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Abstract

Since the introduction of BERT and RoBERTa,001
research on Semantic Textual Similarity (STS)002
has made groundbreaking progress. Particu-003
larly, the adoption of contrastive learning has004
substantially elevated state-of-the-art perfor-005
mance across various STS benchmarks. How-006
ever, contrastive learning categorizes text pairs007
as either semantically similar or dissimilar,008
failing to leverage fine-grained annotated in-009
formation and necessitating large batch sizes010
to prevent model collapse. These constraints011
pose challenges for researchers engaged in STS012
tasks that require nuanced similarity levels or013
those with limited computational resources,014
compelling them to explore alternatives like015
Sentence-BERT. Nonetheless, Sentence-BERT016
tackles STS tasks from a classification perspec-017
tive, overlooking the progressive nature of se-018
mantic relationships, which results in subop-019
timal performance. To bridge this gap, this020
paper presents an innovative regression frame-021
work and proposes two simple yet effective loss022
functions: Translated ReLU and Smooth K2023
Loss. Experimental analyses demonstrate that024
our method achieves convincing performance025
across seven established STS benchmarks, es-026
pecially when supplemented with task-specific027
training data. 1028

1 Introduction029

Semantic Textual Similarity (STS) constitutes a030

fundamental task in natural language processing,031

wielding significant influence across a multitude of032

applications including text clustering, information033

retrieval, and recommendation systems. Despite034

the remarkable precision achieved by interactive035

architectures within these tasks, their inability to036

support offline computation limits their viability in037

large-scale text analysis scenarios. In response to038

this, the seminal work of Sentence-BERT (Reimers039

1Our code and checkpoints are available at https://
anonymous.4open.science/r/STS-Regression.

and Gurevych, 2019) introduces a dual-tower ar- 040

chitecture to encode the sentences within a pair 041

separately, thereby facilitating the derivation of in- 042

dependent embeddings. This approach showcases 043

superior efficacy and has rapidly gained widespread 044

acceptance, now serving as a cornerstone for var- 045

ious downstream tasks. Consequently, further im- 046

provements to Sentence-BERT hold high research 047

and practical value. 048

Nevertheless, the advent of contrastive learn- 049

ing methods, exemplified by SimCSE (Gao et al., 050

2021), has demonstrated more pronounced en- 051

hancements across renowned English STS bench- 052

marks like STS12-16 (Agirre et al., 2012, 2013, 053

2014, 2015, 2016), STS-B (Cer et al., 2017), and 054

SICK-R (Marelli et al., 2014). This has shifted 055

the research focus in recent years towards integrat- 056

ing contrastive learning techniques with pre-trained 057

language models (PLMs) like BERT (Devlin et al., 058

2019) and RoBERTa (Liu et al., 2019). An intuitive 059

comparison is that using the NLI dataset (Bowman 060

et al., 2015; Williams et al., 2018) as a training 061

corpus, SimCSE-RoBERTabase attains an average 062

Spearman’s correlation score of 82.52 across these 063

STS tasks, hugely surpassing the 74.21 achieved 064

by Sentence-RoBERTabase. 065

Such discernible performance disparity has 066

inadvertently overshadowed the advantages of 067

Sentence-BERT, especially in terms of data uti- 068

lization efficiency and computational resource de- 069

mands. Contrastive learning, by its self-supervised 070

nature, predominantly recognizes text pairs as ei- 071

ther similar or dissimilar. This binary categoriza- 072

tion restricts contrastive learning methods to using 073

triple form data composed of an anchor sentence, a 074

positive instance, and a hard negative instance for 075

training in supervised settings (Gao et al., 2021). 076

Many practical scenarios, however, tend to provide 077

more finely-grained labeled data (e.g., highly rel- 078

evant, moderately relevant, relevant, not relevant) 079

(Liu et al., 2023), where contrastive learning ap- 080
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proaches can usually only exploit text pairs whose081

similarity indicators are at the endpoints.082

Additionally, since contrastive learning enhances083

model discriminability by treating other samples084

within the same batch as negative instances, it re-085

quires large batch sizes, thereby consuming sub-086

stantial computational resources. For example,087

SimCSE’s supervised learning settings include a088

batch size of 512 and 3 epochs. To accommodate089

this configuration on consumer-grade GPUs, Sim-090

CSE constrains the maximum input length to 32091

(Gao et al., 2021). In contrast, Sentence-BERT092

and our proposed methodology necessitate a mere093

batch size of 16 and 1 epoch to reach convergence.094

Additionally, our default maximum input length is095

256, significantly longer than SimCSE’s.096

The aforementioned drawbacks highlight the097

difficulty in completely replacing Sentence-BERT098

with contrastive learning methods. Hence, some099

cutting-edge works (Zhang et al., 2023b) continue100

to employ Sentence-BERT for sentence embedding101

derivation. Nonetheless, given that STS tasks typi-102

cally categorize text pairs by degrees of semantic103

similarity, and Sentence-BERT approaches these104

tasks from a classification standpoint, neglecting105

the progressive relationships between categories,106

there exists a clear opportunity for improvement.107

As a illustration, consider an STS task with five108

categories, labeled consecutively from 1 to 5. Tra-109

ditional classification strategies would yield identi-110

cal loss for a sample scored at 2, irrespective of its111

prediction as 3 or 4, an approach evidently subopti-112

mal.113

To rectify such deficiency, this paper proposes a114

novel framework that converts multi-category STS115

tasks into regression problems, thus effectively cap-116

turing the progressive relationships between cate-117

gories. For a given dataset, we first map its original118

labels to a sequential array of integers, ensuring119

that samples with higher similarity scores are as-120

signed correspondingly greater integers. Then, we121

set the number of nodes in the output layer to one,122

thereby enabling the model to produce a continu-123

ous prediction value. Finally, the model parameters124

are updated according to the difference between125

predicted and actual scores.126

Distinct from standard regression problems, the127

ground truth within our transformed multi-category128

STS tasks manifest as a series of discrete points129

along the numerical axis. Therefore, instead of130

precisely matching the target points, the floating-131

point predictive values just need to be sufficiently132

close to get correctly classified. To accommodate 133

this process, we introduce a zero-gradient buffer 134

zone to widely utilized L1 Loss and MSE Loss, 135

unveiling two innovative loss functions: Translated 136

ReLU and Smooth K2 Loss. 137

Comprehensive evaluations across seven STS 138

benchmarks substantiate that our regression frame- 139

work surpasses traditional classification strategies 140

in handling multi-category STS tasks. Additionally, 141

we find that further updating our model’s check- 142

point with the STS-B and SICK-R training sets 143

allows our method to achieve superior Spearman 144

correlation relative to contrastive learning methods, 145

reaching state-of-the-art performance. These find- 146

ings reinforce the effectiveness of our proposed so- 147

lution and the importance of utilizing task-specific 148

data, an aspect often neglected in contrastive learn- 149

ing paradigms. 150

The main contributions of this study are outlined 151

as follows: 152

• Building upon the foundation of Sentence- 153

BERT, we develop a regression framework 154

adept at modeling the progressive relation- 155

ships between categories in multi-class STS 156

tasks. This not only enhances performance 157

but also, due to regression’s intrinsic prop- 158

erties, simplifies the prediction process for 159

K-category problems to require only a sin- 160

gle output node, significantly minimizing the 161

model’s output layer parameter count. 162

• We propose two innovated loss functions, 163

Translated ReLU and Smooth K2 Loss, specif- 164

ically tailored to address classification prob- 165

lems involving progressive relationships be- 166

tween categories. 167

• Through empirical evidence, we demonstrate 168

that, when combined with task-specific data, 169

our Siamese network approach can attain bet- 170

ter results than contrastive learning schemes. 171

2 Related Work 172

In this chapter, we primarily review two types of 173

STS task solutions directly related to our work: 174

Siamese Neural Network Architectures: 175

These approaches (Reimers and Gurevych, 2019; 176

Conneau et al., 2017; Thakur et al., 2021), pro- 177

posed relatively earlier in the field, have been 178

widely applied across various domains owing to 179

their effectiveness on annotated data. Although 180

their performance on the seven STS benchmarks 181
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(STS 12-16, STS-B, SICK-R) is generally infe-182

rior to contemporary contrastive learning methods,183

this discrepancy largely arises from the absence184

of task-specific training data. Thus, models have185

the flexibility to opt for alternative sources, such186

as wiki datasets (Gao et al., 2021) or NLI datasets187

(Bowman et al., 2015; Williams et al., 2018), which188

adapt readily to triplet format. Given our goal of189

tackling multi-category STS tasks, our model ar-190

chitecture remains rooted in the Siamese network.191

However, in contrast to preceding efforts, we intro-192

duce an innovative regression framework designed193

to explicitly capture the progressive relationships194

between categories.195

Contrastive Learning Methods: Contrastive196

learning has become the dominant paradigm for ad-197

dressing STS tasks, characterized by a vast amount198

of research (Jiang et al., 2022; Zhang et al., 2023a).199

However, contrastive learning loss functions, epito-200

mized by InfoNCE Loss (Oord et al., 2018), con-201

centrate solely on the binary semantic categoriza-202

tion of texts and cannot directly utilize fine-grained203

labeled corpus. Furthermore, the necessity for large204

batch sizes to ensure negative sample diversity and205

prevent model collapse imposes considerable com-206

putational demands. For instance, supervised Sim-207

CSE’s training requires 58GB of GPU memory208

(Jiang et al., 2023), whereas our proposed method,209

even with a maximum sequence length eight times210

that of SimCSE, demands merely 42GB.211

3 Methodology212

This chapter delineates our methodological frame-213

work, beginning with a detailed exposition of the214

designed network architecture and its operational215

workflow in Section 3.1. Then, in Sections 3.2216

and 3.3, we present the two novel loss functions217

proposed in this study.218

3.1 Network Architecture219

As illustrated in Figure 1, we utilize a Siamese neu-220

ral network with shared parameters for encoding221

input sentences via BERT to obtain corresponding222

word embedding matrices. Subsequently, sentence223

embeddings, denoted as u and v for paired sen-224

tences A and B, are derived through average pool-225

ing. These embeddings, both vectors of the hidden226

dimension, are then concatenated alongside their227

element-wise difference |u−v| and passed through228

a fully connected layer with parameters sized at229

3× hidden_dimension to produce the model’s pre-230

dicted continuous similarity score. 231

Sentence A

Map to Label

BERT

u

Sentence B

BERT

v

Linear Layer
( , 1)

Smooth K2 Loss

Figure 1: Our Regression Framework. Here, the two
BERT models share same parameters, with "dim" repre-
senting the embedding dimensions of u and v.

Our methodology diverges from the original 232

dual-tower structures employed by Sentence-BERT 233

and InferSent (Conneau et al., 2017) in three criti- 234

cal aspects: 235

1. We model STS tasks, characterized by a pro- 236

gressive relationship between categories, as regres- 237

sion problems. This is achieved by mapping labels 238

from the original dataset to a sequence of incre- 239

menting integers reflective of their similarity rela- 240

tions, thus conveying to the model that categories 241

are not independent but progressively related. 242

2. Building on this, we streamline the output 243

node count in our final fully connected layer to 244

one, enabling the model to directly yield a simi- 245

larity score rather than a categorical probability 246

distribution. Through this adjustment, for STS 247

tasks containing K categories, we effectively re- 248

duce the parameter size of the output layer from 3× 249

hidden_dimension×K to 3×hidden_dimension× 250

1. In light of the expanding dimensions of hidden 251

layers in contemporary PLMs, this optimization 252

can save substantial computational resources. 253

3. Contrasting with InferSent and Sentence- 254

BERT’s classification-based approach, which as- 255

signs target classes for sentence pairs based on 256

the highest probability, our regression framework 257

categorizes based on the closeness between the pre- 258

dicted and actual values. 259

To better understand this process, consider an 260

STS task with four categories, labeled as “very rel- 261

evant,” “moderately relevant,” “slightly relevant,” 262

and “not relevant.” After clarifying the progressive 263

relationship between these categories, we would 264
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map them to four consecutive integers 0, 1, 2, 3,265

respectively, ranging from “not relevant” to “very266

relevant.” This mapping strategy is highly flexible,267

allowing for task-specific adjustments in numeri-268

cal nodes and intervals. Subsequently, we encode269

the paired sentences separately and calculate their270

semantic similarity, resulting in a floating-point271

prediction value. By rounding this value, it can272

be converted into a discrete label. For instance, a273

prediction of 2.875 for a sample pair would be clas-274

sified as “very relevant,” as it approximates closely275

to the boundary point 3. Similarly, if a sample’s276

prediction is 1.333, it would be approximated to 1277

and thus classified as “slightly relevant" because278

1.333 is closer to 1 among the four boundary points279

0, 1, 2, 3.280

Extending from the above examples, it can be281

seen that if we map the original labels to natural282

numbers spaced by d, as long as the difference283

between the model’s prediction and the ground284

truth is less than d
2 , the sample will be correctly285

classified. However, conventional regression loss286

functions, represented by L1 Loss and MSE Loss,287

always enforce the difference between the model’s288

prediction and the true value to be zero—a require-289

ment that is unnecessary for our scenario. Thus,290

we introduce a zero-gradient buffer zone into both291

functions, resulting in the creation of Translated292

ReLU and Smooth K2 Loss.293

3.2 Translated ReLU294

We first present Translated ReLU, mathematically295

formulated in Equation 1. Herein, d represents the296

interval between mapped category labels, with d =297

1 for a sequence of consecutive natural numbers.298

x →abs(prediction - label) ≥ 0

f(x) =

{
0 x < x0 ≤ d

2

k(x− x0) x0 ≤ x

f(x) = max
(
0, k(x− x0)

) (1)299

As previously discussed, when the difference be-300

tween the model’s predicted value and the ground301

truth is less than d
2 , it signifies a correct classifi-302

cation of the sample. Traditional regression loss303

functions, however, mandate absolute congruence304

between predictions and true values, applying a305

penalty for any deviation. This stringent require-306

ment to some extent diverts the model’s focus from307

difficult samples that have not yet been correctly308

classified and ignores the inherent variability within309

classes.310

To circumvent this limitation, we introduce an 311

adjustable threshold hyperparameter x0, and set the 312

loss function to zero for values within [0, x0]. This 313

modification posits that a divergence less than x0 314

between prediction and ground truth is deemed suf- 315

ficiently precise, thus exempt from penalty or gradi- 316

ent update. For disparities exceeding x0, Translated 317

ReLU imposes a linear penalty. To maintain accu- 318

rate classification, x0 must not exceed d
2 , with the 319

interval between x0 and d
2 acting as a margin akin 320

to that in Hinge Loss. This margin can enhance 321

model robustness by penalizing correctly predicted 322

samples that lack adequate confidence. Addition- 323

ally, a parameter k is specified to control the slope 324

of the function. 325

The graphical depiction of Translated ReLU is 326

exhibited on the left side of Figure 2, with parame- 327

ters set to k = 2 and x0 = 0.25. This configuration 328

resembles the ReLU activation function, albeit with 329

a rightward translation. Our study employs Trans- 330

lated ReLU as a loss function and will compare its 331

effects with those of L1 Loss in ensuing sections 332

to demonstrate the significance of zero-gradient 333

buffer zone for augmenting model performance. 334

3.3 Smooth K2 Loss 335

Translated ReLU is characterized by its simplicity 336

and efficacy. Nonetheless, we acknowledge its lim- 337

itation pertaining to the abrupt lack of smoothness 338

at the demarcation point x = x0, alongside a con- 339

stant gradient that fails to accommodate varying 340

strengths of updates based on the distance between 341

predictions and actual values. To address these con- 342

cerns, we introduce another loss function termed 343

Smooth K2 Loss to provide a smoother transition 344

and a gradient that dynamically adjusts in accor- 345

dance with the magnitude of discrepancy from the 346

ground truth. The formulation and the derivative of 347

Smooth K2 Loss are specified as follows: 348

x →abs(prediction - label) ≥ 0

f(x) =

{
0 x < x0 ≤ d

2

k(x2 − 2x0x+ x20) x0 ≤ x

∂f(x)

∂x
=

{
0 x < x0 ≤ d

2

2k(x− x0) x0 ≤ x

(2) 349

Echoing the structure of Translated ReLU, 350

Smooth K2 Loss also incorporates a zero-gradient 351

buffer zone, but exhibits a quadratic function for 352

x ≥ x0, as illustrated on the right side of Figure 2. 353

Given the differential mathematical underpinnings 354
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Figure 2: Comparison of Translated ReLU and Smooth K2 Loss, both with k = 2, x0 = 0.25.

of these two loss functions, Smooth K2 Loss is rec-355

ommended for scenarios with high-quality data and356

strong credibility. In contrast, when dealing with357

datasets that contain considerable noise, Translated358

ReLU may be a more suitable choice.359

Additionally, prior to the application of Trans-360

lated ReLU and Smooth K2 Loss, it is advisable361

to consider reassigning prediction values that tran-362

scend the defined category range to the nearest363

boundary. For instance, in a classification task364

where the category labels can be sequentially con-365

verted to 0, 1, 2 and 3, if the model predicts a value366

of 3.57 for a sample with an actual label of 3, this367

might be deemed acceptable and potentially obvi-368

ate the need for a loss adjustment. This rationale369

stems from the observation that, despite the predic-370

tion’s deviation exceeding d
2 = 0.5, the absence of371

subsequent boundary points beyond 3 warrants a372

relaxation of this criterion.373

4 Experiment374

This chapter provides empirical validation of our375

regression framework and two innovative loss func-376

tions: Translated ReLU and Smooth K2 Loss.377

We commence by comparing the performance378

across different modeling strategies for multi-379

category STS tasks and various loss functions380

(Section 4.1). Subsequently, we demonstrate that,381

when supplemented with task-specific training data,382

our Siamese neural network architecture outper-383

forms prevailing contrastive learning methods (Sec-384

tion 4.2). Following this, we examine the influ-385

ence of varying hyperparameter settings on model 386

performance (Section 4.3). Finally, we present 387

ablation studies of our proposed methodology (Sec- 388

tion 4.4). 389

4.1 STS Performance without Task-specific 390

Training Data 391

Our experimental setup closely mirrors that of 392

Sentence-BERT, leveraging fine-tuning on BERT 393

or RoBERTa with a composite corpus derived from 394

SNLI and MNLI datasets. These NLI datasets cat- 395

egorize sentence pairs into three distinct classes: 396

contradiction, neutral, and entailment. Sentence- 397

BERT maps these to 0, 2, 1, respectively, and em- 398

ploys a classification strategy for training (Reimers 399

and Gurevych, 2019). In contrast, our method se- 400

quentially maps contradiction, neutral, and entail- 401

ment to 0, 1 and 2. This mapping reflects the natu- 402

ral order of semantic similarity, from least to most 403

similar, thereby enabling our regression framework 404

to more effectively capture the progressive relation- 405

ships between categories. 406

For computational efficiency, we uniformly set 407

the batch size to 16 and limit training to a single 408

epoch, with model checkpoints preserved based on 409

performance metrics on the STS-B development 410

set. The specific hyperparameter settings for Trans- 411

lated ReLU and Smooth K2 Loss are cataloged in 412

Table 1. During the evaluation phase, we assess the 413

model’s average Spearman correlation across seven 414

STS tasks via the SentEval (Conneau and Kiela, 415

2018) toolkit. The results of the aforementioned ex- 416
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periments are summarized in Table 2, from which417

we distill insights along three pivotal aspects:

PLM Loss k x0

BERTbase Translated ReLU 2.5 0.25
BERTbase Smooth K2 Loss 2 0.25

RoBERTabase Translated ReLU 1 0.25
RoBERTabase Smooth K2 Loss 3 0.25

Table 1: Hyperparameter configurations for employing
Translated ReLU and Smooth K2 Loss across various
model combinations.

418
1. Classification Strategy vs. Regression Strat-419

egy: Our regression framework, particularly when420

utilizing Smooth K2 Loss, yields an average Spear-421

man correlation of 76.03 for BERTbase and 76.04422

for RoBERTabase. These figures significantly out-423

strip those attained through Sentence-BERT and424

the classification method with Cross-Entropy Loss,425

highlighting the regression-based modeling’s supe-426

riority in both reducing the output layer’s parame-427

ter size and enhancing semantic discrimination for428

multi-category STS tasks.429

2. Efficacy of the Zero-Gradient Buffer Zone:430

The adoption of Translated ReLU improves per-431

formance for both BERT and RoBERTa beyond432

what is achieved with L1 Loss. Likewise, employ-433

ing Smooth K2 Loss surpasses MSE Loss on both434

PLMs. These comparisons underline the benefit of435

integrating a zero-gradient buffer zone in balanc-436

ing model’s focus across diverse samples within437

regression-modeled multi-category classification438

tasks.439

3. Adaptive Gradients Aligned with Predic-440

tion Errors: Models trained with Smooth K2 Loss441

outshine those utilizing Translated ReLU, and mod-442

els employing MSE Loss exceed those with L1443

Loss. This evidences the advantages of dispens-444

ing differentiated gradients in line with prediction-445

ground truth deviations, especially when leveraging446

high-quality datasets like NLI.447

Collectively, these findings substantiate the merit448

of adopting a regression framework for multi-449

category STS tasks and enhancing traditional re-450

gression loss functions with a zero-gradient buffer451

zone to optimize model performance.452

4.2 STS Performance with Task-specific453

Training Data454

Although the Siamese neural network, augmented455

by our regression framework and innovative loss456

functions, has exhibited significant performance 457

enhancements, a disparity persists relative to pre- 458

vailing contrastive learning methods. To bridge this 459

gap, we exploit another critical advantage of the 460

Siamese architecture: its capacity to fully utilize 461

task-specific training data. 462

Among the seven STS benchmarks (STS12-16, 463

STS-B, and SICK-R), STS-B and SICK-R come 464

with their own training datasets. The STS-B train- 465

ing set comprises 5,749 sentence pairs with similar- 466

ity scores ranging from 0 to 5, whereas the SICK-R 467

training set includes 4,500 pairs, scored from 1 to 5. 468

To standardize these scores, we apply a transforma- 469

tion 5× label(z)−1
4 to each sample z in the SICK-R 470

dataset. Subsequently, we concatenate these two 471

sets and round all sample labels to integers, result- 472

ing in a task-specific training dataset containing 473

10,249 sentences pairs. While the sample quan- 474

tity provided by this newly introduced dataset is 475

approximately only one percent of the NLI cor- 476

pus, combining them has been sufficient for us to 477

surpass leading contrastive learning approaches. 478

Continuing from the checkpoint established in 479

Section 4.1, we further fine-tune our model using 480

this compact, task-specific dataset with Smooth K2 481

Loss. Adhering to our protocol, checkpoints are 482

preserved based on STS-B development set perfor- 483

mance. The updated results across the seven STS 484

benchmarks are summarized in Table 3, illustrating 485

an improvement in our method’s average Spearman 486

correlation for BERTbase and RoBERTabase from 487

76.03 and 76.04 to 82.93 and 83.23, respectively. 488

These outcomes exceed those achieved by lead- 489

ing contrastive learning methods, such as SimCSE, 490

PromptBERT, Jina Embeddings 2 (Günther et al., 491

2023), and Nomic Embed (Nussbaum et al., 2024), 492

and set new SOTA performance. 493

Contrastive learning methods, by contrast, are 494

generally unable to leverage the detailed, multi- 495

level annotated information provided by STS 496

datasets. The prevalent contrastive learning loss 497

function, InfoNCE Loss, serves as an illustrative 498

case for this limitation. For any input sentence 499

xi, InfoNCE Loss computes the similarity between 500

its encoding f(xi) and that of its positive instance 501

f(x+i ) in the numerator, while the denominator ag- 502

gregates similarity calculations between f(xi) and 503

encodings of other samples within the same batch, 504

aiming to draw similar samples closer and push 505

dissimilar ones apart. The standard formulation of 506

InfoNCE Loss, where N represents the batch size 507
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Models STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

Implementation on BERTbase

Sentence-BERTbase ♣ 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
BERTbase + Cross Entropy 70.01 71.18 70.10 78.37 72.92 74.88 73.58 73.01

BERTbase + L1 Loss 69.76 69.56 68.13 76.33 70.96 73.61 70.28 71.23
BERTbase + Translated ReLU 72.51 75.46 72.34 78.46 72.64 76.54 72.02 74.28

BERTbase + MSE Loss 72.38 76.47 74.35 78.71 72.95 77.91 70.67 74.78
BERTbase + Smooth K2 Loss 72.39 78.33 75.28 80.26 74.52 78.78 72.65 76.03

Implementation on RoBERTabase

Sentence-RoBERTabase ♣ 71.54 72.49 70.80 78.74 73.69 77.77 74.46 74.21
RoBERTabase + Cross Entropy 71.15 74.29 72.66 79.44 74.12 76.56 73.02 74.46

RoBERTabase + L1 Loss 68.12 62.27 64.20 72.80 67.28 72.44 66.82 67.70
RoBERTabase + Translated ReLU 71.13 76.07 72.18 78.13 73.94 77.59 70.94 74.28

RoBERTabase + MSE Loss 72.67 77.09 72.93 79.52 74.12 77.88 69.85 74.87
RoBERTabase + Smooth K2 Loss 72.53 78.28 73.88 80.88 75.35 77.44 73.94 76.04

Table 2: Spearman correlation for models across seven STS tasks without using task-specific training data. This
table is partitioned to facilitate a single variable comparison. ♣: results from (Reimers and Gurevych, 2019).

Models STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

Contrastive Pre-training Model
Jina Embeddings v2 base 74.28 84.18 78.81 87.55 85.35 84.85 78.98 82.00
Nomic Embed Text v1 65.19 81.67 74.00 83.58 81.87 76.43 75.41 76.88

Implementation on BERTbase

SimCSE BERTbase ♠ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromptBERTbase ♡ 75.48 85.59 80.57 85.99 81.08 84.56 80.52 81.97
Ours + STS-B SICK-R train 73.68 88.42 86.10 86.56 79.63 84.12 82.01 82.93

Implementation on RoBERTabase

SimCSE RoBERTabase ♠ 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
PromptRoBERTabase ♡ 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95
Ours + STS-B SICK-R train 73.83 89.00 84.16 87.95 81.94 84.64 81.07 83.23

Table 3: Spearman correlation for models across seven STS tasks. ♠: results from (Gao et al., 2021). ♡: results
from (Jiang et al., 2022).

and τ a temperature hyperparameter, is as follows:508

ℓi = −log
ecos(f(xi),f(x

+
i ))/τ∑N

j=1 e
cos(f(xi),f(xj)+)/τ

(3)509

While this mechanism effectively refines the se-510

mantic space distribution of PLMs, it is constrained511

to utilizing only text pairs with the highest similar-512

ity ratings. Since InfoNCE Loss merely includes513

numerator and denominator components, it distin-514

guishes only whether two texts are similar or not.515

Given the denominator is composed of other sam-516

ples within the same batch, the only part that can517

be filled with labeled data is the numerator.518

In contexts where more detailed, domain-519

specific data is available, the shortcomings of con-520

trastive learning in not being able to effectively har- 521

ness multi-level label information, only performing 522

coarse semantic distinctions, becomes more evi- 523

dent. A potential pathway is to combine our re- 524

gression framework with contrastive learning. By 525

supplementing a contrastively trained model with 526

our Siamese neural network architecture, it may be 527

possible to capture finer semantic nuances. This av- 528

enue of exploration holds promise for future work, 529

potentially enhancing the applicability and efficacy 530

of our approach. 531

4.3 Performance under Different 532

Hyperparameter Settings 533

In this study, we introduce two innovative loss func- 534

tions, Translated ReLU and Smooth K2 Loss, each 535
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characterized by two critical hyperparameters: k536

and x0. The parameter k primarily controls the537

gradient of the loss function, while x0 sets the tol-538

erance threshold for model predictions. To discern539

the influence of these hyperparameters on model540

performance, we conduct a series of experiments541

during both the initial training phase with NLI542

datasets and the subsequent fine-tuning phase with543

task-specific training data. The outcomes of these544

investigations are consolidated in Tables 4. Rather545

than executing an exhaustive grid search, initial val-546

ues are selected based on our preliminary insights,547

followed by incremental adjustments. This implies548

that there may still be room for further improve-549

ment in our model’s performance.

PLM Loss k x0 Performance

Without task-specific training data
BERTbase Translated ReLU 1.5 0.25 74.21
BERTbase Translated ReLU 2 0.25 74.21
BERTbase Translated ReLU 2.5 0.25 74.28

BERTbase Smooth K2 Loss 3 0.25 75.75
BERTbase Smooth K2 Loss 2.5 0.25 75.89
BERTbase Smooth K2 Loss 2 0.25 76.03

RoBERTabase Translated ReLU 2 0.25 74.00
RoBERTabase Translated ReLU 1.5 0.25 74.11
RoBERTabase Translated ReLU 1 0.25 74.28

RoBERTabase Smooth K2 Loss 2.5 0.25 75.89
RoBERTabase Smooth K2 Loss 3 0.2 75.90
RoBERTabase Smooth K2 Loss 3 0.25 76.04

With task-specific training data
BERTbase Smooth K2 Loss 4 0.2 82.89
BERTbase Smooth K2 Loss 3.5 0.25 82.89
BERTbase Smooth K2 Loss 4 0.3 82.90
BERTbase Smooth K2 Loss 4 0.25 82.93

RoBERTabase Smooth K2 Loss 4 0.3 82.86
RoBERTabase Smooth K2 Loss 3.5 0.25 82.90
RoBERTabase Smooth K2 Loss 3.5 0.3 83.18
RoBERTabase Smooth K2 Loss 3 0.25 83.23

Table 4: Impact of different hyperparameter settings (k,
x0) on model performance.

550
The experimental results from Table 4 reveal551

minor fluctuations in model performance across552

diverse hyperparameter configurations, which af-553

firms the resilience and robustness of our proposed554

methodology. This stability highlights the inherent555

adaptability of our regression framework as well as556

loss functions, suggesting their applicability across557

a wide range of modeling scenarios without neces-558

sitating extensive hyperparameter optimization.559

4.4 Ablation Studies560

In Section 4.1, we initially demonstrate the effec-561

tiveness of our regression framework by compar-562

ing the performance differences of models utiliz- 563

ing both classification-based and regression-based 564

strategies for STS tasks. Then, we elucidate the 565

significance of zero-gradient buffer zones by com- 566

paring the performance of models when selecting 567

Translated ReLU or L1 Loss, and Smooth K2 Loss 568

or MSE Loss as the loss function. These compar- 569

isons directly align with the three core innovations 570

of this paper and fulfill the role of ablation experi- 571

ments. 572

Here, we enhance our ablation study with an 573

evaluation of our network architecture as depicted 574

in Figure 1. Specifically, we aim to determine the 575

necessity of concatenating u, v, and their element- 576

wise difference |u− v| in the final linear layer of 577

the model. For this purpose, we employ both BERT 578

and RoBERTa models under the same experimen- 579

tal conditions outlined in Section 4.1, with results 580

detailed in Table 5. The findings indicate that the 581

concatenation method (u, v, |u − v|) is the most 582

effective for both PLMs, thus further validating the 583

rationality of our proposed scheme.

PLM Concatenation Spearman

BERTbase (u, v) 53.30
BERTbase (|u− v|) 54.84
BERTbase (u, v, |u− v|) 76.03

RoBERTabase (u, v) 60.99
RoBERTabase (|u− v|) 59.10
RoBERTabase (u, v, |u− v|) 76.04

Table 5: Average Spearman’s correlation scores ob-
tained by models on seven STS tasks with different
concatenation methods in the last linear layer of the
Siamese neural network architecture.

584

5 Conclusion 585

In this paper, we propose an innovative regres- 586

sion framework accompanied by two simple yet 587

efficacious loss functions: Translated ReLU and 588

Smooth K2 Loss, to address multi-category STS 589

tasks. Compared to traditional classification strate- 590

gies, our regression framework achieves superior 591

performance while reducing the parameter count 592

of the model’s output layer. Further empirical 593

evidence demonstrates that when supplemented 594

with task-specific training data, our approach can 595

surpass prevailing contrastive learning methods, 596

achieving state-of-the-art performance on seven 597

STS benchmarks. 598
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Limitations599

Due to the lack of suitable baselines and limited600

computational resources, the experiments in this601

paper are primarily centered on the discriminative602

PLMs such as BERT and RoBERTa, rather than603

recently advanced generative models (e.g., LLaMA604

(Touvron et al., 2023)). However, it is important605

to note that, compared to generative PLMs, BERT606

possesses a much smaller parameter count, which607

leads to higher inference efficiency. This attribute608

is particularly valuable in large-scale information609

retrieval scenarios.610
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