks, but also shrinks or widens the
individual peaks. Therefore, to obtain parameters which represent
the size of the final influence and are thus easier to interpret, we
reparametrized the model using the following equations:


�A
�2

� �A
2 ��F

�2
� �F

2 (11)

Thus �A
= and �F

= are the standard deviations the Gaussians would
have if they were mapped through the nonlinearity directly.

Normalization. To obtain a probability distribution from
uij(t), the potential is normalized to be positive and to have a unit
integral over the whole image. In the normalization procedure of
the original model, negative values of the potential uij(t) implied
probability zero to select position (i, j) as the next saccade target.
However, this is an unrealistic assumption in the model because
experimental data do not indicate regions which are never selected
as a saccade target. We changed the model accordingly. First, we
define a function which continuously maps u to an intermediate u�,
which is positive everywhere, that is

u*(u) � �u u � 0
0 u � 0

(12)

In a second step we compute a mixture with a uniform distri-
bution using a weighting factor � to obtain the probability �(i, j)
for each position on the lattice to be selected as the next fixation
target,

�(i, j) � (1 � )
uij

*

�kl ukl
*

�  1

�kl 1
. (13)

This formulation maps the original function u to a probability on
the map, which always returns a positive probability (� � / (�kl1))
for any next fixation. Furthermore, areas with high u (u �� �) are
not further distorted by this mapping, such that relative weightings
from the original empirical saliency map are kept.

The distribution �(i, j) directly represents the probability of a
specific grid-point to be the next fixation target, given the previous
fixations, that is, the map to be used in the likelihood calculation
described in Equation 2 and illustrated in Figure 1 completing our
description of the likelihood calculation for the SceneWalk model.

Competing Models

Nondynamic benchmarks. First, we compare the perfor-
mance of our model to nondynamical models that represent lim-
iting cases for saliency evaluation: An image independent spatial
bias and empirical saliency. The image independent spatial bias
mostly represents the central fixation bias (Buswell, 1935; Tatler,
2007)—the experimental observation that observers initially direct
their gaze positions toward the image center. A corresponding
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model can be realized as an image-independent kernel density
estimate of all fixations of the full set of images. The empirical
saliency model represents the optimal prediction of fixation posi-
tions from other observers generated as a kernel density estimate
as well, using fixations on the tested image only. Additionally, we
implemented a model which generates a uniform distribution over
the full image as a null model setting a zero point on our log-
likelihood scale.

A model without inhibition. As a first dynamical model to
compare with, we chose a model without inhibition, to test whether
this part of the model is necessary as the influence of inhibition of
return on scene viewing behavior has been challenged recently
(Smith & Henderson, 2009). To implement this model, we simply
set cF � 0 in our original model removing the influence of the
inhibitory pathway. As u then cannot become negative anymore,
we also replaced the mapping from u to u� with the identity. As a
consequence, all parameters of the inhibitory pathway are super-
fluous in this model, such that we are left with only four param-
eters for this model: �A, �A, 	 and �.

Divisive inhibition model. The original SceneWalk model
implements a subtractive inhibition. However, there are no strong
reasons for why this inhibition should be subtractive. An alterna-
tive and common model of interaction is divisive inhibition
(Carandini & Heeger, 2012). To test this alternative form of
combining the two maps, we changed the formula for u to

uij(t) �
[Aij(t)]




cF
� � [Fij(t)]

�
(14)

As for the model without inhibition, the variable u cannot
become negative. Again, we replaced the mapping from u to u�

with the identity. This way to combine excitation and inhibition
has the same number of parameters as the original subtractive
formulas. Thus, we are left with eight parameters as for the
original model.

Estimation of Model Parameters

As it is common practice our previous approach to the estima-
tion of model parameters was based on minimization of an ad hoc
loss function that included gaze positions and saccade lengths as
measures of model performance (see Appendix in Engbert et al.,
2015). First, we computed the squared differences between densi-
ties of gaze positions from experimental and simulated data using
two-dimensional bins for discretization. Second, we compared
experimentally observed and simulated saccade lengths via
squared differences from bins of the distributions. The sum of both
measures was minimized to obtain parameter estimates.

However, there were several problems associated with this
approach that motivated us to develop an alternative framework.
First, our earlier approach worked for a limited set of parameters
only. Some of the parameters had to be fixed at plausible values.
These fixed parameters included important parameters, for exam-
ple, normalization exponents of the dynamic activation maps,
which are critical for the spatial correlation functions we intended
to reproduce. Second, the qualitative model analyses necessary to
find useful and plausible values for the fixed parameters required
time-consuming hand-selected model runs. Third, our earlier fit-
ting approach based on a subset of hand-selected fixed parameters
and estimates from minimization of an ad hoc loss-function could

not guarantee reliable or consistent estimates and was missing a
statistical justification. Moreover, confidence intervals of the
model parameters were inaccessible and were, therefore, replaced
by an ad hoc indicator of errors of parameter estimates derived
from multiple runs of the minimization algorithm. Because of
these shortcomings of the earlier approach, we set out to develop
an improved strategy for parameter estimation that would be
statistically well-founded, reliable, and efficient in terms of com-
puter time, while working for all parameters.

Maximum Likelihood Estimation

A tutorial on the MLE concept for model fitting is given by
Myung (2003) in the context of mathematical models in psychol-
ogy (see Hays, 1994, for a more general context). The general idea
is to find the particular (vector-valued) parameter � that corre-
sponds to the maximum of the likelihood function given the
observed data. This parameter value is used as a parameter esti-
mate and, therefore, termed maximum likelihood estimate.

Fitting models to data based on the likelihood has considerable
statistical advantages over using other statistics for fitting (Myung,
2003). First, the likelihood guarantees sufficiency, that is, raw data
do not constrain the parameters more than the maximum likelihood
criterion. Second, for the likelihood, there is asymptotic consis-
tency, such that for large samples the estimate converges to the
correct parameter value if the data were generated from the model.
Third, the likelihood has asymptotic maximum efficiency, that is,
for large samples, there is no consistent estimate with smaller
variance. Finally, the likelihood estimate is not changed by the
reparametrization of the model, which is known as parametriza-
tion invariance.

In numerical simulation models like the SceneWalk model, the
maximum of the likelihood can be found using an optimization
algorithm that evaluates the likelihood LM(� | data) varying the
model parameters �. Most optimization algorithms try to change
the parameters gradually to improve the likelihood and can thus be
trapped in local extrema, where the likelihood is higher than for
surrounding parameter values, but not the globally best parameter
value. If the global optimum is found, it must not depend on the
specific optimization algorithm or starting position. Consequently,
it is common practice to run multiple optimizations with different
starting positions. If one of the local extrema is clearly better than
the others and the optimizations end up in clusters, one can be
reasonably sure that one found the global optimum.

Alternatively the field of global optimization designs algorithms
to find global minima. Two well-known families of algorithms for
global optimization are (1) simulated annealing, which—inspired
by the cooling of physical materials—first explores broadly and
later allows fewer bad objective values settling near the optimum
(Kirkpatrick, Gelatt, & Vecchi, 1983; Kirkpatrick, 1984) and (2)
the genetic algorithm, which simulates a population of parameter
values over generations in which points with high objective func-
tion values have higher probability to reproduce in the next gen-
eration (Golberg, 1989; Holland, 1975; Houck, Joines, & Kay,
1995). Variants of both these algorithms are available for most
higher programming languages like MATLAB (2016) or python
(Jones et al., 2001). As a promising idea for the future the rela-
tively recent metamodeling approach aims to model our knowl-
edge about the function gained so far and to conclude which points
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to sample to gain the most information about the optimum (Jones,
Schonlau, & Welch, 1998; Villemonteix, Vazquez, & Walter,
2009; Hennig & Schuler, 2012).

For optimization of the parameters of the SceneWalk model, we
used the genetic algorithm for global optimization as implemented
in MATLAB. We used 200 individuals on the logarithm of the
parameters with a range from �10 to 10, corresponding to a range
from 0.000 045 to 22 026 for the parameters. Subsequently we
further optimized using the Nelder-Mead simplex algorithm as
implemented as fminsearch in MATLAB. Using the standard
settings for all other options these algorithms found the global
maximum reliably, as confirmed by some standard optimization
runs from random start positions, the sampling we did for Bayesian
inference and the fits we computed for cross-validation as de-
scribed in the following text.

Bayesian Inference

If the likelihood LM(� | data) of the data can be computed for a
given model M, then Bayesian inference (Marin & Robert, 2007;
Gelman et al., 2014, for overviews) is a viable method for param-
eter estimation. The main advantage of Bayesian inference in the
current context is that it provides not only the best fitting param-
eter values, but also a full distribution of possible parameter
values. Thus, there is information on which other parameter values
could also explain the data and thus how well the parameters of the
assumed model are constrained by given data. In Bayesian infer-
ence, the goal is the computation of a posterior distribution P(�
|data) that indicates the most probable parameter values � under
the assumption of model M and the given data. Based on the
likelihood LM(� |data) and a prior distribution P(�), which de-
scribes our knowledge or beliefs about the parameters prior to data
collection, the posterior distribution is computed as

P(� | data) � L(� | data)P(�)

	�
P(�)L(� | data)d�

, (15)

where, computationally, the main problem is that quantities of interest
are usually integrals over the posterior P(� | data) like the expected
value of the posterior, its variances or correlations. To compute these
integrals, it is often necessary to use Markov Chain Monte Carlo
(MCMC) methods (Brooks, Gelman, Jones, & Meng, 2011; Robert &
Casella, 2013). These methods produce—sometimes weighted—sam-
ples from the posterior using only local evaluations of the likelihood
and prior. These samples can then be used to replace integrals by
sample means. This especially avoids the direct calculation of the
denominator P(data) � � P(�)L(� | data)d�, which in turn can be
computed from the samples if one is interested in this value.

The most controversial aspect of Bayesian statistics is the choice
of prior. The main reason is that the prior may serve very different
functions in different situations.

The first, most literal interpretation of priors is that they shall
represent all available believes prior to the experiment. If one
manages to formulate all prior believes into the prior distribution,
the posterior represents the believes one should have after the
experiment to do proper reasoning (Jaynes, 2003, Chapter 1). If we
had an estimate of the parameters from some other experiment, or
had any other kind of information what the parameters or predic-
tions of the model should be, the prior offers a possibility to

include this knowledge. In the absence of prior information, the
general recommendation is to use relatively broad uninformative
priors to avoid biasing the conclusions too much. If a bias is
unavoidable, then the recommendation is modified to use a prior
which favors the opposite of the suspected conclusion to achieve a
conservative analysis showing how well the data should convince
a sceptic (Gelman et al., 2014, Chapter 2.8, Jaynes, 2003, Chapter
11 and 12).

The notion of an uninformative prior can be formalized math-
ematically, which leads to Jeffreys’ (1946) priors. Other mathe-
matically preferable kinds of priors are conjugate priors, for which
the posterior has the same form as the prior (Gelman et al., 2014,
Chapter 2.4), such that posteriors can be parametrized and analyt-
ically analyzed. Neither Jeffreys’ priors nor conjugate priors are
particularly relevant for the complex models we study here, as they
are rarely known or even computable for highly complex models.

A second more objective interpretation is that the priors shall
represent the actual distribution of parameters as close as possible.
In this interpretation, which is popular in machine learning, the
prior becomes part of the model to be evaluated. The better the
prior represents the distribution of parameters needed to fit data,
the better it is. Obviously, such evaluations require multiple in-
stances for which a parameter is fitted. Once one starts to adjust the
prior to fit some data, this approach becomes essentially equivalent
to hierarchical models which we discuss in the following text.

Prior assumptions on parameters also represent a helpful tool to
include information obtained from other experiments and other
knowledge (e.g., physiological constraints) or to regularize the
model, which is a general expression for preferring some param-
eter values of the model over others, if both parameter values
explain the data equally well. The term regularization is used
usually in Frequentist contexts and justified as a means to stabilize
model fitting when the parameters are not sufficiently constrained
by the data.

For regularization purposes, one typically differentiates whether
parameter values are considered only less likely or impossible.
Only the former is usually called regularization, whereas the latter
is usually called constrained estimation. This distinction is mainly
necessary because once there are areas of parameter space which
are impossible the algorithms for optimization or sampling need to
be changed. For the effect of the priors on the model, this is a more
gradual distinction. Although it is usually discouraged to entirely
exclude parameter values a priori, that is, to set their prior prob-
ability to 0, very small prior probabilities will have the same effect
on the model predictions and parameter fits.

The different aims for priors partially work against each other.
Regularizing or including prior knowledge helps mostly when the
parameters cannot be constrained well by the data at hand, that is,
when the prior excludes parameters that can also fit the data
convincingly. When doing this one can obviously not interpret the
posterior as information how well these parameters are constrained
by the data. Thus different aims might require different priors for
the same model and data.

As we do not require regularization and have little to no prior
information about the parameters of the model we investigate, we
chose an extremely broad prior not to influence our parameter
estimates. We assume a log-normal distribution with a standard
deviation of 30 units (log-space) around 0 (in log-space).
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Results on Model Parameter Estimation

For the SceneWalk model, we used the same dataset as in the
original article (Engbert et al., 2015). In the experimental data,
gaze positions were recorded via eye tracking from 35 human
observers in a memorization task. Experimental stimuli consisted
of 15 natural images and 15 texture images, where the latter are
photographs of relatively homogeneous textures like grass or a
stone wall.

The numerical optimization of the model parameters required
less computation time than the original fitting method, as the
likelihood objective is not stochastic, although we fitted four
more parameters (the pooling exponents 	 and 
, the weighting
of the inhibitory map cF and the weight of the uniform map in
the mixture �).

The results of the maximum likelihood estimation (MLE) are
listed in Table 1. As they agree with values from Bayesian esti-
mation we shall discuss their meaning after explaining the origin
of the Bayesian estimates. To perform Bayesian inference about
the parameters of the SceneWalk model, we sampled the posterior
distribution with a Metropolis Hastings algorithm (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970).
A hand-tuned multivariate Gaussian proposal distribution was
chosen to have a covariance matrix roughly proportional to the
covariance of the sampled distribution and to reach an acceptance
rate of roughly 25% as recommended as optimal for Gaussians by
Gelman, Roberts, and Gilks (1996). We restricted us to reproduce
the diagonal of the covariance matrix, that is, to the variances of
the individual parameters, and three particularly strong covari-
ances, between �A and �F, CF and 	 and CF and � respectively.
Using this scheme, we sampled three chains with 50,000 samples
each starting with a small displacement from the Maximum A
Posteriori (MAP) estimate. We then discarded the first 1,000
samples as burn in, which covered the initial transient back toward
the MAP in all parameters.

First we checked that our sampling algorithm converged using
the R̂ statistic (Gelman & Rubin, 1992; Brooks & Gelman, 1998),
which quantifies how large the variance between chains is com-
pared with the variance within the chains, that is, whether the
chains sampled different regions. The R̂ statistic is always greater
than one and, when the chains under analysis converged to the
same stationary distribution, the R̂ statistic should be close to one.
For our chains we obtained values in the range from 1.00 to 1.06

for different parameters and a value of 1.06, when R̂ was computed
as a multivariate statistic. We thus concluded that our chains
converged to their common stationary distribution, which we also
confirmed by investigating visually and by comparison of the
distributions obtained from the three independent chains.

Next we checked that our chains mixed sufficiently well, that is,
we tested that the samples were sufficiently uncorrelated with each
other and, therefore, that the samples provide an adequate repre-
sentation of the posterior distribution. The mixing property was
analyzed via the effective sample size, which is an estimate of the
number of independent samples one would need to get an equally
good representation of the posterior. This estimate is computed
from the autocorrelation of the chain for each individual parame-
ter. As a result, we obtained an estimate of the effective sample
size for each parameter, although the true efficiency of the sam-
pling algorithm is a single quality of the method. For our chains,
the effective sample sizes turned out to range from 624 to 22,806
for the different parameters. This indicates that our sampling
algorithm provides at least the information of a few hundred
samples, which we considered as sufficient for our purposes.

However, our findings on the effective sample size also indicate
that the Metropolis Hastings algorithm could probably be im-
proved in efficiency as its sampling efficiency (effective sample
size divided by the number of drawn samples) was less than 1%.
When the algorithm is well tuned to the problem, a sampling
efficiency of several percent can be reached (Gelman et al., 1996).

The sampled posterior distributions are displayed in Figure 3.
The distributions clearly indicate the most likely values of the
parameters. All parameters except for the decay of the excitatory
map �A and the exponent 
 were well constrained by the data.
Their posterior marginals concentrate on a range of ��10%
around the best fitting values and are much narrower than the prior
(�10 log-units).

From an analysis of the marginal posterior distributions dis-
played in Figure 3, we can extract point estimates and credible
intervals, which characterize a single optimal model parameter and
a range that contains the true parameter value with a given prob-
ability. For our model we extracted the mean estimate and a 95%
credible interval for each parameter listed in Table 1 to compare
them with the parameter estimates obtained in the original article
(Engbert et al., 2015). For the well constrained parameters the
MLE and mean estimates agree closely as expected. These esti-

Table 1
Table of the Parameter Values Obtained From Different Point Estimates

Parameter name Original estimate MLE Posterior mean estimate 95% Credible interval

�A 6.607 2.4 � 1030 1.1 � 1045 �8 � 1044 417.6 4.373 � 1030

�F .00903 1.9298 1.973 �.001601 1.876 2.071
�A 4.88 5.9082 5.903 �.000640 5.838 5.967
�F 3.9436 4.5531 4.558 �.002282 4.445 4.671

 .3a 44.780 3.3 � 1012 �4.5 � 1011 43.83 3.249 � 1013

	 1a .8115 .8130 �.000422 .7896 .8354
cF 1a .3637 .3605 �.000321 .3658 .3767
� — .0722 .0712 �.000046 .0662 .0764

Note. Displayed are the maximum likelihood estimate (MLE), the posterior mean estimate (�estimated sampling error), and a confidence interval from
the Bayesian estimation we present, compared with the values from the original study by Engbert, Trukenbrod, Barthelmé, and Wichmann (2015).
a Values were fixed without fitting in the original article.
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Figure 3. Sampling results for the posterior distribution for the example model’s parameters. In the left two
columns we show histograms and density estimates for all eight parameters. Except for 
 and �A, all parameters
seem to be well constrained by the data. In the right column we show two dimensional histograms of two
parameters against each other illustrating their dependencies. The first indicates the strong correlation between
the spatial scale and scaling factor of the inhibition. The second shows the medium strength dependency between
the sizes of inhibition and attention pathway. The third plot illustrates the near independence of the spatial scale
of the attention map and the scaling factor highlighting the nontransitivity of correlations. In the lower right
corner, we present a summary plot about the correlations between parameters. The darkness of each rectangle
in this plot indicates the absolute correlation between two parameters, which each could be shown as a
two-dimensional histogram as we did for the previous three examples.
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mates can only differ when the posterior is relatively broad.
Consequently, our interpretation is the same for both parameter
estimates.

Qualitatively, we reproduce the patterns observed in the original
article: The activation on the excitatory attention map is larger and
faster than the inhibitory fixation map (�A � �F, �A � �F).
Quantitatively, the parameters differ substantially from the ones in
the original study. In particular, compared with the original study,
(a) the Gaussian input around the current fixation is larger by
roughly a degree for both maps, (b) the inhibitory fixation map is
2.5 log-units faster, the attention map could be arbitrarily fast and
(c) the pooling exponents (
 and 	) converged to very different
values than those chosen by hand.

The fact that the two parameters 
 and �A are not well con-
strained can be explained as follows. The parameter �A determines
the rise-rate of the attention map. Once this rate is fast enough,
changes of the parameter value will not influence predictions any
more. Similarly, high values of gamma produce all very similar
nonlinearities in the inhibition map and thus do not change any
predictions. As we discussed earlier, one could have used a prior
to restrict these parameters to ranges over which they change
predictions to avoid the result of parameters which are uncon-
strained over such wide ranges. This would however hide the fact
that they are not well constrained from the posterior sampling
result.

From the posterior distribution, we can also extract two-
dimensional marginal distributions as histograms or density esti-
mates. These marginal distributions illustrate posterior couplings
between pairs of parameters. Such couplings indicate that obtain-
ing information of one of the two parameters would constrain both
of them better. For example, we show two-dimensional histograms
for 3 pairs of parameters (see Figure 3):

• For �F and Cf we find a relatively strong coupling which
indicates that models with stronger inhibition require it to
be spread wider to explain the data equally well.

• For �A and �F we find a weaker, but still visible coupling,
which indicates that the inhibition and attention window
need to covary in size to explain the data.

• Finally, �A and CF turned out to be approximately inde-
pendent. Fixing one of these parameters would not con-
strain the other parameter.

This last point additionally illustrates that posterior correlations
are not necessarily transitive.

In summary, the posterior marginal distributions can be reduced
to the correlation coefficient, which captures the strength of the
linear dependence between the parameters. These correlation co-
efficients are also plotted in Figure 3 for each combination of two
parameters. The samples from the posterior also contain all higher-
order dependencies between parameters, although they are more
difficult to visualize or summarize.

Inter-Participant Differences and Hierarchical Models

For many cognitive tasks, participants differ in meaningful
ways, which we might want to include into our models. For eye
movements, one important participant-specific parameter is the
average length of saccades (Castelhano & Henderson, 2008). For
our participants who generated the longest saccades, we observed

average saccade lengths twice as large as the saccade lengths for
participants with the shortest saccades (see Figure 4).

One popular method for integrating differences between partic-
ipants into models are hierarchical models. In hierarchical models
the differences between participants are explained by assuming
different parameter values for each participant which follow an
additional model for the distribution of parameters in the popula-
tion.3 The main advantage of using a model for the distribution of
parameters in the population is to stabilize the estimates for par-
ticipants, whose parameters are not well constrained by the data
alone.

We implemented a hierarchical model which allows the sizes of
the attention span and of the inhibited area to differ between
participants to explain the observed differences in saccade length.
To simplify the analysis, we fixed all other parameters of the
model to their MAP estimates over all participants and images
from the model fitting explained earlier.

As our model for the parameter distribution in the population,
we introduced a two dimensional Gaussian, which we parame-
trized using means and variances for the two parameters and the
correlation between parameters as a fifth parameter. As we now
aim to estimate these five parameters together with the individual-
participants parameters, we defined a prior on each parameter
individually and assumed the priors to be mutually independent.
For each of the means and their correlation we chose a uniform
distribution, whereas for the variances we selected an inverse
Gamma distribution with parameters 0.25 and 1, which yields a
very broad distribution over the positive real axis with a peak at 1.

It is possible to fit the hierarchical model using the same
procedures we applied to the orginal model. We skip optimization
and frequentist analysis here though. Instead we directly sample
the posterior using Gibbs sampling (Casella & George, 1992) with
parameter groups for each participant and one group for the
hyperparameters, sampling each marginal distribution using the
Metropolis Hastings algorithm. Specifically, we first cycled
through each participant performing one Metropolis Hastings sam-
pling step for the corresponding two individual parameters. Next,
we performed one Metropolis Hastings step for the parameters of
the Gaussian distribution, which was assumed for the parameter
distribution in the population. All proposal distributions were
Gaussians with diagonal covariance matrix, adjusted by hand to
approximately achieve 25% acceptance rate, and variances roughly
proportional to the posterior variances of the parameters (Gelman
et al., 1996). We used the same proposal distribution for each
participant. Gibbs sampling is especially efficient for hierarchical
models because sampling the parameters of each participant re-
quires only the likelihood for the data of that participant. Thus a
whole sweep is computationally only as costly as single likelihood
evaluation for updating all parameters. We sampled three chains of
10,000 sweeps through the parameters each starting at the maxi-
mum a posteriori estimates over all data. As burn in we removed
the first 1,000 samples of each chain, which seemed sufficient after
visual inspection of the chains. This yielded an effective sample
size between 347 and 4,472 for the different parameters and the
chains seemed to have converged according to visual inspection of

3 The hierarchical model framework can also be used to model effects of
other properties of the task like item and image effects.
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the chains and the R̂ statistic which had an upper CI bound of 1.06
or less in all cases.

The results of the hierarchical model analysis are shown in
Figure 4. First in Panel A, we observe that different participants
are fitted by considerably different sizes for both �A and �F and
that the estimates for the two parameters are highly correlated, that
is, participants who have a larger fitted attention span also have a
larger fitted inhibition area. Second in Panel B we show that the
mean saccade length predicted by the model depends strongly on
�A and consequently on �F, as they are highly correlated. Finally,
we compare the measured mean saccade length to the mean
saccade length predicted by the fitted model by simulating as much
data as measured for each participant with their posterior mean
parameters. The two observables are strongly related, indicating
that varying the two spans in the SceneWalk model could account
for the difference in saccade length between participants. Addi-
tionally, we can observe that the predicted mean saccade length
grows with a slope slightly smaller than 1 with the measured
saccade length, indicating a slight regression to the mean, as
expected and intended for a hierarchical model.

Looking at the individual participant estimates more closely, we
can observe that most participants (30 of 35) fall into a large
cluster, with slightly smaller �F than �A. However, three partici-
pants have larger fitted inhibition spans and two participants have
extraordinarily large attention and inhibition spans.

Model Comparison in the Likelihood Approach

The likelihood concept can be used as a general approach to
evaluate how well a given model fits experimental data. Thus, it is
possible to compare different models. For likelihood-based com-
parisons between models one usually assumes fitted parameters.
Thus one uses the maximum likelihood, that is, the best likelihood
value a model can reach on the data, when the model’s parameters
are optimally adjusted. In the following, we denote the maximum
likelihood as L(M) � max� LM(� | data).

For the comparisons that we will carry out in the following text,
it is important that the log-likelihood is always a relative measure

because it depends on the grid for the observation of fixation
positions, the size of the dataset and other dataset specific aspects.
Therefore, only the log-likelihood-ratios between models can be
compared between different data sets, models, or viewing condi-
tions. Given a null model M0, which defines a reference point, one
can compute a likelihood ratio � to compare a model M1 to the
model M0, i.e.,

�(M1) �
L(M1)
L(M0)

. (16)

The likelihood ratio � informs about how many times more likely
the data are generated by model M1 than by model M0. For
theoretical considerations and for most computations the log-
likelihood ratio 	 is a better choice,


(M1) � log(�(M1)) � log
L(M1)
L(M0)

(17)

� log(L(M1)) � log(L(M0)).

The log-likelihood ratio is additive and can be interpreted in a
straightforward way, for example, if M2 is one bit better than M1,
which is one bit better than M0, then M2 is two bits better than M0

and the data are 4 times more likely under model M2 than under
model M0.

Also, the log-likelihood ratio can be interpreted in information
theoretic terms as the information gain about the data generated by
the new model compared with the information explained by the
original model. Thus the log-likelihood ratio measures how much
communication could be saved when specifying a sequence of
fixations using a code based on the model. As information theory
is well developed (Ash, 1990, for an introduction), it provides a
strong theoretical background for log-likelihood ratios in model
comparisons.

In principle likelihood ratios measure the relative quality of the
model fits. However, models tend to fit aspects of the data which
are purely random, a phenomenon known as overfitting (e.g.,
Dietterich, 1995). Overfitting is the main reason why model se-
lection—to which Zucchini (2000) gives an introduction for psy-

Figure 4. Results for the Hierarchical model. Panel A: Fits for the two parameters �A and �F for the different
observers. Each observer is represented by a black marker marking their posterior mean and a colored point cloud
representing the posterior samples. Additionally the dashed line marks the �A � �F diagonal and a large black ellipse
marks the 95% contour line of the Gaussian population model estimated as the posterior mean over hyper-parameters.
Panel B: Predicted saccade length for each participant against their posterior mean estimate for �A with a linear least
squares regression line. Panel C: Predicted mean saccade length from the posterior mean estimate against the
measured mean saccade length for each participant. The dashed and continuous line marks the equality diagonal and
a linear least squares regression line. See the online article for the color version of this figure.
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chologists—should not be done by directly comparing the likeli-
hoods based on the data used for fitting the models (Myung, 2000).
Ultimately the goal of model comparison approaches is to compare
the expected likelihood on new data, not on the data used for
fitting. Proper model selection and comparison methods are espe-
cially critical for comparing models which differ in their flexibil-
ity. More flexible models always explain more details of the
dataset they are fit to, and thus produce larger likelihood values for
the dataset they are fit to. However, more flexible models should
only be preferred if the additionally explained details generalize to
new data.

There are two popular quantities model comparison techniques
try to estimate and use for comparing models. The first one is the
out-of-sample-prediction error (Gelman, Hwang, & Vehtari,
2013), that is, one tries to estimate the likelihood of the parameters
fitted on the given data on a new dataset. The second one is the
evidence for a model which is the denominator of the Bayesian
formula—� P(�)L(� | data)d�—that is, the total probability to
observe the data according to the model with the given prior P(�).
For a new dataset this means the evidence estimates the models
performance using only the prior information about the parameter
value. Consequently the evidence critically depends on the prior
and can be arbitrarily bad if the prior assigns large probability to
parameters with low likelihood. The ratio of evidences for two
models is called the Bayes factor.

The first approach for model selection are metrics which add a
correction or penalty term for more flexible models. These metrics
are generally called information criteria and are usually formulated
in terms of the deviance (�2	(M))—a general measure of predic-
tion error—which is directly computed from the likelihood and
contains exactly the same information, but reverses the sign. Thus
smaller information criteria correspond to better models.

Classical examples for this procedure are the Akaike Infor-
mation Criterion (AIC, Akaike, 1974) and the Bayesian Infor-
mation Criterion (BIC, Schwarz, 1978). The AIC was formally
introduced as a first model selection criterion, defined as
AIC(M) � �2	(M) � 2dim(M).4 It represents a simple large
sample bias correction obtained from Fischer information theory
estimating out-of-sample-prediction error. The BIC (Schwarz,
1978) was introduced as an approximation to the evidence in favor
of a model in the case of an exponential family model. Thus it
effectively aims to estimate the generalization quality to new data
which requires new fitted parameters. For n independent observa-
tions it is defined as: BIC(M) � �2	(M) � log(n)dim(M).5 This
obviously does not contain the prior and is a coarse approximation
to the evidence. From very small data sets on this penalty will be
larger for the BIC than for the AIC, for example, the BIC will
prefer parsimonious models more strongly than the AIC corre-
sponding to the harder generalization task estimated by BIC.

The classical information criteria—AIC and BIC—both result
in very small corrections of the raw likelihood. Our dataset con-
tained 13908 and 13306 fixations for natural images and texture
images respectively. Thus for our model with 8 free parameters the
AIC and BIC penalties would maximally be 0.0008bit

fix and
0.0041bit

fix respectively, whereas the differences between models are
much larger. In contrast, our cross-validation results in the follow-
ing text suggest that the actual difference between fitted data and

new data is much larger. Thus AIC and BIC seem to provide bad
estimators in our case of complex dynamical models.

Very similar Bayesian evaluations exist (Gelfand & Dey, 1994),
which estimate generalization of the posterior predictive distribu-
tion instead of generalizations based on a point estimate for the
parameters. Nonetheless, the aim stays to predict how likely new
data will be according to the model.

Fortunately direct formulas to approximate model performance
in fully Bayesian terms from sampling results exist (Gelman et al.,
2013). Thus a Bayesian Model comparison is possible, once a
representative sampling is available for the posterior on the pa-
rameters of each model. Examples for this approach aimed at
generalization to new data from the same parameters are the
Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin,
& Van Der Linde, 2002) which approximates the posterior as the
mean estimate and the Widely Applicable Information Criterion
(WAIC, Watanabe, 2010), which directly uses the sampling estimate
for the posterior predictive. Both these criteria also use the posterior
samples to their advantage to produce a more accurate estimate for the
out of sample prediction quality. Similarly, there is also a Bayesian
alternative to the BIC, the Widely Applicable Bayesian Information
Criterion (WBIC, Watanabe, 2013).

Calculation of the Bayesian information criteria requires an
estimate for the posterior distribution on the model parameters,
that is, a sampling of the posterior. As we compare 10 models and
only have a sampling for one of these models, we do not perform
these analyses here. However, such analyses should be considered
especially when one studies other models like hierarchical models
for example for which cross-validation is not straightforward. And
of course, once the posterior predictive is used for prediction, this
should be the measure to be compared in the cross-validation.

One should note that the penalties of all information criteria per
data point (i.e., fixation or scanpath) converge to zero for growing
dataset size. Thus larger data sets will raise a preference for more
detailed models if there is any advantage for prediction. This
makes sense as the criteria penalize complexity only when this
complexities cannot be calibrated well enough to improve predic-
tions with the given data (Burnham & Anderson, 2004).

A different more data driven approach to estimate the quality of
out of sample predictions is cross-validation, which is frequently
used in machine learning, but has been introduced to the psycho-
logical literature as well (Browne, 2000). For cross-validation the
dataset is split into n subsets. Then the model is fitted to n – 1 of
the subsets—the training set—and evaluated on the one subset not
used for fitting—the test set. This is repeated for each of the
subsets being the test set and the results are averaged. This pro-
cedure applies to Bayesian and Frequentist evaluation equally, but
is more frequently used with point estimates and Frequentist
evaluation.

For dynamical models for eye movements in scene viewing,
two separate factors induce variability for which overfitting
could occur: human observers (participants) and stimuli. To
avoid problems of overfitting for these two factors, we split our

4 Dim(M) representing the dimensionality of the model, that is, the
number of parameters, n the number of independent observations.

5 The original criterion was half the value described here. However, the
version reported here seems to be the more commonly used one today.
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data across both factors and perform fivefold cross-validation
using splits into training and test set as illustrated in Figure 5:
For each fold we used the data obtained from 28 participants on
12 natural images and 12 texture images for training. For
evaluation we run the model on data obtained from 7 other
participants on three other natural images and three other tex-
ture images. To compute the empirical saliency maps, we used
the 28 training participants on both training and test images.
There are also data for the training participants on the test
images and the test participants on the training images, both of
which are not used here to completely isolate training and test
sets from each other.

For each fold we fitted the model to the training data using the
genetic algorithm of MATLAB with settings as for the original
fitting process on all data described earlier. However we noted that
there was exactly one more local maximum to be found at small
(�F � .5°), fast (�F � 10) inhibitions, to which the genetic
algorithm converged for some folds. To find the global maximum
in every case nonetheless, we started a subsequent fminsearch
optimization from each of these two maxima for each fold and
took the better one as the global maximum. In all folds and all
models, the global maximum had similar sized attention window
and inhibition and generally similar parameter values to the fit of
the subtractive model to all data described earlier. The other local
maximum was usually around 1,000 worse on the log-likelihood
scale for the training data. Thus the decision was always clear cut.
Nonetheless this additional local maximum can be understood.
Effectively it implements an inhibition for saccade targets very
near to the current fixation. Saccades to these targets would not be
detected as such by the data preprocessing such that such short
saccades indeed do not occur in the dataset and cannot occur in a
dataset. Thus this model adaptation indeed would be predictive,
but not informative about any underlying processes of eye move-
ment behavior.

Results on Model Comparison

To perform our comparison we split the data as explained
earlier, fitted the model to each of the five training sets and
computed the log-likelihood of each model on each test dataset.

Then we divided the resulting likelihood value by the number of
fixations to normalize the results regarding the size of the dataset.
Thus we measure all differences in bits per fixation [bit/fix].
According to this null model, the uniform distribution over the
whole image distributes a probability of 2�14 for every fixation to
each grid point because we calculated all maps on a 128 � 128
grid. This results in a log-likelihood of �14 bit/fix. We ran
separate evaluations for texture images and object-based natural
scenes presented in the experiments; the log-likelihoods are plotted
in Figure 6. Overall, we find a gain for the empirical saliency
model over center-bias prediction and a considerable gain in
likelihood for the SceneWalk model.

The information gain for the saliency model differs strongly
between natural textures and natural scenes, which was expected
as the gaze patterns over texture images were more uniform than
the corresponding data for natural scenes. This difference carries
over to our dynamical model, as this uses the empirical saliency as
an input predicting where human observers want to look. How-
ever, the increase in likelihood due to the dynamical principles is
comparably large for texture images and for scenes. This result
lends support to the view that the same dynamical principles of
scanpath generation are underlying texture images and natural
scenes.

We also evaluated the model with the parameters values fitted
by Engbert et al., (2015). This yields a likelihood value of �12.96
bit/fix for natural images and �13.10 bit/fix for texture images for
the training data (not shown in the figure). This indicates that the
model explained the data better than empirical saliency even with
the parameters not optimized for the likelihood. However, with the
new parameter values the model generates higher likelihood values
per fixation on the test sets it was not trained on (natural scenes:
�12.38 bit/fix, textures: �12.68 bit/fix).

To compare different model specifications against each other,
we generated two new model variants—one without inhibition and
one with divisive inhibition—described in detail earlier. Addition-
ally we questioned whether the introduction of the exponents 	 and

 were necessary. To test this, we generated model variants with
one or both of the exponents fixed yielding four variants of the

Figure 5. To guarantee that the model is fit to a different dataset than the one used for evaluation many possible
separations exist. Here we display the separation of our dataset into training and test data used for each fold of
cross-validation. Data from 28 human observers on 2 � 12 images (yellow/lighter) were used for parameter
fitting, whereas the data from 7 different observers on 2 � 3 test images were used for model tests (green/darker).
See the online article for the color version of this figure.
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subtractive original SceneWalk model, four for the divisive model
and two for the model without inhibition.

First, as a check on the results it is informative to look at the
performance of the models on the training data, we display in
Figure 7A, although these values should not be used for model
comparison. Evaluated on the training data a model which contains
another model as a special case must be at least as good as the
contained model on each of the training sets. This sanity check was
how we first noticed that some of the optimizations had ended in
a different, wrong local maximum. Also comparing the training set
and test set results provides some insight how substantial the
flexibility problem is for the specific model.

The test set results of these more detailed comparisons are
displayed in Figure 7B. We find that overall the divisive inhibition
model provides the best performance followed by the original
SceneWalk model and finally the model without inhibition. Within
each model type the exponent 
 seems to improve the model fit,
whereas the fits with free 	 yield equally good performance or
even worse performance than fixing 	 � 1 (using the attention
map without nonlinear distortion). The model to choose from our
pool is thus the divisive inhibition model with a large, fitted 
 and
	 fixed to 1.

Note that all the models with inhibition have a qualitatively
similar behavior and typically computed statistics on scanpaths
cannot discriminate these models, as we discuss in the following
text. Thus the likelihood based comparisons allow us to differen-

tiate models we could not differentiate otherwise. A restriction of
these model comparisons is, however, that they do not come with
a measure of uncertainty like standard errors, credible or confi-
dence intervals or adequate statistical tests.6 Thus we cannot
provide a hard statistical measure how sure we are about the order
of the models although the differences can be interpreted in size.

Goodness-of-Fit for Specific Measures and Spatial
Statistics

Although we used the likelihood as a general measure of model
fit to experimental data, the likelihood remains a relative (i.e.,
depending on a null model) and global measure (i.e., no specific
statistical properties are addressed). Thus, there are at least two
reasons to check other statistics additional to performing a
likelihood-based approach to parameter estimation or model com-
parison. First, to analyze the absolute performance of the model,
and, second, to understand which aspects of the data are modeled
adequately and which other aspects are modeled poorly.

The first reason, judging the absolute quality of models, is to
check that they are good enough to be interesting, which is
subsumed under goodness-of-fit analysis in statistics (Pitt, Myung,
& Zhang, 2002; Wichmann & Hill, 2001). In statistics, the impor-
tance of goodness-of-fit analyses is emphasized because the theory
of parameter estimation for models is built on the assumption that
there is a correct solution, that is, model parameter values exist that
actually generated the data. So, if a model cannot explain the data
well for any parameter value, the best estimate for the parameter
might be meaningless, even when the best parameter value is
defined by generating the highest likelihood for a given model. For
the same reason, Bayesian inference methods may fail if there are
no good models in the set assumed a priori.

To get an idea about the absolute quality of the model’s predic-
tions for data, the easiest way is to simulate data by the model and
to compute statistics for these data in exactly the same way as it is
done for the interpretation and statistical analysis of experimental
data. A comparison of the resulting statistics gives a good indica-
tion of the quality of the model’s fitness.

On the basis of the likelihood it is also possible to test how
(un-)likely the measured data are compared with the expected
likelihood of data from the model. This expected likelihood can be
computed by simulating larger amounts of data from the model
and computing its likelihood. For a perfect fit, the measured data
should have a similar likelihood as data sets simulated from the
model, which represents a test whether the model’s output vari-
ability matches the variability of the observed data.

We performed such an analysis by simulating as much data as
we had collected and computed the likelihood of this data. We
compare histograms over the log-likelihood per fixation for sim-
ulated and experimental data in Figure 8. First, in Figure 8A, we
ran the analysis on a model without the mixture with a uniform
distribution, that is, choosing � � 0. According to this model some
of the observed fixations were extremely unlikely, that is, the
model predictions were to specific, which motivated us to include
the mixture with a uniform distribution. In Figure 8B, we show a

6 Some classical �2 tests of model fit exist. As they are based on the
same approximations as the AIC and BIC, we doubt that they produce
correct conclusions here.

Figure 6. Bar plots for the models’ log-likelihood differences to the
uniform distribution null model. We split here by the two experimental
conditions, which differed in the images presented. For the texture models
the density map is much less informative than for the natural images. The
central bias/central fixation bias model is a kernel density estimate from the
fixations on all other images. The empirical saliency is the kernel density
estimate from the fixations of other observers on the same image. Finally,
no inhibition, original SceneWalk, and divisive inhibition refer to the three
variants of the SceneWalk model, which we investigate in detail.
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histogram of the log-likelihoods for the full model, again for the
measured data and simulated data from the model. For the full
model, the mean log-likelihood of the simulated data is �12.11
bit/fix, � � 1.89 bit/fix (raw value, difference � to a uniform distri-
bution), which is roughly equal to the likelihood for the training data
of �12.08 bit/fix, � � 1.92 bit/fix, but larger than for the test data for
which the model reaches only �12.67 bit/fix, � � 1.33 bit/fix. The
small difference between training data and model-generated data
suggests that the model did not overfit the data dramatically, that is,
we would expect the model to be roughly as good as it is for the data,
if the data were generated by the model. The difference between
training and test data suggests that the model does not generalize to
the test dataset perfectly, which is mainly caused by an increased
number of highly unlikely fixations (Figure 8B). It seems plausible
that these are fixations in regions where none of the observers in the

training set fixated (regions of low empirical saliency). This indicates
that a higher number of observers for estimating the empirical sa-
liency map would be beneficial to our approach.

The second motivation for additional model analyses is to
decide which aspects of the data are modeled well, and which are
not described adequately. It is important to further improve models
and to choose appropriate models for different situations and
modeling goals. Generally, measures used for this analysis should
be interpretable for the modeler and other researchers. Some more
detailed information can also be extracted from the likelihood
calculations as this calculation is split over the different observa-
tions. Thus for each individual observation a separate likelihood
can be computed and one can check which measured scanpaths or
individual fixations are especially likely or unlikely according to
the model providing some additional, more specific information.

Figure 7. Bar plot comparing log-likelihood differences to the uniform distribution null model, exploring the
effects of the exponents. Each bar is the average test set performance of the five folds of our cross-validation
procedure. The colored lines plot the results for the five folds. Panel A: The likelihoods on the training data sets,
which should not be used to judge the models, but are informative, whether the model fitting worked properly.
Panel B: The likelihoods on the test data sets, which can be used to compare models. See the online article for
the color version of this figure.

Figure 8. Histograms of the likelihood of individual fixations on the test dataset (red) and on data generated
from the model (yellow). Panel A: Using a model without mixing with a uniform distribution (setting � � 0 in
Eq. (13) and using an earlier method to allow fixations at points with u� � 0). The considerable number of
extremely unlikely fixations led us to include the mixture with a uniform distribution in Eq. (13). Panel B: Using
the full model with the mixture, extremely unlikely fixation positions no longer occur. See the online article for
the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

15LIKELIHOOD-BASED EVALUATION OF DYNAMICAL MODELS



For the SceneWalk model, we started with an analysis of stan-
dard statistics from eye-movement experiments. As a first step, we
compared the overall fixation density of model and data. To
quantify the comparison, we computed the Kullback Leibler di-
vergence (KL-divergence) of the fixations predicted by the model
against the fixations made in our experiment. This standard mea-
sure is computed as

KL � 	I
p(x)logp(x)

q(x)dx, (18)

where the integral is computed over the full image I.
The fixation density generated by the model does not fit the

empirical saliency perfectly, but perturbs it slightly through its
dynamics. However, the predicted distributions diverge less from
the true density (average KL-divergence � 0.1997) than any
saliency models, which minimally reach 0.54 and 0.37 for the two
data sets in the MIT saliency benchmark (Bylinskii et al., 2016).
The good performance of the SceneWalk model is not surprising
here because we used the empirical fixation density as an input to
our model.

Next, we looked at the distribution of the saccade lengths, a first
aspect of the model dynamics. The results of this analysis are given
in Figure 9. The saccade lengths in the model and data are very
similar and the variance over images is small in both model and
data, whereas the variance over participants is substantial as we
discussed earlier. Also the competitor models without inhibition
and with divisive inhibition fit the distribution of saccade lengths
well such that the saccade length distribution does not clearly
differentiate these models from each other. However, simply draw-
ing fixations independently from the empirical saliency map yields
an entirely different, wrong distribution.

Recently, methods from the theory of spatial point processes
were introduced into the analysis of fixation patterns in scene
viewing (Barthelmé et al., 2013; Engbert et al., 2015). Most of the
standard statistical measures are first-order statistics, for example,
the two-dimensional density of fixations. For the SceneWalk
model, we computed the pair correlation function (Engbert et al.,

2015) as an example for a second-order spatial statistic. The pair
correlation function describes how frequently two fixations with a
certain distance occur in one scanpath normalized against the
frequency expected for a random selection from the fixation den-
sity. Values higher than one indicate that fixation patterns are more
aggregated than could be expected from the first-order spatial
inhomogeneity of the process. As the pair correlation function
includes later returns to earlier fixated positions, this function
measures a different property than the saccade length distribution.
In experimental data, the pair correlation function usually indicates
a clustering at small distances below 3 and 4 degrees (Engbert et
al., 2015). Comparing the pair correlation functions estimated from
experimental data and model predictions in Figure 10, it is obvious
that all models fit the pair correlation function much better than a
simple random process that draws fixations from the empirical
density map. However, this measure seems not to differentiate
between the different types of inhibition either.

Discussion

The key motivation for the current study was to apply the
likelihood approach to the evaluation of dynamical cognitive mod-
els and, in particular, for model parameter estimation and model
comparison. Dynamical cognitive models are formulated by evo-
lution equations (temporally discrete or continuous) and evaluated
against time-ordered data (time series). As a specific example, we
investigated the problem of dynamical scanpath models, where the
dynamical model determines the probability �(x, t) to select a
saccade target position x at time t. In the SceneWalk model
(Engbert et al., 2015), this probability is computed from activation
fields at any point in time. Thus, we can compute the correspond-
ing probability for a fixation and force the model to generate the
gaze shift to the new fixation position. This procedure of direct

Figure 9. Comparison of model and data based on saccade lengths. The
plots present the saccade length distribution over all images for experi-
mental data and model simulations. See the online article for the color
version of this figure.

Figure 10. Comparison of models and data based on the pair correlation
function (PCF). The mean PCF for each of the models is plotted in color.
For the data the mean is shown in color as well and the pair correlation
functions for individual images are plotted in gray. Higher values than one
indicate clustering or aggregation, that is, fixations at distance r are more
abundant than expected on average from independently drawn fixations
from the fixation density. Values smaller than one indicate repulsion, that
is, fixations at distance r are rarer than expected for independently drawn
fixations. See the online article for the color version of this figure.
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computation of the likelihood will work for the broad class of
dynamical models that generate continuous-time activations for
the prediction of discrete behavioral events (Erlhagen & Schöner,
2002).

For the interpretation, we normalized the likelihood with respect
to the number of fixations in a given dataset to obtain a measure
that is independent of the size (length) of the fixation sequence.
Furthermore, we suggested to compare the likelihood to the like-
lihood obtained from a uniform distribution to get a measure which
is independent of grid and image sizes. For simpler, nondynamical
models this comparison to chance performance is a standard pro-
cedure. Additional nondynamical models were used to generate
likelihoods to compare to the dynamical model. Such nondynami-
cal density models (e.g., the central fixation bias, Tatler, 2007)
represented a convenient statistical baseline for our computations.
Finally, we investigated two variants of the SceneWalk model to
show that the likelihood can be applied as a powerful tool to
distinguish different dynamical models with highly specific as-
sumptions.

The likelihood as a global measure of model performance can be
used as a tool for the estimation of model parameters. Fitting
models based on the maximum likelihood concept has a long
tradition in statistics and some clear advantages over other param-
eter fitting procedures, including mathematical proofs for the con-
vergence and sufficiency of the parameter estimate. A practical
advantage is that the likelihood is a scalar value, which does not
rely on simulating complex discriminating statistics. Additionally,
model fitting based on the likelihood is the starting point for
Bayesian inference about parameter values, which provides new
insights to other parameters that could explain the data and, thus,
statistical comparisons on whether the parameters differ between
data sets or conditions.

For the SceneWalk model (Engbert et al., 2015), we computed
parameter values using MLE and sampled the posterior for Bayes-
ian parameter estimation. This parameter estimation technique
allowed us to fit all the parameters of the model, which was
impossible in the original publication. The parameters found by
optimizing the likelihood reproduce all the statistics the original
publication reported, whereas the parameters from the original
publication perform significantly worse in terms of likelihoods.
Additionally, we computed a full posterior probability over the
parameters that informs about which parameters are constrained by
the data well and which parameters are not constrained by the data.

Furthermore, the likelihood-based evaluation helped us to im-
prove the original model. Using a hierarchical model, we found
that the known differences between participants in their average
saccade length (Castelhano & Henderson, 2008) could be fit well,
by allowing the size of the attention window and the size of the
inhibition to vary between participants. Furthermore, likelihood
based comparisons between models allowed us to show that the
dynamics and the inhibition both improve model predictions. And
additionally, we could differentiate different variants how the
excitatory and inhibitory maps are combined. For experimentally
motivated statistics, these specific model variants made very sim-
ilar predictions. Among the models analyzed here, a divisive
inhibition model with a fixed numerator exponent 	 seems to fit
the data best—and even better than the original SceneWalk model.

With the SceneWalk model, we focus on fixation locations and
take fixation durations as given (or a random process with given

mean and variance). This is, however, not necessarily a restriction
of the likelihood approach. Models which compute probabilities
for fixation durations (Nuthmann, Smith, Engbert, & Henderson,
2010; Trukenbrod & Engbert, 2014) or for both the durations and
locations of fixations (Tatler, Brockmole, & Carpenter, 2017)
could be fit and evaluated using the same techniques we present
here for locations only. There are recent studies on fixation dura-
tions for scene viewing (e.g., Laubrock, Cajar, & Engbert, 2013).
Furthermore, the prediction of fixation durations is a main aim for
models of eye movements during reading (Reichle, Rayner, &
Pollatsek, 2003; Engbert, Nuthmann, Richter, & Kliegl, 2005).

In this article, we used relatively simple gradient free optimi-
zation algorithms and the Metropolis Hastings algorithm for their
conceptual simplicity, which eased the presentation. However,
there might be more efficient algorithms for solving the optimiza-
tion and sampling problems in the SceneWalk model and certainly
different algorithms will be best or easiest to implement for dif-
ferent models. Also, the optimizations and samplings for complex
models may take hours, days or even months of computation time.
Thus efficiency is important as it may make the difference whether
an analysis is feasible with given computational resources or not.
Consequently, it can be worthwhile to invest some time to try
different optimization algorithms including global optimization
algorithms, when local minima are a problem. Similarly, there is
broad literature on how to (adaptively) tune MCMC-algorithms
(e.g., Andrieu & Thoms, 2008; Gelman et al., 1996; Haario, Laine,
Mira, & Saksman, 2006; Haario, Saksman, & Tamminen, 2001;
Roberts & Rosenthal, 2009) and efficient sampling algorithms
(Brooks et al., 2011; Robert & Casella, 2009, 2013).

An especially large step in efficiency for both optimization and
sampling can be made if a gradient of the likelihood can be
calculated with reasonable efficiency. For optimization highly
efficient gradient based algorithms, that is, quasi-Newton methods
like the BFGS algorithm are available. The original gradient based
sampling algorithm is the Hamiltonian Monte Carlo (HMC)
method introduced by Duane, Kennedy, Pendleton, and Roweth
(1987) (see Neal, 2011, for an introduction). By now there are
many variants of HMC available, including adaptive methods like
the no-u-turn sampler (Hoffman & Gelman, 2014), which works
behind Stan (Carpenter et al., 2017), one of the most recent general
purpose samplers. These samplers contain automatic differentia-
tion tools, which remove the necessity to code a gradient compu-
tation by hand. Also independent tools to compute derivatives
automatically are able to differentiate virtually any computable
function (Abadi et al., 2015; Theano Development Team, 2016),
which allows computation of a derivative for many models.

As a next step the likelihood evaluation permits comparisons
between different models. To avoid overfitting, we carried out
such comparisons using cross-validation. Here, the SceneWalk
model (Engbert et al., 2015) was compared with a statistical model
of the central fixation bias and to a model that sampled fixation
positions from the empirical saliency map. We found that the
SceneWalk model outperforms the empirical saliency model by
0.75bit

fix, which highlights the importance of incorporating influences
of previous fixations into predictions for upcoming saccade targets.
Consequently, a saliency model alone is not a good model for scan-
paths, no matter how closely it matches the fixation density.
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As the likelihood is a relative measure, it is necessary to check
whether the fitted model is reasonably good in terms of absolute
measures. For the SceneWalk model, we demonstrated the ade-
quacy by comparing different summary statistics computed on
model predictions to the corresponding statistics obtained from
experimental data. We found that the model reproduced the fixa-
tion density, saccade length distribution, and the pair correlation
function with parameters computed via MLE.

For scanpath models in eye-movement research, the likelihood
approach to parameter estimation and model comparison is most
interesting as there is no general consensus on a metric for com-
paring models so far (Le Meur & Baccino, 2013; Pitt et al., 2002).
Instead, many statistics on specific aspects of scanpaths were
proposed, which allow judgments whether a given model shows
some specific effects or not. However, a global account of how
adequately the model fits the experimental data is currently lack-
ing. We demonstrated that such global measures could be provided
by the likelihood approach.

In the likelihood approach, any scanpath observed in humans
must have a probability larger than zero under the model, as the
likelihood vanishes otherwise, indicating only that the model can-
not explain the data. A second constraint on the model is that the
likelihood can be computed. As we showed earlier, it is sufficient
to be able to numerically generate the probability for the next
fixation given the previous ones. This is not a strong constraint as
most eye movement models on natural scenes even explicitly
represent a probability map for the next fixation (Le Meur & Liu,
2015; Zelinsky, 2008; Zelinsky, Adeli, Peng, & Samaras, 2013).

We believe that model evaluations based on the likelihood are
promising for many other psychological models. Indeed, for some
models the evaluation is already routinely done using likelihoods,
for example for receiver operating curves (Ogilvie & Creelman,
1968), diffusion models (Ratcliff & Tuerlinckx, 2002), psycho-
metric functions (Wichmann & Hill, 2001), and recently for sa-
liency models and fixations on static images (Barthelmé et al.,
2013; Kümmerer et al., 2015).

One favorable aspect of the SceneWalk model is that it is deter-
ministic—there is only a single way for the model to produce time-
dependent activation maps for a given sequence of fixations. If there
were multiple possible internal states compatible with the observed
data, then the computation of the likelihood would require an inte-
gration over all possible internal states. Such integration could render
evaluations of the likelihood function less effective or even impossi-
ble for other models. For such complex models with many possible
internal states and large data sets efficient computational techniques
for combined state and parameter estimation have been developed in
particular in the field of data assimilation (Law, Stuart, & Zygalakis,
2015; Reich & Cotter, 2015). Furthermore, processing time-ordered
data sets leads naturally to the consideration of sequential Monte
Carlo methods (Doucet, de Freitas, & Gordon, 2001; Chopin, Jacob,
& Papaspiliopoulos, 2013), to bring computational demands into a
manageable range.

For some model classes computation of the likelihood might be
too time consuming or the likelihood function too complex for
further handling. However, even for such models, mathematically
well founded approximations to the likelihood methods were pro-
posed: Pseudolikelihood methods compute an approximation to
the likelihood (Wood, 2010, e.g.). Alternatively, pseudomarginal
Monte Carlo methods (Beaumont, 2003; Andrieu & Roberts,

2009) can be used which, while involving approximations, can be
shown to provide consistent estimates. Here one could also con-
sider replacing the likelihood by an appropriate scoring func-
tion (Gneiting, Balabdaoui, & Raftery, 2007) which provides an
alternative metric to rank models in an objective manner. More-
over, approximate Bayesian computation allows an approxima-
tion to full Bayesian inference without a likelihood (Barthelmé
& Chopin, 2011, 2014; Turner & Van Zandt, 2012; Wilkinson,
2013). These methods preserve some of the benefits of the
likelihood approach to parameter estimation and model analysis
and can even be used to do model selection. For dynamical
models this is discussed for example by Toni, Welch,
Strelkowa, Ipsen, and Stumpf (2009).

Conclusion

We proposed and studied a likelihood approach for the evaluation
of a dynamical cognitive model for the control of saccadic eye
movements. The likelihood can be used for parameter estimation and
model comparisons as it makes the full range of statistics available,
from MLE through Bayesian estimation and hierarchical models to
proper model comparisons. Compared with nondynamical models,
the dynamical model generated a significant increase in predictive
power by introducing sequential dependencies. Our approach is a
promising tool for the evaluation of dynamical models that predict
sequences of discrete behavior (e.g., fixation position, movement
onsets) in general and for human scanpaths in particular.
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