
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL LOGISTIC BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of neural logistic bandits, where the main task is to learn
an unknown reward function within a logistic link function using a neural net-
work. Existing approaches either exhibit unfavorable dependencies on κ, where
1/κ represents the minimum variance of reward distributions, or suffer from di-
rect dependence on the feature dimension d, which can be huge in neural net-
work–based settings. In this work, we introduce a novel Bernstein-type inequality
for self-normalized vector-valued martingales that is designed to bypass a direct
dependence on the ambient dimension. This lets us deduce a regret upper bound
that grows with the effective dimension d̃, not the feature dimension, while keeping
a minimal dependence on κ. Based on the concentration inequality, we propose
two algorithms, NeuralLog-UCB-1 and NeuralLog-UCB-2, that guarantee regret
upper bounds of order Õ(d̃

√
κT) and Õ(d̃

√
T/κ), respectively, improving on the

existing results. Lastly, we report numerical results on both synthetic and real
datasets to validate our theoretical findings.

1 INTRODUCTION

Contextual bandits form the foundation of modern sequential decision-making problems, driving
applications such as recommendation systems, advertising, and interactive information retrieval Li
et al. (2010). Although upper confidence bound (UCB)–based linear contextual bandit algorithms
achieve near-optimal guarantees when rewards are linear in the feature vector Abbasi-Yadkori et al.
(2011), many real-world scenarios exhibit nonlinear reward structures that demand more expressive
models. Motivated by this, several approaches have been developed to capture complex reward
functions that go beyond the linear case, such as those based on generalized linear models Filippi
et al. (2010); Li et al. (2017), reproducing kernel Hilbert space Srinivas et al. (2010); Valko et al.
(2013), and deep neural networks Riquelme et al. (2018); Zhou et al. (2020).

Among these settings, logistic bandits are particularly relevant when the reward is binary (e.g., click
vs. no-click); the random reward in each round follows a Bernoulli distribution, whose parameter is
determined by the chosen action. Extending logistic bandits via a neural network-based approxima-
tion framework, we consider neural logistic bandits and address two significant challenges: (i) han-
dling the nonlinearity of the reward function, characterized by the worst-case variance of a reward
distribution 1/κ where κ scales exponentially with the size of the decision set, and (ii) controlling
the dependence on the feature dimension d, which can be extremely large due to the substantial
number of parameters in deep neural networks.

For logistic bandits, Faury et al. (2020) introduced a variance-adaptive analysis by incorporating the
true reward variance of each action into the design matrix. This avoids using a uniform worst-case
variance bound of 1/κ for all actions, thus reducing the dependency of the final regret on κ. Building
on this, Abeille et al. (2021) achieved the best-known κ dependence. However, both algorithms
explicitly rely on the ambient feature dimension d, so their direct extensions to the neural bandit
setting induce poor regret performance. On the other hand, Verma et al. (2025) derived a regret upper
bound for the neural logistic bandit that scales with a data-adaptive effective dimension d̃ rather than
the full ambient dimension d. This approach offers an improved performance measure as d increases
with the number of parameters in the neural network, often deliberately overparameterized to avoid
strong assumptions about the reward function. However, their method still relies on a pessimistic
variance estimate, and integrating the variance-aware analysis of Faury et al. (2020) into a data-
adaptive regret framework remains challenging, resulting in a suboptimal dependence on κ.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of algorithms for (neural) logistic bandits. d denotes the dimension of the
feature vector, and T represents the total number of rounds. p denotes the total number of parameters
of the underlying neural network, and d̃ denotes the effective dimension.

Algorithm Regret Õ(·)
Logistic Bandits Neural Logistic Bandits

NCBF-UCB Verma et al. (2025) κd
√
T κd̃

√
T

Logistic-UCB-1 Faury et al. (2020) d
√
κT p

√
κT

NeuralLog-UCB-1 (Algorithm 1) d
√
κT d̃

√
κT

ada-OFU-ECOLog Faury et al. (2022) d
√
T/κ∗ p

√
T/κ∗

NeuralLog-UCB-2 (Algorithm 2) d
√
T/κ∗ d̃

√
T/κ∗

Motivated by these limitations, we propose algorithms that do not require worst-case estimates in
both the variance of the reward distribution and the feature dimension, thus achieving the most
favorable regret bound for neural logistic bandits. Central to this approach is our new Bernstein-type
self-normalized inequality for vector-valued martingales, which allows us to derive a regret upper
bound that scales with the effective dimension d̃, and at the same time, matches the best-known
dependency on κ. Our main contributions are summarized below:

• We tackle the two main challenges in neural logistic bandits: (i) a practical regret upper
bound should avoid a direct dependence on d, the ambient dimension of the feature vector,
and (ii) it needs to minimize the factor of κ, a problem-dependent constant that increases
exponentially with the size of the decision set. To address these challenges, we propose a
new Bernstein-type tail inequality for self-normalized vector-valued martingales that yields
a bound of order Õ(

√
d̃), where d̃ is a data-adaptive effective dimension. This is the first

tail inequality that achieves favorable results in both respects, while the previous bound of
Faury et al. (2020) is Õ(

√
d) which directly depends on d, and that of Verma et al. (2025)

is Õ(
√
κd̃) that includes an additional factor of

√
κ.

• Based on our tail inequality, we develop our first algorithm, NeuralLog-UCB-1 which guar-
antees a regret upper bound of order Õ(d̃

√
κT). This improves upon the regret upper

bound of order Õ(κd̃
√
T) due to Verma et al. (2025). Furthermore, we provide a fully

data-adaptive UCB on d̃ by adaptively controlling the regularization term of our loss func-
tion according to previous observations. Our choice of UCB also avoids the projection
step required in the previous approach of Faury et al. (2020), which was to constrain the
parameters to a certain set during training.

• We propose our second algorithm, NeuralLog-UCB-2, as a refined variant of NeuralLog-
UCB-1. We show that NeuralLog-UCB-2 achieves a regret upper bound of Õ(d̃

√
T/κ∗).

This result matches the best-known dependency on κ while avoiding the direct dependence
on d seen in Õ(d

√
T/κ∗) given by Abeille et al. (2021). The improvement comes from

the fact that NeuralLog-UCB-2 replaces the true reward variance within the design matrix
with a neural network estimated variance, thereby maintaining sufficient statistics for our
variance-adaptive UCB in each round and completely removing the worst-case estimate of
variance κ. Our numerical results show that NeuralLog-UCB-2 outperforms all baselines,
thus validating our theoretical framework.

2 PRELIMINARIES

Logistic bandits. We consider the contextual logistic bandit problem. Let T be the total number of
rounds. In each round t ∈ [T], the agent observes an action set Xt, consisting of K contexts drawn
from a feasible setX ⊂ Rd. The agent then selects an action xt ∈ Xt and observes a binary (random)
reward rt ∈ {0, 1}. This reward is generated by the logistic model governed by the unknown latent
reward function h : Rd → R. Specifically, we define a sigmoid function µ(x) = (1 + exp(−x))−1

and denote its first and second derivatives as µ̇ and µ̈. Then, the probability distribution of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reward rt under action x is given by rt ∼ Bern(µ(h(xt)). Let x∗
t be an optimal action in round t,

i.e., x∗
t = argmaxx∈Xt

µ(h(x)). Then the agent’s goal is to minimize the cumulative regret, defined
as Regret(T) =

∑T
t=1 µ(h(x

∗
t)) −

∑T
t=1 µ(h(xt)). Finally, we introduce the standard assumption

on the problem-dependent parameters κ and R Faury et al. (2020); Verma et al. (2025):

Assumption 2.1 (Informal). There exist constants κ,R > 0, such that 1/κ ≤ µ̇(·) ≤ R.

The formal definition of κ and R for the arm setX and the parameter set Θ is deferred to Assumption
6.3. Notice that for the sigmoid link function, we have µ(·), R ≤ 1/4.

Neural bandits. Neural contextual bandit methods address the limitation of traditional (general-
ized) linear reward models Filippi et al. (2010); Faury et al. (2020) by approximating h(·) with
a fully connected deep neural network f(x; θ), which allows them to capture complex, possi-
bly nonlinear, reward structures. In this work, we consider a neural network given by f(x; θ) =√
mWLReLU (WL−1ReLU (· · ·ReLU (W1x))), where L ≥ 2 is the depth of the neural network,

ReLU(x) = max{x, 0}, W1 ∈ Rm×d, Wi ∈ Rm×m for 2 ≤ i ≤ L − 1, and WL ∈ R1×m. The
flattened parameter vector is given by θ = [vec(W1)

⊤, . . . , vec(WL)
⊤]⊤ ∈ Rp, where p is the total

number of parameters, i.e., p = m+md+m2(L−1). We denote the gradient of the neural network
by g(x; θ) = ∇θf(x; θ) ∈ Rp.

Notation. For a positive integer n, let [n] = {1, . . . , n}. For any x ∈ Rd, ∥x∥2 denotes the ℓ2
norm, and [x]i denotes its i-th coordinate. Given x ∈ Rd and a positive-definite matrix A ∈ Rd×d,
we define ∥x∥A =

√
x⊤Ax. We use Õ(·) to hide the logarithmic factors.

3 VARIANCE- AND DATA-ADAPTIVE SELF-NORMALIZED MARTINGALE
TAIL INEQUALITY

In this section, we first introduce our new Bernstein-type tail inequality for self-normalized martin-
gales, which leads to a regret analysis that is variance- and data-adaptive. Then we compare it with
some existing tail inequalities from prior works.

Theorem 3.1. Let {Gt}∞t=1 be a filtration, and {xt, ηt}t≥1 be a stochastic process where xt ∈ Rd is
Gt-measurable and ηt ∈ R is Gt+1-measurable. Suppose there exist constants M,R,N, λ > 0 and
the parameter θ∗ ∈ Rd such that for all t ≥ 1, |ηt| ≤ M , E[ηt|Gt] = 0, E[η2t |Gt] ≤ µ̇(x⊤

t θ
∗), and

∥xt∥2 ≤ N . Define Ht and st as follows:

Ht =

t∑
i=1

µ̇(x⊤
i θ

∗)xix
⊤
i + λI, st =

t∑
i=1

xiηi.

Then, for any 0 < δ < 1 and any t > 0, with probability at least 1− δ:

∥∥st∥∥H−1
t
≤ 8

√
log

detHt

detλI
log(4t2/δ) +

4MN√
λ

log(4t2/δ)

≤ 8

√√√√log det

(t∑
i=1

R

λ
xix⊤

i + I

)
log(4t2/δ) +

4MN√
λ

log(4t2/δ).

Our proof of Theorem 3.1 is given in Section D. The second inequality in Theorem 3.1 follows from
Assumption 2.1 which states that µ̇(·) ≤ R ≤ 1/4. Notice that the tail inequality is data-adaptive,
as it does not explicitly depend on d. Moreover, the term log detHt

detλI can decrease depending on the
observed feature vectors (e.g., it becomes 0 if {xi}ti=1 are all 0). By incorporating non-uniform
variances when defining Ht, our design matrix enables a variance-adaptive analysis and eliminates
the worst-case variance dependency κ.

The seminal work of Abbasi-Yadkori et al. (2011) provided a variant of the Azuma-Hoeffding tail
inequality for vector-valued martingales, under the assumption that the martingale difference ηt is
M -sub-Gaussian. Their tail bound shows that ∥st∥Ṽ −1

t
= Õ(M

√
d), where Ṽt =

∑t
i=1 xix

⊤
i +λI.

Extending this result to (neural) logistic bandits, Verma et al. (2025) incorporated the worst-case

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

variance κ into the design matrix Vt =
∑t

i=1 xix
⊤
i + κλI to deduce

∥∥st∥∥H−1
t
≤
√
κ
∥∥st∥∥V −1

t
≤M

√
κ log

detVt

detκλI
+ 2κ log(1/δ).

Here, the first inequality is a consequence of Ht ⪰ (1/κ)Vt, and this step incurs the factor
√
κ. Note

that this bound is also data-adaptive, yielding an overall order of Õ(
√

κd̃).

Another line of work by Faury et al. (2020) provided a Bernstein-type tail inequality for the same
setting considered in Theorem 3.1, using |ηt| ≤ M(= 1), E[η2t |Gt] = σ2

t , and ∥xt∥2 ≤ N(= 1)
for all t ≥ 1. Their analysis directly takes the design matrix Ht, and they deduce the following
inequality avoiding the

√
κ factor:∥∥st∥∥H−1

t
≤ 2MN√

λ

(
log

detHt

detλI
+ log(1/δ) + d log(2)

)
+

√
λ

2MN
. (1)

The inequality requires a specific λ value for the regularization term, given by λ = Õ(dM2N2),
to achieve the final order of Õ(

√
d). Although log detHt

detλI is data-adaptive, the term d log(2) intro-
duces an explicit dependence on d that cannot be removed (even with a different choice of λ). The
tail bound has been used in subsequent works Abeille et al. (2021); Faury et al. (2022), making
a dependence on d inherent. Hence, we need a new variance-adaptive analysis for neural logistic
bandits.

Compared with Faury et al. (2020), our tail inequality in Theorem 3.1 is derived from a different
technique based on Freedman’s inequality (Freedman (1975), Lemma H.1), which is the key factor
behind our improvement. Unlike Faury et al. (2020), which works with a d-dimensional martingale
and thereby incurs an explicit dependence on d, we instead use a one-dimensional martingale to
track the growth of the self-normalized error ∥st∥H−1

t
, bypassing this vector-level issue. As a result,

we obtain a data- and variance-adaptive inequality whose leading term depends on the effective
dimension d̃, together with an improved dependence on κ, thanks to the variance sensitivity of
Freedman’s inequality.

4 NEURAL LOGISTIC BANDITS WITH IMPROVED UCB

This section introduces our first algorithm, NeuralLog-UCB-1, described in Algorithm 1. In the
initialization step, we set the initial parameter θ0 of the neural network according to the standard
initialization process described in Zhou et al. (2020). For 1 ≤ l ≤ L− 1, Wl is set as [W 0

0 W], where
each entry of W is independently sampled from N(0, 4/m) while WL is set to [w,−w], where
each entry of w is independently sampled from N(0, 2/m). Next, we set the initial regularization
parameter as λ0 = 8

√
2C1L

1/2S−1 log(4/δ) for some absolute constant C1 > 0. The value of λ0

is chosen so that λ0 is less than the minimum value among λ1, . . . , λT , where λt is updated as in
Equation (4). We can verify this by showing that λ0 ≤ minλ1 and that {λt}t≥1 is monotonically
non-decreasing in t, which implies λ0 ≤ min{λt}t≥1.

After the initialization step, in each round t, the agent receives the context setXt ⊂ X and calculates
UCBt(x) = µ(f(x; θt−1)) +R

√
κν

(1)
t−1∥g(x; θ0)/

√
m∥V −1

t−1
for every action x ∈ Xt, where

ν
(1)
t = C6

(
1 +
√
LS + LS2

)
ιt + 1, (2)

ιt = 16

√√√√log det

(t∑
i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)⊤ + I

)
log

4t2

δ
+ 8C1

√
L

λ0
log

4t2

δ
, (3)

where δ ∈ (0, 1) is a confidence parameter, and S is a norm parameter of the parameter set de-
fined in Definition 6.2 for some absolute constants C1, C6 > 0. The first term, µ(f(x; θt−1)),
estimates the expected value of the reward, and the second term can be viewed as the explo-
ration bonus. Then, we choose our action xt optimistically by maximizing the UCB value, i.e.,
xt = argmaxx∈Xt

UCBt(x), and receive a reward rt. At the end of each round, we update the pa-
rameters based on the observations {xi, ri}ti=1 collected so far. We set the regularization parameter

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 NeuralLog-UCB-1

Input: Neural network f(x; θ) with width m and depth L, initialized with parameter θ0, step size
η, number of gradient descent steps L, norm parameter S, confidence parameter δ

Initialize: λ0 = 8
√
2C1L

1/2S−1 log(4/δ), V0 = κλ0I
1: for t = 1, . . . , T do
2: xt ← argmaxx∈Xt

µ(f(x; θt−1)) +R
√
κν

(1)
t−1∥g(x; θ0)/

√
m∥V −1

t−1

3: Select xt and receive rt
4: Update λt as in Equation (4), ιt as in Equation (3), ν(1)t as in Equation (2)
5: θt ← TrainNN(λt, η, J,m, {xi, ri}ti=1, θ0)

6: Vt ←
∑t

i=1
1
mg(xi; θ0)g(xi; θ0)

⊤ + κλtI
7: end for

Subroutine TrainNN
Input: Regularization parameter λt, step size η, number of gradient descent steps J , network width

m, observations {xs, rs}ts=1, initial parameter θ0
1: Define Lt(θ) = −

∑t
i=1[ri log µ(f(xi; θ)) + (1− ri) log(1− µ(f(xi; θ)))] +

1
2mλt∥θ− θ0∥22

2: for j = 1, . . . , J − 1 do
3: θ(j+1) = θ(j) − η∇Lt(θ

(j))
4: end for
5: return θ(J)

λt, with an absolute constant C1 > 0, as follows:

λt ←
64

S2
log det

(t∑
i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)

⊤ + I

)
log

4t2

δ
+

16C2
1L

S2λ0
log2

4t2

δ
. (4)

Then we update ιt, ν
(1)
t , and Vt. Lastly, as described in Subroutine TrainNN, we update the

parameters of the neural network through gradient descent to minimize the regularized negative
log-likelihood loss function Lt(θ) and obtain θt. In contrast to Verma et al. (2025), which used
a constant regularization parameter λ, we adaptively control the regularization parameter λt and
employ it in both our design matrix Vt and our loss function Lt(θ). This yields a fully data-adaptive
concentration inequality between θt and the desired parameter, as will be shown in Lemma 4.5.

Now, we present our theoretical results for Algorithm 1. Let H denote the neural tangent kernel
(NTK) matrix computed on all TK context–arm feature vectors over T rounds. Its formal definition
is deferred to Definition C.1. Define h = [h(x)]x∈Xt,t∈[T] ∈ RTK . We begin with the following
assumptions.
Assumption 4.1. There exists λH > 0 such that H ⪰ λHI.
Assumption 4.2. For every x ∈ Xt and t ∈ [T], we have ∥x∥2 = 1 and [x]j = [x]j+d/2.

Both assumptions are mild and standard in the neural bandit literature Zhou et al. (2020); Zhang et al.
(2021). Assumption 4.1 states that the NTK matrix is nonsingular, which holds if no two context
vectors are parallel. Assumption 4.2 ensures that f(xi; θ0) = 0 for all i ∈ [TK] at initialization.
This assumption is made for analytical convenience and can be ensured by building a new context
x′ = [x⊤, x⊤]⊤/

√
2.

Next, define H̃ =
∑T

t=1

∑
x∈Xt

1
mg(xi; θ0)g(xi; θ0)

⊤, which is the design matrix containing all
possible context-arm feature vectors over the T rounds. Then, we can use the following definition:

Definition 4.3. Let d̃ := log det(R
λ0
H̃+ I) denote the effective dimension.

We mention that previous works Zhou et al. (2020); Verma et al. (2025) for neural contextual
bandits have defined the effective dimension d̃ in slightly different ways. Zhou et al. (2020) set
d̃ = log det(1λH + I)/ log(1 + TK/λ) for neural contextual linear bandits, while Verma et al.
(2025) defined d̃ = log det(1

κλH̃ + I). However, these definitions have the same asymptotic order
as ours in Definition 4.3 up to logarithmic factors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 NeuralLog-UCB-2

Input: Neural network f(x; θ) with width m and depth L, initialized with parameter θ0, step size
η, number of gradient descent steps L, norm parameter S, confidence parameter δ

Initialize: λ0 = 8
√
2C1L

1/2S−1 log(4/δ), W0 = λ0I
1: for t = 1, . . . , T do
2: xt ← argmaxx∈Xt

g(x; θ0)
⊤(θt−1 − θ0) + ν

(2)
t−1∥g(x; θ0)/

√
m∥W−1

t−1

3: Select xt and receive rt
4: Update λt as in Equation (4), ιt as in Equation (3), ν(2)t as in Equation (5)
5: θt ← TrainNN(λt, η, J,m, {xi, ri}ti=1, θ0)

6: Wt ←
∑t

i=1
µ̇(f(xi;θi))

m g(xi; θ0)g(xi; θ0)
⊤ + λtI

7: end for

Next, to improve readability, we summarize the conditions for the upcoming theorems and lemmas:
Condition 4.4. Suppose Assumptions 2.1, 4.1 and 4.2 hold (a formal definition of Assumption 2.1 is
deferred to Assumption 6.3). The width m is large enough to control the estimation error of the NN
(details are deferred to Condition C.2). Set S as a norm parameter satisfying S ≥

√
2h⊤H−1h.

The regularization parameter λt follows the update rule in Equation (4). For training the NN, set
the number of gradient descent iterations as J = 2 log(λtS/(

√
Tλt + C4T

3/2L))TL/λt, and the
step size as η = C5(mTL+mλt)

−1 for some absolute constants C4, C5 > 0.

In particular, when m is sufficiently large, we observe that the true reward function h(x) behaves
like a linear function (see Lemma 6.1). Then, using the tail inequality given in Theorem 3.1 and
the update rule for λt, we obtain the following data- and variance-adaptive concentration inequality
between θt and θ∗:

Lemma 4.5. Define Ht :=
∑t

i=1
µ̇(g(xi;θ0)

⊤(θ−θ0))
m g(xi; θ0)g(xi; θ0)

⊤ + λtI. Under Condition
4.4, there exists an absolute constant C1, C6 > 0, such that for all t > 0 with probability at least
1− δ,

√
m
∥∥θ∗ − θt

∥∥
Ht(θ∗)

≤ ν
(1)
t , where ν

(1)
t is defined in Equation (2).

The proof is deferred to Section E.1. We now present Theorem 4.6, which gives the desired regret
upper bound of Algorithm 1.
Theorem 4.6. Under Condition 4.4, with probability at least 1−δ, the regret of Algorithm 1 satisfies

Regret(T) = Õ
(
S2d̃
√
κT + S2.5

√
κd̃T

)
.

Remark 1. Our results, especially Theorem 3.1, extend naturally to the (neural) dueling bandit
setting. In this variant, the learner selects a pair of context–arms {xt,1, xt,2} in each round t and
observes a binary outcome rt ∈ {0, 1} indicating whether xt,1 is preferred over xt,2. The preference
probability is modeled as P(xt,1 ≻ xt,2) = P(rt = 1|xt,1, xt,2) = µ(h(xt,1)− h(xt,2)). The prior
work of (Verma et al., 2025, Theorem 3) establishes a regret upper bound of Õ(κd̃

√
T), whereas

our analysis can improve this to Õ(d̃
√
κT).

5 REFINED ALGORITHM WITH NEURAL NETWORK-ESTIMATED VARIANCE

In this section, we explain NeuralLog-UCB-2, which guarantees the tightest regret upper bounds.
Although Lemma 4.5 establishes a variance-adaptive concentration inequality with Ht(θ

∗), the
agent lacks full knowledge of θ∗ and must therefore use the crude bound Ht(θ

∗) ⪯ κ−1Vt, which in-
curs an extra factor of

√
κ. In this section, we introduce NeuralLog-UCB-2, which replaces Ht(θ

∗)
with a neural network–estimated variance-adaptive design matrix. We begin by stating a concentra-
tion result for θ∗ around θt using the new design matrix Wt.

Lemma 5.1. Define Wt =
∑t

i=1
µ̇(f(xi;θi))

m g(xi; θ0)g(xi; θ0)
⊤ + λtI and a confidence setWt as

Wt =
{
θ :
√
m
∥∥θ − θt

∥∥
Wt
≤ C7(1 +

√
LS + LS2)ιt + 1 =: ν

(2)
t

}
, (5)

with an absolute constant C7 > 0, where ιt is defined at Equation (3). Then under Condition 4.4,
for all t > 0, θ∗ ∈ Wt with probability at least 1− δ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We give the proof of the lemma in Section F.1. The matrix Wt maintains sufficient statistics via
the neural network-estimated variance, and the ellipsoidal confidence set Wt changes the original
problem into a closed-form optimistic formulation. Specifically, after the same initialization step as
for Algorithm 1, the agent selects action xt in each round t according to the following rule:

xt ← argmax
x∈Xt,θ∈Wt−1

⟨g(x; θ0), (θ − θ0)⟩ = argmax
x∈Xt

g(x; θ0)
⊤(θt−1 − θ0) + ν

(2)
t−1∥x∥W−1

t−1
. (6)

For the regret upper bound of Algorithm 2, we define another problem-dependent quantity κ∗ as
1/κ∗ = 1

T

∑T
t=1 µ̇(h(x

∗
t)), consistent with the definition in Abeille et al. (2021). Both κ∗ and κ

scale exponentially with S. We now state our regret upper bound for NeuralLog-UCB-2 and provide
a proof outline.
Theorem 5.2. Under Condition 4.4, with probability at least 1−δ, the regret of Algorithm 2 satisfies:

Regret(T) = Õ
(
S2d̃

√
T/κ∗ + S2.5d̃0.5

√
T/κ∗ + S4κd̃2 + S4.5κd̃1.5 + S5κd̃

)
.

Remark 2. It is possible to further reduce the regret bound in Theorem 5.2 to Õ(Sd̃
√
T/κ∗) by

combining Theorem 3.1 and the logistic bandit analysis of Faury et al. (2022), which achieved
Õ(Sd

√
T/κ∗). However, this approach requires a projection step for θt, incurring an additional

O(d2 log(1/ϵ)) computational cost for ϵ-accuracy. A couple of recent works eliminated the depen-
dence on S in the leading term, achieving Õ(d

√
T/κ∗). Nonetheless, Sawarni et al. (2024) relied

on a nonconvex optimization subroutine, while the PAC-Bayes analysis in Lee et al. (2024a) with a
uniform prior does not yield data-adaptive regret.

6 REGRET ANALYSES

This section outlines the regret analysis for Algorithms 1 and 2 and provides proof sketch for Theo-
rems 4.6 and 5.2. Let us start by stating some basic results on the NTK analysis and logistic bandits.
The following lemma shows that for all x ∈ Xt and t ∈ [T], the true reward function h(x) can be
expressed as a linear function.
Lemma 6.1 (Lemma 5.1, Zhou et al. (2020)). If m ≥ C0T

4K4L6 log(T 2K2L/δ)/λ4
H for some

absolute constant C0 > 0, then with probability at least 1− δ, there exists θ∗ ∈ Rp such that

h(x) = g(x; θ0)
⊤(θ∗ − θ0),

√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h ≤ S,

for all x ∈ Xt, t ∈ [T].

Based on Lemma 6.1, we define the parameter set Θ and the parameters κ and R, which is consistent
with the standard logistic bandits literature Faury et al. (2020):
Definition 6.2. Let Θ := {θ ∈ Rp :

√
m∥θ − θ0∥2 ≤ S} denote the parameter set.

Assumption 6.3 (Formal). There exist constants κ,R > 0 such that for all x ∈ X , θ ∈ Θ,
1/κ ≤ µ̇(g(x; θ0)

⊤(θ − θ0)) ≤ R.

6.1 PROOF SKETCH OF THEOREM 4.6

Let |µ(h(x)) − µ(f(x; θt−1))| denote the prediction error of x in round t, which is the estimation
error between the true reward and our trained neural network. We show that with Lemma 4.5 and
large enough m, the prediction error is upper bounded as follows:
Lemma 6.4. Under Condition 4.4, for all x ∈ Xt, t ∈ [T], with probability at least 1− δ,

|µ(h(x))− µ(f(x; θt−1))| ≤ R
√
κν

(1)
t ∥g(x; θ0)/

√
m∥V −1

t−1
+ ϵ3,t−1,

where ϵ3,t = C3Rm−1/6
√
logmL3t2/3λ

−2/3
0 for some absolute constant C3 > 0.

Based on the results so far, we can upper bound the per-round regret in round t as follows:

µ(h(x∗
t))− µ(h(xt)) ≤ µ(f(x∗

t ; θt−1)) +R
√
κν

(1)
t ∥g(x∗

t ; θ0)/
√
m∥V −1

t−1
+ ϵ3,t−1 − µ(h(xt))

≤ µ(f(xt; θt−1)) +R
√
κν

(1)
t ∥g(xt; θ0)/

√
m∥V −1

t−1
+ ϵ3,t−1 − µ(h(xt))

≤ 2R
√
κν

(1)
t ∥g(xt; θ0)/

√
m∥V −1

t−1
+ 2ϵ3,t−1,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where the first and last inequalities follow from Lemma 6.4, and the second inequality holds due
to the optimistic rule of Algorithm 1. The cumulative regret can be decomposed as Regret(T) =∑T

t=1 µ(h(x
∗
t))− µ(h(xt)) ≤ 2R

√
κν

(1)
T

√
T
∑T

t=1

∥∥g(xt; θ0)/
√
m
∥∥2
V −1
t−1

+ 2Tϵ3,T , for which we

use the Cauchy-Schwarz inequality. We have ν
(1)
T = Õ(

√
d̃), and using the elliptical potential

lemma (Lemma H.2) on
∑T

t=1 ∥g(xt; θ0)/
√
m∥2

V −1
t−1

gives Õ(d̃). Finally, setting m large enough

under Condition 4.4, the approximation error term gives Tϵ3,T = O(1). See Section G.1 for details.

6.2 PROOF SKETCH OF THEOREM 5.2

Let (xt, θ̃t−1) ∈ Xt ×Wt−1 be selected by the optimistic rule at time t. The per-round regret can
be decomposed with a second-order Taylor expansion as follows:

µ(h(x∗
t))− µ(h(xt)) ≤ µ(g(xt; θ0)

⊤(θ̃t−1 − θ0))− µ(g(xt; θ0)
⊤(θ∗ − θ0))

≤ µ̇(h(xt))g(xt; θ0)
⊤(θ̃t−1 − θ∗) + 1 ·

[
g(xt; θ0)

⊤(θ̃t−1 − θ∗)
]2
,

where the first inequality follows from the optimistic rule of Algorithm 2, and we use µ̈(·) ≤ 1 for
the second one. To analyze the first term on the right-hand side of the second inequality, we compare
µ̇(h(xt)) and µ̇(f(xt; θt)) and rewrite the term as

√
µ̇(h(xt))∥

√
µ̇(f(xt; θt)g(xt; θ0)∥Wt−1

∥θ̃t−1−
θ∗∥W−1

t−1
. Summing this for t = 1, . . . , T , we apply the elliptical potential lemma (Lemma H.2)

and Lemma 5.1. For the second term, since we do not enforce any projection or constraint during
training, θt−1 may stay outside Θ. We show that the number of such rounds is Õ(κ d̃2). Applying
Assumption 6.3 then yields a crude bound of κ∥g(xt; θ0)∥2Vt−1

∥θ̃t−1 − θ∗∥2Wt
. Based on this, the

second term can be bounded from above in a similar way. Details are covered in Section G.2.

7 EXPERIMENTS

In this section, we empirically evaluate the performance of our algorithms. Additional results along
with further details are deferred to Section A due to space constraints.

(a) h1(x) = 0.2(x⊤θ)4 (b) h2(x) = 20 cos(x⊤θ) (c) h3(x) = 5x⊤θx

Figure 1: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.

Synthetic dataset. We begin our experiments with a synthetic dataset. We use three nonlinear
synthetic latent reward functions: h1(x) = 0.2(x⊤θ)4, h2(x) = 20 cos(x⊤θ), h3(x) = 5x⊤θx,
where x represents the features of a context-arm pair, and θ ∈ Rd and θ ∈ Rd×d are parameters
whose elements are independently sampled from Unif(−1, 1). Subsequently, the agent receives a
reward generated by rt ∼ Bern(µ(hi(x))), for i ∈ {1, 2, 3}. We set the feature vector dimension to
d = 20 and the number of arms to K = 5. We compare our method against five baseline algorithms
in Section 1: (1) NCBF-UCB Verma et al. (2025); (2) Logistic-UCB-1 Faury et al. (2020); (3) ada-
OFU-ECOLog Faury et al. (2022); (4) NeuralLog-UCB-1; and (5) NeuralLog-UCB-2. For brevity,
we will denote algorithms by their number (e.g. algorithm (1)).

Following practical adjustments from previous neural bandits experiments Zhou et al. (2020);
Zhang et al. (2021); Verma et al. (2025), for algorithms (1,4,5), we use the gradient of the cur-
rent neural network g(x; θt) instead of g(x; θ0). We replace g(x; θt)/

√
m with g(x; θt) and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mλ∥θ − θ0∥22/2 with λ∥θ∥22. Previous works simplify the UCB estimation process by fixing
parameters for the exploration bonus for practical reasons. In this work, however, we consider
the time-varying data-adaptive values of the exploration bonus, characterized by UCBt(x) =
µ(x; θt−1) + σ(x; ν, {xi, θi−1}t−1

i=1, λ, S, κ). Here, µ is the mean estimate and σ is the exploration
bonus, parameterized by an exploration parameter ν, previous observations {xi, θi−1}t−1

i=1 , λ, S, and
κ. Details of UCB for each algorithm are deferred to Section 5. We use S = 1, κ = 10 and fixed
values of ν and λ with the best parameter values using grid search over {0.01, 0.1, 1, 10, 100}.
We use a two-layer neural network f(x; θ) with a width of m = 20. As in Zhou et al. (2020), to
reduce the computational burden of the high-dimensional design matrices Vt and Wt, we approxi-
mated these matrices with diagonal matrices. We update the parameters every 50 rounds, using 100
gradient descent steps per update with a learning rate of 0.01. For each algorithm, we repeat the
experiments 10 times over T = 2000 timesteps and compare the average cumulative regret with a
96% confidence interval.

(a) mnist (b) mushroom (c) shuttle

Figure 2: Comparison of cumulative regret of baseline algorithms for real-world dataset.

Real-world dataset. In the real-world experiments, we use three datasets from K-class classifica-
tion tasks: mnist LeCun et al. (1998), mushroom, and shuttle from the UCI Machine Learning
Repository Dua & Graff (2019). To adapt these datasets to the K-armed logistic bandit setting, we
construct K context–arm feature vectors in each round t as follows: given a feature vector x ∈ Rd,
we define x(1) = [x,0, . . . ,0], . . . , x(K) = [0, . . . ,0, x] ∈ RdK . The agent receives a reward of
1 if it selects the correct class, and 0 otherwise. All other adjustments for the neural bandit exper-
iments and the neural network training process follow the simulation setup. Details, including data
preprocessing, are deferred to Section A.

Regret comparison. Figures 1 and 2 summarize the average cumulative regret for the five baseline
algorithms (1–5) tested with the synthetic and real-world datasets, respectively. We observe that
the algorithms using linear assumptions on the latent reward function h(x), namely (2) and (3),
exhibit the lowest performance, as the true function is nonlinear. Although algorithm (1) can handle
nonlinear reward functions and achieves moderate performance, our proposed methods, especially
(5), yield the best results by reducing the dependence on κ.

8 CONCLUSION AND FUTURE WORK

In this paper, we study the neural logistic bandit problem. We identify the unique challenges of this
setting and propose a novel approach based on a new tail inequality for martingales. This inequal-
ity enables an analysis that is both variance- and data-adaptive, yielding improved regret bounds
for neural logistic bandits. We introduce two algorithms: NeuralLog-UCB-1 that achieves a regret
bound of Õ(d̃

√
κT) and NeuralLog-UCB-2 that attains a tighter bound of Õ(d̃

√
T/κ∗) by lever-

aging the neural network–estimated variance. Our experimental results validate these theoretical
findings and demonstrate that our methods outperform the existing approaches.

One potential direction for future work is to improve the dependence on the norm of the unknown
parameter S. Although recent frameworks due to Sawarni et al. (2024); Lee et al. (2024a) have
removed the dependence on S from the leading term, they require an additional training step or
impose additional constraints. Such requirements are undesirable when trying to integrate neural
bandit frameworks. Hence, it is a promising future research direction to eliminate the dependence
on S without additional computations. Additional future directions are deferred to Section ??.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms for
logistic bandits. In International Conference on Artificial Intelligence and Statistics, pp. 3691–
3699. PMLR, 2021.

Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. EE-net: Exploitation-exploration neural
networks in contextual bandits. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=X_ch3VrNSRg.

Shi Dong, Tengyu Ma, and Benjamin Van Roy. On the performance of thompson sampling on
logistic bandits. In Conference on Learning Theory, pp. 1158–1160. PMLR, 2019.

Dheeru Dua and Casey Graff. Uci machine learning repository. https://archive.ics.uci.
edu/ml, 2019. Accessed: 2025-03-21.

Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
rithms for logistic bandits. In International Conference on Machine Learning, pp. 3052–3060.
PMLR, 2020.

Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clément Calauzènes. Jointly efficient and op-
timal algorithms for logistic bandits. In International Conference on Artificial Intelligence and
Statistics, pp. 546–580. PMLR, 2022.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. Advances in neural information processing systems, 23, 2010.

David A Freedman. On tail probabilities for martingales. the Annals of Probability, pp. 100–118,
1975.

Spencer B Gales, Sunder Sethuraman, and Kwang-Sung Jun. Norm-agnostic linear bandits. In
International Conference on Artificial Intelligence and Statistics, pp. 73–91. PMLR, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Yiling Jia, Weitong ZHANG, Dongruo Zhou, Quanquan Gu, and Hongning Wang. Learning neural
contextual bandits through perturbed rewards. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=7inCJ3MhXt3.

Kwang-Sung Jun, Lalit Jain, Blake Mason, and Houssam Nassif. Improved confidence bounds for
the linear logistic model and applications to bandits. In International Conference on Machine
Learning, pp. 5148–5157. PMLR, 2021.

Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In International
Conference on Artificial Intelligence and Statistics, pp. 240–278. PMLR, 2022.

Wonyoung Kim, Kyungbok Lee, and Myunghee Cho Paik. Double doubly robust thompson sam-
pling for generalized linear contextual bandits. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, pp. 8300–8307, 2023.

Yeoneung Kim, Insoon Yang, and Kwang-Sung Jun. Improved regret analysis for variance-adaptive
linear bandits and horizon-free linear mixture mdps. Advances in Neural Information Processing
Systems, 35:1060–1072, 2022.

Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
Craig Boutilier. Randomized exploration in generalized linear bandits. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2066–2076. PMLR, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10

https://openreview.net/forum?id=X_ch3VrNSRg
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://openreview.net/forum?id=7inCJ3MhXt3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joongkyu Lee and Min-hwan Oh. Nearly minimax optimal regret for multinomial logistic bandit.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=Q4NWfStqVf.

Joongkyu Lee and Min-hwan Oh. Improved online confidence bounds for multinomial logistic
bandits. arXiv preprint arXiv:2502.10020, 2025.

Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. A unified confidence sequence for generalized
linear models, with applications to bandits. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a. URL https://openreview.net/forum?id=
MDdOQayWTA.

Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. Improved regret bounds of (multinomial)
logistic bandits via regret-to-confidence-set conversion. In International Conference on Artificial
Intelligence and Statistics, pp. 4474–4482. PMLR, 2024b.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661–670, 2010.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contex-
tual bandits. In International Conference on Machine Learning, pp. 2071–2080. PMLR, 2017.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An em-
pirical comparison of bayesian deep networks for thompson sampling. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
SyYe6k-CW.

Ayush Sawarni, Nirjhar Das, Siddharth Barman, and Gaurav Sinha. Generalized linear bandits with
limited adaptivity. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=FTPDBQuT4G.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 1015–1022,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time anal-
ysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on Un-
certainty in Artificial Intelligence, UAI’13, pp. 654–663, Arlington, Virginia, USA, 2013. AUAI
Press.

Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. Neural
dueling bandits: Preference-based optimization with human feedback. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=VELhv9BBfn.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=xnYACQquaGV.

Tom Zahavy and Shie Mannor. Deep neural linear bandits: Overcoming catastrophic forgetting
through likelihood matching. arXiv preprint arXiv:1901.08612, 2019.

Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien Mairal, Matthieu Martin, and Pierre Gail-
lard. Efficient kernelized ucb for contextual bandits. In International Conference on Artificial
Intelligence and Statistics, pp. 5689–5720. PMLR, 2022.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=tkAtoZkcUnm.

Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Improved regret and
constant computation cost. Advances in Neural Information Processing Systems, 36, 2024.

11

https://openreview.net/forum?id=Q4NWfStqVf
https://openreview.net/forum?id=MDdOQayWTA
https://openreview.net/forum?id=MDdOQayWTA
https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=SyYe6k-CW
https://openreview.net/forum?id=FTPDBQuT4G
https://openreview.net/forum?id=VELhv9BBfn
https://openreview.net/forum?id=VELhv9BBfn
https://openreview.net/forum?id=xnYACQquaGV
https://openreview.net/forum?id=tkAtoZkcUnm
https://openreview.net/forum?id=tkAtoZkcUnm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learn-
ing for linear mixture markov decision processes. In Conference on Learning Theory, pp. 4532–
4576. PMLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DEFERRED EXPERIMENTS FROM SECTION 7

Here we introduce the deferred details and experiments from section 7. All experiments were con-
ducted on a server equipped with an Intel Xeon Gold 6248R 3.00GHz CPU (32 cores), 512GB of
RAM, and 4 GeForce RTX 4090 GPUs.

Details of UCB. We define the UCB value as µ(x; θt−1) + σ(x; ν, {xi, θi−1}t−1
i=1, λ, S, κ). For

the exploration bonus σ, we match the orders of λ, S, κ, and the effective dimension d̃ for
each algorithm and then multiply by the exploration parameter ν. Specifically, the effective di-
mension is defined as follows: for algorithm (1), we use log det(

∑
1
κg(x; θ)g(x; θ)

⊤ + I); for
algorithms (2) and (3), we use log det(

∑
Rxx⊤ + I); and for algorithms (4) and (5) we use

log det(
∑

Rg(x; θ)g(x; θ)⊤ + I).

Although algorithms (2) and (3) require an additional step (e.g., nonconvex projection) to ensure
that θt remains in the desired set, empirical observations from Faury et al. (2020; 2022) indicate that
θt almost always satisfies this condition. Consequently, we streamline all baseline algorithms into
two steps: (i) choose the action with the highest UCB and (ii) update the parameters via gradient
descent.

Preprocessing for real-world datasets. For consistency with the synthetic environment, we rescale
each component of every feature vector x ∈ Rd to the range [−1, 1] by applying a normalization of
2

[x]j−min(x)
max(x)−min(x) − 1 for all j ∈ [d]. In the mnist dataset, we resize each 28 × 28 image to 7 × 7,

flatten it, and treat the result as a 196-dimensional feature vector. The mushroom dataset provides
22 categorical features. We assign each character a random value in [−1, 1] for normalization and set
the label to 1 for edible (’e’) and 0 for poisonous (’p’) mushrooms. The shuttle dataset consists
of 7 numerical features, to which we apply the same min–max normalization as used for mnist.

Varying effective dimension d̃. To evaluate the influence of d̃ on data-adaptive algorithms, we
compare cumulative regret across different values of d̃. We control d̃ by limiting the total number
of context–arm feature vectors during training. Allowing redundant vectors reduces d̃. For a low
effective dimension (Figures 3a, 3d and 3g), we use only 10 feature vectors randomly placed across
the training. For a medium d̃ (Figures 3b, 3e and 3h), we use 50 vectors. For a high d̃ (Figures 3c,
3f and 3i), we use 10000 distinct vectors. Note that Figures 1 and 2 use 2500 vectors. Figure 3
shows that our algorithm, especially algorithm (5), performs best across all those settings and adapts
effectively to different environments of the effective dimensions.

B RELATED WORK

Logistic bandits. Filippi et al. (2010) introduced the generalized linear bandit framework and
derived a regret bound of Õ(κd

√
T), laying the groundwork for modeling logistic bandits. Subse-

quent work, starting with Faury et al. (2020), has focused on reducing the dependence on κ through
variance-aware analyses (see also Dong et al. (2019); Abeille et al. (2021)). In particular, Abeille
et al. (2021) established a lower bound of Ω(d

√
T/κ∗), statistically closing the gap. However,

there is still room for improvement in algorithmic efficiency Faury et al. (2022); Zhang & Sugiyama
(2024); Lee & Oh (2024) and in mitigating the influence of the norm parameter S, with several
recent advances addressing this issue Lee et al. (2024b); Sawarni et al. (2024); Lee et al. (2024a);
Lee & Oh (2025). Another line of research investigates the finite-action setting. When feature vec-
tors are drawn i.i.d. from an unknown distribution whose covariance matrix has a strictly positive
minimum eigenvalue, Li et al. (2017) achieved a regret of Õ(κ

√
dT), while Kim et al. (2023) and

Jun et al. (2021) further improved it to Õ(
√
κdT) and Õ(

√
dT), respectively.

Neural bandits. Advances in deep neural networks have spurred numerous methods that integrate
deep learning with contextual bandit algorithms Riquelme et al. (2018); Zahavy & Mannor (2019);
Kveton et al. (2020). Zhou et al. (2020) was among the first to formalize neural bandits, proposing
the NeuralUCB algorithm, which attains a regret bound of Õ(d̃

√
T) by leveraging neural tangent

kernel theory Jacot et al. (2018). Building on this foundation, many studies have extended linear
contextual bandit algorithms to the neural setting Zhang et al. (2021); Kassraie & Krause (2022);
Ban et al. (2022); Xu et al. (2022); Jia et al. (2022). The work most closely related to ours is Verma

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) h1(x), low d̃ (b) h1(x), middle d̃ (c) h1(x), high d̃

(d) h2(x), low d̃ (e) h2(x), middle d̃ (f) h2(x), high d̃

(g) h3(x), low d̃ (h) h3(x), middle d̃ (i) h3(x), high d̃

Figure 3: Comparison of cumulative regret of baseline algorithms with varying effective dimension
d̃.

et al. (2025), which first addressed both logistic and dueling neural bandits and proposed UCB- and
Thompson-sampling-based algorithms with a regret bound of Õ(κd̃

√
T).

C USEFUL LEMMAS FOR NEURAL BANDITS

In this section, we present several lemmas that enable the neural bandit analysis to quantify the ap-
proximation error incurred when approximating the unknown reward function h(x) with the neural
network f(x; θ). We begin with the definition of the neural tangent kernel (NTK) matrix Jacot et al.
(2018):
Definition C.1. Denote all contexts until round T as {xi}TK

i=1. For i, j ∈ [TK], define

Ĥ
(1)
i,j = Σ

(1)
i,j = ⟨xi, xj⟩, A

(l)
i,j =

(
Σ

(l)
i,j Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
i,j

)
,

Σ
(l+1)
i,j = 2E

(u,v)∼(0,A
(l)
i,j)

max{u, 0}max{v, 0},

Ĥ
(l+1)
i,j = 2Ĥ

(l)
i,jE(u,v)∼N(0,A

(l)
i,j)

1(u ≥ 0)1(v ≥ 0) +Σ
(l+1)
i,j .

Then, H = (Ĥ(L) +Σ(L))/2 is called the NTK matrix on the context set.

Next, we introduce a condition on the neural network width m, which is crucial for ensuring that the
approximation error remains sufficiently small.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Condition C.2. For an absolute constant C0 > 0, the width of the NN m satisfies:

m ≥ C0 max
{
T 4K4L6 log(T 2K2L/δ)λ4

H, L−3/2λ
1/2
0 [log(TKL2/δ)]3/2

}
m(logm)−3 ≥ C0T

7L21λ−1
0 + C0T

16L27λ−7
0 R6 + C0T

10L21λ−4
0 R6 + C0T

7L18λ−4
0 .

We assume that m satisfies Condition C.2 throughout. For readability, we denote the error proba-
bility by δ in all probabilistic statements. We now restate Lemma 6.1, which shows that, for every
x ∈ Xt and t ∈ [T], the true reward function h(x) can be represented as a linear function:

Lemma C.3 (Lemma 5.1, Zhou et al. (2020)). If m ≥ C0T
4K4L6 log(T 2K2L/δ)/λ4

H for some
absolute constant C0 > 0, then with probability at least 1− δ, there exists θ∗ ∈ Rp such that

h(x) = g(x; θ0)
⊤(θ∗ − θ0),

√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h ≤ S,

for all x ∈ Xt, t ∈ [T].

Assuming θt remains close to its initialization θ0, we can apply the following lemmas: Lemma C.4
provides upper bounds on the norms ∥g(x; θ)∥2 and ∥g(x; θ)−g(x; θ0)∥2, while Lemma C.5 bounds
the approximation error between f(x; θ) and its linearization g(x; θ0)

⊤(θ − θ0).

Lemma C.4 (Lemma B.5 and B.6, Zhou et al. (2020)). Let τ = 3
√

t
mλt

. Then there exist absolute

constants C1, C2 > 0, such that for all x ∈ Xt, t ∈ [T] and for all ∥θ − θ0∥2 ≤ τ , with probability
of at least 1− δ,

∥g(x; θ)∥2 ≤ C1

√
mL

∥g(x; θ)− g(x; θ0)∥2 ≤ C2

√
m logmτ1/3L7/2 = C2m

1/3
√
logmt1/6λ

−1/6
t L7/2.

Lemma C.5 (Lemma B.4, Zhou et al. (2020)). Let τ = 3
√

t
mλt

. Then there exists an absolute

constant C3 > 0, for all x ∈ Xt, t ∈ [T], and for all ∥θ − θ0∥2 ≤ τ , with probability of at least
1− δ, ∣∣∣f(x; θ)− g(x; θ0)

⊤(θ − θ0)
∣∣∣
2

≤ C3τ
4/3L3

√
m logm = C3m

−1/6
√
logmL3t2/3λ

−2/3
t .

Finally, we state a lemma that establishes an upper bound on the distance between θt and θ0. It also
shows that, although the loss function Lt(θ) is non-convex and hence the iterate θt obtained after J
steps of gradient descent may differ from the ideal maximum likelihood estimator, this discrepancy
remains sufficiently small. The proof is deferred to Section C.1:

Lemma C.6. Define the auxiliary loss function L̃(θ) as

L̃(θ) = −
t∑

i=1

ri log µ(g(xi; θ0)
⊤(θ − θ0)) + (1− ri) log(1− µ(g(xi; θ0)

⊤(θ − θ0)))

+
mλt

2
∥θ − θ0∥22,

and the auxiliary sequence {θ̃(j)}Jj=1 associated with the auxiliary loss L̃(θ). Let the MLE es-
timator as θ̂t = argminθ L̃(θ). Then there exist absolute constants {Ci}5i=1 > 0 such that if
J = 2 log(λtS/(

√
Tλt +C4T

3/2L))TL/λt and η = C5(mTL+mλt)
−1, then with probability at

least 1− δ,∥∥θt − θ̃t
∥∥
2
≤
√

t

mλt
,

∥∥θt − θ0
∥∥
2
≤ 3

√
t

mλt
= τ,∥∥θt − θ̂t

∥∥
2
≤ 2(1− ηmλt)

J/2t1/2m−1/2λ
−1/2
t

+ C2m
−2/3

√
logmt7/6λ

−7/6
t L7/2 + C1C3Rm−2/3

√
logmL7/2t5/3λ

−5/3
t .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.1 PROOF OF LEMMA C.6

For simplicity, we omit the subscript t by default. First, recall the definition of the auxiliary sequence
{θ̃(j)}Jj=1 associated with the auxiliary loss L̃(θ); its update rule is given by:

θ̃(j+1) = θ̃(j) − η∇L̃(θ̃(j))

= θ̃(j) − η
[
mλθ̃(j) −

t∑
i=1

(µ(g(xi; θ0)
⊤(θ̃(j) − θ0))− ri)g(xi; θ0)

]
.

Similarly, the update rule for θ(j) is given by:

θ(j+1) = θ(j) − η
[
mλθ(j) −

t∑
i=1

(µ(f(x; θ(j)))− ri)g(xi; θ
(j))
]
.

Also notice that

∇2L̃(θ) =

t∑
i=1

µ(g(xi; θ0)
⊤(θ − θ0))(1− µ(g(xi; θ0)

⊤(θ − θ0)))g(xi; θ0)g(xi; θ0)
⊤ +mλI.

(7)

Now, we start the proof with

∥θ(j+1) − θ̂∥2 ≤ ∥θ̃(j+1) − θ̂∥2︸ ︷︷ ︸
(term 1)

+ ∥θ(j+1) − θ̃(j+1)∥2︸ ︷︷ ︸
(term 2)

(8)

For (term 1), observe from Equation (7) that L̃ is (mλ)-strongly convex, since (mλ)I ⪯ ∇2L̃(θ).
Moreover, L̃ is a C5(tmL+mλ)-smooth function for some absolute constant C5 > 0, because

∇2L̃(θ) ⪯
t∑

i=1

1

2
· 1
2
· g(xi; θ0)g(xi; θ0)

⊤ +mλI

⪯
(t∑

i=1

1

4
∥g(xi; θ0)∥22 +mλ

)
I

⪯ C5(tmL+mλ)I,

where the first inequality follows from µ(·)
(
1 − µ(·)

)
≤ 1/4, the second follows because for any

u, x ∈ Rd, u⊤xx⊤u ≤ ∥u∥22 ∥x∥22 ≤ u⊤(∥x∥22I)u, and the last inequality follows from Lemma
C.4.

Then, with our choice of η = C5(tmL+mλ), standard results for gradient descent on L̃ imply that
θ̃(j) converges to θ̂t at the rate as∥∥θ̃(j) − θ̂

∥∥2
2
≤ 2

mλ
· (L̃(θ̃(j))− L̃(θ̂))

≤ (1− ηmλ)j · 2

mλ
·
(
L̃(θ0)− L̃(θ̂)

)
≤ (1− ηmλ)j · 2

mλ
· L̃(θ0),

where the first and the second inequalities follow from the strong convexity and the smoothness of
L̃. Furthermore, we have

L̃(θ0) = −
t∑

i=1

ri log µ
(
0
)
+ (1− ri) log(1− µ

(
0)
)
+

mλt

2
∥θ0 − θ0∥22 = −

t∑
i=1

log 0.5 ≤ t,

Plugging this back gives ∥∥θ̃(j) − θ̂
∥∥
2
≤ (1− ηmλ)j/2

√
2t/(mλ). (9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Next, consider (term 2). From the definition of the update rule, it follows that:

(term 2) ≤ (1− ηmλ)∥θ(j) − θ̃(j)∥2

+ η
∥∥∥ t∑

i=1

(µ(f(x; θ(j))− ri)g(xi; θ
(j))−

t∑
i=1

(µ(g(xi; θ0)
⊤(θ̃(j) − θ0))− ri)g(xi; θ0)

∥∥∥
2

≤ (1− ηmλ)∥θ(j) − θ̃(j)∥2 + η

t∑
i=1

∥∥∥(µ(f(x; θ(j))− ri)[g(xi; θ
(j))− g(xi; θ0)]

∥∥∥
2︸ ︷︷ ︸

(term 3)

+ η

t∑
i=1

∥∥∥[µ(f(x; θ(j)))− µ(g(x; θ0)
⊤(θ̃(j) − θ0))]g(xi; θ0)

∥∥∥
2︸ ︷︷ ︸

(term 4)

. (10)

Considering each term of Equation (10), there exist absolute constants C1, C2, C3 > 0 such that

(term 3) ≤ η

t∑
i=1

∥∥∥1 · [g(xi; θ
(j))− g(xi; θ0)]

∥∥∥
2
≤ C2ηm

1/3
√

logmt7/6λ−1/6L7/2 (11)

(term 4) ≤ η

t∑
i=1

∥∥∥R[f(x; θ(j))− g(x; θ0)
⊤(θ̃(j) − θ0)]g(xi; θ0)

∥∥∥
2

≤ ηR

t∑
i=1

∥∥∥f(x; θ(j))− g(x; θ0)
⊤(θ̃(j) − θ0)

∥∥∥
2
· ∥g(xi; θ0)∥2

≤ C3ηR

t∑
i=1

m−1/6
√
logmL3t2/3λ−2/3∥g(xi; θ0)∥2

≤ C1C3ηRm1/3
√
logmL7/2t5/3λ−2/3. (12)

For (term 3), we apply Lemma C.4. For (term 4), the first inequality follows from the R-Lipschitz
continuity of µ(·), the second follows from the Cauchy–Schwarz inequality, the third follows from
Lemma C.5, and the final inequality follows from Lemma C.4 after summing over t.

Substituting Equations (11) and (12) into Equation (10) yields

∥θ(j+1) − θ̃(j+1)∥2 ≤ (1− ηmλ)∥θ(j) − θ̃(j)∥2
+ C2ηm

1/3
√
logmt7/6λ−1/6L7/2 + C1C3ηRm1/3

√
logmL7/2t5/3λ−2/3

(13)

By iteratively applying Equation (13) from 0 to j, we obtain

∥θ(j+1) − θ̃(j+1)∥2 ≤
C2ηm

1/3
√
logmt7/6λ−1/6L7/2 + C1C3ηRm1/3

√
logmL7/2t5/3λ−2/3

ηmλ

≤ C2m
−2/3

√
logmt7/6λ−7/6L7/2 + C1C3Rm−2/3

√
logmL7/2t5/3λ−5/3.

(14)

By substituting Equations (9) and (14) into Equation (8) and setting j = J − 1, we complete the
proof of the upper bound for ∥θt − θ̂2∥2. Likewise, from Equation (14), setting j = J − 1 and
following the width condition in Condition 4.4 yields

∥θt − θ̃t∥2 ≤
√

t

mλt

(
C2m

−1/6
√
logmt2/3λ

−2/3
t L7/2 + C1C3Rm−1/6

√
logmL7/2t7/6λ

−7/6
t

)
≤
√

t

mλt

(
C2m

−1/6
√
logmT 2/3λ

−2/3
0 L7/2 + C1C3Rm−1/6

√
logmL7/2T 7/6λ

−7/6
0

)
≤
√

t

mλ
, (15)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

which completes the bound on ∥θt − θ̃t∥2. Finally, observe that

∥θt − θ0∥2 ≤ ∥θt − θ̃t∥2 + ∥θ̃t − θ0∥2,

where Equation (15) gives ∥θt − θ̃t∥2 ≤ τ/3, and for the second term

mλt

2
∥θt − θ0∥22 ≤ L̃(θ̃t) ≤ L̃(θ0) =

t∑
i=1

ri log µ
(
0
)
+ (1− ri) log(1− µ

(
0)
)
≤ t log 2,

which implies ∥θ̃t − θ0∥2 ≤ 2
√
t/(mλt) = 2τ/3. Combining these results completes the proof of

the bound on ∥θt − θ0∥2.

D PROOF OF THEOREM 3.1

Our proof technique is primarily inspired by the recent work of Zhou et al. (2021), which integrates
non-uniform variance into the analysis of linear bandits. For brevity, let σ2

t = µ̇(x⊤
t θ

∗), which
yields

Ht =

t∑
i=1

µ̇(x⊤
i θ

∗)xix
⊤
i + λI =

t∑
i=1

σ2
i xix

⊤
i + λI.

We introduce the following additional definitions:

βt = 8

√
log

detHt

detλI
log(4t2/δ) +

4MN√
λ

log(4t2/δ)

st =

t∑
i=1

xiηi, Zt = ∥st∥H−1
t

, wt = ∥xt∥H−1
t−1

, Et = 1{0 ≤ s ≤ t, Zs ≤ βs} (16)

for t ≥ 1, where we set s0 = 0, Z0 = 0, β0 = 0.

Since Ht = Ht−1 + σ2
t xtx

⊤
t , by the matrix inversion lemma,

H−1
t = H−1

t−1 −
H−1

t−1(σtxt)(σtxt)
⊤H−1

t−1

1 + (σtxt)⊤H
−1
t−1(σtxt)

= H−1
t−1 −

σ2
tH

−1
t−1xtx

⊤
t H

−1
t−1

1 + σ2
tw

2
t

. (17)

We begin by establishing a crude upper bound on Zt. In particular, we have

Z2
t = ∥st∥2H−1

t
= (st−1 + xtηt)

⊤H−1
t (st−1 + xtηt)

= s⊤t−1H
−1
t st−1 + 2ηtx

⊤
t H

−1
t st−1 + η2t x

⊤
t H

−1
t xt

≤ Z2
t−1 + 2ηtx

⊤
t H

−1
t st−1︸ ︷︷ ︸

(term 1)

+ η2t x
⊤
t H

−1
t xt︸ ︷︷ ︸

(term 2)

,

where the inequality follows from the fact that Ht ⪰ Ht−1. For (term 1), from the matrix inversion
lemma Equation (17), we have

(term 1) = 2ηt

(
x⊤
t H

−1
t−1st−1 −

σ2
t x

⊤
t H

−1
t−1xtx

⊤
t H

−1
t−1st−1

1 + σ2
tw

2
t

)
= 2ηt

(
x⊤
t H

−1
t−1st−1 −

σ2
tw

2
t x

⊤
t H

−1
t−1st−1

1 + σ2
tw

2
t

)
=

2ηtx
⊤
t H

−1
t−1st−1

1 + σ2
tw

2
t

.

For (term 2), again from the matrix inversion lemma Equation (17), we have

(term 2) = η2t

(
x⊤
t H

−1
t−1xt −

σ2
t x

⊤
t H

−1
t−1xtx

⊤
t H

−1
t−1xt

1 + σ2
tw

2
t

)
= η2t

(
w2

t −
σ2
tw

4
t

1 + σ2
tw

2
t

)
=

η2tw
2
t

1 + σ2
tw

2
t

.

(18)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Therefore, we have

Z2
t ≤ Z2

t−1 +
2ηtx

⊤
t H

−1
t−1st−1

1 + σ2
tw

2
t

+
η2tw

2
t

1 + σ2
tw

2
t

,

and by summing this up from i = 1 to t gives,

Z2
t ≤

t∑
i=1

2ηix
⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

+

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

. (19)

We give two lemmas to upper bound each term.
Lemma D.1. Let si, wi, Ei be as defined in Equation (16). Then, with probability at least 1− δ/2,
simultaneously for all t ≥ 1 it holds that

t∑
i=1

2ηix
⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

Ei−1 ≤
3

4
βt

2.

Lemma D.2. Let wi be as defined in Equation (16). Then, with probability at least 1− δ/2, simul-
taneously for all t ≥ 1 it holds that

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

≤ 1

4
βt

2.

Now consider the event E in which the conclusions of Lemma D.1 and Lemma D.2 hold. We
claim that, on this event, for any i ≥ 0, Zi ≤ βi. We prove this by induction on i. For the
base case i = 0, the claim holds by definition, since β0 = 0 = Z0. Now fix any t ≥ 1 and
assume that for all 0 ≤ i < t we have Zi ≤ βi. Under this induction hypothesis, it follows that
E1 = E2 = · · · = Et−1 = 1. Then by Equation (19), we have

Z2
t ≤

t∑
i=1

2ηix
⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

+

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

=

t∑
i=1

2ηix
⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

Ei−1 +

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

. (20)

Since on the event E the conclusion of Lemma D.1 and Lemma D.2 hold, we have
t∑

i=1

2ηix
⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

Ei−1 ≤
3

4
βt

2,

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

≤ 1

4
βt

2. (21)

Therefore, substituting Equation (21) into Equation (20) yields Zt ≤ βt(δ), which completes the
induction. By a union bound, the events in Lemma D.1 and Lemma D.2 both hold with probability
at least 1− δ. Hence, with probability at least 1− δ, for all t, Zt ≤ βt.

D.1 PROOF OF LEMMA D.1

We now proceed to apply Freedman’s inequality, as stated in Lemma H.1. We have∣∣∣∣∣2x⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

Ei−1

∣∣∣∣∣ ≤ 2∥xi∥H−1
i−1

[
∥si−1∥H−1

i−1
Ei−1

]
1 + σ2

iw
2
i

≤ 2wiβi−1

1 + σ2
iw

2
i

≤ min{1/σi, 2wi}βi−1.

(22)

Here, the first inequality follows from the Cauchy–Schwarz inequality, the second follows from the
definition of Ei−1, and the final inequality follows by simple algebra. For simplicity, let ℓi denote

ℓi =
2ηix

⊤
i H

−1
i−1si−1

1 + σ2
iw

2
i

Ei−1.

We now apply Freedman’s inequality from Lemma H.1 to the sequences (ℓi)i and (Gi)i. First, note
that E[ℓi|Gi] = 0. Moreover, by Equation (22), the following inequalities hold almost surely:

|ℓi| ≤Mβi−1 min{1/σi, 2wi} ≤
2MN√

λ
βt, (23)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where the last inequality follows since (βi)i is non-decreasing in i and by the fact that

wi = ∥xi∥H−1
i−1
≤ ∥xi∥2/

√
λ ≤ N/

√
λ. (24)

We also have
t∑

i=1

E[ℓ2i |Gi] ≤
t∑

i=1

σ2
i

(
2x⊤

i H
−1
i−1si−1

1 + σ2
iw

2
i

Ei−1

)2

≤
t∑

i=1

σ2
i (min{1/σi, 2wi}βi−1)

2

=

t∑
i=1

(min{1, 2wiσi}βi−1)
2

≤ 4βt
2

t∑
i=1

min{1, (wiσi)
2},

where the first inequality holds by the definition of σi, the second inequality follows from Equa-
tion (22), the third inequality holds since (βi)i is non-decreasing. Since

t∑
i=1

min{1, (wiσi)
2} =

t∑
i=1

min{1, ∥σixi∥2H−1
i−1

} ≤ 2 log
detHt

detλI
, (25)

where the last inequality follows from Lemma H.2. Substituting this back yields,
t∑

i=1

E[ℓ2i |Gi] ≤ 8βt
2 log det

(t∑
i=1

σ2
i

λ
xix

⊤
i + I

)
. (26)

Therefore, by Equations (23) and (26), using Lemma H.1, we know that for any t, with probability
at least 1− δ/(4t2), we have

t∑
i=1

ℓi ≤

√√√√16βt
2 log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ) +

2

3
· 2MN√

λ
βt log(4t

2/δ)

≤ βt
2

4
+ 16 log det

(t∑
i=1

σ2
i

λ
xix

⊤
i + I

)
log(4t2/δ) +

βt
2

4
+

4M2N2

λ
log2(4t2/δ)

≤ βt
2

2
+

1

4

8
√√√√log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ) +

4MN√
λ

log(4t2/δ)

2

=
3

4
βt

2, (27)

where the second inequality follows from the fact that 2
√
|ab| ≤ |a| + |b|, and the final equality

follows from the definition of βt. Applying a union bound to Equation (27) from t = 1 to∞ and
using the fact that

∑∞
t=1 t

−2 < 2 completes the proof.

D.2 PROOF OF LEMMA D.2

Similarly to Lemma D.1, we apply Freedman’s inequality from Lemma H.1 to the sequences (ℓi)i
and (Gi)i, where now

ℓi =
η2iw

2
i

1 + σ2
iw

2
i

− E

[
η2iw

2
i

1 + σ2
iw

2
i

∣∣∣∣∣Gi
]
.

First, with Equation (24), we derive a crude upper bound for the following term:∣∣∣∣ η2iw
2
i

1 + σ2
iw

2
i

∣∣∣∣ ≤ |η2iw2
i | ≤

M2N2

λ
. (28)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Now, for any i, we have E[ℓi|Gi] = 0 almost surely. Furthermore, we can see that

t∑
i=1

E[ℓ2i |Gi] ≤
t∑

i=1

E

[
η4iw

4
i

(1 + σ2
iw

2
i)

2

∣∣∣∣∣Gi
]

≤ M2N2

λ

t∑
i=1

E

[
η2iw

2
i

1 + σ2
iw

2
i

∣∣∣∣∣Gi
]

≤ M2N2

λ

t∑
i=1

σ2
iw

2
i

1 + σ2
iw

2
i

≤ 2M2N2

λ
log det

(t∑
i=1

σ2
i

λ
xix

⊤
i + I

)
, (29)

where the first inequality follows from the fact that E(X − E[X])2 ≤ E[X2], the second follows
from Equation (28), the third follows from the definition of ηi, and the fourth follows from the
bound σ2

iw
2
i /(1 + σ2

iw
2
i) ≤ min{1, σ2

iw
2
i } together with the result in Equation (25). Furthermore,

applying Equation (28) again gives

|ℓi| ≤
∣∣∣∣ η2iw

2
i

1 + σ2
iw

2
i

∣∣∣∣+
∣∣∣∣∣E
[

η2iw
2
i

1 + σ2
iw

2
i

∣∣∣∣∣Gi
]∣∣∣∣∣ ≤ 2M2N2

λ
, (30)

almost surely. Therefore by Equation (29) and Equation (30), using Lemma H.1, we know that for
any t, with probability at least 1− δ/(4t2), we have

t∑
i=1

η2iw
2
i

1 + σ2
iw

2
i

≤
t∑

i=1

E

[
η2iw

2
i

1 + σ2
iw

2
i

∣∣∣∣∣Gi
]
+

√√√√4M2N2

λ
log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ)

+
2

3
· 2M

2N2

λ
log(t2/δ)

≤
t∑

i=1

σ2
iw

2
i

1 + σ2
iw

2
i

+

√√√√4M2N2

λ
log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ)

+
4M2N2

λ
log(4t2/δ)

≤ 2 log det

(t∑
i=1

σ2
i

λ
xix

⊤
i + I

)
+

√√√√4M2N2

λ
log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ)

+
4M2N2

λ
log(4t2/δ)

≤ 1

4
·

8
√√√√log det

(t∑
i=1

σ2
i

λ
xix⊤

i + I

)
log(4t2/δ) +

4MN√
λ

log(4t2/δ)

2

=
1

4
βt

2, (31)

where the second inequality follows from the definition of σ2
i , the third follows from the bound

σ2
iw

2
i /(1+σ2

iw
2
i) ≤ min{1, σ2

iw
2
i } together with the result in Equation (25), and the final inequality

follows from the definition of βt. Applying a union bound to Equation (31) for t = 1 to∞ and using
the fact that

∑∞
t=1 t

−2 < 2 completes the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E PROOF OF LEMMAS IN SECTION 6

For clarity, we assume that Condition 4.4 always holds. We then define the quantity α(z′, z′′) via
the mean-value theorem, and introduce two additional analogous definitions for brevity as follows:

α(z′, z′′) =
µ(z′)− µ(z′′)

z′ − z′′
=

∫ 1

v=0

µ̇
(
z′ + v(z′′ − z′)

)
dv,

α(x, θ′, θ′′) = α
(
g(x; θ0)

⊤(θ′ − θ0), g(x; θ0)
⊤(θ′′ − θ0)

)
,

α(x′, x′′, θ) = α
(
g(x′; θ0)

⊤(θ − θ0), g(x
′′; θ0)

⊤(θ − θ0)
)
. (32)

For the design matrix Xt associated with the time-varying regularization parameter λt, we denote
by X̃t the corresponding matrix formed using the initial regularization parameter λ0. For example,

Ṽt =

t∑
i=1

1

m
g(xi; θ0)g(xi; θ0)

⊤ + κλ0I,

H̃t(θ) =

t∑
i=1

1

m
µ̇(g(xi; θ0)

⊤(θi − θ0))g(xi; θ0)g(xi; θ0)
⊤ + λ0I

W̃t =

t∑
i=1

1

m
µ̇(f(xi; θi))g(xi; θ0)g(xi; θ0)

⊤ + λ0I. (33)

E.1 PROOF OF LEMMA 4.5

First, we define the auxiliary loss L̃t(θ)

L̃t(θ) = −
t∑

i=1

ri logµ(g(xi; θ0)
⊤(θ − θ0)) + (1− ri) log(1− µ(g(xi; θ0)

⊤(θ − θ0)))

+
mλt

2
∥θ − θ0∥22,

and its maximum likelihood estimator θ̂t = argminθ L̃t(θ). Then, we use the following definitions:

γt(θ) =

t∑
i=1

1

m
µ(g(xi; θ0)

⊤(θ − θ0))g(xi; θ0) + λt(θ − θ0)

Γt(θ
′, θ′′) =

t∑
i=1

1

m
α(xi, θ

′, θ′′)g(xi; θ0)g(xi; θ0)
⊤ + λtI,

where α(xi, θ
′, θ′′) is defined at Equation (32). We can see that

γt(θ)− γt(θ
∗)

=

t∑
i=1

1

m

(
µ(g(xi; θ0)

⊤(θ − θ0))− µ(g(xi; θ0)
⊤(θ∗ − θ0))

)
g(xi; θ0) + λt(θ − θ∗)

=

t∑
i=1

1

m
α(xi, θ, θ

∗)g(xi; θ0)g(xi; θ0)
⊤(θ − θ∗) + λt(θ − θ∗)

= Γt(θ, θ
∗)(θ − θ∗),

which implies that

∥θ − θ∗∥Γt(θ,θ∗) = ∥γ(θ)− γ(θ∗)∥Γ−1
t (θ,θ∗). (34)

Now we provide the following two lemmas:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma E.1. For δ ∈ (0, 1], define

Ct =
{
θ :
√
m∥γt(θ)− γt(θ̂t)∥H−1

t (θ) ≤ ιt

}
, (35)

where ιt is defined at Equation (3). Then for all t ≥ 0, θ∗ ∈ Ct with probability at least 1− δ

Lemma E.2. Let δ ∈ (0, 1]. Define Ct as in Equation (35). There exists an absolute constant C1 > 0
such that for all θ ∈ Ct,

Ht(θ) ⪯
(
1 + C2

1

L

λt
ι2t + C1

√
L

λt
ιt

)
Γt(θ, θ̂t), Ht(θ̂t) ⪯

(
1 + C2

1

L

λt
ι2t + C1

√
L

λt
ιt

)
Γt(θ, θ̂t).

Now we are ready to start the proof.

Proof of Lemma 4.5. For the absolute constants {Ci}3i=1, we can start with
√
m∥θt − θ∗∥Ht(θ∗) (36)

≤
√
m∥θ̂t − θ∗∥Ht(θ∗) +

√
m∥θt − θ̂t∥Ht(θ∗)

≤
√
m∥θ̂t − θ∗∥Ht(θ∗) +

√
m∥θt − θ̂t∥2 · (λt + C1tL)

≤
√
m∥θ̂t − θ∗∥Ht(θ∗)︸ ︷︷ ︸

(term 1)

+2(λt + C1tL)(1− ηmλt)
J/2t1/2λ

−1/2
t︸ ︷︷ ︸

(term 2)

+ (λt + C1tL)
[
C2m

−1/6
√
logmt7/6λ

−7/6
t L7/2 + C1C3Rm−1/6

√
logmL7/2t5/3λ

−5/3
t

]
︸ ︷︷ ︸

(term 3)

.

(37)

The first inequality is due to triangle inequality. The second inequality is due to λmax(Ht(θ
∗)) ≤

λt + t × ∥
√
µ̇(·)/m · g(·)∥22 ≤ λt + C1tL where we used Lemma C.4. Finally, the last inequality

follows from Lemma C.6.

For (term 1), we rewrite the definition of ιt and λt:

ιt = 16

√√√√log det

(t∑
i=1

1

4m2λ0
g(xi; θ0)g(xi; θ0)⊤ + I

)
log

4t2

δ
+ 8C1

√
L

λ0
log

4t2

δ

λt =
64

S2
log det

(t∑
i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)

⊤ + I

)
log

4t2

δ
+

16C2
1L

S2λ0
log2

4t2

δ
.

We can see that ι2t/λt ≤ 8S2 (and ιt/
√
λt ≤ 2

√
2S) by the fact that (a + b)2 ≤ 2a2 + 2b2.

Therefore, applying these with Lemmas E.1 and E.2 gives

Ht(θ
∗) ⪯ (1 + 2

√
2C1

√
LS + 8C2

1LS
2)Γt(θ

∗, θ̂t), (38)

for some absolute constant C1 > 0. Now, back to (term 1), we have

√
m
∥∥∥θ̂t − θ∗

∥∥∥
Ht(θ∗)

≤
√

m(1 + 2
√
2C1

√
LS + 8C2

1LS
2)
∥∥∥θ̂t − θ∗

∥∥∥
Γt(θ̂t,θ∗)

=

√
m(1 + 2

√
2C1

√
LS + 8C2

1LS
2)
∥∥∥γ(θ̂t)− γ(θ∗)

∥∥∥
Γ−1
t (θ̂t,θ∗)

≤ (1 + 2
√
2C1

√
LS + 8C2

1LS
2)
√
m
∥∥∥γ(θ̂t)− γ(θ∗)

∥∥∥
H−1

t (θ∗)

≤ (1 + 2
√
2C1

√
LS + 8C2

1LS
2)ιt.

where the first and the second inequalities follow from Equation (38), the equality is due to Equa-
tion (34), and the last inequality follows from Lemma E.1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

For (term 2), plugging in J = 2 log(λtS/(T
1/2λt + C4T

3/2L))TL/λt, η = C5(mTL +mλt)
−1

gives

2(λt + C1tL)(1− ηmλt)
J/2t1/2λ

−1/2
t

≤ 2(λt + C1TL)(1− λt/(TL))
J/2T 1/2λ

−1/2
t

≤ 2S
√
λt

≤ ιt,

where the last inequality follows from the definition of λt and the fact that
√
a+ b ≤

√
a+
√
b. For

(term 3), recall that λ0 ≤ min{λt}t≥1, then we have

C2m
−1/6

√
logmt7/6λ

−1/6
t L7/2 + C1C3Rm−1/6

√
logmL7/2t5/3λ

−2/3
t

+ C1C2m
−1/6

√
logmt13/6λ

−7/6
t L9/2 + C2

1C3Rm−1/6
√

logmL9/2t8/3λ
−5/3
t

≤ C2m
−1/6

√
logmT 7/6λ

−1/6
0 L7/2 + C1C3Rm−1/6

√
logmL7/2T 5/3λ

−2/3
0

+ C1C2m
−1/6

√
logmT 13/6λ

−7/6
0 L9/2 + C2

1C3Rm−1/6
√

logmL9/2T 8/3λ
−5/3
0

≤ 1,

where the last inequality can be verified that if the width of the NN m is large enough, satisfying the
condition on Condition C.2, (term 3) ≤ 1.

Substituting (term 1), (term 2), and (term 3) back to Equation (37) gives
√
m∥θt − θ∗∥Ht(θ∗) ≤ (2 + 2

√
2C1

√
LS + 8C2

1LS
2)ιt + 1

≤ C6(1 +
√
LS + LS2)ιt + 1,

for some absolute constant C6 > 0, concludes the proof.

E.2 PROOF OF LEMMA E.1

Recall the definition of L̃t(θ), θ̂t, γt(θ), and Γt(θ
′, θ′′) from Section E.1. Since θ̂t is a maximum

likelihood estimator, L̃t(θ̂t) = 0, which gives
t∑

i=1

1

m
µ(g(xi; θ0)

⊤(θ̂t − θ0))g(xi; θ0) + λt(θ̂t − θ0) =

t∑
i=1

1

m
rig(xi; θ0). (39)

Therefore, we can see that
√
m∥γ(θ̂t)− γ(θ∗)∥H−1

t (θ∗)

=
√
m

∥∥∥∥∥
t∑

i=1

1

m
[µ(g(xi; θ0)

⊤(θ̂t − θ0))− µ(g(xi; θ)
⊤(θ∗ − θ0))]g(xi; θ0) + λtθ̂t − λtθ

∗

∥∥∥∥∥
H−1

t (θ∗)

=
√
m

∥∥∥∥∥
t∑

i=1

1

m
[ri − µ(g(xi; θ0)

⊤(θ∗ − θ0)]g(xi; θ0)− λt(θ
∗ − θ0)

∥∥∥∥∥
H−1

t (θ∗)

≤

∥∥∥∥∥
t∑

i=1

1√
m
[ri − µ(g(xi; θ0)

⊤(θ∗ − θ0)]g(xi; θ0)

∥∥∥∥∥
H−1

t (θ∗)︸ ︷︷ ︸
(term 1)

+
√
λtm∥θ∗ − θ0∥2︸ ︷︷ ︸

(term 2)

, (40)

where the first equality follows from the definition, the second equality is due to Equation (39), and
the first inequality follows from triangle inequality, and the fact that λmax(H

−1
t (θ∗)) ≤ 1/

√
λt.

For (term 1), we are going to use our new tail inequality for martingales in Theorem 3.1. Define
ηi = ri − µ(g(xi; θ0)

⊤(θ∗ − θ0)) = ri − µ(h(xi)). Then, we can see the following conditions are
satisfied:

|ηi| ≤ 1, E[ηi|Gi] = 0, E[η2i |Gi] = µ̇(g(xi; θ0)
⊤(θ∗ − θ0)).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

By Lemma C.4 we have ∥g(xi; θ0)/
√
m∥2 ≤ C1

√
L for some absolute constant C1 > 0. Therefore,

applying Theorem 3.1 gives∥∥∥∥∥
t∑

i=1

1√
m
ηtg(xi; θ0)

∥∥∥∥∥
H−1

t (θ∗)

≤

∥∥∥∥∥
t∑

i=1

1√
m
ηtg(xi; θ0)

∥∥∥∥∥
H̃−1

t (θ∗)

≤ 8

√√√√log det

(
t∑

i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)⊤ + I

)
log

4t2

δ
+ 4C1

√
L

λ0
log

4t2

δ
, (41)

with probability at least 1− δ. Substituting Equation (41) into Equation (40) gives
√
m∥γ(θ̂t)− γ(θ∗)∥H−1

t (θ∗)

≤ 8

√√√√log det

(
t∑

i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)⊤ + I

)
log

4t2

δ
+ 4C1

√
L

λ0
log

4t2

δ
+ S

√
λt

≤ 16

√√√√log det

(
t∑

i=1

1

4mλ0
g(xi; θ0)g(xi; θ0)⊤ + I

)
log

4t2

δ
+ 8C1

√
L

λ0
log

4t2

δ

= ιt. (42)

where the last inequality is due to the update rule of λt and the fact that
√
a+ b ≤

√
a +
√
b. We

finish the proof.

E.3 PROOF OF LEMMA E.2

We modified the previous results of Abeille et al. (2021) (Lemma 2), and Faury et al. (2022) (proof
of Lemma 1), proper to our settings.
Lemma E.3. Let δ ∈ (0, 1]. Define Ct as in Equation (35). There exists and absolute constant
C1 > 0 such that for all θ ∈ Ct:

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)
≤ C1

√
L

λt
ι2t + ιt.

The proof is deferred to Section E.4. Following the proof of Lemma E.3, from Equation (43), we
have

Γt(θ, θ̂t) ≥
(
1 + C1L

1/2λ
−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)−1

Ht(θ)

≥

(
1 + C2

1

L

λt
ι2t + C1

√
L

λt
ιt

)−1

Ht(θ)

where the last inequality follows from applying Lemma E.3 again.

One can achieve the same result for Ht(θ̂t) in a similarly way by starting the proof of Lemma E.3
with

Γt(θ, θ̂t) =

t∑
i=1

α(xi, θ, θ̂t)g(xi; θ0)g(xi; θ0)
⊤ + λtI

≥
t∑

i=1

(
1 + |g(xi; θ0)

⊤(θ − θ̂t)|
)−1

µ̇(g(xi; θ0)
⊤(θ̂t − θ0))g(xi; θ0)g(xi; θ0)

⊤ + λtI

≥
(
1 + C1

√
L

λt
·
√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)−1

Ht(θ̂t)

≥
(
1 + C2

1

L

λt
ι2t + C1

√
L

λt
ιt

)−1

Ht(θ̂t),

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where the first inequality follows from Lemma H.3, the second inequality follows the same process
of Equation (43), and the last inequality follows from Lemma E.3, finishing the proof.

E.4 PROOF OF LEMMA E.3

Recall the definition of Γt and α(x, θ′, θ′′) from Equation (32). We start with

Γt(θ, θ̂t) =

t∑
i=1

α(xi, θ, θ̂t)g(xi; θ0)g(xi; θ0)
⊤ + λtI

≥
t∑

i=1

(
1 + |g(xi; θ0)

⊤(θ − θ̂t)|︸ ︷︷ ︸
(term 1)

)−1
µ̇(g(xi; θ0)

⊤(θ − θ0))g(xi; θ0)g(xi; θ0)
⊤ + λtI,

where the inequality follows from Lemma H.3. For (term 1), we have,

(term 1) ≤ ∥g(xi; θ0)/
√
m∥Γ−1

t (θ,θ̂t)
·
√
m∥θ − θ̂t∥Γt(θ,θ̂t)

≤ C1L
1/2λ

−1/2
t ·

√
m∥θ − θ̂t∥Γt(θ,θ̂t)

≤ C1L
1/2λ

−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)
,

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality fol-
lows from the fact that λmax(Γ(·)−1) ≤ λ−1

t and Lemma C.4, and the last inequality follows from
Equation (34). Substituting (term 1) back gives,

Γt(θ, θ̂t) ≥
(
1 + C1L

1/2λ
−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)−1

×
t∑

i=1

µ̇(g(xi; θ0)
⊤(θ − θ0))g(xi; θ0)g(xi; θ0)

⊤ + λtI

≥
(
1 + C1L

1/2λ
−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)−1

×
(t∑

i=1

µ̇(g(xi; θ0)
⊤(θ − θ0))g(xi; θ0)g(xi; θ0)

⊤ + λtI
)

=
(
1 + C1L

1/2λ
−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)−1

Ht(θ) (43)

Using this results, we can further obtain
√
m∥γt(θ)− γt(θ̂t)∥2Γ−1

t (θ,θ̂t)

≤
(
1 + C1L

1/2λ
−1/2
t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)

)
·
√
m∥γt(θ)− γt(θ̂t)∥2H−1

t (θ)

≤ ι2t + C1L
1/2λ

−1/2
t ι2t ·

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)
,

where the last inequality follows from Lemma E.1. We solve the polynomial inequality in√
m∥γt(θ) − γt(θ̂t)∥Γ−1

t (θ,θ̂t)
using a fact that for b, c > 0 and x ∈ R, following implication

holds: x2 ≤ bx+ c =⇒ x ≤ b+
√
c, which finally gives

√
m∥γt(θ)− γt(θ̂t)∥Γ−1

t (θ,θ̂t)
≤ C1

√
L

λt
ι2t + ιt

E.5 PROOF OF LEMMA 6.4

First, we show that we can upper bound on the prediction error for all x ∈ Xt, t ∈ [T], which is the
difference between the true reward µ(h(x)) with our prediction with the neural network µ(f(x; θt)).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For x ∈ Xt+1 and the absolute constant C3 > 0, the prediction error is defined as

|µ(h(x))− µ(f(x; θt))|
≤ R[h(x)− f(x; θt)]

= R[g(x; θ0)
⊤(θ∗ − θ0)− f(x; θt)]

≤ R[g(x; θ0)
⊤(θ∗ − θ0)− g(x; θ0)

⊤(θt − θ0)︸ ︷︷ ︸
(term 1)

+C3m
−1/6

√
logmL3t2/3λ

−2/3
t], (44)

where the first inequality is due to the fact that µ(·) is R-Lipschitz function, the equality follows
from Lemma 6.1, and the last inequality follows from Lemma C.5. For (term 1), we have

(term 1) = g(x; θ0)
⊤(θ∗ − θt)

=
1√
m
g(x; θ0)

⊤ ·H−1/2
t (θ∗) ·H1/2

t (θ∗) ·
√
m(θ∗ − θt)

≤ ∥g(x; θ0)/
√
m∥H−1

t (θ∗) ·
√
m∥θ∗ − θt∥Ht(θ∗)

≤
√
κ∥g(x; θ0)/

√
m∥V −1

t
·
√
m∥θ∗ − θt∥Ht(θ∗)

≤
√
κ∥g(x; θ0)/

√
m∥V −1

t
·
(
C6(1 +

√
LS + LS2)ιt + 1

)
, (45)

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality is
due to the Assumption 6.3 that 1

κVt ⪯ H−1
t (θ∗), and the last inequality follows from Lemma 4.5.

Plugging Equation (45) into Equation (44) gives

|µ(h(x))− µ(f(x; θt))|

≤ R
√
κ
(
C6(1 +

√
LS + LS2)ιt + 1

)
∥g(x; θ0)/

√
m∥V −1

t
+ C3Rm−1/6

√
logmL3t2/3λ

−2/3
t

≤ R
√
κ
(
C6(1 +

√
LS + LS2)ιt + 1

)
∥g(x; θ0)/

√
m∥V −1

t
+ ϵ3,t, (46)

where the second inequality follows from the fact that λ0 ≤ min{λt}t≥1 and the definition of ϵ3,t.

F PROOF OF LEMMAS IN SECTION 5

F.1 PROOF OF LEMMA 5.1

Recall the definition of L̃t(θ), θ̂t, γt(θ), Γt(θ
′, θ′′), ιt, and λt from Section E.1. We also use

Wt =
t∑

i=1

µ̇(f(xi; θi))

m
g(xi; θ0)g(xi; θ0)

⊤ + λtI

Ht(θ̂t) =

t∑
i=1

µ̇(g(xi; θ0)
⊤(θ̂t − θ0))

m
g(xi; θ0)g(xi; θ0)

⊤ + λtI

Zt =
∑
i=1

|µ̇(f(xi; θi))− µ̇(g(xi; θ0)
⊤(θ̂t − θ0))|

m
g(xi; θ0)g(xi; θ0)

⊤ + λtI

By the definition of Zt, for any x ∈ Rp, we have

∥x∥Wt
≤ ∥x∥Ht(θ̂t)+Zt

≤ ∥x∥Ht(θ̂t)
+ ∥x∥Zt

.

Now with the above inequality, we can start with
√
m∥θt − θ∗∥Wt

≤
√
m∥θt − θ∗∥Ht(θ̂t)︸ ︷︷ ︸

(term 1)

+
√
m∥θt − θ∗∥Zt︸ ︷︷ ︸

(term 2)

. (47)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For (term 1), we directly follow the proof of Lemma 4.5 in Section E.1. Therefore, for the absolute
constants {Ci}3i=1, we have
√
m∥θt − θ∗∥Ht(θ̂t)

≤
√
m∥θ̂t − θ∗∥Ht(θ̂t)

+
√
m∥θt − θ̂t∥Ht(θ̂t)

≤
√
m∥θ̂t − θ∗∥Ht(θ̂t)︸ ︷︷ ︸

(term 3)

+2(λt + C1tL)(1− ηmλt)
J/2t1/2λ

−1/2
t︸ ︷︷ ︸

(term 4)

+ (λt + C1tL)
[
C2m

−1/6
√
logmt7/6λ

−7/6
t L7/2 + C1C3Rm−1/6

√
logmL7/2t5/3λ

−5/3
t

]
︸ ︷︷ ︸

(term 5)

.

Using the same argument as in Section E.1, we can see that

(term 4) ≤ 2S
√
λt ≤ ιt, (term 5) ≤ 1/2.

Note that the upper bound for (term 5) has been changed from 1 to 1/2 solely to unify the constant
in the concentration inequalities of Lemma 4.5 and Lemma 5.1. For (term 3), we have

√
m
∥∥∥θ̂t − θ∗

∥∥∥
Ht(θ̂t)

≤
√

m(1 + 2
√
2C1

√
LS + 8C2

1LS
2)
∥∥∥θ̂t − θ∗

∥∥∥
Γt(θ̂t,θ∗)

=

√
m(1 + 2

√
2C1

√
LS + 8C2

1LS
2)
∥∥∥γ(θ̂t)− γ(θ∗)

∥∥∥
Γ−1
t (θ̂t,θ∗)

≤ (1 + 2
√
2C1

√
LS + 8C2

1LS
2)
√
m
∥∥∥γ(θ̂t)− γ(θ∗)

∥∥∥
H−1

t (θ∗)

≤ (1 + 2
√
2C1

√
LS + 8C2

1LS
2)ιt,

where the first and the second inequalities follow from Lemma E.2, the equality follows from Equa-
tion (38), and the last inequality follows from Lemma E.1. Plugging (term 3-5) into (term 1) gives

(term 1) ≤ (2 + C1

√
LS + C1LS

2)ιt + 1/2.

Now, moving on to (term 2), we have
√
m∥θt − θ∗∥Zt

≤
√
m∥θt − θ∗∥2︸ ︷︷ ︸

(term 6)

×λ1/2
max(Zt︸ ︷︷ ︸
(term 7)

).

For (term 7), we have

λ1/2
max(Zt) = λ1/2

max

(
t∑

i=1

|µ̇(f(xi; θi))− µ̇(g(xi; θ0)
⊤(θ̂t − θ0))|

m
g(xi; θ0)g(xi; θ0)

⊤

)

≤ λ1/2
max

(
t∑

i=1

C3Rm−1/6
√
logmL3t2/3λ

−2/3
t

m
g(xi; θ0)g(xi; θ0)

⊤

)
≤ C3R

1/2m−1/12(logm)1/4t5/6L2λ
−1/3
t .

Here, the first inequality follows from the Lipschitz continuity of µ̇, the bounds |µ̈| ≤ µ̇ ≤ R, and
Lemma C.5, while the final inequality follows from λmax(

∑t
i=1 xix

⊤
i) ≤

∑t
i=1 ∥xi∥22 and used

Lemma C.4. For (term 6) we have
√
m∥θt − θ∗∥2 ≤

√
m∥θt − θ0∥2 +

√
m∥θ∗ − θ0∥2 ≤ 3t1/2λ

−1/2
t + S,

where the last inequality follows from Lemmas C.6 and 6.1. Plugging (term 6-7) back to (term 2)
gives,

(term 2) ≤ C3R
1/2m−1/12(logm)1/4t4/3L2λ

−5/6
t + C3SR

1/2m−1/12(logm)1/4t5/6L2λ
−1/3
t

≤ C3R
1/2m−1/12(logm)1/4T 4/3L2λ

−5/6
0 + C3SR

1/2m−1/12(logm)1/4T 5/6L2λ
−1/3
0

≤ 1/2 + 2Sλ
1/2
t

≤ 1/2 + ιt,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where the third inequality is followed by the condition on m in Condition C.2, and the last inequality
is due to the update rule of λt. Finally, substituting (term 1-2) into Equation (47) gives

√
m∥θt − θ∗∥Wt ≤ (3 + 2

√
2C1

√
LS + 8C2

1LS
2)ιt + 1

≤ C7(1 +
√
LS + LS2)ιt + 1,

for some absolute constant C7 > 0, finishing the proof.

G REGRET ANALYSES

G.1 PROOF OF THEOREM 4.6

We start with a proposition for the per-round regret:

Proposition G.1. Under Condition 4.4, for all x ∈ Xt, t ∈ [T], with probability at least 1− δ,

µ(h(x∗
t))− µ(h(xt)) ≤ 2R

√
κ((CLS2 + 2)ιt−1 + 1)∥g(xt; θ0)/

√
m∥V −1

t−1
+ 2ϵ3,t−1.

Proof. We follow the standard procedure to upper bound the per-round regret with the prediction
error under the optimistic rule. For all t ∈ [T] we have

µ(h(x∗
t))− µ(h(xt))

≤ µ(f(x∗
t ; θt−1)) +R

√
κ
(
C6(1 +

√
LS + LS2)ιt + 1

)
∥g(x∗

t ; θ0)/
√
m∥V −1

t−1
+ ϵ3,t−1 − µ(h(xt))

≤ µ(f(xt; θt−1)) +R
√
κ
(
C6(1 +

√
LS + LS2)ιt + 1

)
∥g(xt; θ0)/

√
m∥V −1

t−1
+ ϵ3,t−1 − µ(h(xt))

≤ 2R
√
κ((CLS2 + 2)ιt−1 + 1)∥g(xt; θ0)/

√
m∥V −1

t−1
+ 2ϵ3,t−1,

where the first and the last inequalities follow from Lemma 6.4, the second inequality comes from
the optimistic rule of Algorithm 1, finishing the proof.

With Proposition G.1, we have

µ(h(x∗
t))− µ(h(xt)) ≤ min

{
2R
√
κν

(1)
t−1∥g(xt; θ0)/

√
m∥V −1

t−1
+ 2ϵ3,t−1, 1

}
≤ min

{
2R
√
κν

(1)
t−1∥g(xt; θ0)/

√
m∥V −1

t−1
, 1
}
+ 2ϵ3,t−1

≤ 2R
√
κν

(1)
t−1 min

{
∥g(xt; θ0)/

√
m∥V −1

t−1
, 1
}
+ 2ϵ3,t−1

≤ 2R
√
κν

(1)
T min

{
∥g(xt; θ0)/

√
m∥V −1

t−1
, 1
}
+ 2ϵ3,T .

Here, the first inequality follows from 0 ≤ |µ(·) − µ(·)| ≤ 1, the second from the bound min{a +

b, 1} ≤ min{a, 1} + b for b > 0, the third from the facts that 2R
√
κ ≥ 1 and ν

(1)
t ≥ 1 for all t,

thereby using min{ab, 1} ≤ amin{b, 1} if a ≥ 1, and the last inequality follows from the fact that
both νt and ϵ3,t are monotonically non-decreasing in t.

Now, we can proceed as

Regret(T) =
T∑

t=1

µ(h(x∗
t))− µ(h(xt))

≤ 2R
√
κν

(1)
T

T∑
t=1

min
{
∥g(xt; θ0)/

√
m∥V −1

t−1
, 1
}
+ 2Tϵ3,T ,

where we can see that by the condition of m in Condition C.2,

Tϵ3,T = C3Rm−1/6
√
logmL3T 5/3λ

−2/3
0 ≤ 1,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

plugging this back gives,

Regret(T) ≤ 2R
√
κν

(1)
T

T∑
t=1

min
{
∥g(xt; θ0)/

√
m∥V −1

t−1
, 1
}
+ 1

≤ 2R
√
κν

(1)
T

√√√√T

T∑
i=1

min
{
∥g(xt; θ0)/

√
m∥2

Ṽ −1
t−1

, 1
}
+ 1

≤ 2R
√
κν

(1)
T

√√√√2T log det

(
T∑

t=1

1

κmλ0
g(xt; θ0)g(xt; θ0)⊤ + I

)
+ 1

≤ 2R
√
κν

(1)
T

√
2T d̃+ 1,

where the second inequality follows from the Cauchy–Schwarz inequality and the relation Vt−1 ⪰
Ṽt−1, the third follows from Lemma H.2, and the final inequality follows from the definition of d̃.
Notice that

ιT = 16

√√√√log det

(
T∑

t=1

1

4mλ0
g(xt; θ0)g(xt; θ0)⊤ + I

)
log

4T 2

δ
+ 8C1

√
L

λ0
log

4T 2

δ

≤ 16

√
d̃ log(4T 2/δ) +

√
4C1(2L)1/2S log−1(4/δ) log(4T 2/δ),

where the last inequality follows from the definition of d̃ and the initialization rule of λ0, which
gives ν(1)T = Õ(S2

√
d̃+ S2.5). Finally, plugging ν

(1)
T in gives,

Regret(T) = Õ
(
S2d̃
√
κT + S2.5

√
κd̃T

)
,

finishing the proof.

G.2 PROOF OF THEOREM 5.2

First, for each t ∈ N, define the set of timesteps

T1(t) =
{
t′ ∈ [t] :

∣∣f(xt′ ; θt′)− g(xt′ ; θ0)
⊤(θ∗ − θ0))

∣∣ ≥ 1
}
. (48)

This set contains exactly those timesteps where θt′ lies outside the parameter set (when ∥θt′−θ0∥2 >
S). Based on this, we form a pruned design matrix by removing the corresponding feature vectors
while preserving their original order. In particular, for the regularized covariance matrix Vt, we
obtain

V t =

t∑
i=1

1

m
1{i /∈ T1}g(xi; θ0)g(xi; θ0)

⊤ + λtI =

t−|T1(t)|∑
i=1

1

m
g(xτ(i); θ0)g(xτ(i); θ0)

⊤ + λtI.

Here, τ : {1, . . . , t− |T1(t)|} → {1, . . . , t} maps each j to the j-th smallest element of [t] \ T1(t).
Similarly, we define Ht(θ) and Wt as:

Ht(θ) =

t−|T1(t)|∑
i=1

µ̇(g(xτ(i); θ0)
⊤(θ − θ0))

m
g(xτ(i); θ0)g(xτ(i); θ0)

⊤ + λtI,

W t =

t−|T1(t)|∑
i=1

µ̇(f(xτ(i); θτ(i)))

m
g(xτ(i); θ0)g(xτ(i); θ0)

⊤ + λtI.

Same way as before, we will denote Ṽ t, H̃t(θ), W̃ t as the design matrix where the regularization
parameter λt is replaced to λ0.

Using our new design matrices and the self-concordant property of the logistic function (see Lemma
H.3; cf. Lemma 9 of Faury et al. (2020), Lemma 7 of Abeille et al. (2021), and Lemma 5 of Jun
et al. (2021)), we can show that the true-variance design matrix H(θ∗) is bounded by the empirical-
variance design matrix W t.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proposition G.2. We have 3Ht(θ
∗) ⪰W t ⪰ 1

3Ht(θ
∗).

Next, we define three additional sets of timesteps derived from T1:

T2 =
{
t ∈ [T − |T1(T)|] :

∣∣g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)

∣∣ ≥ 1
}
,

T3 =
{
t ∈ [T − |T1(T)|] :

∥∥∥g(xτ(t); θ0)/
√
m
∥∥∥
Ṽ

−1

τ(t−1)

≥ 1
}
,

T4 =
{
t ∈ [T − |T1(T)|] :

∥∥∥√µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)/
√
m
∥∥∥
W̃

−1

τ(t−1)

≥ 1
}
. (49)

We define T2 to measure the distance between g(xτ(t); θ0)
⊤θ̃τ(t)−1 and h(xτ(t)) and con-

trol the estimation error of the neural network. We introduce T3, T4 to control the value of
∥g(xτ(t); θ0)/

√
m∥

Ṽ
−1

τ(t−1)

and ∥
√
µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)/

√
m∥

W̃
−1

τ(t−1)

in order to apply the

elliptical potential lemma (Lemma H.2).

Next, we introduce two propositions to bound the cardinality of T1(T), T2, T3 and T4:

Proposition G.3. We have |T1(T)| ≤ 4κd̃ν
(1)
T

2
+ 1 and |T2| ≤ 24κd̃ν

(2)
T

2
, where ν

(1)
t and ν

(2)
t are

defined at Equations (2) and (5), respectively.

Proposition G.4. We have |T3|, |T4| ≤ 2d̃.

For Proposition G.3, we use the concentration inequalities between θτ(t) and θ∗, and θ̃τ(t)−1 and
θ∗ using Lemmas 4.5 and 5.1. For Proposition G.4 we modified previous results appropriate to our
setting called the elliptical potential count lemma (Lemma 7 of Gales et al. (2022), Lemma 4 of Kim
et al. (2022)).

Now we can start the proof of Theorem 5.2.

Proof of Theorem 5.2. At time t, from the optimistic rule in Equation (6), denote

(xt, θ̃t−1)← argmax
x∈Xt,θ∈Wt−1

⟨g(x; θ0), θ − θ0⟩ (50)

We use T1(T) = T1 for brevity. From Equations (48) and (49), we define the combined set of
timesteps as

T = {T2 ∪ T3 ∪ T4}.
Then we have,

Regret(T) ≤ |T1|+
T−|T1|∑
t=1

µ(h(x∗
τ(t)))− µ(h(xτ(t)))

≤ |T1|+ |T2|+ |T3|+ |T4|+
T−|T1|∑
t=1

1{t /∈ T }
[
µ(h(x∗

τ(t)))− µ(h(xτ(t)))
]

≤ 4κd̃ν
(1)
T

2
+ 24κd̃ν

(2)
T

2
+ 4d̃+ 1 +

T−|T1|∑
t=1

1{t /∈ T }
[
µ(h(x∗

τ(t)))− µ(h(xτ(t)))
]

︸ ︷︷ ︸
=:Regretc(T)

,

(51)

where the second inequality follows from the definition of T , and the last inequality follows from
Propositions G.3 and G.4. For Regretc(T), we have

Regretc(T) =
T−|T1|∑
t=1

1{t /∈ T }
[
µ(g(x∗

τ(t); θ0)
⊤(θ∗ − θ0))− µ(g(xτ(t); θ0)

⊤(θ∗ − θ0))
]

≤
T−|T1|∑
t=1

1{t /∈ T }
[
µ(g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ0))− µ(g(xτ(t); θ0)
⊤(θ∗ − θ0))

]

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

where the equality follows from Lemma 6.1, and the inequality follows from the optimistic rule in
Equation (50) since θ̃τ(t)−1, θ

∗ ∈ Wτ(t)−1. With the definition of α(x, θ′, θ′′) at Equation (32), we
can continue with

Regretc(T) ≤
T−|T1|∑
t=1

1{t /∈ T }
[
µ̇(g(xτ(t); θ0)

⊤(θ∗ − θ0))g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)

]
︸ ︷︷ ︸

(term 1)

+

T−|T1|∑
t=1

1{t /∈ T }
[
α(xτ(t), θ̃τ(t)−1, θ

∗)[g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)]2

]
︸ ︷︷ ︸

(term 2)

, (52)

where we used a second-order Taylor expansion and the fact that |µ̈| ≤ µ̇.

For (term 2) we have

(term 2) ≤
T−|T1|∑
t=1

1{t /∈ T }
[
1 · [g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)]2
]

≤
T−|T1|∑
t=1

1{t /∈ T } · ∥g(xτ(t); θ0)/
√
m∥2

W−1
τ(t−1)

·m∥θ̃τ(t)−1 − θ∗∥2W τ(t−1)
. (53)

For ∥g(xτ(t); θ0)/
√
m∥W−1

τ(t−1)
, we have

∥g(xτ(t); θ0)/
√
m∥W−1

τ(t−1)
≤
√
3∥g(xτ(t); θ0)/

√
m∥H−1

τ(t−1)
(θ∗)

≤
√
3κ∥g(xτ(t); θ0)/

√
m∥V −1

τ(t−1)
, (54)

where the first inequality follows from Proposition G.2 and the second inequality follows from
Assumption 6.3. For

√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

, we have
√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

≤
√
m∥θ̃τ(t)−1 − θ∗∥W τ(t)−1

≤
√
m∥θ̃τ(t)−1 − θ∗∥Wτ(t)−1

≤
(√

m∥θ̃τ(t)−1 − θτ(t)−1∥Wτ(t)−1
+
√
m∥θτ(t)−1 − θ∗∥Wτ(t)−1

)
≤ 2ν

(2)
τ(t)−1, (55)

where the first and the second inequality are due to the fact that τ(t−1) ≤ τ(t)−1 and W t ⪯Wt for
all t, respectively. The third inequality follows from the triangle inequality, and the last inequality
follows from Lemma 5.1 since θ̃τ(t)−1, θ

∗ ∈ Wτ(t)−1. Plugging Equations (54) and (55) back to
(term 2) gives

(term 2) ≤
T−|T1|∑
t=1

1{t /∈ T } · 3κ∥g(xτ(t); θ0)/
√
m∥2

V −1
τ(t−1)

· 4
(
ν
(2)
τ(t)−1

)2
≤ 12κ

(
ν
(2)
T

)2 T−|T1|∑
t=1

1{t /∈ T } · ∥g(xτ(t); θ0)/
√
m∥2

V −1
τ(t−1)

,

where the inequality holds since ν
(t)
t is monotonically non-decreasing in t. By the definition of T3,

we have ∥g(xτ(t); θ0)/
√
m∥V −1

τ(t−1)
< 1 for all t ∈ [T − |T1|]. Therefore,

1{t /∈ T } · ∥g(xτ(t); θ0)/
√
m∥2

V −1
τ(t−1)

= min
{
1,1{t /∈ T } · ∥g(xτ(t); θ0)/

√
m∥2

V −1
τ(t−1)

}
≤ min

{
1, ∥g(xτ(t); θ0)/

√
m∥2

V −1
τ(t−1)

}
≤ min

{
1, ∥g(xτ(t); θ0)/

√
m∥2

Ṽ
−1

τ(t−1)

}
, (56)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where the last inequality follows from the fact that λ0 ≤ λt. Substituting Equation (56) gives

(term 2) ≤ 12κ
(
ν
(2)
T

)2 T−|T1|∑
t=1

min
{
1, ∥g(xτ(t); θ0)/

√
m∥2

Ṽ
−1

τ(t−1)

}
≤ 24κ

(
ν
(2)
T

)2
log

det Ṽ τ(T−|T1|)

detκλ0I

≤ 24κ
(
ν
(2)
T

)2
log det

(T∑
t=1

1

κmλ0
g(xt; θ0)g(xt; θ0)

⊤ + I

)
≤ 24κ

(
ν
(2)
T

)2
d̃, (57)

where the second inequality follows from Lemma H.2, and the last inequality follows from the
definition of d̃.

For (term 1), we consider 2 cases where:

(case 1). if µ̇(h(xτ(t))) ≤ µ̇(f(xτ(t); θτ(t)))

(case 2). if µ̇(h(xτ(t))) > µ̇(f(xτ(t); θτ(t)))

In (case 1), for (term 1), we continue with
T−|T1|∑
t=1

1{t /∈ T }
[
µ̇(g(xτ(t); θ0)

⊤(θ∗ − θ0))g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)

]
=

T−|T1|∑
t=1

1{t /∈ T } ·
√
µ̇(h(xτ(t)))

√
µ̇(h(xτ(t)))g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)

≤
T−|T1|∑
t=1

1{t /∈ T } ·
√
µ̇(h(xτ(t)))

√
µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗), (58)

where the last inequality follows from the assumption of (case 1). For brevity, we denote ġ(xt; θ0) =√
µ̇(f(xt; θt))g(xt; θ0). Notice that we can represent Wt as Wt =

∑t
i=1

1
m ġ(xt; θ0)ġ(xt; θ0)

⊤ +
λtI. Then we can continue as

(term 1) ≤
T−|T1|∑
t=1

1{t /∈ T } ·
√
µ̇(h(xτ(t))) · ġ(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)

≤
T−|T1|∑
t=1

1{t /∈ T } ·
√
µ̇(h(xτ(t))) · ∥ġ(xτ(t); θ0)/

√
m∥W−1

τ(t−1)
·
√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

For 1{t /∈ T }∥ġ(xτ(t); θ0)∥W−1
τ(t−1)

, we have

1{t /∈ T } · ∥ġ(xτ(t); θ0)∥W−1
τ(t−1)

= min
{
1,1{t /∈ T } · ∥ġ(xτ(t); θ0)/

√
m∥W−1

τ(t−1)

}
≤ min

{
1, ∥ġ(xτ(t); θ0)/

√
m∥

W̃
−1

τ(t−1)

}
, (59)

where the inequality follows from the definition of T4 and the fact that λ0 ≤ λt for all t. Also, using
the previous results of Equation (55), we have

√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

≤ 2ν
(2)
τ(t)−1. Substituting

these back gives

(term 1) ≤ 2ν
(2)
T

T−|T1|∑
t=1

√
µ̇(h(xτ(t))) ·

{
1, ∥ġ(xτ(t); θ0)/

√
m∥

W̃
−1

τ(t−1)

}

≤ 2ν
(2)
T

√√√√T−|T1|∑
t=1

µ̇(h(xτ(t)))︸ ︷︷ ︸
(term 3)

·

√√√√T−|T1|∑
t=1

{
1, ∥ġ(xτ(t); θ0)/

√
m∥2

W̃
−1

τ(t−1)

}
︸ ︷︷ ︸

(term 4)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where the first inequality is by the monotonicity of µ(2)
t in t, and the second inequality follows from

the Cauchy-Schwarz inequality. For (term 4), we have

√√√√T−|T1|∑
t=1

{
1, ∥ġ(xτ(t); θ0)/

√
m∥2

W̃
−1

τ(t−1)

}
≤

√
2 log

det W̃ τ(T−|T1|)

detλ0I

≤

√√√√2 log det
(T∑

t=1

µ̇(f(xt; θt))

mλ0
g(xt; θ0)g(xt; θ0)⊤ + I

)
≤
√

2d̃,

where the first inequality follows from Lemma H.2, and the last inequality follows from the defini-
tion of d̃.

For (term 3), we have

(term 3)2 ≤
T∑

t=1

µ̇(g(xt; θ0)
⊤(θ∗ − θ0))

≤
T∑

t=1

µ̇(g(x∗
t ; θ0)

⊤(θ∗ − θ0)) +

T∑
t=1

α(xt, x
∗
t , θ

∗)(g(xt; θ0)− g(x∗
t ; θ0))

⊤(θ∗ − θ0)

=
T

κ∗ +

T∑
t=1

α(xt, x
∗
t , θ

∗)(g(xt; θ0)− g(x∗
t ; θ0))

⊤(θ∗ − θ0)

≤ T

κ∗ +

T∑
t=1

α(xt, x
∗
t , θ

∗)(g(x∗
t ; θ0)− g(xt; θ0))

⊤(θ∗ − θ0)

=
T

κ∗ +

T∑
t=1

µ(g(x∗
t ; θ0)

⊤(θ∗ − θ0))− µ(g(xt; θ0)
⊤(θ∗ − θ0))

=
T

κ∗ +

T∑
t=1

µ(h(x∗
t))− µ(h(xt))

=
T

κ∗ + Regret(T). (60)

Here, the second inequality follows from a first-order Taylor expansion together with the bound
|µ̈| ≤ µ̇ and the definition of α(x′, x′′, θ) in Equation (32), the first equality follows from the
definition of κ∗, namely 1/κ∗ = 1

T

∑T
t=1 µ̇

(
h(x∗

t)
)
, the third inequality uses the fact that h(x∗

t) ≥
h(xt), the second equality follows from the mean-value theorem, and the final equality follows from
the definition of regret.

Finally, substituting (term 3) and (term 4) back gives

(term 1) ≤ 2ν
(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃. (61)

Now we consider about (case 2), where µ̇(h(xτ(t))) > µ̇(f(xτ(t); θτ(t))). For (term 1), we have

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

T−|T1|∑
t=1

1{t /∈ T }
[
µ̇(g(xτ(t); θ0)

⊤(θ∗ − θ0))g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)

]
≤

T−|T1|∑
t=1

1{t /∈ T } · µ̇(g(xτ(t); θ0)
⊤(θτ(t) − θ0))g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)︸ ︷︷ ︸
(term 4)

+

T−|T1|∑
t=1

1{t /∈ T } · 1 · [g(xτ(t); θ0)
⊤(θτ(t) − θ∗)g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)]︸ ︷︷ ︸
(term 5)

,

where the inequality follows from the Taylor expansion, and by the fact that |µ̈| ≤ µ̇ ≤ 1. For (term
5) we have,

T−|T1|∑
t=1

1{t /∈ T } · 1 · [g(xτ(t); θ0)
⊤(θτ(t) − θ∗)g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)]

≤
T−|T1|∑
t=1

1{t /∈ T } · ∥g(xτ(t); θ0)/
√
m∥2

W−1
τ(t−1)

×
√
m∥θτ(t) − θ∗∥W τ(t−1)

×
√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

.

We have 1{t /∈ T } · ∥g(xτ(t); θ0)/
√
m∥W−1

τ(t−1)
≤ 3κmin{1, ∥g(xτ(t); θ0)/

√
m∥2

Ṽ
−1

τ(t−1)

} using

Equations (54) and (56). Also we have
√
m∥θ̃τ(t)−1 − θ∗∥W τ(t−1)

≤ 2ν
(2)
τ(t)−1 using Equation (55).

For
√
m∥θτ(t) − θ∗∥W τ(t−1)

, we have
√
m∥θτ(t) − θ∗∥W τ(t−1)

≤
√
m∥θτ(t) − θ∗∥W τ(t)

≤
√
m∥θτ(t) − θ∗∥Wτ(t)

≤ ν
(2)
τ(t).

Plugging results back gives

(term 5) ≤
T−|T1|∑
t=1

3κmin
{
1, ∥g(xτ(t); θ0)/

√
m∥2

Ṽ
−1

τ(t−1)

}
· ν(2)τ(t) · 2ν

(2)
τ(t)−1

≤ 6κ
(
ν
(2)
T

)2 T−|T1|∑
t=1

min
{
1, ∥g(xτ(t); θ0)/

√
m∥2

Ṽ
−1

τ(t−1)

}
≤ 12κ

(
ν
(2)
T

)2
log

det Ṽ τ(T−|T1|)

detκλ0I

≤ 12κd̃
(
ν
(2)
T

)2
where the second inequality is because ν(2)τ(t) is non-decreasing in t, the third inequality follows from

Lemma H.2, and the last inequality follows from the definition of d̃.

Now, for (term 4), we have
T−|T1|∑
t=1

1{t /∈ T } · µ̇(g(xτ(t); θ0)
⊤(θτ(t) − θ0))g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)

=

T−|T1|∑
t=1

1{t /∈ T } · µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)︸ ︷︷ ︸

(term 6)

+

T−|T1|∑
t=1

1{t /∈ T } ·
(
µ̇(g(xτ(t); θ0)

⊤(θτ(t) − θ0))− µ̇(f(xτ(t); θτ(t)))
)
g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)︸ ︷︷ ︸
(term 7)

.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

For (term 7), recall the definition of T2. Then for some absolute constant C3 > 0, we have

(term 7) ≤
T−|T1|∑
t=1

∣∣∣µ̇(g(xτ(t); θ0)
⊤(θτ(t) − θ0))− µ̇(f(xτ(t); θτ(t)))

∣∣∣ · |g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)|

≤
T−|T1|∑
t=1

R
∣∣∣g(xτ(t); θ0)

⊤(θτ(t) − θ0)− f(xτ(t); θτ(t))
∣∣∣ · 1

≤ T · C3Rm−1/6
√

logmL3T 2/3λ
−2/3
0

≤ 1,

where the second inequality follows from the definition of T2, the third inequality is due to the
fact that µ(·) is a R-Lipschitz function, the third inequality follows from Lemma C.5, and the last
inequality follows from the condition of m in Condition C.2.

For (term 6), we have

T−|T1|∑
t=1

1{t /∈ T } · µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)
⊤(θ̃τ(t)−1 − θ∗)

≤
T−|T1|∑
t=1

1{t /∈ T } ·
√
µ̇(h(xτ(t)))

√
µ̇(f(xτ(t); θτ(t)))g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗),

where the inequality follows from the assumption of (case 2). Notice that expression is same as
the (term 1) of (case 1) at Equation (58). Therefore, using the result of Equation (61), we have
(term 6) ≤ 2ν

(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃.

Finally, plugging (term 4-7) into (term 1) gives,

(term 1) ≤ 2ν
(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃+ 12κd̃

(
ν
(2)
T

)2
+ 1.

Recall the upper bound of (term 1) in (case 1) at Equation (61), which is (term 1) ≤
2ν

(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃. Since the upper bound value in (case 2) is strictly larger than

that of (case 1), we give a naive bound of (term 1) by using the result of (case 2).

Now, substituting (term 1-2) into Equation (52) gives

Regretc(T) ≤ 2ν
(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃+ 36κd̃

(
ν
(2)
T

)2
+ 1.

Substituting Regretc(T) into Equation (51) gives

Regret(T) ≤ 2ν
(2)
T

√
Regret(T) + T/κ∗ ·

√
2d̃+ 4d̃+ 4κd̃

(
ν
(1)
T

)2
+ 60κd̃

(
ν
(2)
T

)2
+ 2.

Finally, using the fact that for b, c > 0 and x ∈ R, x2 − bx − c ≤ 0 =⇒ x2 ≤ 2b2 + 2c, and
substituting ν

(1)
T , ν

(2)
T = Õ(S2

√
d̃+ S2.5), we have

Regret(T) ≤ 16
(
ν
(2)
T

)2
+ 4ν

(2)
T

√
2d̃T/κ∗ + 8d̃+ 8κd̃

(
ν
(1)
T

)2
+ 120κd̃

(
ν
(2)
T

)2
+ 4

≤ Õ
(
S2d̃

√
T/κ∗ + S2.5d̃0.5

√
T/κ∗ + S4κd̃2 + S4.5κd̃1.5 + S5κd̃

)
,

finishing the proof.

G.3 PROOF OF PROPOSITION G.2

We suitably modify Lemma 5 of Jun et al. (2021) for our setting. Define d(t) =∣∣f(xt; θt)− g(xt; θ0)
⊤(θ∗ − θ0))

∣∣. By the definition of T1, for all t /∈ T1(T), d(t) ≤ 1. Recall

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

the definition of α(z′, z′′) at Equation (32). Then for all t /∈ T1(T), we have

µ̇(f(xt; θt)) ≥
d(t)

exp(d(t))− 1
· α
(
f(xt; θi), g(xt; θ0)

⊤(θ∗ − θ0)
)

≥ d(t)

exp(d(t))− 1
· 1− exp(−d(t))

d(t)
µ̇(g(xt; θ0)

⊤(θ∗ − θ0))

=
1

exp(d(t))
· µ(g(xt; θ0)

⊤(θ∗ − θ0))

≥ 1

d(t)2 + d(t) + 1
· µ(g(xt; θ0)

⊤(θ∗ − θ0))

≥ 1

2d(t) + 1
· µ(g(xt; θ0)

⊤(θ∗ − θ0)),

where the first and the second inequalities follow from the self-concordant property in Lemma H.3,
the third and the fourth inequalities hold since d(t) ≤ 1. This implies that

W t ⪰
1

2max{d(t′)}(t′∈[t])∩(t′ /∈T1(t)) + 1
Ht(θ

∗) ⪰ 1

3
Ht(θ

∗),

In a similar way, we can have

Ht(θ
∗) ⪰ 1

2max{d(t′)}(t′∈[t])∩(t′ /∈T1(t)) + 1
W t ⪰

1

3
W t.

Combining these results, we finish the proof.

G.4 PROOF OF PROPOSITION G.3

We start with the upper bound of |T1|. For an absolute constant C3 > 0, we have:

|T1| ·min{1, 12} ≤
T∑

t=1

min
{
1, |f(xt; θt)− g(xt; θ0)

⊤(θ∗ − θ0)|2
}

≤
T∑

t=1

min
{
1, 2|f(xt; θt)− g(xt; θ0)

⊤(θt − θ0)|2 + 2|g(xt; θ0)
⊤(θt − θ∗)|2

}
,

For 2|f(xt; θt) − g(xt; θ0)
⊤(θt − θ0)|2, we have |f(xt; θt) − g(xt; θ0)

⊤(θt − θ0)| ≤
C3m

−1/6
√
logmL3t2/3λ

−2/3
t using Lemma C.5. Since the error term is positive, we can take it

out of the min{1, ·} term, which gives

|T1| ≤
T∑

t=1

min
{
1, 2|g(xt; θ0)

⊤(θt − θ∗)|2
}
+ C2

3m
−1/3(logm)L6T 7/3λ

−4/3
0

≤ 2

T∑
t=1

min
{
1, |g(xt; θ0)

⊤(θt − θ∗)|2
}
+ 1,

where the last inequality is due to the condition of m at Condition 4.4, and the fact that min{1, ab} ≤
amin{1, b} if a ≥ 1. We further proceed as

|T1| ≤ 2

T∑
t=1

min
{
1, ∥g(xt; θ0)/

√
m∥2

H−1
t−1(θ

∗)
·m∥θt − θ∗∥2Ht−1(θ∗)

}
+ 1.

For m∥θt − θ∗∥2Ht−1(θ∗), we have

m∥θt − θ∗∥2Ht−1(θ∗) ≤ m∥θt − θ∗∥2Ht(θ∗) ≤
(
ν
(1)
t

)2
.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Since ν
(1)
t ≥ 1 we can take out of the min{1, ·} term, and by the monotonicity of ν(1)t in t, we have

|T1| ≤ 2
(
ν
(1)
T

)2 T∑
t=1

min
{
1, ∥g(xt; θ0)/

√
m∥2

H−1
t−1(θ

∗)

}
+ 1

≤ 2κ
(
ν
(1)
T

)2 T∑
t=1

min
{
1, ∥g(xt; θ0)/

√
m∥2

Ṽ −1
t−1

}
+ 1

≤ 4κ
(
ν
(1)
T

)2
log

det ṼT

detκλ0I
+ 1

≤ 4κd̃
(
ν
(1)
T

)2
+ 1,

where the second inequality follows from κ ≥ 1, and Ht(θ
∗) ⪰ (1/κ)Vt ⪰ (1/κ)Ṽt, the third

inequality follows from Lemma H.2, and the last inequality follows from the definition of d̃.

Next we can show the upper bound of |T2| in a similar way:

|T2| ·min{1, 12} ≤
T−|T1(T)|∑

t=1

min
{
1, |g(xτ(t); θ0)

⊤(θ̃τ(t)−1 − θ∗)|2
}

≤
T−|T1(T)|∑

t=1

min
{
1, ∥g(xτ (t); θ0)/

√
m∥2

W−1
τ(t−1)

·m∥θ̃τ(t)−1 − θ∗∥2W τ(t−1)

}
We have ∥g(xτ(t); θ0)/

√
m∥2

W−1
τ(t−1)

≤
√
3κ∥g(xτ(t); θ0)/

√
m∥2

V −1
τ(t−1)

using the result of Equa-

tion (54). Also, we have m∥θ̃τ(t)−1 − θ∗∥2W τ(t−1)
≤ 4
(
ν
(2)
τ(t)−1

)2
using the result of Equation (55).

Since ν
(2)
t is non-decreasing in t, substituting results back gives

|T2| ≤ 12κ
(
ν
(2)
T

)2 T−|T1(T)|∑
t=1

min
{
1, ∥g(xτ (t); θ0)/

√
m∥2

V −1
τ(t−1)

}
≤ 24κ

(
ν
(2)
T

)2
log

det Ṽ τ(T−|T1|)

detκλ0I

≤ 24κd̃
(
ν
(2)
T

)2
,

where the second inequality follows from Lemma H.2, and the last inequality follows from the
definition of d̃, finishing the proof.

G.5 PROOF OF PROPOSITION G.4

We begin with the case of T3. We define a new design matrix that consists of all feature vectors of
V t up to time t, in their original order, including only those corresponding to timesteps in T3(t):

Ṽ˜ t =

t−|T1(t)|∑
i=1

1

m
1{i ∈ T3}g(xτ(i); θ0)g(xτ(i); θ0)

⊤ + λ0I

For brevity we define j(t) = τ(t− |T1(t)|). Then we have

det(Ṽ˜T) = det
(j(T)∑

i=1

1

m
1{i ∈ T3}g(xτ(i); θ0)g(xτ(i); θ0)

⊤ + λ0I
)

= det
(
Ṽ τ(j(T)−1) +

1

m
1{τ(j(T)) ∈ T3}g(xτ(j(T)); θ0)g(xτ(j(T)); θ0)

⊤
)

= det
(
Ṽ τ(j(T)−1)

)(
1 + 1{τ(j(T)) ∈ T3}∥g(xτ(j(T)); θ0)/

√
m∥2

Ṽ
−1

τ(j(T)−1)

)
≥ det

(
Ṽ τ(j(T)−1)

)(
1 + 1{τ(j(T)) ∈ T3}

)
,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

where the third equality follows from the matrix determinant lemma, and the inequality follows from
the definition of T3. Repeating inequalities to V τ (0) gives

det(Ṽ˜T) ≥ det
(
Ṽ τ(0)

)
·
(
1 + 1{τ(j(T)) ∈ T3}

)T−|T1(T)|
= det(κλ0I) · (1 + 1)|T3|.

Therefore, we can rewrite as

|T3| ≤
1

log 2
· log

det Ṽ˜T

detκλ0I
≤ 1

log 2
· log det ṼT

detκλ0I
≤ 2d̃,

where the last inequality follows from the definition of d̃. We can prove |T4| ≤ 2d̃ in a similar way,
starting by defining W̃˜t =

∑t−|T1(t)|
i=1

µ̇(f(xτ(i);θ0)

m 1{i ∈ T4}g(xτ(i); θ0)g(xτ(i); θ0)
⊤ + λ0I and

following the above process.

H AUXILIARY LEMMAS

Lemma H.1 (Freedman (1975)). Let M, v > 0 be fixed constants. Let {xi}ni=1 be a stochas-
tic process, {Gi}i be a filtration so that for all i ∈ [n], xi is Gi-measurable, while almost surely
E[xi|Gi−1] = 0, |xi| ≤M and

n∑
i=1

E[x2
i |Gi−1] ≤ v.

Then, for any δ > 0, with probability at least 1− δ,
n∑

i=1

xi ≤
√

2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma H.2 (Lemma 11 Abbasi-Yadkori et al. (2011)). For any λ > 0 and sequence {xt}Tt=1 ∈ Rd,
define Zt = λI+

∑t
i=1 xix

⊤
i . Then, provided that ∥xt∥2 ≤ L holds for all t ∈ [T], we have

T∑
t=1

min{1, ∥xt∥2Z−1
t−1

} ≤ 2 log
detZT

detλI
≤ 2d log

dλ+ TL2

dλ

Lemma H.3 (Lemma 7 Abeille et al. (2021)). For any z′, z′′ ∈ R, we have,

µ̇(z′)
1− exp(1− |z′ − z′′|)

|z′ − z′′|
≤
∫ 1

0

µ̇(z′ + v(z′′ − v′))dv ≤ µ̇(z′)
exp(|z′ − z′′|)− 1

|z′ − z′′|
,

Also, we have,∫ 1

0

µ̇(z′ + v(z′′ − v′))dv ≥ µ̇(z′)

1 + |z′ − z′′|
,

∫ 1

0

µ̇(z′ + v(z′′ − v′))dv ≥ µ̇(z′′)

1 + |z′ − z′′|
.

I THOMPSON SAMPLING-BASED VARIANTS

In this section, we introduce the Thompson sampling-based variants of Algorithm 1, which we call
NeuralLog-TS-1. The proof for the regret of Neural-TS-1 can be obtained by exactly following the
proof of Theorem 3.5 of Zhang et al. (2021). To reuse the result of previous work, we match the
notations by using the following definitions:

σt(x)
2 := κλt∥g(x; θ0)/

√
m∥2

V −1
t

νt := ν
(1)
t λ

−1/2
t = C6λ

−1/2
t (1 +

√
LS + LS2)ιt + λ

−1/2
t

ct := νT (1 +
√

2 log(Kt2))

and denote Ft as a filtration containing the history of observations up to iteration t. Also define the
set of saturated points as

St = {x ∈ Xt : ∆t(x) > ct−1σt−1(x) + 2ϵ′t−1}, (62)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

where ∆t(x) = h(x∗
t)− h(x) and ϵ′t = R−1ϵ3,t. Note that x∗

t /∈ St.
In round t, for each x ∈ Xt, we sample a latent reward r̃t(x) from the normal distribution

∀x ∈ Xt, r̃t(x) ∼ N (f(x; θt−1), ν
2
Tσ

2
t−1(x)),

and choose an arm following

xt = argmax
x∈Xt

r̃t(x).

Now we introduce two good events: First, define the event E1(t) when the following inequality holds
for all x ∈ Xt:

|h(x)− f(x; θt−1)| ≤ νTσt−1(x) + ϵ′t−1. (63)

Then, by the direct result of Lemma 6.4, P(E1(t)) ≥ 1 − δ. Next, define the event E2(t) when the
following inequality holds for all x ∈ Xt:

|r̃t(x)− f(x; θt−1)| ≤ νT
√
2 log(Kt2)σt−1(x). (64)

Since r̃t(x) is sampled fromN (f(x; θt−1), ν
2
Tσ

2
t−1(x)), we can use the concentration inequality on

Gaussian distributions to obtain P(E2(t)|Ft−1) ≥ 1− 1/t2 for any possible filtration Ft−1.

Next, recall the definition of the set of saturated points in Equation (62). We reuse the result of
Lemma 4.5 of Zhang et al. (2021) as follows

P(xt ∈ Xt \ St | Ft−1, E1(t)) ≥ (4e
√
π)−1 − 1/t2. (65)

We skip the proof as the same argument can be found in Section B.4 of Zhang et al. (2021). Instead,
we give a high-level intuition. By construction, saturated arms are those whose posterior mean
reward is significantly worse than that of the optimal arm. Under the good events E1(t) and E2(t),
this gap is reflected both in their true means and in their posterior samples, so with high probability
a saturated arm cannot catch up to the optimal arm in terms of the sampled reward.

On the other hand, the posterior for the optimal arm enjoys an anti-concentration property, which
is, with constant probability, its sample exceeds its mean by a suitable margin. This is where the
factor (4e

√
π)−1 comes from. Combining these facts, with constant probability the sampled reward

of the optimal arm is larger than the samples of all saturated arms, so the arm selected by Thompson
sampling must be unsaturated. The 1/t2 term accounts for the small probability that one of the good
events E1(t) or E2(t) fails.

Now, with the previous results in place, we derive an upper bound on the expected instantaneous
regret. Define dt = h(x∗

t)− h(xt). Again, we reuse the result of Lemma 4.6 of Zhang et al. (2021)
as follows:

E[dt | Ft−1, E1(t)] ≤ 44e
√
π C1ct

√
LE
[
min{1, σt(xt)} | Ft−1, E1(t)

]
+ 4ϵ′t−1 + 2/t2,

where C1 > 0 is the same absolute constant that appears in Lemma C.4. By Equation (65), Neural-
TS-1 selects an unsaturated arm with constant probability, so in expectation the posterior standard
deviation of the played arm is comparable to that of the best unsaturated arm. Under the good
events, the posterior means stay close to the true means and saturated arms have very small gaps,
which allows us to bound the instantaneous regret dt by a constant multiple of min{1, σt(xt)} plus
the approximation terms 4ϵ′t−1+2/t2. Taking the conditional expectation and using a global control
on the posterior variances over time then yields the stated bound.

Now we are ready to start the proof for the regret. Define a stochastic process (Yt)
T
t=0 where

d̄t = dt1{E1(t)}
Xt = d̄t − 44e

√
πC1ct

√
Lmin{1, σt(xt)} − 4ϵ′t−1 − 2/t2

Yt =

t∑
i=1

Xi, Y0 = 0

We can see that (Yt) is a supermartingale with respect to Ft since E[Yt − Yt−1 | Ft−1] = E[Xt |
Ft−1] ≤ 0. Now we prepare to apply the Azuma-Hoeffding inequality for a supermartingale:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Lemma I.1 (Azuma-Hoeffding inequality for supermartingale). If a supermartingale Yt, corre-
sponding to a filtration Ft satisfies |Yt − Yt−1| ≤ Bt, then for any (0, 1), with probability at least
1− δ,

Yt − Y0 ≤

√√√√2 log(1/δ)

t∑
i=1

B2
i .

To derive an upper bound on |Yt − Yt−1|, we have

|Yt − Yt−1| = |Xt| ≤ |d̄t|+ 44e
√
πC1ct

√
Lmin{1, σt(xt)}+ 4ϵ′t−1 + 2/t2

≤ 4 + 44e
√
πC2

1ctL+ 4ϵ′t−1.

where the last inequality follows from Lemma C.4, and 1/t2 ≤ 1. Now, applying Lemma I.1 with
Bt = 4 + 44e

√
πC2

1ctL+ 4ϵ′t−1 to (Yt), with probability at least 1− δ, we have

T∑
t=1

d̄t ≤
T∑

t=1

44e
√
πC1ct

√
Lmin{1, σt(xt)}︸ ︷︷ ︸

(term 1)

+

T∑
t=1

4ϵ′t−1 +

T∑
t=1

2/t2︸ ︷︷ ︸
(term 2)

+

√√√√2 log(1/δ)

T∑
t=1

(
4 + 44e

√
πC2

1ctL+ 4ϵ′t−1

)2
︸ ︷︷ ︸

(term 3)

. (66)

For (term 1), applying Cauchy-Schwarz inequality,

(term 1) ≤ 44e
√
πC1ν

(1)
T (1 +

√
2 log(KT 2))

√
κL

√√√√T

T∑
t=1

min{1, ∥g(xt; θ0)/
√
m∥2

V −1
t−1

}

= Õ
(
S2d̃
√
κT + S2.5

√
κd̃T

)
For (term 2), by the condition of m in Condition 4.4,

∑T
t=1 4ϵ

′
t−1 ≤ 1, and

∑T
t=1 2/t

2 ≤ π2/3.

For (term 3), since ν
(1)
T = Õ(S2

√
d̃+ S2.5), and λ

−1/2
0 = O(S0.5)

(term 3) ≤ (4 + 44e
√
πC2

1ν
(1)
T λ

−1/2
0 (1 +

√
2 log(KT 2)) + 4ϵ′T)

√
2 log(1/δ)T

= Õ
(
S2.5

√
d̃T + S3

√
T
)

Combining results, we have

T∑
t=1

d̃t ≤ Õ
(
S2d̃
√
κT + S2.5

√
κd̃T + S3

√
T
)

with probability at least 1 − δ. Notice that Regret(T) ≤
∑T

t=1 R|h(x∗
t) − h(xt)|. Therefore

R
∑T

t=1 d̃t upper bounds the regret with probability at least 1 − δ. Finally, replacing δ by δ/2
for both cases and applying the union bound finishes the proof.
Remark 3 (Discussion on Thompson sampling-based variants of NeuralLog-UCB-2). In analogy
with the Thompson sampling extension of NeuralLog-UCB-1, one can also consider a Thompson
sampling-based variant of NeuralLog-UCB-2 as follows. Define σ′

t(x)
2 := λt∥g(x; θ0)/

√
m∥W−1

t−1

and ν′t := ν
(2)
t−1λ

−1/2
t , and for all x ∈ Xt sample r̃′t(x) ∼ N (g(x; θ0)

⊤(θt−1 − θ0), ν
′2
T σ′2

t−1(x)),
then choose xt = argmaxx∈Xt

r̃′t(x). However, our current regret analysis for Thompson sampling-
based algorithms proceeds by defining a stochastic process associated with the per-round regret and
then applying a concentration inequality for this process to obtain an upper bound on the per-round
regret. In order to fully exploit Wt from Algorithm 2 within this framework, a much more delicate
analysis of the second-order Taylor expansion of the per-round regret would be required.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

More concretely, if we proceed the analysis in a naive way and consider the regret bound obtained
for such a NeuralLog-TS-2 algorithm, then, denoting by (term 1’) the counterpart of (term 1) in
Equation (66), and focusing only on the dependence on κ, we obtain

(term 1’) ≲
T∑

t=1

min{1, ∥g(x; θ0)/
√
m∥W−1

t−1
} ≲

√√√√κT

T∑
t=1

min{1, ∥g(x; θ0)/
√
m∥2

V −1
t−1

} ,

where we see that the additional
√
κ factor is reintroduced. Treating this issue within our current

proof technique therefore appears to be a non-trivial problem, and we leave a sharper analysis of
such Thompson sampling-based variants of NeuralLog-UCB-2 for future work.

As we have seen in Remark 3, although NeuralLog-TS-2 does not attain a regret bound with the same
dependence on κ as NeuralLog-UCB-2, the algorithm itself is well defined, just like NeuralLog-TS-
1. In Section J, we present additional experiments including these two algorithms and demonstrate
their practical performance.

J ADDITIONAL EXPERIMENTS

We compare five baseline algorithms with our algorithms including the Thompson sampling-based
variants introduced in Section I. Where NeuralLog-TS-1 and NeuralLog-TS-2 both choose the arm
with best sampled reward where

For NeuralLog-TS-1, r̃t(x) ∼ N (f(x; θt−1), ν
2
Tσ

2
t−1(x)),

For NeuralLog-TS-2, r̃′t(x) ∼ N (g(x; θ0)
⊤(θt−1 − θ0), ν

′2
T σ′2

t−1(x)).

We include the synthetic latent reward functions which are also used in Zhou et al. (2020): h4(x) =
10(x⊤θ)2, h5(x) = x⊤Θ⊤Θx, h6(x) = cos(3x⊤θ). All other experimental parameters and details
follow the same as described in Section 7.

Next, we include 3 more K-class classification tasks from Dua & Graff (2019): We reuse the same
min–max normalization to [−1, 1] as described in Section A. In the magic dataset (MAGIC Gamma
Telescope), we convert all features to real-valued variables, impute any missing entries with 0, and
then map the original class labels to a binary label by setting y = 1 for gamma (‘g’) events and y = 0
for hadron (‘h’) events. In the banknote dataset (UCI Banknote Authentication), we use the four
real-valued attributes provided in the repository and keep the original binary labels y ∈ {0, 1}. For
the phoneme dataset (Connectionist Bench (Nettalk Corpus)), we treat any categorical fields as
numeric by casting them to an appropriate numeric type, and replace missing values with 0.

Figures 4 and 5 summarize the average cumulative regret of the five baseline algorithms together
with our two Thompson sampling-based variants. Consistent with the results already observed in
Figures 1 and 2, our NeuralLog-UCB-2 algorithm steadily achieves the best performance across the
considered settings. Moreover, the two Thompson sampling-based variants also exhibit competitive
performance compared to the baselines. Figure 6 demonstrates the influence of d̃ on data-adaptive
algorithms by comparing cumulative regret across different values of d̃.

(a) h4(x) = 10(x⊤θ)2 (b) h5(x) = x⊤Θ⊤Θx (c) h6(x) = cos(3x⊤θ)

Figure 4: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

(a) magic (b) banknote (c) phoneme

Figure 5: Comparison of cumulative regret of baseline algorithms for real-world dataset.

(a) h4(x), low d̃ (b) h4(x), middle d̃ (c) h4(x), high d̃

(d) h5(x), low d̃ (e) h5(x), middle d̃ (f) h5(x), high d̃

(g) h6(x), low d̃ (h) h6(x), middle d̃ (i) h6(x), high d̃

Figure 6: Comparison of cumulative regret of baseline algorithms with varying effective dimension
d̃.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

K ADDITIONAL FUTURE DIRECTIONS

Although we successfully remove the direct dependence on p from the regret bound, a direct de-
pendence on p reappears when we examine the per-round computational complexity. This is prob-
lematic in neural bandit settings where p scales with the horizon T , making the resulting algorithm
computationally inefficient.

Let us briefly analyze the computational complexity of our algorithms. Since Algorithms 1 and 2
have the same order of complexity, we focus on Algorithm 1. For action selection, we must compute
f(x; θt−1) for K actions, which costsO(p) per action, and the quantity ∥g(x; θ0)/

√
m∥V −1

t−1
, which

costsO(p2) per action. Hence, the action-selection step has complexityO(Kp2). The updates of the
parameters λt, ι, and ν

(1)
t costO(p2) by their definitions. For neural network training, at round t we

apply gradient steps over the full dataset of size t, which costs O(tp) per gradient step. Performing
Jt iterations therefore costsO(Jttp), where Jt = Õ(TL/λt). Finally, updating the design matrix Vt

costsO(p2). Altogether, the per-round computational complexity isO(Jttp+Kp2+p2). Moreover,
Verma et al. (2025) can be seen to have essentially the same computational complexity, as their
algorithm and training pipeline are close to ours.

In contrast, in the classical logistic bandit literature the algorithms operate directly in the feature
space of dimension d, which is typically much smaller than p. For example, Filippi et al. (2010);
Faury et al. (2020) obtain overall complexity on the order of O(d2K + d2T), and there has been
significant recent progress on designing computationally efficient algorithms for logistic bandits:
Abeille et al. (2021) achieve O(d2KT), and Faury et al. (2022) even propose an algorithm with
complexity Õ(d2K). However, these favorable guarantees rely crucially on the strong assumption
that the latent reward model is linear in the feature representation. From the perspective of practical
applications, it is therefore important to develop neural bandit algorithms that retain the modeling
flexibility of neural networks while achieving comparable computational efficiency, which we view
as an important direction for future work.

As one illustrative example, in light of the connection between NTK-based neural bandits and ker-
nelized bandits, one could consider importing techniques such as Nyström approximation as in
Zenati et al. (2022) to reduce the effective computational cost in the neural bandit setting. Another
approach is to adapt the method proposed in Xu et al. (2022) where an NTK-based neural bandit
formulation is also used, but the neural network is trained so that its output is not the reward itself,
but instead a new d-dimensional feature vector. The problem is then reduced to solving a linear
bandit in this learned feature space with respect to an unknown parameter θ∗. This strategy can
substantially reduce computational complexity and is attractive from an applied viewpoint, but it
requires an additional Lipschitz-type assumption on the neural network on the theoretical side.

L USE OF LARGE LANGUAGE MODELS

This manuscript is reviewed and edited for grammar and clarity using ChatGPT-5.

44

	Introduction
	Preliminaries
	Variance- and Data-Adaptive Self-Normalized Martingale Tail Inequality
	Neural Logistic Bandits with Improved UCB
	Refined Algorithm with Neural Network-Estimated Variance
	Regret Analyses
	Proof sketch of thm:regret
	Proof sketch of thm:regret2

	Experiments
	Conclusion and Future Work
	Deferred Experiments from sec:exp
	Related Work
	Useful Lemmas for Neural Bandits
	Proof of Lemma C.6

	Proof of Theorem 3.1
	Proof of Lemma D.1
	Proof of Lemma D.2

	Proof of Lemmas in sec:ra1
	Proof of Lemma 4.5
	Proof of Lemma E.1
	Proof of Lemma E.2
	Proof of Lemma E.3
	Proof of Lemma 6.4

	Proof of lemmas in sec:alg2
	Proof of Lemma 5.1

	Regret Analyses
	Proof of thm:regret
	Proof of thm:regret2
	Proof of Proposition G.2
	Proof of Proposition G.3
	Proof of Proposition G.4

	Auxiliary Lemmas
	Thompson Sampling-based Variants
	Additional Experiments
	Additional Future Directions
	Use of Large Language Models

