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ABSTRACT

We study the problem of neural logistic bandits, where the main task is to learn
an unknown reward function within a logistic link function using a neural net-
work. Existing approaches either exhibit unfavorable dependencies on s, where
1/k represents the minimum variance of reward distributions, or suffer from di-
rect dependence on the feature dimension d, which can be huge in neural net-
work—based settings. In this work, we introduce a novel Bernstein-type inequality
for self-normalized vector-valued martingales that is designed to bypass a direct
dependence on the ambient dimension. This lets us deduce a regret upper bound

that grows with the effective dimension d, not the feature dimension, while keeping
a minimal dependence on . Based on the concentration inequality, we propose
two algorithms, NeuralLog-UCB-1 and NeuralLog-UCB-2, that guarantee regret
upper bounds of order O(dv/xT') and O(d+/T/ ), respectively, improving on the
existing results. Lastly, we report numerical results on both synthetic and real
datasets to validate our theoretical findings.

1 INTRODUCTION

Contextual bandits form the foundation of modern sequential decision-making problems, driving
applications such as recommendation systems, advertising, and interactive information retrieval Li
et al. (2010). Although upper confidence bound (UCB)-based linear contextual bandit algorithms
achieve near-optimal guarantees when rewards are linear in the feature vector Abbasi-Yadkori et al.
(2011), many real-world scenarios exhibit nonlinear reward structures that demand more expressive
models. Motivated by this, several approaches have been developed to capture complex reward
functions that go beyond the linear case, such as those based on generalized linear models Filippi
et al. (2010); Li et al. (2017), reproducing kernel Hilbert space Srinivas et al. (2010); Valko et al.
(2013), and deep neural networks Riquelme et al. (2018); Zhou et al. (2020).

Among these settings, logistic bandits are particularly relevant when the reward is binary (e.g., click
vs. no-click); the random reward in each round follows a Bernoulli distribution, whose parameter is
determined by the chosen action. Extending logistic bandits via a neural network-based approxima-
tion framework, we consider neural logistic bandits and address two significant challenges: (i) han-
dling the nonlinearity of the reward function, characterized by the worst-case variance of a reward
distribution 1/k where k scales exponentially with the size of the decision set, and (ii) controlling
the dependence on the feature dimension d, which can be extremely large due to the substantial
number of parameters in deep neural networks.

For logistic bandits, Faury et al. (2020) introduced a variance-adaptive analysis by incorporating the
true reward variance of each action into the design matrix. This avoids using a uniform worst-case
variance bound of 1/k for all actions, thus reducing the dependency of the final regret on «. Building
on this, Abeille et al. (2021) achieved the best-known ~ dependence. However, both algorithms
explicitly rely on the ambient feature dimension d, so their direct extensions to the neural bandit
setting induce poor regret performance. On the other hand, Verma et al. (2025) derived a regret upper

bound for the neural logistic bandit that scales with a data-adaptive effective dimension d rather than
the full ambient dimension d. This approach offers an improved performance measure as d increases
with the number of parameters in the neural network, often deliberately overparameterized to avoid
strong assumptions about the reward function. However, their method still relies on a pessimistic
variance estimate, and integrating the variance-aware analysis of Faury et al. (2020) into a data-
adaptive regret framework remains challenging, resulting in a suboptimal dependence on k.



Under review as a conference paper at ICLR 2026

Table 1: Comparison of algorithms for (neural) logistic bandits. d denotes the dimension of the
feature vector, and T represents the total number of rounds. p denotes the total number of parameters

of the underlying neural network, and d denotes the effective dimension.

. Regret O(-
Algorithm Logistic Bandits gNeurat(l )Logistic Bandits
NCBF-UCB Verma et al. (2025) kdVT kdVT
Logistic-UCB-1 Faury et al. (2020) dvVkT pVET
NeuralLog-UCB-1 (Algorithm 1) dV&T dVKT
ada-OFU-ECOLog Faury et al. (2022) d+/T/k* p/T/K*
NeuralLog-UCB-2 (Algorithm 2) d/T/kK* d\/T]r*

Motivated by these limitations, we propose algorithms that do not require worst-case estimates in
both the variance of the reward distribution and the feature dimension, thus achieving the most
favorable regret bound for neural logistic bandits. Central to this approach is our new Bernstein-type
self-normalized inequality for vector-valued martingales, which allows us to derive a regret upper

bound that scales with the effective dimension d, and at the same time, matches the best-known
dependency on . Our main contributions are summarized below:

* We tackle the two main challenges in neural logistic bandits: (i) a practical regret upper
bound should avoid a direct dependence on d, the ambient dimension of the feature vector,
and (ii) it needs to minimize the factor of x, a problem-dependent constant that increases
exponentially with the size of the decision set. To address these challenges, we propose a
new Bernstein-type tail inequality for self-normalized vector-valued martingales that yields

a bound of order O (\/EV), where d is a data-adaptive effective dimension. This is the first
tail inequality that achieves favorable results in both respects, while the previous bound of

Faury et al. (2020) is 1) (\/E) which directly depends on d, and that of Verma et al. (2025)
is O (\/;J) that includes an additional factor of \/k.

* Based on our tail inequality, we develop our first algorithm, NeuralLog-UCB-1 which guar-
antees a regret upper bound of order 5(c7\/ﬁ ). This improves upon the regret upper
bound of order (5(/«7\/?) due to Verma et al. (2025). Furthermore, we provide a fully

data-adaptive UCB on d by adaptively controlling the regularization term of our loss func-
tion according to previous observations. Our choice of UCB also avoids the projection
step required in the previous approach of Faury et al. (2020), which was to constrain the
parameters to a certain set during training.

* We propose our second algorithm, NeuralLog-UCB-2, as a refined variant of NeuralLog-

UCB-1. We show that NeuralLog-UCB-2 achieves a regret upper bound of O(d+\/T/k*).
This result matches the best-known dependency on x while avoiding the direct dependence
on d seen in O(d+/T/k*) given by Abeille et al. (2021). The improvement comes from
the fact that NeuralLog-UCB-2 replaces the true reward variance within the design matrix
with a neural network estimated variance, thereby maintaining sufficient statistics for our
variance-adaptive UCB in each round and completely removing the worst-case estimate of
variance . Our numerical results show that NeuralLog-UCB-2 outperforms all baselines,
thus validating our theoretical framework.

2 PRELIMINARIES

Logistic bandits. We consider the contextual logistic bandit problem. Let 7" be the total number of
rounds. In each round ¢ € [T, the agent observes an action set X}, consisting of K contexts drawn
from a feasible set ¥ C RZ. The agent then selects an action 2; € X; and observes a binary (random)
reward 7, € {0, 1}. This reward is generated by the logistic model governed by the unknown latent
reward function i : R? — R. Specifically, we define a sigmoid function u(z) = (1 + exp(—x))~!
and denote its first and second derivatives as fi and ji. Then, the probability distribution of the
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reward r; under action x is given by r; ~ Bern(u(h(z;)). Let z; be an optimal action in round ¢,
ie., z} = arg maxgc6 x, #(h(x)). Then the agent’s goal is to minimize the cumulative regret, defined

as Regret(T') = Et L (h(xf)) — Zt 1 #(h(x)). Finally, we introduce the standard assumption
on the problem-dependent parameters x and R Faury et al. (2020); Verma et al. (2025):

Assumption 2.1 (Informal). There exist constants k, R > 0, such that 1/x < i(-) < R.

The formal definition of x and R for the arm set A" and the parameter set © is deferred to Assumption
6.3. Notice that for the sigmoid link function, we have u(:), R < 1/4.

Neural bandits. Neural contextual bandit methods address the limitation of traditional (general-
ized) linear reward models Filippi et al. (2010); Faury et al. (2020) by approximating h(-) with
a fully connected deep neural network f(x;6), which allows them to capture complex, possi-
bly nonlinear, reward structures. In this work, we consider a neural network given by f(x;0) =
VmWirReLU (W, _1ReLU (- - -ReLU (W7 z))), where L > 2 is the depth of the neural network,
ReLU(x) = max{z,0}, W; € R™*4 W, € R™*™ for2 < i < L — 1, and W, € R'*™, The
flattened parameter vector is given by 6= [vec(Wl) ,o..,vec(Wr)T]T € RP, where p is the total
number of parameters, i.e., p = m+md+m?(L—1). We denote the gradient of the neural network
by g(x;0) = Vo f(z;0) € RP.

Notation. For a positive integer n, let [n] = {1,...,n}. For any z € R%, ||z||> denotes the Eg
norm, and [z]; denotes its i-th coordinate. Given x e Rd and a positive-definite matrix A € R4*4
we define ||z]| 4 = V2T Az. We use O(-) to hide the logarithmic factors.

3  VARIANCE- AND DATA-ADAPTIVE SELF-NORMALIZED MARTINGALE
TAIL INEQUALITY

In this section, we first introduce our new Bernstein-type tail inequality for self-normalized martin-
gales, which leads to a regret analysis that is variance- and data-adaptive. Then we compare it with
some existing tail inequalities from prior works.

Theorem 3.1. Let {G,}5°, be a filtration, and {x,m; }+>1 be a stochastic process where x; € R% is
Gi-measurable and 1, € R is Gy1-measurable. Suppose there exist constants M, R, N, X\ > 0 and
the parameter 0* € RY | < M, E[n:|Gi] = 0, E[n?|G:] < fu(x) 0*), and
|z¢]]2 < N. Define H; and s; as follows:

t t
Hy =3 il 0zl £2L s =Y was
i=1 i=1

Then, for any 0 < § < 1 and any t > 0, with probability at least 1 — §:

det Hy 4MN )
HStHHtléfs%o qor T 108 UE/8) + == log(4t*/3)

t
AMN
< 8, |logdet (Z ?wlx: + I) log(4t2/0) + 5y log(4t%/6).
i=1

Our proof of Theorem 3.1 is given in Section D. The second inequality in Theorem 3.1 follows from
Assumption 2.1 which states that () < R < 1/4. Notice that the tail inequality is data-adaptive,
as it does not explicitly depend on d. Moreover, the term log 9< det /\I can decrease depending on the
observed feature vectors (e.g., it becomes 0 if {z;}!_, are all 0). By incorporating non-uniform
variances when defining H;, our design matrix enables a variance-adaptive analysis and eliminates
the worst-case variance dependency .

The seminal work of Abbasi-Yadkori et al. (2011) provided a variant of the Azuma-Hoeffding tail
inequality for vector-valued martingales, under the assumption that the martingale difference 1, is

M -sub-Gaussian. Their tail bound shows that [|s¢||;—1 = O(M+/d), where V, = S wiw] + AL
Extending this result to (neural) logistic bandits, Verma et al. (2025) incorporated the worst-case
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variance # into the design matrix V; = S°0_, @z, + #AI to deduce

HstHH 1 < f”&s”v 1 <M\//€lo

Here, the first inequality is a consequence of H; = (1/k)V;, and this step incurs the factor y/x. Note
that this bound is also data-adaptive, yielding an overall order of (’)(\/ d).

dot )\I + 2k log(1/9).

Another line of work by Faury et al. (2020) provided a Bernstein-type tail inequality for the same
setting considered in Theorem 3.1, using |n;| < M (= 1), E[n?|G;] = 02, and ||2¢|2 < N(= 1)
for all ¢ > 1. Their analysis directly takes the design matrix H;, and they deduce the following
inequality avoiding the / factor:

+1log(1/8) + dlog(2)) + % (1)

< 2M N | det H;
HstHHt’1 = \/X ( 0g det M

The inequality requires a spec1ﬁc A value for the regularization term, given by A = O(dM IN?),

to achieve the final order of O(v/d). Although log ‘éett I/;II‘ is data-adaptive, the term dlog(2) intro-
duces an explicit dependence on d that cannot be removed (even with a different choice of \). The
tail bound has been used in subsequent works Abeille et al. (2021); Faury et al. (2022), making
a dependence on d inherent. Hence, we need a new variance-adaptive analysis for neural logistic

bandits.

Compared with Faury et al. (2020), our tail inequality in Theorem 3.1 is derived from a different
technique based on Freedman’s inequality (Freedman (1975), Lemma H.1), which is the key factor
behind our improvement. Unlike Faury et al. (2020), which works with a d-dimensional martingale
and thereby incurs an explicit dependence on d, we instead use a one-dimensional martingale to
track the growth of the self-normalized error ||s¢|| H bypassing this vector-level issue. As a result,
we obtain a data- and variance-adaptive inequality whose leading term depends on the effective

dimension d, together with an improved dependence on k, thanks to the variance sensitivity of
Freedman’s inequality.

4 NEURAL LogGisTic BANDITS WITH IMPROVED UCB

This section introduces our first algorithm, NeuralLog-UCB-1, described in Algorithm 1. In the
initialization step, we set the initial parameter 6y of the neural network according to the standard
initialization process described in Zhou et al. (2020). For1 <! < L—1, Wyissetas '} 9], where
each entry of W is independently sampled from N (0,4/m) while W, is set to [w, —w], where
each entry of w is independently sampled from N (0,2/m). Next, we set the initial regularization
parameter as \g = 8v/2C; L'/2S~ ' 1log(4/6) for some absolute constant C; > 0. The value of \g
is chosen so that \g is less than the minimum value among Aq, ..., Ay, where )\; is updated as in
Equation (4). We can verify this by showing that A\ < min \; and that {\;};>1 is monotonically
non-decreasing in ¢, which implies A\g < min{\;};>1.

After the initialization step, in each round ¢, the agent receives the context set X; C X and calculates
UCB;(7) = pu(f(z;0;_1)) + R\fy(l) lg(z; 00)/\/7%”‘,111 for every action z € X}, where

=Cs(1+ VLS + LS*) 1, + 1, 2

Lo 442 L . 42
— 16, | log det —— g(z;00)9(zi:00)T +1) log — +8C1y/ —log —, (3
lt ogde (;4m>\09($ 0)g(xi:60)T + ) 08 +8C, o 0g 5 3)

where § € (0,1) is a confidence parameter, and S is a norm parameter of the parameter set de-
fined in Definition 6.2 for some absolute constants C7,Cg > 0. The first term, p(f(z;60:-1)),
estimates the expected value of the reward, and the second term can be viewed as the explo-
ration bonus. Then, we choose our action x; optimistically by maximizing the UCB value, i.e.,
x; = argmax,c y, UCB;(x), and receive a reward r;. At the end of each round, we update the pa-
rameters based on the observations {z;, r; }t_; collected so far. We set the regularization parameter
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Algorithm 1 NeuralLog-UCB-1

Input: Neural network f(x;6) with width m and depth L, initialized with parameter 6, step size
71, number of gradient descent steps L, norm parameter .S, confidence parameter §
Initialize: \o = 8v/2C;L'/2S 1 1log(4/6), Vo = kAol
1: fort=1,...,T do
2 @y argmax, ey, p(f(w;0i1)) + RyEv Dy llg(w:00) /v/mlly
3: Select x; and receive 7 4
4: Update )\; as in Equation (4), ¢; as in Equation (3), 1/t(1) as in Equation (2)
5: 0; + TrainNN(\,n, J,m, {z;,r;}i_1, 00)
6
7

: Vi 2521 Lg(xi;00)9(zi;00) T + kM
: end for

Subroutine TrainNN

Input: Regularization parameter A, step size n, number of gradient descent steps .J, network width
m, observations {z, rs}%_,, initial parameter 6,
Define £,(0) = — 31y [rslog u( (::0)) + (1 — ;) log(1 — u(f (2::0))] + EmAc|6 — 603
forj=1,...,J —1do

gUt) = 9l — v L (0D))
end for
return 6()

Dhwn e

¢, with an absolute constant C; > 0, as follows:

t
64 1 T 4?2 16CEL ., 4t?
v g tomdet (3 i ate gt 007 +T) s T+ Tt Frog® i

4)

Then we update ¢, yt(l), and V;. Lastly, as described in Subroutine TrainNN, we update the
parameters of the neural network through gradient descent to minimize the regularized negative
log-likelihood loss function £;(6) and obtain 6;. In contrast to Verma et al. (2025), which used
a constant regularization parameter A\, we adaptively control the regularization parameter \; and
employ it in both our design matrix V; and our loss function £;(6). This yields a fully data-adaptive
concentration inequality between 6, and the desired parameter, as will be shown in Lemma 4.5.

Now, we present our theoretical results for Algorithm 1. Let H denote the neural tangent kernel
(NTK) matrix computed on all T'K context—arm feature vectors over 7' rounds. Its formal definition
is deferred to Definition C.1. Define h = [A(z)] e, 1] € RTX. We begin with the following
assumptions.

Assumption 4.1. There exists \yg > 0 such that H = AgL
Assumption 4.2. For every x € X; and t € [T], we have ||z||2 = 1 and [x]; = [2];44/2.

Both assumptions are mild and standard in the neural bandit literature Zhou et al. (2020); Zhang et al.
(2021). Assumption 4.1 states that the NTK matrix is nonsingular, which holds if no two context
vectors are parallel. Assumption 4.2 ensures that f(x%;6y) = 0 for all i € [T K] at initialization.
This assumption is made for analytical convenience and can be ensured by building a new context

=T,z /V2.

Next, define H =3 >, cx, 2g(zi;00)g(xi;60) T, which is the design matrix containing all
possible context-arm feature vectors over the 71" rounds. Then, we can use the following definition:

Definition 4.3. Let d := log det(%ﬁ + 1) denote the effective dimension.

We mention that previous works Zhou et al. (2020); Verma et al. (2025) for neural contextual
bandits have defined the effective dimension d in slightly different ways. Zhou et al. (2020) set
d = logdet(+H + I)/log(1 + TK/) for neural contextual linear bandits, while Verma et al.

(2025) defined d = log det(%ﬁ + I). However, these definitions have the same asymptotic order
as ours in Definition 4.3 up to logarithmic factors.
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Algorithm 2 NeuralLog-UCB-2

Input: Neural network f(x;6) with width m and depth L, initialized with parameter 6, step size
71, number of gradient descent steps L, norm parameter .S, confidence parameter §

Initialize: \o = 8v/2C;L'/2S 1 1log(4/5), Wy = Ao

1: fort=1,...,T do

2: Ty < arg maxgecy, g(CC, GO)T(gtfl - 00) + Vigg)l”g(‘ra 00)/\/%”1/1/;_11

3: Select z; and receive 7
4: Update )\; as in Equation (4), ¢; as in Equation (3), 1/,52) as in Equation (5)
5: 0 + TrainNN(\y,n, J,m, {z;,r;}i_1, 00)
6
7

: W, +— 25:1 WQ(J@; 00)g(wi;00) T + A\ I
: end for

Next, to improve readability, we summarize the conditions for the upcoming theorems and lemmas:
Condition 4.4. Suppose Assumptions 2.1, 4.1 and 4.2 hold (a formal definition of Assumption 2.1 is
deferred to Assumption 6.3). The width m is large enough to control the estimation error of the NN
(details are deferred to Condition C.2). Set S as a norm parameter satisfying S > vV2hTH—1h.
The regularization parameter \; follows the update rule in Equation (4). For training the NN, set

the number of gradient descent iterations as J = 21og(\S/ (VT + C4T3/2L))TL/ )\, and the
step size as 1 = Cs(mT L + mM\;) ! for some absolute constants Cy, Cs > 0.

In particular, when m is sufficiently large, we observe that the true reward function h(x) behaves
like a linear function (see Lemma 6.1). Then, using the tail inequality given in Theorem 3.1 and
the update rule for \;, we obtain the following data- and variance-adaptive concentration inequality
between 6; and 6*:

Lemma 4.5. Define H; := ZF 1 w 9(z:;00)g(xi;00) T + ML Under Condition
4.4, there exists an absolute constant C1, C'g > 0, such that for all t > 0 with probability at least

1-4, \/>H0 — ||Ht(9*) < l/t( ) where l/t ) is defined in Equation (2).

The proof is deferred to Section E.1. We now present Theorem 4.6, which gives the desired regret
upper bound of Algorithm 1.

Theorem 4.6. Under Condition 4.4, with probability at least 1 — 0, the regret of Algorithm I satisfies
Regret(T) = (Szd\/ + 5%V g ) .

Remark 1. Our results, especially Theorem 3.1, extend naturally to the (neural) dueling bandit
setting. In this variant, the learner selects a pair of context—arms {x 1,2} in each round t and
observes a binary outcome v € {0, 1} indicating whether x 1 is preferred over x; o. The preference
probability is modeled as P(xy 1 > x12) = P(ry = 1|z 1, 2e2) = p(h(z1) — h(xt 2)). The prior
work of (Verma et al., 2025, Theorem 3) establishes a regret upper bound of O(Iid\/» ), whereas
our analysis can improve this to O(d\/xT).

5 REFINED ALGORITHM WITH NEURAL NETWORK-ESTIMATED VARIANCE

In this section, we explain NeuralLog-UCB-2, which guarantees the tightest regret upper bounds.
Although Lemma 4.5 establishes a variance-adaptive concentration inequality with H(6*), the
agent lacks full knowledge of #* and must therefore use the crude bound H;(6*) < k™ 1Y/, which in-
curs an extra factor of v/x. In this section, we introduce NeuralLog-UCB-2, which replaces Hy(6*)
with a neural network—estimated variance-adaptive design matrix. We begin by stating a concentra-
tion result for 6* around 6, using the new design matrix W;,.

Lemma 5.1. Define W; = Zé_ Mg(x 00)g(z:;00) " + M1 and a confidence set W; as

= {0:vm||6 6., <Cr(1+ VLS +LS*)u, +1 = vy, (5)

with an absolute constant C7; > 0, where 14 is defined at Equation (3). Then under Condition 4.4,
forallt > 0, 0% € W, with probability at least 1 — 6.
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We give the proof of the lemma in Section F.1. The matrix W; maintains sufficient statistics via
the neural network-estimated variance, and the ellipsoidal confidence set WW; changes the original
problem into a closed-form optimistic formulation. Specifically, after the same initialization step as
for Algorithm 1, the agent selects action x; in each round ¢ according to the following rule:

v+ argmax (g(x;00), (¢ — o)) = argmax g(w; 60) " (-1 — b0) + v,y |z yy-1 . (6)
TEX,0EW; 1 TEX, =t
For the regret upper bound of Algorithm 2, we define another problem-dependent quantity x* as

1/k* = £ SO ju(h(x})), consistent with the definition in Abeille et al. (2021). Both x* and
scale exponentially with .S. We now state our regret upper bound for NeuralLog-UCB-2 and provide
a proof outline.

Theorem 5.2. Under Condition 4.4, with probability at least 1—0, the regret of Algorithm 2 satisfies:
Regret(T) = (5(5267\/T//<;* + 52‘5670'5\/1“/.%* + Skd? 4+ §45kd! P + 55,%(2).

Remark 2. It is possible to further reduce the regret bound in Theorem 5.2 to O(Sd\/T/r*) by
combining Theorem 3.1 and the logistic bandit analysis of Faury et al. (2022), which achieved

6(5 d\/T/k*). However, this approach requires a projection step for 0y, incurring an additional
O(d?1og(1/¢€)) computational cost for e-accuracy. A couple of recent works eliminated the depen-

dence on S in the leading term, achieving (5(d\/T//$*). Nonetheless, Sawarni et al. (2024) relied
on a nonconvex optimization subroutine, while the PAC-Bayes analysis in Lee et al. (2024a) with a
uniform prior does not yield data-adaptive regret.

6 REGRET ANALYSES

This section outlines the regret analysis for Algorithms 1 and 2 and provides proof sketch for Theo-
rems 4.6 and 5.2. Let us start by stating some basic results on the NTK analysis and logistic bandits.
The following lemma shows that for all z € X; and ¢ € [T, the true reward function h(z) can be
expressed as a linear function.

Lemma 6.1 (Lemma 5.1, Zhou et al. (2020)). If m > CoT*K*L%log(T?K2L/5)/\iz for some
absolute constant Cy > 0, then with probability at least 1 — 0, there exists 0* € RP such that

h(z) = g(x360) " (0" — 60), Vm[0* —boll2 < VZhTH-'h < 5,
forallz € X, t € [T).

Based on Lemma 6.1, we define the parameter set © and the parameters x and R, which is consistent
with the standard logistic bandits literature Faury et al. (2020):

Definition 6.2. Let © := {0 € RP : /m||0 — 0y||2 < S} denote the parameter set.
Assumption 6.3 (Formal). There exist constants k, R > 0 such that for all x € X, § € ©,

1/k < ju(g(x;60) " (6 — 6o)) < R.

6.1 PROOF SKETCH OF THEOREM 4.6

Let |u(h(x)) — p(f(x;0:—1))| denote the prediction error of x in round ¢, which is the estimation
error between the true reward and our trained neural network. We show that with Lemma 4.5 and
large enough m, the prediction error is upper bounded as follows:

Lemma 6.4. Under Condition 4.4, for all x € Xy, t € [T, with probability at least 1 — §,
n(h(@)) = p(f(2:0e-1))| < RVrv (s 00)/v/mlly—s +e€s1,
where €3 4 = Cngfl/GmL?’tz/S)\aQ/g for some absolute constant C5 > 0.
Based on the results so far, we can upper bound the per-round regret in round ¢ as follows:
p(h(})) = p(h(e)) < p(f (@) 0e1)) + Bv/svf g(@i; 00)/v/mlly—r + €51 — p(h())
< l(f (@i 00-1)) + Ry g 00)/Vmll s + €1 — p(h(ar)
< 2RV g 00)/Vmlly s + 2es,0-1,
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where the first and last inequalities follow from Lemma 6.4, and the second inequality holds due
to the optimistic rule of Algorithm 1. The cumulative regret can be decomposed as Regret(T") =

Zthl p(h(z})) — plh(z)) < QR\/EV(TU\/T Ethl Hg(a:t; 90)/\/5“?/;_11 + 2T €3 7, for which we

use the Cauchy-Schwarz inequality. We have V(Tl) = 5(\/;7), and using the elliptical potential
lemma (Lemma H.2) on Z;‘F:l lg(as; 00)/\/ﬁ||%/,1 gives O(d). Finally, setting m large enough
t—1

under Condition 4.4, the approximation error term gives T'e3 » = O(1). See Section G.1 for details.

6.2 PROOF SKETCH OF THEOREM 5.2

Let (x4, gt,l) € X, x W,_ be selected by the optimistic rule at time ¢. The per-round regret can
be decomposed with a second-order Taylor expansion as follows:

p(h(x})) = pu(h(ze)) < p(g(xe;00) " (-1 — 00)) — ulg(e;60) " (0" — 6o))
< fu(h(ze)) g (e HO)T(gt—l —0")+1- [g(zy; 90)T(§t—1 - 9*)}27

where the first inequality follows from the optimistic rule of Algorithm 2, and we use ji(-) < 1 for
the second one. To analyze the first term on the right-hand side of the second inequality, we compare

fu(h(z¢)) and fu( f (24; 0;)) and rewrite the term as \/fi(h(z1)) [N/ (f (243 0¢) g (245 00) |, 16,1 —
0* ”Wf_ X Summing this for t = 1,...,7T, we apply the elliptical potential lemma (Lemma H.2)
and Lemma 5.1. For the second term, since we do not enforce any projection or constraint during
training, f;_1 may stay outside ©. We show that the number of such rounds is (5(/@(?2) Applying
Assumption 6.3 then yields a crude bound of #|g(zs;00)||3, ,[|0r—1 — 0*[|%,. Based on this, the
second term can be bounded from above in a similar way. Details are covered in Section G.2.

7 EXPERIMENTS

In this section, we empirically evaluate the performance of our algorithms. Additional results along
with further details are deferred to Section A due to space constraints.
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Figure 1: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.

Synthetic dataset. We begin our experiments with a synthetic dataset. We use three nonlinear
synthetic latent reward functions: hy(z) = 0.2(z76)*, ha(x) = 20cos(x"0), ha(z) = 52" 0z,
where z represents the features of a context-arm pair, and § € R¢ and & € R?*? are parameters
whose elements are independently sampled from Unif(—1, 1). Subsequently, the agent receives a
reward generated by r, ~ Bern(u(h;(x))), fori € {1,2,3}. We set the feature vector dimension to
d = 20 and the number of arms to K = 5. We compare our method against five baseline algorithms
in Section 1: (1) NCBF-UCB Verma et al. (2025); (2) Logistic-UCB-1 Faury et al. (2020); (3) ada-
OFU-ECOLog Faury et al. (2022); (4) NeuralLog-UCB-1; and (5) NeuralLog-UCB-2. For brevity,
we will denote algorithms by their number (e.g. algorithm (1)).

Following practical adjustments from previous neural bandits experiments Zhou et al. (2020);
Zhang et al. (2021); Verma et al. (2025), for algorithms (1,4,5), we use the gradient of the cur-
rent neural network g(z;6,) instead of g(w;6p). We replace g(w;6;)/+/m with g(x;6;) and
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mM||0 — 0)|3/2 with \||0||3. Previous works simplify the UCB estimation process by fixing
parameters for the exploration bonus for practical reasons. In this work, however, we consider
the time-varying data-adaptive values of the exploration bonus, characterized by UCB;(z) =
p(x;0i—1) + o (z; v, {x;, 97;_1}2;%, A, S, k). Here, p is the mean estimate and o is the exploration
bonus, parameterized by an exploration parameter v, previous observations {z;, 0; 1 }f;%, A, S, and
k. Details of UCB for each algorithm are deferred to Section 5. We use S = 1, x = 10 and fixed
values of v and A\ with the best parameter values using grid search over {0.01,0.1, 1,10, 100}.

We use a two-layer neural network f(z;6) with a width of m = 20. As in Zhou et al. (2020), to
reduce the computational burden of the high-dimensional design matrices V; and W}, we approxi-
mated these matrices with diagonal matrices. We update the parameters every 50 rounds, using 100
gradient descent steps per update with a learning rate of 0.01. For each algorithm, we repeat the
experiments 10 times over 7" = 2000 timesteps and compare the average cumulative regret with a
96% confidence interval.
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Figure 2: Comparison of cumulative regret of baseline algorithms for real-world dataset.

Real-world dataset. In the real-world experiments, we use three datasets from K -class classifica-
tion tasks: mnist LeCun etal. (1998), mushroom, and shutt le from the UCI Machine Learning
Repository Dua & Graff (2019). To adapt these datasets to the K -armed logistic bandit setting, we
construct K context—arm feature vectors in each round ¢ as follows: given a feature vector x € R4,
we define (V) = [£,0,...,0],...,2(5) = [0,...,0,2] € R?%. The agent receives a reward of
1 if it selects the correct class, and 0 otherwise. All other adjustments for the neural bandit exper-
iments and the neural network training process follow the simulation setup. Details, including data
preprocessing, are deferred to Section A.

Regret comparison. Figures | and 2 summarize the average cumulative regret for the five baseline
algorithms (1-5) tested with the synthetic and real-world datasets, respectively. We observe that
the algorithms using linear assumptions on the latent reward function h(z), namely (2) and (3),
exhibit the lowest performance, as the true function is nonlinear. Although algorithm (1) can handle
nonlinear reward functions and achieves moderate performance, our proposed methods, especially
(5), yield the best results by reducing the dependence on &.

8 CONCLUSION AND FUTURE WORK

In this paper, we study the neural logistic bandit problem. We identify the unique challenges of this
setting and propose a novel approach based on a new tail inequality for martingales. This inequal-
ity enables an analysis that is both variance- and data-adaptive, yielding improved regret bounds
for neural logistic bandits. We introduce two algorithms: NeuralLog-UCB-1 that achieves a regret
bound of O(dv/kT) and NeuralLog-UCB-2 that attains a tighter bound of O(d\/m ) by lever-
aging the neural network—estimated variance. Our experimental results validate these theoretical
findings and demonstrate that our methods outperform the existing approaches.

One potential direction for future work is to improve the dependence on the norm of the unknown
parameter S. Although recent frameworks due to Sawarni et al. (2024); Lee et al. (2024a) have
removed the dependence on S from the leading term, they require an additional training step or
impose additional constraints. Such requirements are undesirable when trying to integrate neural
bandit frameworks. Hence, it is a promising future research direction to eliminate the dependence
on S without additional computations. Additional future directions are deferred to Section ??.
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A DEFERRED EXPERIMENTS FROM SECTION 7

Here we introduce the deferred details and experiments from section 7. All experiments were con-
ducted on a server equipped with an Intel Xeon Gold 6248R 3.00GHz CPU (32 cores), 512GB of
RAM, and 4 GeForce RTX 4090 GPUs.

Details of UCB. We define the UCB value as p(x;0:—1) + o(x;v, {x;, 97;_1}2;%, A, S, k). For
the exploration bonus o, we match the orders of A\, S, k, and the effective dimension d for
each algorithm and then multiply by the exploration parameter v. Specifically, the effective di-
mension is defined as follows: for algorithm (1), we use logdet(}" Lg(x;60)g(x;60) " + I); for
algorithms (2) and (3), we use logdet(>_ RxxT + I); and for algorithms (4) and (5) we use
log det(>" Rg(z;0)g(x;0) T +1).

Although algorithms (2) and (3) require an additional step (e.g., nonconvex projection) to ensure
that 6, remains in the desired set, empirical observations from Faury et al. (2020; 2022) indicate that
0; almost always satisfies this condition. Consequently, we streamline all baseline algorithms into
two steps: (i) choose the action with the highest UCB and (ii) update the parameters via gradient
descent.

Preprocessing for real-world datasets. For consistency with the synthetic environment, we rescale
each component of every feature vector 2 € R? to the range [—1, 1] by applying a normalization of

% — 1forall j € [d]. In the mnist dataset, we resize each 28 x 28 image to 7 X 7,

flatten it, and treat the result as a 196-dimensional feature vector. The mushroom dataset provides
22 categorical features. We assign each character a random value in [—1, 1] for normalization and set
the label to 1 for edible ("e’) and O for poisonous ("p’) mushrooms. The shutt le dataset consists
of 7 numerical features, to which we apply the same min—max normalization as used for mnist.

Varying effective dimension d. To evaluate the influence of d on data-adaptive algorithms, we
compare cumulative regret across different values of d. We control d by limiting the total number

of context—arm feature vectors during training. Allowing redundant vectors reduces d. For a low
effective dimension (Figures 3a, 3d and 3g), we use only 10 feature vectors randomly placed across
the training. For a medium d (Figures 3b, 3e and 3h), we use 50 vectors. For a high d (Figures 3c,
3f and 3i), we use 10000 distinct vectors. Note that Figures 1 and 2 use 2500 vectors. Figure 3
shows that our algorithm, especially algorithm (5), performs best across all those settings and adapts
effectively to different environments of the effective dimensions.

B RELATED WORK

Logistic bandits. Filippi et al. (2010) introduced the generalized linear bandit framework and
derived a regret bound of O(/@d\/T ), laying the groundwork for modeling logistic bandits. Subse-
quent work, starting with Faury et al. (2020), has focused on reducing the dependence on « through
variance-aware analyses (see also Dong et al. (2019); Abeille et al. (2021)). In particular, Abeille
et al. (2021) established a lower bound of Q(d+/T/k*), statistically closing the gap. However,
there is still room for improvement in algorithmic efficiency Faury et al. (2022); Zhang & Sugiyama
(2024); Lee & Oh (2024) and in mitigating the influence of the norm parameter S, with several
recent advances addressing this issue Lee et al. (2024b); Sawarni et al. (2024); Lee et al. (2024a);
Lee & Oh (2025). Another line of research investigates the finite-action setting. When feature vec-
tors are drawn i.i.d. from an unknown distribution whose covariance matrix has a strictly positive
minimum eigenvalue, Li et al. (2017) achieved a regret of O(x+v/dT'), while Kim et al. (2023) and

Jun et al. (2021) further improved it to O(v/kdT') and O(v/dT), respectively.

Neural bandits. Advances in deep neural networks have spurred numerous methods that integrate
deep learning with contextual bandit algorithms Riquelme et al. (2018); Zahavy & Mannor (2019);
Kveton et al. (2020). Zhou et al. (2020) was among the first to formalize neural bandits, proposing
the NeuralUCB algorithm, which attains a regret bound of O(d+/T) by leveraging neural tangent
kernel theory Jacot et al. (2018). Building on this foundation, many studies have extended linear
contextual bandit algorithms to the neural setting Zhang et al. (2021); Kassraie & Krause (2022);
Ban et al. (2022); Xu et al. (2022); Jia et al. (2022). The work most closely related to ours is Verma

13
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Figure 3: Comparison of cumulative regret of baseline algorithms with varying effective dimension

d.

et al. (2025), which first addressed both logistic and dueling neural bandits and proposed UCB- and
Thompson-sampling-based algorithms with a regret bound of O(rkdv/T).

C USEFUL LEMMAS FOR NEURAL BANDITS

In this section, we present several lemmas that enable the neural bandit analysis to quantify the ap-
proximation error incurred when approximating the unknown reward function h(x) with the neural
network f(z;0). We begin with the definition of the neural tangent kernel (NTK) matrix Jacot et al.
(2018):

Definition C.1. Denote all contexts until round T as {x'}1E. Fori,j € [TK), define

o) 1) g a g O _
H/ =%/= (x",x?), A=

s = 9F

Ay — ot
1,J %

5]

(u,0)~(0,A"))

E.,

=
2(_%_
2]

2]

v)~N(0,Al") 1

=
2(_%_ ’
]

max{u, 0} max{v, 0},

(u>0)1(v > 0) + ' F.

Then, H = (H(X) + %(1)) /2 is called the NTK matrix on the context set.

Next, we introduce a condition on the neural network width m, which is crucial for ensuring that the
approximation error remains sufficiently small.
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Condition C.2. For an absolute constant Cy > 0, the width of the NN m satisfies:
m > Comax {T4K4L6 log(T2K2L/8)\ey, L=3/20} ? [log(T K L? /5)]3/2}
m(logm) ™2 > CoT L' \g' + CoT ™ L>"\; TR + CoT™ O L' \g* RS + CoT" L™\ *.
We assume that m satisfies Condition C.2 throughout. For readability, we denote the error proba-

bility by ¢ in all probabilistic statements. We now restate Lemma 6.1, which shows that, for every
x € Xy and t € [T, the true reward function h(x) can be represented as a linear function:

Lemma C.3 (Lemma 5.1, Zhou et al. (2020)). If m > CoT*K*LSlog(T?>K?L/5) /i for some
absolute constant Cy > 0, then with probability at least 1 — 6, there exists 0* € RP such that

h(.’E) = g(:r;ﬁo)T(G* — 90), \/’f?LHHk — 90”2 S Vv 2hTH71h S 57
forallx € X, t € [T).

Assuming #; remains close to its initialization 6y, we can apply the following lemmas: Lemma C.4
provides upper bounds on the norms ||g(z; 0)||2 and || g(x; 0) — g(z; 6o) 4|2, while Lemma C.5 bounds
the approximation error between f(z;6) and its hnearlzatlon g x; 60 (0 —6p).

Lemma C.4 (Lemma B.5 and B.6, Zhou et al. (2020)). Let 7 = 3,/ 5. Then there exist absolute

constants C1,Co > 0, such that for all x € Xy, t € [T and for all ||9 90H2 < 7, with probability
of at least 1 — §,

lg(z;0)ll2 < CrvmL
llg(x;0) — g(2:00)|]2 < Can/mlogmr/3L7/? = Cym!/3\/log mt1/6)\;1/6L7/2.

Lemma C.5 (Lemma B.4, Zhou et al. (2020)). Let 7 = 34/ )\

constant Cs > 0, for all x € Xy, t € [T, and for all |0 — 0y||l2 < T, with probability of at least
1-9,

. Then there exists an absolute

F(:6) ~ 9(x360) (0~ 60)|

< C3m/3L3/mlogm = Cym~Y/6\/logmL3t*/3); %/

Finally, we state a lemma that establishes an upper bound on the distance between 6; and 6. It also
shows that, although the loss function £;(#) is non-convex and hence the iterate 0; obtained after .J
steps of gradient descent may differ from the ideal maximum likelihood estimator, this discrepancy
remains sufficiently small. The proof is deferred to Section C.1:

Lemma C.6. Define the auxiliary loss function L(0) as

L) =— ZW log i(g(xi500) T (0 — 60)) + (1 — 7;) log(1 — p(g(w;60) " (6 — 60)))
m)\f

16— Boll3,

and the auxiliary sequence {9(7)}‘] 1 associated with the auxiliary loss L(G). Let the MLE es-

timator as 0, = argmin, 5(9). Then there exist absolute constants {C;}5_, > 0 such that if

J = 21log(\S/ (VT + C4T?2L))TL/\; and ) = Cs(mTL +m);) ™", then with probability at
least 1 — 0,

~ t n
Het—etHzg\/mi)\tv ||9t_00||2§3”m7)\t:7—’

Het — étHQ <2(1- 77m/\,g)J/2t1/27n_1/2)\;1/2
+ Com=23\logmt™/S N, /S L7/2 4 C,CaRm~=2/3\/log mLT/245/3\%/3,
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C.1 PROOF OF LEMMA C.6

For simplicity, we omit the subscript ¢ by default. First, recall the definition of the auxiliary sequence
{9 }J 1 associated with the auxiliary loss L(6); its update rule is given by:

U+ — gli) _ 77VL(@(J))
t

=0U) - n{mkg”) =D (1lg(i:60) T (89 — 8o)) — ri)g(as; 90)}-

i=1
Similarly, the update rule for #U) is given by:

t

pU+1) — (i) _ n[m)\ﬁ(j) _ Z(“(f(x; 0D)) — r)g(xs; g(j))}

i=1
Also notice that
Zu (1;00) " (0 = 00)) (1 — p(g(xi;00) " (0 — 69)))g (25 00)g (w5 00) " + mAL
(7N

Now, we start the proof with
1691 —Bl|> < 6V — 6], + |64 — 80| ®)

(term 1) (term 2)

For (term 1), observe from Equation (7) that £ is (mm))-strongly convex, since (mA)I < V2L(6).
Moreover, L is a C5(tmL 4+ mA)-smooth function for some absolute constant C5 > 0, because
t
i=1
t

< (Zingm;owusmx)l
=1

< Cs(tmL + mMI,

V2L(6

I A

1
59 g(xi;00)g (mi;Ho)T + mAI

l\DM—l

~.

where the first inequality follows from z(-)(1 — p(-)) < 1/4, the second follows because for any
u,x € R, w'owaTu < |lull}||z)|3 < u' (||#]|3])u, and the last inequality follows from Lemma
C4.

Then, with our choice of = Cy(tmL + mA), standard results for gradient descent on L imply that
69) converges to 0, at the rate as

|69~ 63 < - (£@9) - £0))
< (1= 2 (E(l) - £(6)
< (1 gmAy - E(b),

where the first and the second inequalities follow from the strong convexity and the smoothness of
L. Furthermore, we have

Zrz log 11(0) + (1 — r;) log(1 — (0)) +

t
I3 = 7210g0.5 <t,
i=1

Plugging this back gives
169 = 8], < (1 — nmA)7/2\/2t/(m). 9)

16
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Next, consider (term 2). From the definition of the update rule, it follows that:

(term 2) < (1 — nm)\)”g(j) _ 5(.7‘)”2
t

t
| DD 309 = ri)g s 090) = D (ulg (s 00) T (B9 — b)) — i) (i bo) |

=1 =1

< (1= g [09) = T 'Y | 309) = r)lg(ais0) — g )l
i=1

(term 3)

+nZH £(@:09)) = u(gla; 00) T (69 = B0))]g s b0) . (10)

(term 4)

Considering each term of Equation (10), there exist absolute constants C, Co, C5 > 0 such that

t
(term 3) < nz Hl gl 09)) — g(ay; 90)]H2 < Conm!/3\/logmt™/6\~1/6[T/2 (11)

i=1

t
(term 4) < nz HR[f(x;H(j)) — g(z;60) T (V) — 90)]g(xi;90)H2

t
<R[\ £(:69) - 9(2360)T @ — 00)]|_ - llgass 60) 2
i=1

t
< CanR Ym0\ logmL* A3 (45005

i=1
< Cnganl/B\/logmL7/2t5/3/\_2/3. (12)

For (term 3), we apply Lemma C.4. For (term 4), the first inequality follows from the R-Lipschitz
continuity of x(-), the second follows from the Cauchy—Schwarz inequality, the third follows from
Lemma C.5, and the final inequality follows from Lemma C.4 after summing over ¢.

Substituting Equations (11) and (12) into Equation (10) yields
66 — Ul < (1 - )0 — 3

+ Conm*3\flog mt™/SN"VOLT/2 1 ¢ CynRm 3 \/log mL7/?t°/3)\~2/3
13)
By iteratively applying Equation (13) from O to j, we obtain
Conm'/3\/logmt™/S\=1/6L7/2 1 C1C3nRm/3\/logmL7/2t5/3\=2/3
nmA

< Com™ 23\ logmt™/SXN"T/SLT/2 4 C,C3Rm ™23\ /log mL7/2t/3\~5/3,
(14)

10U+D) — U+, <

By substituting Equations (9) and (14) into Equation (8) and setting j = J — 1, we complete the
proof of the upper bound for ||§; — 63||2. Likewise, from Equation (14), setting j = J — 1 and
following the width condition in Condition 4.4 yields

~ t _ _
160, — Orll2 < 4/ p—— (Cgm_l/ﬁs/log mt?/3\; 2372 L cyCsRm Y% /log mL7/2t7/6 ), 7/6)
MAg
< \/% (Cgm_l/ﬁx/log mT2BN*3L7? 4 € CsRm /0 /log mL7/2T7/6Ag7/6)
mAg

t

S N\
mA

(15)

17
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which completes the bound on [|6; — 6| Finally, observe that
16: = ollz < 110 = Ollz + 116: — oll,
where Equation (15) gives ||f; — 6;]|» < 7/3. and for the second term

m)\t

16 — 90“2 < L(Ht < Zn logu + (1 —r;)log(l — u(())) < tlog2,

which implies ||6; — 0o||2 < 21/2/(mA;) = 27/3. Combining these results completes the proof of
the bound on ||0; — 6||2.

D PROOF OF THEOREM 3.1

Our proof technique is primarily inspired by the recent work of Zhou et al. (2021), which integrates
non-uniform variance into the analysis of linear bandits. For brevity, let 02 = j(z, 6*), which
yields

! ¢
= Z'u(x;rg*)%x;r + A= Zazlex;r 4+ AL
=1 i=1
We introduce the following additional definitions:

B detH, _  AMN
By = 8\/1og et ] log(4t2/9) + 7 log(4t=/9)
t

sy = vami, Zy = ||5t||H;17 wy = ||l”tHH;117 E=1{0<s<t,Z, < Bs} (16)
i=1
fort > 1, where we set s = 0, Zy = 0, 8y = 0.

Since H; = Hy_1 + afmta:; , by the matrix inversion lemma,
Hi (ovy) (ov) THZ
L4 (opxe) THZ Y (0pe)
UtzHﬁllxtx;rH;ﬁ
1+ o?w?
We begin by establishing a crude upper bound on Z;. In particular, we have

Zt2 = ||3t||§{;1 = (8t-1+ xtTlt)THt_l(St—1 + x4m)

Ht_l = Ht_—ll -

_ -1
- Htfl -

a7

= s/ H; 'sp1 +2mx] Hy "sp4 —|—T]t£t H 'z,
< ZE 4 2m Hy tse o +nial Hy b

(term 1) (term 2)

where the inequality follows from the fact that H; > H;_;. For (term 1), from the matrix inversion
lemma Equation (17), we have

2T py—1 Tpr-1
orx, H xix, H 54—
Trr—1 tep g1 btby My 19t—1
(term 1) = 21, (xt H, " si1 —

2,2
1+ ofw;

2,,2..T y—1
oW T, Ht_lst_l)

2,2
1+ ofwy

T -1

= 2m <l’t H, " si1 —
-1
B 2ntgc;'—Ht_13t,1

1+ o?w?
For (term 2), again from the matrix inversion lemma Equation (17), we have
T -1 2,4 2,2
oix Ht 1Ty Hy — 22— Tt _ Wy

1+ o?w? A

(term 2) = 7? (x;rHt_llxt

18
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Therefore, we have

Trr—1 2,2
2npxy Hy 'y si- T Wy

73 <77+
bt 1+ ofw? 1+ ofw}?’

and by summing this up from ¢ = 1 to ¢ gives,

t t
=2 IR . (19)
= 1—|—0 izll—}—afwf'

We give two lemmas to upper bound each term.

Lemma D.1. Let s;, w;, &; be as defined in Equation (16). Then, with probability at least 1 — §/2,
simultaneously for all t > 1 it holds that

t
2n;x Si—1 3
e vt <30

1 + 02w2 — 4
=1

Lemma D.2. Let w; be as defined in Equation (16). Then, with probability at least 1 — § /2, simul-
taneously for all t > 1 it holds that

Now consider the event £ in which the conclusions of Lemma D.1 and Lemma D.2 hold. We
claim that, on this event, for any ¢ > 0, Z; < ;. We prove this by induction on i. For the
base case i = 0, the claim holds by definition, since fy = 0 = Z;. Now fix any ¢ > 1 and
assume that for all 0 < ¢ < ¢t we have Z; < ;. Under this induction hypothesis, it follows that

& =& =---= &1 = 1. Then by Equation (19), we have
¢ ¢ 22 2n;x) Hy s i 2w
2 < 771 18Z 1 ; W; _ i 1 1= 15_7 n;w 7, 20
t*z:: 1—|—a2w2 +,711—|—ai2wi2 ; 1"“71‘2“%2 ‘ 1+ “ 1+ 07w - @0)

Since on the event £ the conclusion of Lemma D.1 and Lemma D.2 hold, we have

¢ 1 t
2] H | si1 nZw? 1 5

i &1 <282, Wi < 2g2 21

Z 1+0',L-2’LU2 1 ﬂt 1+0’2’LU2 = 4515 ( )

i=1 i=1 v

Therefore, substituting Equation (21) into Equation (20) yields Z; < (), which completes the
induction. By a union bound, the events in Lemma D.1 and Lemma D.2 both hold with probability
at least 1 — 4. Hence, with probability at least 1 — 6, for all ¢, Z; < ;.

D.1 PROOF OF LEMMA D.1

We now proceed to apply Freedman’s inequality, as stated in Lemma H.1. We have

2:rTH _18i—1

2|l gy [Hsz'leH.—_llgi*l] 2w;Bi—1
< i i <
1+ o2w?

- 1+ o2w? ~ 14 o?w?

- < min{l/0;, 2w;}B;i—1.

(22)

Here, the first inequality follows from the Cauchy—Schwarz inequality, the second follows from the
definition of &;_1, and the final inequality follows by simple algebra. For simplicity, let ¢; denote

me H - 151 1

l; =
14 02w2

1—1-

We now apply Freedman’s inequality from Lemma H.1 to the sequences (¢;); and (G;);. First, note
that E[¢;|G;] = 0. Moreover, by Equation (22), the following inequalities hold almost surely:

2MN

4| < MBi_qmin{l/o;,2w;} < ——
|4:] Bi—1min{1/ } 7

6157 (23)

19
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where the last inequality follows since (/3;); is non-decreasing in ¢ and by the fact that
wi = il g < Jlailla/VA < N/VA (24)

We also have
¢ 5 L 5 233 H;- 181 1 2
;E[éng] < ;Ui W&—l

t
< Z o? (min{1/a;, 2wi}5i71)2

i=1

t
= Z (min{1, 2wi0i}6i—1)2
i=1

t
< 4@52 Z min{1, (wiai)Q},

i=1
where the first inequality holds by the definition of o;, the second inequality follows from Equa-
tion (22), the third inequality holds since (/3;); is non-decreasing. Since

det Ht
det AL’

t t

Zmin{l, (wio)?}y = Zmin{l, ||0iasi||§{,1 } <2log (25)
i—1

i=1 i=1

where the last inequality follows from Lemma H.2. Substituting this back yields,
ZE [2|G;] < 86,2 log det (Z Lzl + I) (26)

Therefore, by Equations (23) and (26), using Lemma H.1, we know that for any ¢, with probability
at least 1 — §/(4t?), we have

t t 2
) o? 2 2MN ,
g 4; < 4| 165~ log det < E 5 Ti%s + I) log(4¢2/9) + 3 Wﬂt log(4t°/4)

=1 i=1

2 2772
< & + 16 log det (Z L] + I> log(4t?/8) + % + 4M)\N log? (412 /6)

2

B2 1 o2 AMN )
<24z log det i gl +1) log(4t2/5 log(4¢2/6
< 5+ 7 |8y logde §:A%+ og(/)+ﬁog(/)

3
= 1537 @7

where the second inequality follows from the fact that 2/|ab| < |a| + |b|, and the final equality
follows from the definition of /3;. Applying a union bound to Equation (27) from ¢ = 1 to oo and
using the fact that Zfi 1 172 < 2 completes the proof.

D.2 PROOF OF LEMMA D.2

Similarly to Lemma D.1, we apply Freedman’s inequality from Lemma H.1 to the sequences (¢;);
and (G;);, where now

;i

2’[,02-2
59| -
[t

2,2
Sw
2 Yb

:1+0i2wl2 1+ 2w

First, with Equation (24), we derive a crude upper bound for the following term:

77?’(02 M2N2

2
S Ut S <
T+ 02w < nfwy| <

(28)
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Now, for any 7, we have E[¢;|G;] = 0 almost surely. Furthermore, we can see that

4
4

t

SE2IG) <Y E

i=1

4, .4
i Wy

(1 + oFwy)?

M2N?2 ¢
< E

¢
M?N? o?w?

<
TN & ltoiwy
2M2N? " o?
< \ log det <Z %xzx: + I) , (29)

where the first inequality follows from the fact that E(X — E[X])? < E[X?], the second follows
from Equation (28), the third follows from the definition of 7;, and the fourth follows from the
bound c?w? /(1 + o?w?) < min{l, o?w?} together with the result in Equation (25). Furthermore,

applylng Equatlon (28) again gives
Qi]

almost surely. Therefore by Equation (29) and Equation (30), using Lemma H.1, we know that for
any t, with probability at least 1 — §/(4t?), we have

2.2
1y Wy
1+ o2w?

(3 (2

2M2N?

2,2
W
Ub < T

2,2
1+ ojw;

+ |E (30)

1 4

zt: ;W
prt 1+ oiw?
t 2 9 2 t
75 Ww; 4M?2N? T
< ;E T+ o%a? gil + 3 log det (Z: ziz; + 1) log(4t2/9)
2 2M?N?
_ log(t/5
2 B tog(s20)
t 2 9 2 t
ojw; AM=*N T
< ; 1+ o2u? + \ logdet (g vz, + I) log(4¢2/4)
4 2772
+ log(4t%/6)
L 52 4M2 :
< 2logdet <; Tlx,xj + I) + logdet <z: zix] + I) log(4¢t2/9)
4M?2N?
+ log(4t?/6)
2
¢
1 o? AMN
4 T 2
< i 8, | log det (; 3 i +I> log(4t2/6) + Wlog(llt /0)
1
= -B2? (1)

Where the second inequality follows from the definition of o7, the third follows from the bound

w?/(1+02w?) < min{l, o?w?} together with the resultin Equatlon (25), and the final inequality
fol]ows from the definition of Bt. Applying aunion bound to Equation (31) for ¢ = 1 to oo and using
the fact that ) ;= ™2 < 2 completes the proof.
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E PROOF OF LEMMAS IN SECTION 6

For clarity, we assume that Condition 4.4 always holds. We then define the quantity «(z’, 2”) via
the mean-value theorem, and introduce two additional analogous definitions for brevity as follows:

alz . 2" = M(Z/) — :u(Z”) _ ! 2+ ol — 2 v
() = B [ o = ),
aa,0',0") = a(g(x:00)T (6 = 60), g(w:00) T (8" — b)),

a(x',z",0) = a(g(m'; 00) " (6 —6o), g(z":60) " (0 — 60)). (32)

For the design matrix X associated with the time-varying regularization parameter \;, we denote
by X, the corresponding matrix formed using the initial regularization parameter \q. For example,

=
I
M-

|-

9(x4;00)9(xi5600) T + kAL,

-
Il
—

=
=
I

-

3|

o
Il
-

[i(g(i500) " (0; — 00))g(i500)g(wi:00) " + AoI

=
[
Mﬁ
3=

f1(f (2350:))9(wi;00)g (x5 60) T + Aol

.
—

(33)
E.1

PROOF OF LEMMA 4.5

First, we define the auxiliary loss L (6)

Li(0) = — Zh‘ log (g (i3 60) " (0 — 60)) + (1 — ) log(1 — p(g(wi; 60) T (6 — 60)))
i=1
+ 200 — 6ol

and its maximum likelihood estimator f; = arg ming Ly (0). Then, we use the following definitions:

(0) = 37— ulg(ai; 00)T (6~ 60)g(as: 60) + Ac(6 o)
=1
L(0,0") = Z%

K3

(i, 0',0")g(2i;00)g(x:;00) T + A,
1

where «(x;,0’,0") is defined at Equation (32). We can see that
Y¢(0) — 7:(0%)

I
N-Mw
3

Sl
—

(19 60)T (6 = 60)) — lglis 0) (67 — 60)) ) g3 00) + (6~ 6%)

3|~

(i, 0,0%)g(wi;00)9(wi360) T (0 — 67) + (0 — 67)
i=1
=T4(0,0")(0 — 0%),
which implies that

10— 0" Ir,0.0) = [7(8) (6l (.- (34)
Now we provide the following two lemmas:
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Lemma E.1. For § € (0, 1], define

Cr = {9 L V/ml|v(6) —%(ét)HH;l(e) < Lt} , 35)

where vy is defined at Equation (3). Then for all t > 0, 6* € C; with probability at least 1 — §

Lemma E.2. Let § € (0, 1]. Define C; as in Equation (35). There exists an absolute constant C; > 0
such that for all 6 € Cq,

L | L A A L | L A
Ht(ﬂ) j <1+C12Atbf+cl )\tLt>Tt(3,9t), Ht(ﬂt) j (1+012)\tl/?+01 )\tbt>1—‘t(0,0t).

Now we are ready to start the proof.

Proof of Lemma 4.5. For the absolute constants {C;}?_,, we can start with

V|6 — 0", 0% (36)
< Vmly — 0% 1,00 + V|0 — Oel 1, o)
< v/ml|f; — 0 | e, 00 + V'm0 — 0:]|2 - (\¢ + C1tL)
<m0y — 0% || 1,0y + 200 + CLtL) (1 — nmA,) 772820, 12

(term 1) (term 2)
+ (M + CitL) [C’gmfl/ﬂ/log mt7/6)\t_7/6L7/2 + C,CsRm™ Y% /log mL7/2t5/3)\t_5/3 .
(term 3)

(37

The first inequality is due to triangle inequality. The second inequality is due to Apax (H:(6%)) <

At +t < [[\/p()/m-g()||3 < A\ + C1tL where we used Lemma C.4. Finally, the last inequality
follows from Lemma C.6.

For (term 1), we rewrite the definition of ¢; and \;:

SN ' - At L 4
Ly = 16 logdet ;mg(xueo)g(xueo) +I IOgT +801 YOIOgT

t
64 1 _ e A2 16C2L o 412
At = = log det ( E T g(xi500)9(xi;00) " + I> log 5 + A log 5

i=1

We can see that :2/)\; < 852 (and 1;/v/A; < 2v/25) by the fact that (a 4 b)? < 242 + 2b%.
Therefore, applying these with Lemmas E.1 and E.2 gives

Hy(6%) = (14 2v2C,VLS + 8C2LS*)T' (6%, 6,), (38)

for some absolute constant C'; > 0. Now, back to (term 1), we have

Vo e < \/m(1+2\601\FLS+8012L52)Hét—9* )
H,(6%) Lu(6e,07)
= \/m(1+ 2V VLS + 803152 [4(6,) — (6") S
< (14+2V2C VIS +8CT LS [4(0) —20°)|

< (14 2v2CVLS + 8C2LS?)1,.

where the first and the second inequalities follow from Equation (38), the equality is due to Equa-
tion (34), and the last inequality follows from Lemma E.1.
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For (term 2), plugging in J = 2log(\:S/(TY/2\; + C4T3/2L))TL/\;, n = Cs(mTL + mA;) ™!
gives

2\ + C1tL)(1 — nmA) /21 /202
< 2(\ + C1TL)(1 — A/ (TL))2TV 2012

<25V

S Lt,

where the last inequality follows from the definition of \; and the fact that v/a + b < \/a + /b. For
(term 3), recall that Ay < min{\;};>1, then we have

Cgm_l/(j\/log mt7/6)\t_1/6L7/2 + ClC3Rm_1/6\/1og mL7/2t5/3)\t_2/3
+C1Com ™Y\ log mt /0N /O LY 4 CFCs Rm™Y/0\log mLO/213/2 ), 5/°
< Cmel/G /log mT7/6)\0_1/6L7/2 + Clchm71/6 /log mL7/2T5/3/\52/3

+ CLCym ™0\ logmT /SN, /O L2 4 C2Cs R~ /6 flog mLY/2T3/3 )\ °/®
<1,

where the last inequality can be verified that if the width of the NN m is large enough, satisfying the
condition on Condition C.2, (term 3) < 1.

Substituting (term 1), (term 2), and (term 3) back to Equation (37) gives
V|0 — 0% g, 6+) < (2 +2V2C1VLS + 8CELS? )i, + 1
< Cs(1+ VLS + LS?*)u; +1,

for some absolute constant Cs > 0, concludes the proof. O

E.2 PROOF OF LEMMA E.1

Recall the definition of Et(G) 0, v¢(0), and T';(0’,6") from Section E.1. Since f; is a maximum
likelihood estimator, L, (6;) = 0, which gives

t
1 5 1
Z;Eu 9(wi00) T (6, — 00))g 3 60) + M0 — 6o) Z;Ezgzz,eo (39)

Therefore, we can see that

Vil (@) =10 1 oy

t
1 N .
=vm Z E[M(Q(wi; 90)T(9t —0o)) — p(g(ws; Q)T(a* —00))]g(wi; 00) + Ay — A 0"
i=1 HE (0%)
t
1 " *
=vm||> —lri - p(g(xi;00) T (0% = 00)]g (i3 60) — X (6" — b)
i=1 Hy ' (6%)
— p(g(xs;00) T (0% — 00)]g(i; 00) + v Aml|0" — boll2, (40)
_1 ~—
Hy = (0%) (term 2)

(term 1)

where the first equality follows from the definition, the second equality is due to Equation (39), and
the first inequality follows from triangle inequality, and the fact that A, (H; 1 (0%)) < 1/v/\;.

For (term 1), we are going to use our new tail inequality for martingales in Theorem 3.1. Define
ni =1 — p(g(xi;00) " (0F — ) = 75 — pu(h(x;)). Then, we can see the following conditions are
satisfied:

mil < 1, E[milGi] = 0, E[71G:] = i(g(xs;00) " (0 — bo)).
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By Lemma C.4 we have ||g(; 00)/+/m||2 < C1V/L for some absolute constant C; > 0. Therefore,
applying Theorem 3.1 gives

t
1
; ﬁmg(%ﬂo)

H;71(6%)

1
—=n:9(xi;0o)
m

H;(07)

t
1 412 [L . 412
< 8,|logdet (Z mg(aji; 00)g(xi;00)T + I) log 5 +4C, 10g 5 41)

=1

with probability at least 1 — §. Substituting Equation (41) into Equation (40) gives

Vml|v(8:) — v(6%) ||H;1(0*)

t

1 4¢2 L
< 8, |logdet (Z mg(xi;ﬁo)g(zi;%) + I) logT +4C14/ — logT + SV A

i=1

t

1 412 [ L 42
<16, | logdet (Z mg($i§90)g($i;90)T —|—I> log 5 +8C} " log — 5

i=1
= 1. (42)

where the last inequality is due to the update rule of \; and the fact that va +b < /a + Vb. We
finish the proof.

E.3 PROOF OF LEMMA E.2

We modified the previous results of Abeille et al. (2021) (Lemma 2), and Faury et al. (2022) (proof
of Lemma 1), proper to our settings.

Lemma E.3. Ler 6 € (0,1]. Define C; as in Equation (35). There exists and absolute constant
C1 > 0 such that for all 6 € Cy:

L
Vm[1(0) = 7001 6.6,y < Cryf )Tth +

The proof is deferred to Section E.4. Following the proof of Lemma E.3, from Equation (43), we
have

. _ . -1
Tu(6,00) = (14 CLL2A7 2 il (0) = 100 o 0,))  He(6)
1

L [T\
2 (1 +Cl2rtbf +Cl AtLt> Ht(ﬁ)

where the last inequality follows from applying Lemma E.3 again.

One can achieve the same result for H, t(ét) in a similarly way by starting the proof of Lemma E.3
with
~ t A
Ty(0,6:) = > alw:,0,6:)g(wi;60)g(i;00) " + I

=1

> " (1+[g(xi:60) 7 (60 — 6,)])

i=1

—1
L4 O VAlu(®) = 20004y ) Hil6)

L L R
12At 2—|—Cl )\tl/t> Ht(et),

o+

g (i300) T (0, — 00))g (i3 00)g(25300) T + AT

Vv
A/~

<1+C
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where the first inequality follows from Lemma H.3, the second inequality follows the same process
of Equation (43), and the last inequality follows from Lemma E.3, finishing the proof.

E.4 PROOF OF LEMMA E.3

Recall the definition of T'; and a(x, §’,60") from Equation (32). We start with

T (6,0:) a(xi,G,ét)g(mi;Ho)g(xi;é'o)-r + I

|
-M“

i=1

~

—1.

> , (14 |g(xi:00) (0 — 00)] )~ ja(g(@s; 00) T (0 — 00))g(wi; 00)g(xi300) T + AL,

1

-
Il

(term 1)

where the inequality follows from Lemma H.3. For (term 1), we have,
(term 1) < [|g(as: 00) /vl 1 5.6, - V10 = Oully, 0.0,
< ClL1/2>\t—1/2 -/ml|f — ét”rt(e,ét)
< CLLMEATY2 i (9) — @)l 1(0.4,),

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality fol-
lows from the fact that Apay(T'(-)~1) < A; ' and Lemma C.4, and the last inequality follows from
Equation (34). Substituting (term 1) back gives,

i 1/2y—1/2 A -t
I':(6,6;) > (1 + CLLYENTT -/ mv(8) - ’Yt(at)”r;l(e,ét))
t
X Y julg(wi300) T (0 = 00))g(wi; 00)g(wi3 60) T + AT

i=1
- . -1
> (14 LA il ) = 00l 06, )
t
< (D2 (i 60) (6 = 60))g(asi bo)g (i 60) T + AT
i=1
. —1
= (1 L2 0) = Ol 6) Hi(6) 43)
Using this results, we can further obtain
\/E”%(@) - ’Yt(ét)||12~t—1(9,gt)
< (1 + CLLYA P/l (0) — ’Yt(ét)”rt—l(e,ét)) -v/ml|y(0) — ’Yt(ét)”:;{t—l(g)
<2 UL il (6) — %01 0.0,):

where the last inequality follows from Lemma E.1. We solve the polynomial inequality in
vml|y:(0) — ’Yt(et)HFf—l(g 5, using a fact that for b,c > 0 and z € R, following implication
holds: 22 < bx + ¢ = x < b+ +/c, which finally gives

A L
Vmlu(®) =20l 06,) < Cry/f /\TL? +

E.5 PROOF OF LEMMA 6.4

First, we show that we can upper bound on the prediction error for all z € X}, t € [T'], which is the
difference between the true reward p(h(x)) with our prediction with the neural network pu( f(x; 6;)).
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For z € X1 and the absolute constant C's > 0, the prediction error is defined as
lu(h ( ) — u(f(x:6:))
R[h(z) — f(;64)]
R[g(x 00) " (0" — 00) — f(x;6,)]
Rlg(x;00) T (0% — 00) — g(;00) T (6 — 00) +Csm™ Y0 /logmL32/°X,*%), (a4)

(term 1)

IN

where the first inequality is due to the fact that u(-) is R-Lipschitz function, the equality follows
from Lemma 6.1, and the last inequality follows from Lemma C.5. For (term 1), we have

(term 1) = g(z;600) " (0" — 6,)
1 - * * *
= olas00) " H VA0 HYH) (0~ 6r)
< ||9($§90>/ﬁ‘|H;1(9*) -/m||0" — 9t||Ht(0*)
< Vllg(@; 60)/Vmlly-1 - V/ml|0™ = 4]l 11, (6+)
< VElg(@; 00) /Vmlly—r - (Co(1 + VLS + L), + 1), (45)

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality is
due to the Assumption 6.3 that %Vt < H;'(6*), and the last inequality follows from Lemma 4.5.
Plugging Equation (45) into Equation (44) gives

|u(h(z)) = p(f (3 6,))]
< RVE(Co(1 + VLS + LS, +1) | g(x: 00) /V/mlly—1 + CsRm ™%/ logm L32/3 ) */*
< RVE(Co(1 + VLS + L5%)u, + 1) g (a: 00) /vl -1 + es.e, (46)

where the second inequality follows from the fact that A\g < min{)\; };>1 and the definition of €3 ;.

F PROOF OF LEMMAS IN SECTION 5

F.1 PROOF OF LEMMA 5.1

Recall the definition of L;(6), 6;, v¢(6), T'1(6’,8"), v, and \, from Section E.1. We also use

Wy = Z'u (@ 6:) 9(wi00)g(i;00) " + A1

(0 = 3 P00 T = 00) gy A

i=1

w= Z —— ﬂ(i(zxi; DU 90))‘9(%—; 00)g(zi;00) " + NI

By the definition of Z;, for any © € RP, we have

leliw, < el 012 < Ill, 6, + l2lz-

Now with the above inequality, we can start with

vml|6: — 0% |lw, < V'm0 — e*HHt(é,) +v/m|0: — 6%z, . 47)
‘ —_———
(term 1) (term 2)
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For (term 1), we directly follow the proof of Lemma 4.5 in Section E.1. Therefore, for the absolute
constants {C;}?_,, we have

Vil =0l
< v/ml|f; — 0"\l g, 6,y + vVl — étHHt(ét)
< Vmllfr = 77,5,y + 200 + CitL) (L =m0

(term 3) (term 4)
+ (A + CitL) [cgmfl/%/mg mt/SN /O LT2 4 O CsRm Y5\ logm L7233, %/3 ]

(term 5)

Using the same argument as in Section E.1, we can see that

(term 4) < 2S5/ <, (term5) <1/2.

Note that the upper bound for (term 5) has been changed from 1 to 1/2 solely to unify the constant
in the concentration inequalities of Lemma 4.5 and Lemma 5.1. For (term 3), we have

i

< \/m(1+2v3C1 VIS + sC1L5?) 6, 0"

H¢(0y) Iy (04,0%)

= \/m(1 +2V2C, VIS + 802LS?)1(6.) — (6%)

I (00.6%)
< (1+2V20,VLS + SCfLSQ)\/ﬁH'y(ét) — (6%

HY(67)
< (14 2vV2C,VLS + 8C2LS?)u,,

where the first and the second inequalities follow from Lemma E.2, the equality follows from Equa-
tion (38), and the last inequality follows from Lemma E.1. Plugging (term 3-5) into (term 1) gives

(term 1) < (2+ C,VLS + C1LS?)u; 4 1/2.

Now, moving on to (term 2), we have
Vml|6y — 0%z, < Vml|6y — 6% |2 x A2 (Z4).
———— ——

(term 6) (term 7)

For (term 7), we have

. T(h, —
NI (24) = N2 <Z S (13 0:)) — (g i:00) (0 eo>>|g($i;90)g(xi;90f>

max max
m

max
m

_1/6 3:2/3y—2/3
e <Z CyRm~1/6\/logmL /3 )] g(xi;Qo)g(xi;eo)T>

i=1
<03R1/2 _1/12(logm)1/4t5/6[/2)\ /3

Here, the first inequality follows from the Lipschitz continuity of £, the bounds |ji| < 1 < R, and

Lemma C.5, while the final inequality follows from )\max(z;l ziz)) < Zle |z;]|3 and used
Lemma C.4. For (term 6) we have

Vil = 0°ll2 < Vil = Golla + V0" — Goll2 < 32N 45,

where the last inequality follows from Lemmas C.6 and 6.1. Plugging (term 6-7) back to (term 2)
gives,

(term 2) < C5R'/2m =/ 2(log m) Y443 L2075 4+ O3 SRY2m =112 (log m)/445/6 2\ 1/®
< C R1/2 _1/12(10gm)1/4T4/3L2)\65/6 + CSSR1/2m_1/12(10gm)1/4T5/6L2>\81/3

<1/2+4 25\
S 1/2+Lt7
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where the third inequality is followed by the condition on m in Condition C.2, and the last inequality
is due to the update rule of \;. Finally, substituting (term 1-2) into Equation (47) gives

Vm|0; — 0w, < (3+2V2C1VLS +8C2LS?) + 1
< C7(1+ VLS + LS?); +1,

for some absolute constant C; > 0, finishing the proof.

G REGRET ANALYSES

G.1 PROOF OF THEOREM 4.6

We start with a proposition for the per-round regret:
Proposition G.1. Under Condition 4.4, for all x € Xy, t € [T, with probability at least 1 — 4,

u(h(@})) = u(h(er)) < 2RVR((CLS + 2ty + 1|9l o) /Vmlly 1 + 2501

Proof. We follow the standard procedure to upper bound the per-round regret with the prediction
error under the optimistic rule. For all ¢ € [T'] we have

p(h(z)) — ulh(xr))
< p(f(@7:0,-1)) + RVR(Co(1+ VIS + L) + 1) lg(af: 00) /V/mlly s + et — ulh(x,))

< pu(f (@6 0-1)) + BV (Co(1 + VLS + LS®), + 1) | g(ws5 60) /V/mlly -1 + ez—1 — p(h(z:))
< 2RVE((CLS? +2)1—1 + 1) g(e; 90)/\/E||Vt:11 +2€3,0-1,

where the first and the last inequalities follow from Lemma 6.4, the second inequality comes from
the optimistic rule of Algorithm 1, finishing the proof. O

With Proposition G.1, we have
(i) = () < min {2RVEV D, g 00)/Vimlly, -, + 2e30-1,1
< min {2RV5v {2 lg(wss 00) /v/mlly, 1, 1} + 2€501
< 2R/t min {|lg(ees60) /vl 1+ 2€5,4 4
< 2Ry/kvAY min {Hg(xt; 00)/ V.- 1} + 2es.1.

Here, the first inequality follows from 0 < |u(-) — u(+)| < 1, the second from the bound min{a +

b,1} < min{a,1} + b for b > 0, the third from the facts that 2R/x > 1 and I/t(l) > 1 for all ¢,
thereby using min{ab, 1} < amin{b, 1} if @ > 1, and the last inequality follows from the fact that
both v; and €3 ; are monotonically non-decreasing in ?.

Now, we can proceed as

T
Regret(T) = 3 u(h(x})) — p(h(a1)
t=1
T
< 2Rr > min {||g(azt; 00)/vmlly-1, 1} + 2Te3 7,
t=1
where we can see that by the condition of m in Condition C.2,

T€37T = Ong_l/ﬁx/ log mL3T5/3)\62/3 <1,
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plugging this back gives,

T
Regret(T) < 2Rv/kvl Zmin {Hg(xt; 90)/\/ﬁ|\‘4__11, 1} +1
=1

T
< 2R\/EV(T1) TZmin {||g(gct; 0o)/vVml2 ., 1} +1
i=1 .

T

) 1
< 2R\/Eu§1) 2T log det <; mg(mt; 00)g(xe;00) T + I) +1

< 2RVEDV2Td + 1,
where the second inequality follows from the Cauchy—Schwarz inequality and the relation V,_; =

V;_1, the third follows from Lemma H.2, and the final inequality follows from the definition of d.
Notice that

T
1 472 L 472
) CoNT /
v = 16, | log det (tg_l Img 9(xt;00)g(2e;600) " + I) log 3 +8C, " log 5

< 16\/Jlog(4T2/5) + \/401(2L)1/2510g_1(4/5) log (412 /6),

where the last inequality follows from the definition of d and the initialization rule of Ao, which
gives V(Tl) = O($2 Vi + S$2-5). Finally, plugging V(Tl) in gives,

Regret(T") = 6(5267\/ KT 4 %5V HCTT),
finishing the proof.

G.2 PROOF OF THEOREM 5.2

First, for each t € N, define the set of timesteps
Tit) = {#' € [t} : | £ (w3 00) — glaes00)T (0" = 00))| = 1. (48)

This set contains exactly those timesteps where 6, lies outside the parameter set (when || 8y —6o||2 >
S). Based on this, we form a pruned design matrix by removing the corresponding feature vectors
while preserving their original order. In particular, for the regularized covariance matrix V;, we
obtain

t t—[T1(¢)|
1 .
vV, = Z Eﬂ{l ¢ Titg(wi;00)g(xi300) " + AI = Z Eg(x‘f'(i); 00)9(2+(i);00) " + A1
i=1 i=1

Here, 7 : {1,...,t — |T1(t)|} — {1,...,¢} maps each j to the j-th smallest element of [t] \ 71 ().
Similarly, we define H;(6) and W; as:

t—|T1 (¢ .
S g1y 00) T (6 — 60))

H,(0) = Z m 9(27(1)300)9(27(1y3 00) T + M,
i=1
=T ()| .
,u(f(x‘r i ;07' 7 ))
W, = Z #g(zr(i)ﬂo)g(%(i);@of + AL

. m
=1
Same way as before, we will denote Et, E (0), Et as the design matrix where the regularization
parameter )\, is replaced to \g.

Using our new design matrices and the self-concordant property of the logistic function (see Lemma
H.3; cf. Lemma 9 of Faury et al. (2020), Lemma 7 of Abeille et al. (2021), and Lemma 5 of Jun
etal. (2021)), we can show that the true-variance design matrix H (6*) is bounded by the empirical-
variance design matrix W,.
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Proposition G.2. We have 3H,(6*) = W, = + H,(6*).
Next, we define three additional sets of timesteps derived from 77:

To = {t [T = [TUD)) : |g(ry:00)" Briey1 — ") = 1}
To={tell-|T(T ]\gx”>,eo/f]\~l >1},

T(t 1)

Ta= {f €T~ |T(T H\/ (T7(t); Or (1)) 9(T7(1)5 00) /\F"~,1 = 1}~ (49)

r(t=1)

We define 75 to measure the distance between g(a:T(t);Go)TgT(t),l and h(z,)) and con-
trol the estimation error of the neural network. We introduce 73,7 to control the value of

l9Cr0:00)/Vmllg—s and |/A(F ory30r )19 e)360) v/l 2 in order to apply the
elliptical potential lemma (Lemma H.2).

Next, we introduce two propositions to bound the cardinality of 71 (7T'), 72, T3 and Ty:
~ 12 ~ ()2
Proposition G.3. We have |T1(T)| < 4/£d1/(T1) +1land|Tz| < 24f£d1/§p2) , where I/t(l) and l/t(2) are
defined at Equations (2) and (5), respectively.
Proposition G.4. We have |T3|,|Ta| < 2d.

For Proposition G.3, we use the concentration inequalities between 6.,y and 6*, and 6, (;)_; and
0* using Lemmas 4.5 and 5.1. For Proposition G.4 we modified previous results appropriate to our
setting called the elliptical potential count lemma (Lemma 7 of Gales et al. (2022), Lemma 4 of Kim
et al. (2022)).

Now we can start the proof of Theorem 5.2.

Proof of Theorem 5.2. At time t, from the optimistic rule in Equation (6), denote
(x4, 5t_1) +— argmax (g(x;6),0 —bp) (50)

TEX,0EW, 1
We use 71 (T) = T for brevity. From Equations (48) and (49), we define the combined set of
timesteps as

T={T2UTsUTa}.

Then we have,

T—|T1|
Regret(T) < |T1| + Z u(h(@7 ) — (h(zr)))
- T—|Th
<IT+ Tl + 1T+ Tl + > 1t ¢ THulh(aly)) — mb(@rm)))]
~ 2 ~ i T ‘Tll
< drdv{? —|—24f{dl/§,12 HAd+1+ > 1t & THu(h(ahy) — mlh(z.w))].
t=1

=:Regret¢(T")
(G

where the second inequality follows from the definition of 7, and the last inequality follows from
Propositions G.3 and G.4. For Regret®(T"), we have

T—|T1l

Regret™(T) = S 1{t ¢ T} [1(g(e" 1:00) T (6" — 00)) — j(g(re):60) T (6" — 60))]
T—|T|

< Y 1{t ¢ THu(g(@r )i 00) T (Bry—1 — 00)) — ilg(zr(1): 00) T (07 — 6o))]
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where the equality follows from Lemma 6.1, and the inequality follows from the optimistic rule in
Equation (50) since 6, (;y_1,6* € Wy (;)—1. With the definition of o(x, #’,6") at Equation (32), we
can continue with

e B
Regret®(T) < Y 1{t & T}j(g(x+(1); 60) (8" = 60))g(r (1 60) " (1)1 — 67)]
(term 1)
T—|T1l

+ Z 1{t ¢ THa(zr (), 0-(t)-1. 0)[9(2- (115 00) T (Orry—1 — 09)]]. (52)

(term 2)
where we used a second-order Taylor expansion and the fact that |ji| < f.

For (term 2) we have
T—|T1]

(term2) < > 1{t & T} [g(xr(t):00) " (Ore)-1 — 0°))?]
t=1
T—|Ta|

< Z Lt ¢ T} lg(erwsb0)/Vimliy - mlfrwr =0, - 3

For [|g(z7(1); 90)/\/@@:&_”, we have
lo(ry: 60)/Vimllw—1_ < V3lg(arw;:60)/Vmllg=: o

< V3hllg(2r(y; 00)/vVmlly A (54)
where the first inequality follows from Proposition G.2 and the second inequality follows from
Assumption 6.3. For \/>||07(t) 1= 0"[lw,,_,,wehave

Vil =0 lw,,
< Vml0ry—1 = 0" llw.,,
< V81 = 6"l
(\FH@ 1= Oy Wy o+ V|01 — Q*HWTm—l)
< 2”5(3&)_1’ o)

where the first and the second inequality are due to the fact that 7(t—1) < 7(¢)—1and W, < W, for
all ¢, respectively. The third inequality follows from the triangle inequality, and the last inequality

follows from Lemma 5.1 since 57(,5),1, 0* € Wr(+)—1. Plugging Equations (54) and (55) back to
(term 2) gives

T—|T1]
2
(term2) < 3 1{t ¢ T} 3ullglari )/ VilE 4043 )
t=1
22
<126(57)" 30 ¢ TY lg(wn: b0)/Vmlly
t=1

where the inequality holds since V( ) is monotonically non-decreasing in ¢. By the definition of 73,
we have [|g(2,@); 90)/\F||v—(1 < 1forallt € [T — |T1]|]. Therefore,
Lr(t—1)

Ut ¢ T} - lg(ereys00)/Vimly  =min{11{t ¢ T} - llg(ers:b0)/vimly- |
<mﬂHMWWWfM4J
min {1, lg(er: 00) V% s}, (56)

Vo
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where the last inequality follows from the fact that A\g < \;. Substituting Equation (56) gives

T-|7Ti|
2
(term 2) < 126 ()" Y mm{l 19(x71); 00)/v/m ||~—(1 )}
=1 t—1

det V.. (r_ 1))

(2)
< 24/1( ) log det rrgl

T
< 245 (f”)” log det (Z ﬁg(wt; 0o)g(xt; 00) " + I>
0

t=1

< 24k (W), (57)
where the second inequality follows from Lemma H.2, and the last inequality follows from the
definition of d.

For (term 1), we consider 2 cases where:
(case 1). if fi(h(zr 1)) < (f(2r(1); Orr)))
(case 2). if fi(h(zr (1)) > 1(f(2r(1); Orr)))

In (case 1), for (term 1), we continue with

T—|T1| _
> 1{t & THirlg(xr();00) (0% = 00))g(2 72y 00) T (O (1)1 — 07)]
) T—|T1l
= 3" 1t & T\ ilh(we)y i ()90 00) T Oriy—1 — 0)
t=1
T—|T1]
< Z H{tgTh- \/M \/M (T7(1); Or( ))g(zr(t);ﬁo)T(gf(t)—l*9*), (58)

where the last 1nequahty follows from the assumption of (case 1). For brevity, we denote g(x¢; 6p) =
(1(f(;6:))g(+; 60). Notice that we can represent W as W, = i, Lg(x4;00)g(x;00) T +
A:I. Then we can continue as
T—|T1]
(term 1) < Z Wt ¢ T}/ i(h(zre))) - g(zr 90) (ef(t) 1 —0%)
t=1
T—|Th

< >0t e T \Jilh(@ew)) 9@ 00)/Vmlly—1 Va1 — 0w,

r(t-1)
For 1{t ¢ T }||g9(x+(); GO)HET_(LM we have

Wt & Th-9(2r: b)llw:y —mm{l Lt & T} 3(eey; 00)/v/mllw- 1)}

< min {1, (-3 00)/ vVl s} (59
where the inequality follows from the definition of 7, and the fact that Ay < A, for all ¢. Also, using
the previous results of Equation (55), we have /m/||0)—1 — 6* ”Wm by < 2u((z) 1~ Substituting
these back gives

T—|T|
(term 1) < 2v7 Z Vih(z @) {1 1g(2 723 00)/\f|\~—(1f_1)}
T—|T1] —|T1|
2 .
<@ | 3 ilh(wea)- Z {1 lateros00)/ vl
=1 t—1 —T1(t—1
(term 3) (term 4)
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where the first inequality is by the monotonicity of /LEQ) in ¢, and the second inequality follows from

the Cauchy-Schwarz inequality. For (term 4), we have

T—|Thl
det W
7 (T—|Tl)
1 lg(z ;0 _ <1/2log — =11
> {Llitareito/ v} \/ E— oot

IN

T .
Ty; 60
2log det (Z Mitt))g(fft; 00)g(2¢;00) T + I)
t=1

m/\()
< V24,

where the first inequality follows from Lemma H.2, and the last inequality follows from the defini-
tion of d.

For (term 3), we have

T
(term 3)* <> i(g(w1;60) " (6" — 60))
=1
T T
<Y ilg(xy;00) (0" = 60)) + > alwy, 77, 67)(g(xi; 60) — g(w7560)) T (67 — 6o)
t=1 t=1

oy, z7,0%)(g(e;00) — g(27:60)) T (0% — bo)

Il
%S

+
MH

~
Il
A

(e, z7,0%)(g(]500) — g(xe:60)) T (0% — 6o)

IA

%=
+

E

~
Il

1

lg(x7500) T (0" — 00)) — p(g(e:60) " (0" — bo))

I
EAES

+
M’ﬂ

~
Il

1

plh(zxp)) = p(h(z:))

*
Il
-

I

AR ES
+

g 1]~

+ Regret(T). (60)

Here, the second inequality follows from a first-order Taylor expansion together with the bound
lii] < [ and the definition of «a(z’,2”,6) in Equation (32), the first equality follows from the
definition of *, namely 1/x* = L Zthl f1(h(z})), the third inequality uses the fact that h(z}) >
h(x;), the second equality follows from the mean-value theorem, and the final equality follows from
the definition of regret.

Finally, substituting (term 3) and (term 4) back gives

(term 1) < 2042\ /Regret(T) + T/x* - V 2d. 61)

Now we consider about (case 2), where fi(h(x(1))) > f1(f(2r1); 07())). For (term 1), we have
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T—|T1| _
> 1t & THi(g(wr(1);00) T (0" = 00))9(7(1); 00) T (1)1 — 67)]
t=1
T—|T1l

< Z 1{t & T} - fu(g(x7(1); 00) T (Orty — 00))9(22(1);00) T (1)1 — 07)

(term 4)
T—|T1l

+ Z L{t ¢ T} -1 [g(xr):00) " (Orey — 07)g(@r(1y: 00) T (Briry—1 — 07,
t=1

(term 5)

where the inequality follows from the Taylor expansion, and by the fact that |ji| < & < 1. For (term
5) we have,

T—|T1|
Z L{t ¢ T} 1-[9(2r(6):00) " (Brgey — 0%)g(2r 2y 00) T (Or(e)—1 — 07)]
t=1
T—|T1|

< > ]1{t¢T}-Hg(mr(t)aoo)/\/m@:l

(t—1)

$ ATl — Ol X o1 — Ol
We have 1{t ¢ T} - lg(er)i60)/ Vil | < SrminL lo(er: 00/ Vs, } using
Equations (54) and (56). Also we have f\\GT(t) 1 —0* ||ET(, y < 21/((3)
For \/m||0 ) — 0" lw,_,,» we have
VllOr @y = 0%llw. ., <Vl — 0w, < Vmlloem — 0w, <v.

Plugging results back gives
T—|Ti]

(termS) < 3 3ﬁmln{1 lo(ery:60)/ Vil )}. V2w

t=1

using Equation (55).

T—|Th|

< 6 ()’ me{l 9w b0)/Vmll-s

‘r(f 1)

det KT T
< 12/1( (2)) log nglﬂh
< 12kd| (uq(«2 ) ) 2
where the second inequality is because V_EQ(g) is non-decreasing in ¢, the third inequality follows from
Lemma H.2, and the last inequality follows from the definition of d.

Now, for (term 4), we have
T—|T1]

Yo Mt ETh g(@rwyifo) (Orey = 00))9( (1) 00) T (Br(ty-1 — 07)

t=1

T—|T1]
= Z L{t ¢ T} il f(@r(ey; 0r0))9(Tr(); 00) T (Or(i)—1 — 07)
t=1
(term 6)
T—|T|

+ Y {t¢ T} (ﬂ(g(xr(tﬁ@o)T(@T(t —00)) — f1(f(z7(1); 0 (t))))g(xr(t);90)T(§r(t)—

L= 0Y).

(term 7)

35



Under review as a conference paper at ICLR 2026

For (term 7), recall the definition of 75. Then for some absolute constant C3 > 0, we have

T—|T1|
(term 7) < Z ‘ﬂ(g(fﬂr(t); 00) " (0-(t) — 00)) — fu(f (@ (1); 97(t)))‘ 9(@r1); 60) T (Or(y—1 — 07)]
t=1
T—|T1|

< > R‘g(wf(t);Qo)T(er(t) —0o) — f(mv'(t);e'r(t))’ -1

< T-C3Rm~Y0\/logmL*T?*/3 ),/
<1,
where the second inequality follows from the definition of 75, the third inequality is due to the

fact that p(-) is a R-Lipschitz function, the third inequality follows from Lemma C.5, and the last
inequality follows from the condition of m in Condition C.2.

For (term 6), we have

T—|Thl

Z L{t & T} (£ (Zriry: Or0)))9(@r(ayi 00) T (Oriy—1 — 07)
t=1
T—|T1|

< Z H{tg T} \/M (T7()) \/M F@r(); 0-))9( @113 00) T (Or(i)—1 — 67,

where the inequality follows from the assumption of (case 2). Notice that expression is same as
the (term 1) of (case 1) at Equation (58). Therefore, using the result of Equation (61), we have

(term 6) < 207\ /Regret(T) + T/k* - V 2d.
Finally, plugging (term 4-7) into (term 1) gives,

(term 1) < 207 /Regret(T) + T/r* - V2d + 126d(v>)* +

Recall the upper bound of (term 1) in (case 1) at Equation (61), which is (term1) <

2%}2) V/Regret(T) + T/k* - V 2d. Since the upper bound value in (case 2) is strictly larger than
that of (case 1), we give a naive bound of (term 1) by using the result of (case 2).

Now, substituting (term 1-2) into Equation (52) gives

Regret®(T) < 2v\?)\/Regret(T) + T/k* - Vod+ 36md( )

Substituting Regret®(7") into Equation (51) gives

Regret(T') < 21/;2) VRegret(T) + T/x* - V2d + 4d + 4HJ(V§«1))2 + 60/{(7(1/7(?))2 +2.

Finally, using the fact that for b,c > Oandz € R, 22 — bz — ¢ < 0 = 2?2 < 2b% + 2¢, and
substituting 4, {7 = O(S2 Vi + $25), we have

Regret(T) < 16(1/(T2)) + 41/ \/ 2dT//£ +8d + SKd( ) + 120&J(V(T2))2 +4
< (5(52(2\/T//<;* + 52'5d0'5\/T//£* + S kd? + 4P kdl 4 S5I€(§),
finishing the proof. O
G.3 PROOF OF PROPOSITION G.2

We suitably modify Lemma 5 of Jun et al. (2021) for our setting. Define d(t) =
| f(24;0,) — g(z45600) T (0% — 65))|. By the definition of T3, for all ¢t ¢ T1(T), d(t) < 1. Recall
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the definition of «(z’, 2”") at Equation (32). Then for all ¢ ¢ 71 (T'), we have

(i 80) > G (a6l o) (6" — b0)
> T g P alatas 00)T 6" — 60)
= sty Mt 00) 0 = 0)
> E T M) 0 = 60)
> ST a0 (O = 0),

where the first and the second inequalities follow from the self-concordant property in Lemma H.3,
the third and the fourth inequalities hold since d(¢) < 1. This implies that

1

1
W, = T Tl —r 07) = SH,(67),
In a similar way, we can have
H,(07) = : w, - w,.
2max{d(t')}wemynwegny) +17 3

Combining these results, we finish the proof.

G.4 PROOF OF PROPOSITION G.3

We start with the upper bound of |77 |. For an absolute constant C3 > 0, we have:

[71] - min{1, 12} <

Nk
=

in {1, (203 01) — gl 00) (0" = 60) 2}

o~
Il
-

<

[M]=
B

in {1,210/ (0:00) — gl 00) T (0 — 00) |2 + 2lg (w3 00) T (6, — ")},

o~
Il

1

For 2|f(x;0:) — g(e;00) " (6 — 60)]*, we have |f(z4:0:) — g(w4;600)" (6 — 6o)] <
Cym~Y/6\/logmL32/3)\; % using Lemma C.5. Since the error term is positive, we can take it
out of the min{1, -} term, which gives

T
T2l <" min {1, 2lg(wi:00) (6 — 0 } + Cim~* (log m) LT/ 435 /¥
t=1

T
<23 min {1, g 00)T (0 — 0) P} +1,
t=1

where the last inequality is due to the condition of m at Condition 4.4, and the fact that min{1, ab} <
amin{l,b} if a > 1. We further proceed as

T
ITh] < QZmin {1, ||9(33t;90)/\/%||§1;11(9*) -m||0y — 9*“%1171(0*)} +1
=1

For m||f; — %[|3, _ g+ We have

% * 1 2
ml|0r = 013, (pey < mllOs = 073, 0y < (5)".
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Since Vt(l) > 1 we can take out of the min{1, -} term, and by the monotonicity of Vt(l) in ¢, we have

T
i) < 2(v”)” 2 min {1 g3 00) /vl g } 1

T
< 2n(wf?)" > min {1, lg(aes 60) /Vml12 - | +1
t=1

(1))2 o det ‘7T
& det ol
< drd()? + 1,

+1

where the second inequality follows from x > 1, and Hy(0*) = (1/k)V; = (1/k)V;, the third
inequality follows from Lemma H.2, and the last inequality follows from the definition of d.
Next we can show the upper bound of | 73| in a similar way:

T—|T1(T)|
T2 - min{1,1%} < Z min {1,19(2- 0 00) T 01— 0°)1*}

T\7’1

< X mm{l,||g<acf<t>;%)/MPM(IH> mlfry 1 — 0* I, }

We have ||g(z- ) 90)/\F|| < V36[lg(Tr () 90)/\/7n||%/,1 using the result of Equa-
Hor(t-1) Lr(e-1)

tion (54). Also, we have m||9T(t) 1= 0%
(2) ;

W, < 4(1/52)71)2 using the result of Equation (55).

Since v, is non-decreasing in ¢, substituting results back gives

T—|T(T)]

Tel < 126(47)" > win {1, gl ():00)/ Vil
t=1

det Vo7

(2))2
<24 1
- K( ) 8 det kAol

where the second inequality follows from Lemma H.2, and the last inequality follows from the
definition of d, finishing the proof.

G.5 PROOF OF PROPOSITION G.4

We begin with the case of 73. We define a new design matrix that consists of all feature vectors of
V., up to time ¢, in their original order, including only those corresponding to timesteps in 7T3(t):

t=|T1(t)]
Vi= Z —1{i € Tabg(wr (01 00)9(r(iy; 00) T+ Aol
For brevity we define j(t) = 7(¢t — |T1(t)[). Then we have
~ i
det(Vr) = det (Z %l{i € Ts}9(27(i); 00)9(27(3); 00) T + AoI)
i=1

= det (ir(j(T)fl)—"_%]l{T(j(T)) € T3}9(x-(i(1)); 00)9(r(j(1)); Oo) )
= det (V)1 ) (1+ L{rGT)) € ToHlg(rgierys o) /Vmlls . )

fT(J(T) 1)
cery-n ) (1T HTGD) € ),

<t

WV,
<t

det (
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where the third equality follows from the matrix determinant lemma, and the inequality follows from
the definition of 73. Repeating inequalities to V__(0) gives

)T7|7—1(T)|

det(Vr) > det (KT(O)) : (1 +1{r(§(T)) € T3}

Therefore, we can rewrite as

= det (ko) - (1 + 1)/,

1 det V 1 det V. ~
-log LT < -log et Vr <2d
og 2 det kAl ~ log2 det kAol

\Elgl

)

where the last inequality follows from the definition of d. We can prove | 74| < 2d in a similar way,

starting by defining ﬁt = ZE;LTl(t)l Wl{z € Ta}g(r (i) 00)9(xr(1); 00) T + Aol and
following the above process.

H AUXILIARY LEMMAS
Lemma H.1 (Freedman (1975)). Let M,v > 0 be fixed constants. Let {x;}}_, be a stochas-

tic process, {G;}; be a filtration so that for all i € [n], x; is G;-measurable, while almost surely
Elz;|Gi—1] =0, |z;| < M and

ZE[SEﬂgZ,l] S V.
i=1
Then, for any § > 0, with probability at least 1 — 6,
> @i < /20log(1/0) + 2/3 - M log(1/5).
i=1

Lemma H.2 (Lemma 11 Abbasi-Yadkori et al. (2011)). Forany A > 0 and sequence {x;}I_, € R,
define Zy = XL+ "' w;ix] . Then, provided that ||z+||2 < L holds for all t € [T), we have

T
det Zr d\+ TL?
in{1 2 1<2l < 2dlog ————
> minL el < 21og G5 < 210 =3

Lemma H.3 (Lemma 7 Abeille et al. (2021)). For any z', 2" € R, we have,
1— 1=z = 2" 1
TR / i+ (" —o))dv < (=)
|2 — 2| 0
Also, we have,

1 (ol 1 o/
) (2" . (z")
it o =z [ s o 2

exp(|z’ —2"|) -1

‘Z’—Z”| )

I THOMPSON SAMPLING-BASED VARIANTS

In this section, we introduce the Thompson sampling-based variants of Algorithm 1, which we call
NeuralLog-TS-1. The proof for the regret of Neural-TS-1 can be obtained by exactly following the
proof of Theorem 3.5 of Zhang et al. (2021). To reuse the result of previous work, we match the
notations by using the following definitions:

oi(z)? = KJ)\tHg(l’;eU)/\/E”%/;l
v = VO = oAV (L4 VIS + LS + A

e =vp(l+ \/m)

and denote F; as a filtration containing the history of observations up to iteration ¢. Also define the
set of saturated points as

Si={reX: Al(x) >cr_100-1(x) + 26,1}, (62)
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where A;(z) = h(z}) — h(z) and €, = R~ 'es ;. Note that 2} ¢ S;.

In round ¢, for each = € X}, we sample a latent reward 7 () from the normal distribution
Vo € Xy, Ti(x) ~ N(f(z;0,1),v507 (2)),

and choose an arm following

xy = arg max 14 (z).
zeX,

Now we introduce two good events: First, define the event & (¢) when the following inequality holds
forall z € A;:

|h(x) — f(x;0;-1)| < vroy_1(x) +€,_. (63)

Then, by the direct result of Lemma 6.4, P(£;(t)) > 1 — ¢. Next, define the event £>(¢) when the
following inequality holds for all z € A}:

|7 (z) — f(2;60i-1)|] < vr/2log(Kt?)or—1(x). (64)

Since 7 () is sampled from N (f(z;60;—1),v40?_,(x)), we can use the concentration inequality on

Gaussian distributions to obtain P(£;(t)|F;—1) > 1 — 1/t for any possible filtration F;_;.

Next, recall the definition of the set of saturated points in Equation (62). We reuse the result of
Lemma 4.5 of Zhang et al. (2021) as follows

P(z; € X\ St | Fio1,E1(t)) > (dey/m) ™t —1/12. (65)

We skip the proof as the same argument can be found in Section B.4 of Zhang et al. (2021). Instead,
we give a high-level intuition. By construction, saturated arms are those whose posterior mean
reward is significantly worse than that of the optimal arm. Under the good events & (¢) and &5 (¢),
this gap is reflected both in their true means and in their posterior samples, so with high probability
a saturated arm cannot catch up to the optimal arm in terms of the sampled reward.

On the other hand, the posterior for the optimal arm enjoys an anti-concentration property, which
is, with constant probability, its sample exceeds its mean by a suitable margin. This is where the
factor (4e/7) ! comes from. Combining these facts, with constant probability the sampled reward
of the optimal arm is larger than the samples of all saturated arms, so the arm selected by Thompson
sampling must be unsaturated. The 1/¢? term accounts for the small probability that one of the good
events &1 (t) or E(t) fails.

Now, with the previous results in place, we derive an upper bound on the expected instantaneous
regret. Define d; = h(z}) — h(x;). Again, we reuse the result of Lemma 4.6 of Zhang et al. (2021)
as follows:

Eld; | Fi—1,E1(1)] < 4dey/m CrepVLE[min{1, o4 (ve)} | Fir, E1(t)] + 4ej_q + 2/12,

where C; > 0 is the same absolute constant that appears in Lemma C.4. By Equation (65), Neural-
TS-1 selects an unsaturated arm with constant probability, so in expectation the posterior standard
deviation of the played arm is comparable to that of the best unsaturated arm. Under the good
events, the posterior means stay close to the true means and saturated arms have very small gaps,
which allows us to bound the instantaneous regret d; by a constant multiple of min{1, o¢(x;)} plus
the approximation terms 4¢, _, +2/t2. Taking the conditional expectation and using a global control
on the posterior variances over time then yields the stated bound.

Now we are ready to start the proof for the regret. Define a stochastic process (Y;)7_, where
dy = d;1{&(t)}
X, = dy — 4ey/7CreVImin{l, oy ()} — 4€,_, — 2/t?

t
Yi=) Xi, Yo=0
i=1

We can see that (Y;) is a supermartingale with respect to F; since E[Y; — Y;—1 | Fi—1] = E[X; |
Fi—1] < 0. Now we prepare to apply the Azuma-Hoeffding inequality for a supermartingale:
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Lemma 1.1 (Azuma-Hoeffding inequality for supermartingale). If a supermartingale Y;, corre-
sponding to a filtration F; satisfies |Y: — Yi_1| < By, then for any (0, 1), with probability at least
19,

t
Y~ Yy < | 2log(1/6) > B?.
i=1

To derive an upper bound on |Y; — Y;_1|, we have

|V; — Yi_i1| = | X,| < |dy| + 44ey/TCre VL min{1, oy (ay)} + €| + 2/t
< 4+ dde/TCler L + 4.

where the last inequality follows from Lemma C.4, and 1/t?> < 1. Now, applying Lemma I.1 with
By = 4+ 44e\/TC%ci L + 4€,_; to (Y}), with probability at least 1 — &, we have

T T T T
Z dy < Z 44e/TCreV L min{1, oy ()} + Z de,_ 1 + Z 2/t
t=1 =1 =1 t=1

(term 1) (term 2)
2 / 2
2log(1/6) Z (4+ 4ey/TC3e, L+ 4€,_,) " (66)
t=1
(term 3)

For (term 1), applying Cauchy-Schwarz inequality,

T
(term 1) < ddey/TCy oA (1 + v/210g(KT2)VRL, | T min{1, [|g(wi;60)/v/ml? . }
t=1 i
=0 (Szg\/ KT + S22V /@ET)

For (term 2), by the condition of m in Condition 4.4, S/ 4¢,_, < 1,and 3°[_, 2/t* < 2/3.
For (term 3), since v\ = O(S? Vi + $25) and A\;'/? = O(5°9)

(term 3) < (4 + 44e/TC2I A2 (1 + /210g(KT?)) + 4¢y)\/210g(1/0)T

~0 (52-5\/5 + SW:F)

Combining results, we have
T ~ ~ ~ o~
Y d <0 (Szd\/nT + 825V kdT + S3ﬁ)
t=1

with probability at least 1 — §. Notice that Regret(T") < 23:1 Rlh(xf) — h(x¢)|. Therefore

RZthl dy upper bounds the regret with probability at least 1 — 0. Finally, replacing § by §/2
for both cases and applying the union bound finishes the proof.

Remark 3 (Discussion on Thompson sampling-based variants of NeuralLog-UCB-2). In analogy
with the Thompson sampling extension of NeuralLog-UCB-1, one can also consider a Thompson
sampling-based variant of NeuralLog-UCB-2 as follows. Define o}(z)? := M| g(x; 00)/\/ﬁ||wf1

and v, = ut(z)l)\glﬂ, and for all x € X, sample 7(x) ~ N (g(x;00) " (01—1 — 0o), V3021 (z)),
then choose x; = arg max, ¢ y, 7y (x). However, our current regret analysis for Thompson sampling-
based algorithms proceeds by defining a stochastic process associated with the per-round regret and
then applying a concentration inequality for this process to obtain an upper bound on the per-round
regret. In order to fully exploit Wy from Algorithm 2 within this framework, a much more delicate
analysis of the second-order Taylor expansion of the per-round regret would be required.
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More concretely, if we proceed the analysis in a naive way and consider the regret bound obtained
for such a NeuralLog-TS-2 algorithm, then, denoting by (term 1°) the counterpart of (term 1) in
Equation (66), and focusing only on the dependence on k, we obtain

T T
(term 1) < Y _min{L, [lg(x: 00)/vmlly -} < y [T D min{1, g(w;60)/Vmll}, -, }
t=1 t=1 o

where we see that the additional \/k factor is reintroduced. Treating this issue within our current
proof technique therefore appears to be a non-trivial problem, and we leave a sharper analysis of
such Thompson sampling-based variants of NeuralLog-UCB-2 for future work.

As we have seen in Remark 3, although NeuralLog-TS-2 does not attain a regret bound with the same
dependence on k as NeuralLog-UCB-2, the algorithm itself is well defined, just like NeuralLog-TS-
1. In Section J, we present additional experiments including these two algorithms and demonstrate
their practical performance.

J ADDITIONAL EXPERIMENTS

We compare five baseline algorithms with our algorithms including the Thompson sampling-based
variants introduced in Section I. Where NeuralLog-TS-1 and NeuralLog-TS-2 both choose the arm
with best sampled reward where

For NeuralLog-TS-1, 7¢(x) ~ N (f(z;60;_1),v207 ,(z)),
For NeuralLog-TS-2, 7}(x) ~ N (g(z;00) " (0:_1 — 6o), ViFoi2 ,(2)).

We include the synthetic latent reward functions which are also used in Zhou et al. (2020): hy(x) =
10(x"0)%, hs(z) = 27O Ox, hg(x) = cos(3z"0). All other experimental parameters and details
follow the same as described in Section 7.

Next, we include 3 more K -class classification tasks from Dua & Graff (2019): We reuse the same
min-max normalization to [—1, 1] as described in Section A. In the magi c dataset (MAGIC Gamma
Telescope), we convert all features to real-valued variables, impute any missing entries with 0, and
then map the original class labels to a binary label by setting y = 1 for gamma (‘g’) events and y = 0
for hadron (‘h’) events. In the banknote dataset (UCI Banknote Authentication), we use the four
real-valued attributes provided in the repository and keep the original binary labels y € {0, 1}. For
the phoneme dataset (Connectionist Bench (Nettalk Corpus)), we treat any categorical fields as
numeric by casting them to an appropriate numeric type, and replace missing values with 0.

Figures 4 and 5 summarize the average cumulative regret of the five baseline algorithms together
with our two Thompson sampling-based variants. Consistent with the results already observed in
Figures 1 and 2, our NeuralLog-UCB-2 algorithm steadily achieves the best performance across the
considered settings. Moreover, the two Thompson sampling-based variants also exhibit competitive
performance compared to the baselines. Figure 6 demonstrates the influence of d on data-adaptive
algorithms by comparing cumulative regret across different values of d.

240 { o= NeBF-UCB 0.0012 | —— NcBF-uCB 400 { —e— NCBF-UCB
~=— Logistic-UCB-1 ~=— Logistic-UCB-1 ~=— Logistic-UCB-1
200 | =+~ ada-OFU-ECOLog —a— ada-OFU-ECOLog —a— ada-OFU-ECOLog
~%— NeuralLog-UCB-1 | 0.0009 1 s Neurallog-UCB-1 3207 v NeuralLog-UCB-1
160 | —#— NeuralLog-uce-2 ~4— NeuralLog-UCB-2 —e— NeuralLog-UCB-2
—o— NeuralLog-T5-1 0.0006 { —#— NeuralLog-TS-1 240 4 —— Neurallog-Ts-1
| = NeuralLog-Ts-2

—+— NeuralLog-TS-2 g —+— NeuralLog-TS-2
0.0003 4 € 1604
Jum=—

0.0000 + #
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~0.0003 4
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(a) ha(z) = 10(z " 6)* (®) hs(z) =2 0T Oz (c) he(z) = cos(3z T 0)

Figure 4: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.
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Figure 5: Comparison of cumulative regret of baseline algorithms for real-world dataset.
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Figure 6: Comparison of cumulative regret of baseline algorithms with varying effective dimension
d.
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K ADDITIONAL FUTURE DIRECTIONS

Although we successfully remove the direct dependence on p from the regret bound, a direct de-
pendence on p reappears when we examine the per-round computational complexity. This is prob-
lematic in neural bandit settings where p scales with the horizon 7', making the resulting algorithm
computationally inefficient.

Let us briefly analyze the computational complexity of our algorithms. Since Algorithms 1 and 2
have the same order of complexity, we focus on Algorithm 1. For action selection, we must compute
f(2;6;_1) for K actions, which costs O(p) per action, and the quantity [ g(x:6o)/v/m/, - 1, which

costs O(p?) per action. Hence, the action-selection step has complexity O( K p?). The updates of the

parameters A, ¢, and z/t(l) cost O(pQ) by their definitions. For neural network training, at round ¢ we
apply gradient steps over the full dataset of size ¢, which costs O(¢p) per gradient step. Performing

Jy iterations therefore costs O(J;tp), where J; = O(T L/ ;). Finally, updating the design matrix V;
costs O(p?). Altogether, the per-round computational complexity is O(J;tp+ Kp?+p?). Moreover,
Verma et al. (2025) can be seen to have essentially the same computational complexity, as their
algorithm and training pipeline are close to ours.

In contrast, in the classical logistic bandit literature the algorithms operate directly in the feature
space of dimension d, which is typically much smaller than p. For example, Filippi et al. (2010);
Faury et al. (2020) obtain overall complexity on the order of O(d?K + d*>T'), and there has been
significant recent progress on designing computationally efficient algorithms for logistic bandits:
Abeille et al. (2021) achieve O(d>KT), and Faury et al. (2022) even propose an algorithm with

complexity O(d?K). However, these favorable guarantees rely crucially on the strong assumption
that the latent reward model is linear in the feature representation. From the perspective of practical
applications, it is therefore important to develop neural bandit algorithms that retain the modeling
flexibility of neural networks while achieving comparable computational efficiency, which we view
as an important direction for future work.

As one illustrative example, in light of the connection between NTK-based neural bandits and ker-
nelized bandits, one could consider importing techniques such as Nystrom approximation as in
Zenati et al. (2022) to reduce the effective computational cost in the neural bandit setting. Another
approach is to adapt the method proposed in Xu et al. (2022) where an NTK-based neural bandit
formulation is also used, but the neural network is trained so that its output is not the reward itself,
but instead a new d-dimensional feature vector. The problem is then reduced to solving a linear
bandit in this learned feature space with respect to an unknown parameter #*. This strategy can
substantially reduce computational complexity and is attractive from an applied viewpoint, but it
requires an additional Lipschitz-type assumption on the neural network on the theoretical side.

L USE OF LARGE LANGUAGE MODELS

This manuscript is reviewed and edited for grammar and clarity using ChatGPT-5.
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