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Abstract

Since the introduction of BERT and RoBERTa,
research on Semantic Textual Similarity (STS)
has made groundbreaking progress. Particu-
larly, the adoption of contrastive learning has
substantially elevated state-of-the-art perfor-
mance across various STS benchmarks. How-
ever, contrastive learning categorizes text pairs
as either semantically similar or dissimilar,
failing to leverage fine-grained annotated in-
formation and necessitating large batch sizes
to prevent model collapse. These constraints
pose challenges for researchers engaged in STS
tasks that require nuanced similarity levels or
those with limited computational resources,
compelling them to explore alternatives like
Sentence-BERT. Nonetheless, Sentence-BERT
tackles STS tasks from a classification perspec-
tive, overlooking the progressive nature of se-
mantic relationships, which results in subop-
timal performance. To bridge this gap, this
paper presents an innovative regression frame-
work and proposes two simple yet effective loss
functions: Translated ReLU and Smooth K2
Loss. Experimental analyses demonstrate that
our method achieves convincing performance
across seven established STS benchmarks, es-
pecially when supplemented with task-specific
training data. !

1 Introduction

Semantic Textual Similarity (STS) constitutes a
fundamental task in natural language processing,
wielding significant influence across a multitude of
applications including text clustering, information
retrieval, and recommendation systems. Despite
the remarkable precision achieved by interactive
architectures within these tasks, their inability to
support offline computation limits their viability in
large-scale text analysis scenarios. In response to
this, the seminal work of Sentence-BERT (Reimers

'Our code and checkpoints are available at https://
anonymous. 4open.science/r/STS-Regression.

and Gurevych, 2019) introduces a dual-tower ar-
chitecture to encode the sentences within a pair
separately, thereby facilitating the derivation of in-
dependent embeddings. This approach showcases
superior efficacy and has rapidly gained widespread
acceptance, now serving as a cornerstone for var-
ious downstream tasks. Consequently, further im-
provements to Sentence-BERT hold high research
and practical value.

Nevertheless, the advent of contrastive learn-
ing methods, exemplified by SimCSE (Gao et al.,
2021), has demonstrated more pronounced en-
hancements across renowned English STS bench-
marks like STS12-16 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS-B (Cer et al., 2017), and
SICK-R (Marelli et al., 2014). This has shifted
the research focus in recent years towards integrat-
ing contrastive learning techniques with pre-trained
language models (PLMs) like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). An intuitive
comparison is that using the NLI dataset (Bowman
et al., 2015; Williams et al., 2018) as a training
corpus, SIimCSE-RoBERTa,,. attains an average
Spearman’s correlation score of 82.52 across these
STS tasks, hugely surpassing the 74.21 achieved
by Sentence-RoBERTapse.

Such discernible performance disparity has
inadvertently overshadowed the advantages of
Sentence-BERT, especially in terms of data uti-
lization efficiency and computational resource de-
mands. Contrastive learning, by its self-supervised
nature, predominantly recognizes text pairs as ei-
ther similar or dissimilar. This binary categoriza-
tion restricts contrastive learning methods to using
triple form data composed of an anchor sentence, a
positive instance, and a hard negative instance for
training in supervised settings (Gao et al., 2021).
Many practical scenarios, however, tend to provide
more finely-grained labeled data (e.g., highly rel-
evant, moderately relevant, relevant, not relevant)
(Liu et al., 2023), where contrastive learning ap-
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proaches can usually only exploit text pairs whose
similarity indicators are at the endpoints.

Additionally, since contrastive learning enhances
model discriminability by treating other samples
within the same batch as negative instances, it re-
quires large batch sizes, thereby consuming sub-
stantial computational resources. For example,
SimCSE’s supervised learning settings include a
batch size of 512 and 3 epochs. To accommodate
this configuration on consumer-grade GPUs, Sim-
CSE constrains the maximum input length to 32
(Gao et al., 2021). In contrast, Sentence-BERT
and our proposed methodology necessitate a mere
batch size of 16 and 1 epoch to reach convergence.
Additionally, our default maximum input length is
256, significantly longer than SimCSE’s.

The aforementioned drawbacks highlight the
difficulty in completely replacing Sentence-BERT
with contrastive learning methods. Hence, some
cutting-edge works (Zhang et al., 2023b) continue
to employ Sentence-BERT for sentence embedding
derivation. Nonetheless, given that STS tasks typi-
cally categorize text pairs by degrees of semantic
similarity, and Sentence-BERT approaches these
tasks from a classification standpoint, neglecting
the progressive relationships between categories,
there exists a clear opportunity for improvement.
As a illustration, consider an STS task with five
categories, labeled consecutively from 1 to 5. Tra-
ditional classification strategies would yield identi-
cal loss for a sample scored at 2, irrespective of its
prediction as 3 or 4, an approach evidently subopti-
mal.

To rectify such deficiency, this paper proposes a
novel framework that converts multi-category STS
tasks into regression problems, thus effectively cap-
turing the progressive relationships between cate-
gories. For a given dataset, we first map its original
labels to a sequential array of integers, ensuring
that samples with higher similarity scores are as-
signed correspondingly greater integers. Then, we
set the number of nodes in the output layer to one,
thereby enabling the model to produce a continu-
ous prediction value. Finally, the model parameters
are updated according to the difference between
predicted and actual scores.

Distinct from standard regression problems, the
ground truth within our transformed multi-category
STS tasks manifest as a series of discrete points
along the numerical axis. Therefore, instead of
precisely matching the target points, the floating-
point predictive values just need to be sufficiently

close to get correctly classified. To accommodate
this process, we introduce a zero-gradient buffer
zone to widely utilized L1 Loss and MSE Loss,
unveiling two innovative loss functions: Translated
ReLU and Smooth K2 Loss.

Comprehensive evaluations across seven STS
benchmarks substantiate that our regression frame-
work surpasses traditional classification strategies
in handling multi-category STS tasks. Additionally,
we find that further updating our model’s check-
point with the STS-B and SICK-R training sets
allows our method to achieve superior Spearman
correlation relative to contrastive learning methods,
reaching state-of-the-art performance. These find-
ings reinforce the effectiveness of our proposed so-
lution and the importance of utilizing task-specific
data, an aspect often neglected in contrastive learn-
ing paradigms.

The main contributions of this study are outlined
as follows:

* Building upon the foundation of Sentence-
BERT, we develop a regression framework
adept at modeling the progressive relation-
ships between categories in multi-class STS
tasks. This not only enhances performance
but also, due to regression’s intrinsic prop-
erties, simplifies the prediction process for
K-category problems to require only a sin-
gle output node, significantly minimizing the
model’s output layer parameter count.

* We propose two innovated loss functions,
Translated ReLU and Smooth K2 Loss, specif-
ically tailored to address classification prob-
lems involving progressive relationships be-
tween categories.

* Through empirical evidence, we demonstrate
that, when combined with task-specific data,
our Siamese network approach can attain bet-
ter results than contrastive learning schemes.

2 Related Work

In this chapter, we primarily review two types of
STS task solutions directly related to our work:
Siamese Neural Network Architectures:
These approaches (Reimers and Gurevych, 2019;
Conneau et al., 2017; Thakur et al., 2021), pro-
posed relatively earlier in the field, have been
widely applied across various domains owing to
their effectiveness on annotated data. Although
their performance on the seven STS benchmarks



(STS 12-16, STS-B, SICK-R) is generally infe-
rior to contemporary contrastive learning methods,
this discrepancy largely arises from the absence
of task-specific training data. Thus, models have
the flexibility to opt for alternative sources, such
as wiki datasets (Gao et al., 2021) or NLI datasets
(Bowman et al., 2015; Williams et al., 2018), which
adapt readily to triplet format. Given our goal of
tackling multi-category STS tasks, our model ar-
chitecture remains rooted in the Siamese network.
However, in contrast to preceding efforts, we intro-
duce an innovative regression framework designed
to explicitly capture the progressive relationships
between categories.

Contrastive Learning Methods: Contrastive
learning has become the dominant paradigm for ad-
dressing STS tasks, characterized by a vast amount
of research (Jiang et al., 2022; Zhang et al., 2023a).
However, contrastive learning loss functions, epito-
mized by InfoNCE Loss (Oord et al., 2018), con-
centrate solely on the binary semantic categoriza-
tion of texts and cannot directly utilize fine-grained
labeled corpus. Furthermore, the necessity for large
batch sizes to ensure negative sample diversity and
prevent model collapse imposes considerable com-
putational demands. For instance, supervised Sim-
CSE’s training requires 58GB of GPU memory
(Jiang et al., 2023), whereas our proposed method,
even with a maximum sequence length eight times
that of SimCSE, demands merely 42GB.

3 Methodology

This chapter delineates our methodological frame-
work, beginning with a detailed exposition of the
designed network architecture and its operational
workflow in Section 3.1. Then, in Sections 3.2
and 3.3, we present the two novel loss functions
proposed in this study.

3.1 Network Architecture

As illustrated in Figure 1, we utilize a Siamese neu-
ral network with shared parameters for encoding
input sentences via BERT to obtain corresponding
word embedding matrices. Subsequently, sentence
embeddings, denoted as u and v for paired sen-
tences A and B, are derived through average pool-
ing. These embeddings, both vectors of the hidden
dimension, are then concatenated alongside their
element-wise difference |u — v| and passed through
a fully connected layer with parameters sized at
3 x hidden_dimension to produce the model’s pre-

dicted continuous similarity score.
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Figure 1: Our Regression Framework. Here, the two
BERT models share same parameters, with "dim" repre-
senting the embedding dimensions of u and v.

Our methodology diverges from the original
dual-tower structures employed by Sentence-BERT
and InferSent (Conneau et al., 2017) in three criti-
cal aspects:

1. We model STS tasks, characterized by a pro-
gressive relationship between categories, as regres-
sion problems. This is achieved by mapping labels
from the original dataset to a sequence of incre-
menting integers reflective of their similarity rela-
tions, thus conveying to the model that categories
are not independent but progressively related.

2. Building on this, we streamline the output
node count in our final fully connected layer to
one, enabling the model to directly yield a simi-
larity score rather than a categorical probability
distribution. Through this adjustment, for STS
tasks containing K categories, we effectively re-
duce the parameter size of the output layer from 3 x
hidden_dimension x K to 3 x hidden_dimension X
1. In light of the expanding dimensions of hidden
layers in contemporary PLMs, this optimization
can save substantial computational resources.

3. Contrasting with InferSent and Sentence-
BERT’s classification-based approach, which as-
signs target classes for sentence pairs based on
the highest probability, our regression framework
categorizes based on the closeness between the pre-
dicted and actual values.

To better understand this process, consider an
STS task with four categories, labeled as “very rel-
evant,” “moderately relevant,” “slightly relevant,”
and “not relevant.” After clarifying the progressive
relationship between these categories, we would



map them to four consecutive integers 0, 1, 2, 3,
respectively, ranging from “not relevant” to “very
relevant.” This mapping strategy is highly flexible,
allowing for task-specific adjustments in numeri-
cal nodes and intervals. Subsequently, we encode
the paired sentences separately and calculate their
semantic similarity, resulting in a floating-point
prediction value. By rounding this value, it can
be converted into a discrete label. For instance, a
prediction of 2.875 for a sample pair would be clas-
sified as “very relevant,” as it approximates closely
to the boundary point 3. Similarly, if a sample’s
prediction is 1.333, it would be approximated to 1
and thus classified as “slightly relevant" because
1.333 is closer to 1 among the four boundary points
0,1,2,3.

Extending from the above examples, it can be
seen that if we map the original labels to natural
numbers spaced by d, as long as the difference
between the model’s prediction and the ground
truth is less than %, the sample will be correctly
classified. However, conventional regression loss
functions, represented by L1 Loss and MSE Loss,
always enforce the difference between the model’s
prediction and the true value to be zero—a require-
ment that is unnecessary for our scenario. Thus,
we introduce a zero-gradient buffer zone into both
functions, resulting in the creation of Translated
ReLU and Smooth K2 Loss.

3.2 Translated ReLU

We first present Translated ReLU, mathematically
formulated in Equation 1. Herein, d represents the
interval between mapped category labels, with d =
1 for a sequence of consecutive natural numbers.

x —abs(prediction - label) > 0
0 z<axyg< d

flz) = °
k(x — x9)

f(z) = max (0, k(z — x0))

As previously discussed, when the difference be-
tween the model’s predicted value and the ground
truth is less than %, it signifies a correct classifi-
cation of the sample. Traditional regression loss
functions, however, mandate absolute congruence
between predictions and true values, applying a
penalty for any deviation. This stringent require-
ment to some extent diverts the model’s focus from
difficult samples that have not yet been correctly
classified and ignores the inherent variability within
classes.

o< T

To circumvent this limitation, we introduce an
adjustable threshold hyperparameter g, and set the
loss function to zero for values within [0, zo]. This
modification posits that a divergence less than xg
between prediction and ground truth is deemed suf-
ficiently precise, thus exempt from penalty or gradi-
ent update. For disparities exceeding xg, Translated
ReL.U imposes a linear penalty. To maintain accu-
rate classification, zo must not exceed ¢, with the
interval between x( and % acting as a margin akin
to that in Hinge Loss. This margin can enhance
model robustness by penalizing correctly predicted
samples that lack adequate confidence. Addition-
ally, a parameter k is specified to control the slope
of the function.

The graphical depiction of Translated ReL.U is
exhibited on the left side of Figure 2, with parame-
ters set to k = 2 and x¢ = 0.25. This configuration
resembles the ReLLU activation function, albeit with
a rightward translation. Our study employs Trans-
lated ReLU as a loss function and will compare its
effects with those of L1 Loss in ensuing sections
to demonstrate the significance of zero-gradient
buffer zone for augmenting model performance.

3.3 Smooth K2 Loss

Translated ReLU is characterized by its simplicity
and efficacy. Nonetheless, we acknowledge its lim-
itation pertaining to the abrupt lack of smoothness
at the demarcation point x = x, alongside a con-
stant gradient that fails to accommodate varying
strengths of updates based on the distance between
predictions and actual values. To address these con-
cerns, we introduce another loss function termed
Smooth K2 Loss to provide a smoother transition
and a gradient that dynamically adjusts in accor-
dance with the magnitude of discrepancy from the
ground truth. The formulation and the derivative of
Smooth K2 Loss are specified as follows:

x —abs(prediction - label) > 0

. 0 I‘<IL‘Q§%
k@2 —2z0z +22) 2o <z (2

of (x) 0 z<zp< %
| 2k(x —a0) w0 <a
Echoing the structure of Translated ReLU,
Smooth K2 Loss also incorporates a zero-gradient
buffer zone, but exhibits a quadratic function for
T > x, as illustrated on the right side of Figure 2.
Given the differential mathematical underpinnings
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Figure 2: Comparison of Translated ReLU and Smooth K2 Loss, both with & = 2, ¢ = 0.25.

of these two loss functions, Smooth K2 Loss is rec-
ommended for scenarios with high-quality data and
strong credibility. In contrast, when dealing with
datasets that contain considerable noise, Translated
ReLU may be a more suitable choice.

Additionally, prior to the application of Trans-
lated ReLU and Smooth K2 Loss, it is advisable
to consider reassigning prediction values that tran-
scend the defined category range to the nearest
boundary. For instance, in a classification task
where the category labels can be sequentially con-
verted to 0, 1, 2 and 3, if the model predicts a value
of 3.57 for a sample with an actual label of 3, this
might be deemed acceptable and potentially obvi-
ate the need for a loss adjustment. This rationale
stems from the observation that, despite the predic-
tion’s deviation exceeding % = 0.5, the absence of
subsequent boundary points beyond 3 warrants a
relaxation of this criterion.

4 Experiment

This chapter provides empirical validation of our
regression framework and two innovative loss func-
tions: Translated ReLU and Smooth K2 Loss.
We commence by comparing the performance
across different modeling strategies for multi-
category STS tasks and various loss functions
(Section 4.1). Subsequently, we demonstrate that,
when supplemented with task-specific training data,
our Siamese neural network architecture outper-
forms prevailing contrastive learning methods (Sec-
tion 4.2). Following this, we examine the influ-

ence of varying hyperparameter settings on model
performance (Section 4.3). Finally, we present
ablation studies of our proposed methodology (Sec-
tion 4.4).

4.1 STS Performance without Task-specific
Training Data

Our experimental setup closely mirrors that of
Sentence-BERT, leveraging fine-tuning on BERT
or RoBERTa with a composite corpus derived from
SNLI and MNLI datasets. These NLI datasets cat-
egorize sentence pairs into three distinct classes:
contradiction, neutral, and entailment. Sentence-
BERT maps these to 0, 2, 1, respectively, and em-
ploys a classification strategy for training (Reimers
and Gurevych, 2019). In contrast, our method se-
quentially maps contradiction, neutral, and entail-
ment to 0, 1 and 2. This mapping reflects the natu-
ral order of semantic similarity, from least to most
similar, thereby enabling our regression framework
to more effectively capture the progressive relation-
ships between categories.

For computational efficiency, we uniformly set
the batch size to 16 and limit training to a single
epoch, with model checkpoints preserved based on
performance metrics on the STS-B development
set. The specific hyperparameter settings for Trans-
lated ReLU and Smooth K2 Loss are cataloged in
Table 1. During the evaluation phase, we assess the
model’s average Spearman correlation across seven
STS tasks via the SentEval (Conneau and Kiela,
2018) toolkit. The results of the aforementioned ex-



periments are summarized in Table 2, from which
we distill insights along three pivotal aspects:

PLM Loss k  xg
BERTy,e Translated ReLU 2.5 0.25
BERT},e Smooth K2 Loss 2 0.25

RoBERTay,. Translated ReLU 1 0.25
RoBERTay,e Smooth K2 Loss 3 0.25

Table 1: Hyperparameter configurations for employing
Translated ReLU and Smooth K2 Loss across various
model combinations.

1. Classification Strategy vs. Regression Strat-
egy: Our regression framework, particularly when
utilizing Smooth K2 Loss, yields an average Spear-
man correlation of 76.03 for BERT},,sc and 76.04
for ROBERTay,,s.. These figures significantly out-
strip those attained through Sentence-BERT and
the classification method with Cross-Entropy Loss,
highlighting the regression-based modeling’s supe-
riority in both reducing the output layer’s parame-
ter size and enhancing semantic discrimination for
multi-category STS tasks.

2. Efficacy of the Zero-Gradient Buffer Zone:
The adoption of Translated ReLU improves per-
formance for both BERT and RoBERTa beyond
what is achieved with L1 Loss. Likewise, employ-
ing Smooth K2 Loss surpasses MSE Loss on both
PLMs. These comparisons underline the benefit of
integrating a zero-gradient buffer zone in balanc-
ing model’s focus across diverse samples within
regression-modeled multi-category classification
tasks.

3. Adaptive Gradients Aligned with Predic-
tion Errors: Models trained with Smooth K2 Loss
outshine those utilizing Translated ReL.U, and mod-
els employing MSE Loss exceed those with L1
Loss. This evidences the advantages of dispens-
ing differentiated gradients in line with prediction-
ground truth deviations, especially when leveraging
high-quality datasets like NLI.

Collectively, these findings substantiate the merit
of adopting a regression framework for multi-
category STS tasks and enhancing traditional re-
gression loss functions with a zero-gradient buffer
zone to optimize model performance.

4.2 STS Performance with Task-specific
Training Data

Although the Siamese neural network, augmented
by our regression framework and innovative loss

functions, has exhibited significant performance
enhancements, a disparity persists relative to pre-
vailing contrastive learning methods. To bridge this
gap, we exploit another critical advantage of the
Siamese architecture: its capacity to fully utilize
task-specific training data.

Among the seven STS benchmarks (STS12-16,
STS-B, and SICK-R), STS-B and SICK-R come
with their own training datasets. The STS-B train-
ing set comprises 5,749 sentence pairs with similar-
ity scores ranging from O to 5, whereas the SICK-R
training set includes 4,500 pairs, scored from 1 to 5.
To standardize these scores, we apply a transforma-
tion 5 X % to each sample z in the SICK-R
dataset. Subsequently, we concatenate these two
sets and round all sample labels to integers, result-
ing in a task-specific training dataset containing
10,249 sentences pairs. While the sample quan-
tity provided by this newly introduced dataset is
approximately only one percent of the NLI cor-
pus, combining them has been sufficient for us to
surpass leading contrastive learning approaches.

Continuing from the checkpoint established in
Section 4.1, we further fine-tune our model using
this compact, task-specific dataset with Smooth K2
Loss. Adhering to our protocol, checkpoints are
preserved based on STS-B development set perfor-
mance. The updated results across the seven STS
benchmarks are summarized in Table 3, illustrating
an improvement in our method’s average Spearman
correlation for BERT e and RoBERTay,,. from
76.03 and 76.04 to 82.93 and 83.23, respectively.
These outcomes exceed those achieved by lead-
ing contrastive learning methods, such as SimCSE,
PromptBERT, Jina Embeddings 2 (Giinther et al.,
2023), and Nomic Embed (Nussbaum et al., 2024),
and set new SOTA performance.

Contrastive learning methods, by contrast, are
generally unable to leverage the detailed, multi-
level annotated information provided by STS
datasets. The prevalent contrastive learning loss
function, InfoNCE Loss, serves as an illustrative
case for this limitation. For any input sentence
x;, InfoNCE Loss computes the similarity between
its encoding f(z;) and that of its positive instance
f(z;) in the numerator, while the denominator ag-
gregates similarity calculations between f(x;) and
encodings of other samples within the same batch,
aiming to draw similar samples closer and push
dissimilar ones apart. The standard formulation of
InfoNCE Loss, where NV represents the batch size



Models STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
Implementation on BERT s,
Sentence-BERT ). oo 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
BERT,se + Cross Entropy 70.01 71.18 70.10 78.37 72.92 74.88 73.58 73.01
BERTp,se + L1 Loss 69.76 69.56 68.13 76.33 70.96 73.61 70.28 71.23
BERT},se + Translated ReLU 72.51 75.46 72.34 78.46 72.64 76.54 72.02 74.28
BERTh,se + MSE Loss 72.38 76.47 74.35 78.71 72.95 77.91 70.67 74.78
BERTpse + Smooth K2 Loss 72.39 78.33 75.28 80.26 74.52 78.78 72.65 76.03
Implementation on RoBERTayp e

Sentence-RoBERTay,s & 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
RoBERTap,s + Cross Entropy 71.15 74.29 72.66 79.44 74.12 76.56 73.02 74.46
RoBERTap,e + L1 Loss 68.12 62.27 64.20 72.80 67.28 72.44 66.82 67.70
RoBERTap,s + Translated ReLU  71.13 76.07 72.18 78.13 73.94 77.59 70.94 74.28
RoBERTap,s. + MSE Loss 72.67 77.09 72.93 79.52 74.12 77.88 69.85 74.87
RoBERTap,s. + Smooth K2 Loss 72.53 78.28 73.88 80.88 75.35 77.44 73.94 76.04

Table 2: Spearman correlation for models across seven STS tasks without using task-specific training data. This
table is partitioned to facilitate a single variable comparison. &: results from (Reimers and Gurevych, 2019).

Models STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
Contrastive Pre-training Model

Jina Embeddings v2 base 74.28 84.18 78.81 87.55 85.35 84.85 78.98 82.00

Nomic Embed Text v1 65.19 81.67 74.00 83.58 81.87 76.43 75.41 76.88

Implementation on BERT s,

SimCSE BERT}a5. # 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

PromptBERTyse © 75.48 85.59 80.57 85.99 81.08 84.56 80.52 81.97

Ours 4+ STS-B SICK-R train ~ 73.68 88.42 86.10 86.56 79.63 84.12 82.01 82.93
Implementation on ROBERTap,

SimCSE RoBERTap,s. # 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52

PromptRoBERTay,s. & 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95

Ours + STS-B SICK-R train  73.83 89.00 84.16 87.95 81.94 84.64 81.07 83.23

Table 3: Spearman correlation for models across seven STS tasks. #: results from (Gao et al., 2021). O: results

from (Jiang et al., 2022).

and 7 a temperature hyperparameter, is as follows:

eCOS(f(xi)yf(x;r))/T

¢ = —lo
gzﬁl ecos(f(xi):f(xj)+)/7

3

While this mechanism effectively refines the se-
mantic space distribution of PLMs, it is constrained
to utilizing only text pairs with the highest similar-
ity ratings. Since InfoNCE Loss merely includes
numerator and denominator components, it distin-
guishes only whether two texts are similar or not.
Given the denominator is composed of other sam-
ples within the same batch, the only part that can
be filled with labeled data is the numerator.

In contexts where more detailed, domain-
specific data is available, the shortcomings of con-

trastive learning in not being able to effectively har-
ness multi-level label information, only performing
coarse semantic distinctions, becomes more evi-
dent. A potential pathway is to combine our re-
gression framework with contrastive learning. By
supplementing a contrastively trained model with
our Siamese neural network architecture, it may be
possible to capture finer semantic nuances. This av-
enue of exploration holds promise for future work,
potentially enhancing the applicability and efficacy
of our approach.

4.3 Performance under Different
Hyperparameter Settings

In this study, we introduce two innovative loss func-
tions, Translated ReLU and Smooth K2 Loss, each



characterized by two critical hyperparameters: k
and xg. The parameter k primarily controls the
gradient of the loss function, while x sets the tol-
erance threshold for model predictions. To discern
the influence of these hyperparameters on model
performance, we conduct a series of experiments
during both the initial training phase with NLI
datasets and the subsequent fine-tuning phase with
task-specific training data. The outcomes of these
investigations are consolidated in Tables 4. Rather
than executing an exhaustive grid search, initial val-
ues are selected based on our preliminary insights,
followed by incremental adjustments. This implies
that there may still be room for further improve-
ment in our model’s performance.

PLM Loss k zo  Performance
Without task-specific training data
BERT}se Translated ReLU 1.5 0.25 74.21
BERTpase Translated ReLU 2 0.25 74.21
BERTpa6e Translated ReLU 2.5 0.25 74.28
BERT}se Smooth K2 Loss 3  0.25 75.75
BERThase Smooth K2 Loss 2.5 0.25 75.89
BERThse Smooth K2 Loss 2 0.25 76.03
RoBERTap,se Translated ReLU 2 0.25 74.00
RoBERTap,,e Translated ReLU 1.5 0.25 74.11
RoBERTap,se Translated ReLU 1  0.25 74.28
RoBERTap,e Smooth K2 Loss 2.5 0.25 75.89
RoBERTap,e Smooth K2 Loss 3 0.2 75.90
RoBERTap,se Smooth K2 Loss 3 0.25 76.04
With task-specific training data
BERTpase Smooth K2 Loss 4 0.2 82.89
BERT}ase Smooth K2 Loss 3.5 0.25 82.89
BERTpa6e Smooth K2 Loss 4 0.3 82.90
BERT} ¢ Smooth K2 Loss 4  0.25 82.93
RoBERTap,se Smooth K2 Loss 4 0.3 82.86
RoBERTap,e Smooth K2 Loss 3.5 0.25 82.90
RoBERTap,e Smooth K2 Loss 3.5 0.3 83.18
RoBERTap,e Smooth K2Loss 3 0.25 83.23

Table 4: Impact of different hyperparameter settings (k,
() on model performance.

The experimental results from Table 4 reveal
minor fluctuations in model performance across
diverse hyperparameter configurations, which af-
firms the resilience and robustness of our proposed
methodology. This stability highlights the inherent
adaptability of our regression framework as well as
loss functions, suggesting their applicability across
a wide range of modeling scenarios without neces-
sitating extensive hyperparameter optimization.

4.4 Ablation Studies

In Section 4.1, we initially demonstrate the effec-
tiveness of our regression framework by compar-

ing the performance differences of models utiliz-
ing both classification-based and regression-based
strategies for STS tasks. Then, we elucidate the
significance of zero-gradient buffer zones by com-
paring the performance of models when selecting
Translated ReLU or L1 Loss, and Smooth K2 Loss
or MSE Loss as the loss function. These compar-
isons directly align with the three core innovations
of this paper and fulfill the role of ablation experi-
ments.

Here, we enhance our ablation study with an
evaluation of our network architecture as depicted
in Figure 1. Specifically, we aim to determine the
necessity of concatenating u, v, and their element-
wise difference |u — v| in the final linear layer of
the model. For this purpose, we employ both BERT
and RoBERTa models under the same experimen-
tal conditions outlined in Section 4.1, with results
detailed in Table 5. The findings indicate that the
concatenation method (u, v, |u — v|) is the most
effective for both PLMs, thus further validating the
rationality of our proposed scheme.

PLM Concatenation Spearman
BERT} e (u,v) 53.30
BERTyse (Jlu —v)) 54.84
BERThase  (w,v,|u—v|) 76.03

ROBERTapse (u,v) 60.99
RoBERTap,e  (Ju — ) 59.10
RoBERTape (u,v,|u—v|) 76.04

Table 5: Average Spearman’s correlation scores ob-
tained by models on seven STS tasks with different
concatenation methods in the last linear layer of the
Siamese neural network architecture.

5 Conclusion

In this paper, we propose an innovative regres-
sion framework accompanied by two simple yet
efficacious loss functions: Translated ReL.U and
Smooth K2 Loss, to address multi-category STS
tasks. Compared to traditional classification strate-
gies, our regression framework achieves superior
performance while reducing the parameter count
of the model’s output layer. Further empirical
evidence demonstrates that when supplemented
with task-specific training data, our approach can
surpass prevailing contrastive learning methods,
achieving state-of-the-art performance on seven
STS benchmarks.



Limitations

Due to the lack of suitable baselines and limited
computational resources, the experiments in this
paper are primarily centered on the discriminative
PLMs such as BERT and RoBERTa, rather than
recently advanced generative models (e.g., LLaMA
(Touvron et al., 2023)). However, it is important
to note that, compared to generative PLMs, BERT
possesses a much smaller parameter count, which
leads to higher inference efficiency. This attribute
is particularly valuable in large-scale information
retrieval scenarios.
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