

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NEURAL LOGISTIC BANDITS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the problem of *neural logistic bandits*, where the main task is to learn an unknown reward function within a logistic link function using a neural network. Existing approaches either exhibit unfavorable dependencies on κ , where $1/\kappa$ represents the minimum variance of reward distributions, or suffer from direct dependence on the feature dimension d , which can be huge in neural network-based settings. In this work, we introduce a novel Bernstein-type inequality for self-normalized vector-valued martingales that is designed to bypass a direct dependence on the ambient dimension. This lets us deduce a regret upper bound that grows with the *effective dimension* \tilde{d} , not the feature dimension, while keeping a minimal dependence on κ . Based on the concentration inequality, we propose two algorithms, NeuralLog-UCB-1 and NeuralLog-UCB-2, that guarantee regret upper bounds of order $\tilde{O}(\tilde{d}\sqrt{\kappa T})$ and $\tilde{O}(\tilde{d}\sqrt{T/\kappa})$, respectively, improving on the existing results. Lastly, we report numerical results on both synthetic and real datasets to validate our theoretical findings.

1 INTRODUCTION

Contextual bandits form the foundation of modern sequential decision-making problems, driving applications such as recommendation systems, advertising, and interactive information retrieval [Li et al. \(2010\)](#). Although upper confidence bound (UCB)-based linear contextual bandit algorithms achieve near-optimal guarantees when rewards are linear in the feature vector [Abbasi-Yadkori et al. \(2011\)](#), many real-world scenarios exhibit nonlinear reward structures that demand more expressive models. Motivated by this, several approaches have been developed to capture complex reward functions that go beyond the linear case, such as those based on generalized linear models [Filippi et al. \(2010\)](#); [Li et al. \(2017\)](#), reproducing kernel Hilbert space [Srinivas et al. \(2010\)](#); [Valko et al. \(2013\)](#), and deep neural networks [Riquelme et al. \(2018\)](#); [Zhou et al. \(2020\)](#).

Among these settings, *logistic bandits* are particularly relevant when the reward is binary (e.g., click vs. no-click); the random reward in each round follows a Bernoulli distribution, whose parameter is determined by the chosen action. Extending logistic bandits via a neural network-based approximation framework, we consider *neural logistic bandits* and address two significant challenges: (i) handling the nonlinearity of the reward function, characterized by the worst-case variance of a reward distribution $1/\kappa$ where κ scales exponentially with the size of the decision set, and (ii) controlling the dependence on the feature dimension d , which can be extremely large due to the substantial number of parameters in deep neural networks.

For logistic bandits, [Faury et al. \(2020\)](#) introduced a variance-adaptive analysis by incorporating the true reward variance of each action into the design matrix. This avoids using a uniform worst-case variance bound of $1/\kappa$ for all actions, thus reducing the dependency of the final regret on κ . Building on this, [Abeille et al. \(2021\)](#) achieved the best-known κ dependence. However, both algorithms explicitly rely on the ambient feature dimension d , so their direct extensions to the neural bandit setting induce poor regret performance. On the other hand, [Verma et al. \(2025\)](#) derived a regret upper bound for the neural logistic bandit that scales with a data-adaptive effective dimension \tilde{d} rather than the full ambient dimension d . This approach offers an improved performance measure as d increases with the number of parameters in the neural network, often deliberately overparameterized to avoid strong assumptions about the reward function. However, their method still relies on a pessimistic variance estimate, and integrating the variance-aware analysis of [Faury et al. \(2020\)](#) into a data-adaptive regret framework remains challenging, resulting in a suboptimal dependence on κ .

054
 055 Table 1: Comparison of algorithms for (neural) logistic bandits. d denotes the dimension of the
 056 feature vector, and T represents the total number of rounds. p denotes the total number of parameters
 057 of the underlying neural network, and \tilde{d} denotes the effective dimension.
 058

Algorithm	Regret $\tilde{\mathcal{O}}(\cdot)$	
	Logistic Bandits	Neural Logistic Bandits
NCBF-UCB Verma et al. (2025)	$\kappa d \sqrt{T}$	$\kappa d \sqrt{T}$
Logistic-UCB-1 Faury et al. (2020)	$d \sqrt{\kappa T}$	$p \sqrt{\kappa T}$
NeuralLog-UCB-1 (Algorithm 1)	$d \sqrt{\kappa T}$	$\tilde{d} \sqrt{\kappa T}$
ada-OFU-ECOLog Faury et al. (2022)	$d \sqrt{T/\kappa^*}$	$p \sqrt{T/\kappa^*}$
NeuralLog-UCB-2 (Algorithm 2)	$d \sqrt{T/\kappa^*}$	$\tilde{d} \sqrt{T/\kappa^*}$

068 Motivated by these limitations, we propose algorithms that do not require worst-case estimates in
 069 both the variance of the reward distribution and the feature dimension, thus achieving the most
 070 favorable regret bound for neural logistic bandits. Central to this approach is our new Bernstein-type
 071 self-normalized inequality for vector-valued martingales, which allows us to derive a regret upper
 072 bound that scales with the effective dimension \tilde{d} , and at the same time, matches the best-known
 073 dependency on κ . Our main contributions are summarized below:

- 074 • We tackle the two main challenges in *neural logistic bandits*: (i) a practical regret upper
 075 bound should avoid a direct dependence on d , the ambient dimension of the feature vector,
 076 and (ii) it needs to minimize the factor of κ , a problem-dependent constant that increases
 077 exponentially with the size of the decision set. To address these challenges, we propose a
 078 new Bernstein-type tail inequality for self-normalized vector-valued martingales that yields
 079 a bound of order $\tilde{\mathcal{O}}(\sqrt{\tilde{d}})$, where \tilde{d} is a data-adaptive effective dimension. This is the first
 080 tail inequality that achieves favorable results in both respects, while the previous bound of
 081 [Faury et al. \(2020\)](#) is $\tilde{\mathcal{O}}(\sqrt{d})$ which directly depends on d , and that of [Verma et al. \(2025\)](#)
 082 is $\tilde{\mathcal{O}}(\sqrt{\kappa d})$ that includes an additional factor of $\sqrt{\kappa}$.
 083
- 084 • Based on our tail inequality, we develop our first algorithm, NeuralLog-UCB-1 which guar-
 085 antees a regret upper bound of order $\tilde{\mathcal{O}}(\tilde{d} \sqrt{\kappa T})$. This improves upon the regret upper
 086 bound of order $\tilde{\mathcal{O}}(\kappa \tilde{d} \sqrt{T})$ due to [Verma et al. \(2025\)](#). Furthermore, we provide a fully
 087 data-adaptive UCB on \tilde{d} by adaptively controlling the regularization term of our loss func-
 088 tion according to previous observations. Our choice of UCB also avoids the projection
 089 step required in the previous approach of [Faury et al. \(2020\)](#), which was to constrain the
 090 parameters to a certain set during training.
 091
- 092 • We propose our second algorithm, NeuralLog-UCB-2, as a refined variant of NeuralLog-
 093 UCB-1. We show that NeuralLog-UCB-2 achieves a regret upper bound of $\tilde{\mathcal{O}}(\tilde{d} \sqrt{T/\kappa^*})$.
 094 This result matches the best-known dependency on κ while avoiding the direct dependence
 095 on d seen in $\tilde{\mathcal{O}}(d \sqrt{T/\kappa^*})$ given by [Abeille et al. \(2021\)](#). The improvement comes from
 096 the fact that NeuralLog-UCB-2 replaces the true reward variance within the design matrix
 097 with a neural network estimated variance, thereby maintaining sufficient statistics for our
 098 variance-adaptive UCB in each round and completely removing the worst-case estimate of
 099 variance κ . Our numerical results show that NeuralLog-UCB-2 outperforms all baselines,
 100 thus validating our theoretical framework.

2 PRELIMINARIES

103 **Logistic bandits.** We consider the contextual logistic bandit problem. Let T be the total number of
 104 rounds. In each round $t \in [T]$, the agent observes an action set \mathcal{X}_t , consisting of K contexts drawn
 105 from a feasible set $\mathcal{X} \subset \mathbb{R}^d$. The agent then selects an action $x_t \in \mathcal{X}_t$ and observes a binary (random)
 106 reward $r_t \in \{0, 1\}$. This reward is generated by the logistic model governed by the unknown latent
 107 reward function $h : \mathbb{R}^d \rightarrow \mathbb{R}$. Specifically, we define a sigmoid function $\mu(x) = (1 + \exp(-x))^{-1}$
 and denote its first and second derivatives as $\dot{\mu}$ and $\ddot{\mu}$. Then, the probability distribution of the

108 reward r_t under action x is given by $r_t \sim \text{Bern}(\mu(h(x_t)))$. Let x_t^* be an optimal action in round t ,
 109 i.e., $x_t^* = \arg \max_{x \in \mathcal{X}_t} \mu(h(x))$. Then the agent's goal is to minimize the cumulative regret, defined
 110 as $\text{Regret}(T) = \sum_{t=1}^T \mu(h(x_t^*)) - \sum_{t=1}^T \mu(h(x_t))$. Finally, we introduce the standard assumption
 111 on the problem-dependent parameters κ and R [Faury et al. \(2020\)](#); [Verma et al. \(2025\)](#):

112 **Assumption 2.1** (Informal). *There exist constants $\kappa, R > 0$, such that $1/\kappa \leq \dot{\mu}(\cdot) \leq R$.*

114 The formal definition of κ and R for the arm set \mathcal{X} and the parameter set Θ is deferred to Assumption
 115 [6.3](#). Notice that for the sigmoid link function, we have $\mu(\cdot), R \leq 1/4$.

117 **Neural bandits.** Neural contextual bandit methods address the limitation of traditional (generalized)
 118 linear reward models [Filippi et al. \(2010\)](#); [Faury et al. \(2020\)](#) by approximating $h(\cdot)$ with
 119 a fully connected deep neural network $f(x; \theta)$, which allows them to capture complex, possibly
 120 nonlinear, reward structures. In this work, we consider a neural network given by $f(x; \theta) = \sqrt{m}W_L \text{ReLU}(W_{L-1} \text{ReLU}(\dots \text{ReLU}(W_1 x)))$, where $L \geq 2$ is the depth of the neural network,
 121 $\text{ReLU}(x) = \max\{x, 0\}$, $W_1 \in \mathbb{R}^{m \times d}$, $W_i \in \mathbb{R}^{m \times m}$ for $2 \leq i \leq L-1$, and $W_L \in \mathbb{R}^{1 \times m}$. The
 122 flattened parameter vector is given by $\theta = [\text{vec}(W_1)^\top, \dots, \text{vec}(W_L)^\top]^\top \in \mathbb{R}^p$, where p is the total
 123 number of parameters, i.e., $p = m + md + m^2(L-1)$. We denote the gradient of the neural network
 124 by $g(x; \theta) = \nabla_\theta f(x; \theta) \in \mathbb{R}^p$.

125 **Notation.** For a positive integer n , let $[n] = \{1, \dots, n\}$. For any $x \in \mathbb{R}^d$, $\|x\|_2$ denotes the ℓ_2
 126 norm, and $[x]_i$ denotes its i -th coordinate. Given $x \in \mathbb{R}^d$ and a positive-definite matrix $A \in \mathbb{R}^{d \times d}$,
 127 we define $\|x\|_A = \sqrt{x^\top A x}$. We use $\tilde{O}(\cdot)$ to hide the logarithmic factors.

130 3 VARIANCE- AND DATA-ADAPTIVE SELF-NORMALIZED MARTINGALE 131 TAIL INEQUALITY

133 In this section, we first introduce our new Bernstein-type tail inequality for self-normalized martingales,
 134 which leads to a regret analysis that is variance- and data-adaptive. Then we compare it with
 135 some existing tail inequalities from prior works.

136 **Theorem 3.1.** *Let $\{\mathcal{G}_t\}_{t=1}^\infty$ be a filtration, and $\{x_t, \eta_t\}_{t \geq 1}$ be a stochastic process where $x_t \in \mathbb{R}^d$ is
 137 \mathcal{G}_t -measurable and $\eta_t \in \mathbb{R}$ is \mathcal{G}_{t+1} -measurable. Suppose there exist constants $M, R, \textcolor{red}{N}, \lambda > 0$ and
 138 the parameter $\theta^* \in \mathbb{R}^d$ such that for all $t \geq 1$, $|\eta_t| \leq M$, $\mathbb{E}[\eta_t | \mathcal{G}_t] = 0$, $\mathbb{E}[\eta_t^2 | \mathcal{G}_t] \leq \dot{\mu}(x_t^\top \theta^*)$, and
 139 $\|x_t\|_2 \leq N$. Define H_t and s_t as follows:*

$$141 \quad H_t = \sum_{i=1}^t \dot{\mu}(x_i^\top \theta^*) x_i x_i^\top + \lambda \mathbf{I}, \quad s_t = \sum_{i=1}^t x_i \eta_i.$$

144 Then, for any $0 < \delta < 1$ and any $t > 0$, with probability at least $1 - \delta$:

$$146 \quad \|s_t\|_{H_t^{-1}} \leq 8 \sqrt{\log \frac{\det H_t}{\det \lambda \mathbf{I}} \log(4t^2/\delta)} + \frac{4MN}{\sqrt{\lambda}} \log(4t^2/\delta) \\ 147 \quad \leq 8 \sqrt{\log \det \left(\sum_{i=1}^t \frac{R}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} + \frac{4MN}{\sqrt{\lambda}} \log(4t^2/\delta).$$

152 Our proof of Theorem 3.1 is given in Section D. The second inequality in Theorem 3.1 follows from
 153 Assumption 2.1 which states that $\dot{\mu}(\cdot) \leq R \leq 1/4$. Notice that the tail inequality is data-adaptive,
 154 as it does not explicitly depend on d . Moreover, the term $\log \frac{\det H_t}{\det \lambda \mathbf{I}}$ can decrease depending on the
 155 observed feature vectors (e.g., it becomes 0 if $\{x_i\}_{i=1}^t$ are all $\mathbf{0}$). By incorporating non-uniform
 156 variances when defining H_t , our design matrix enables a variance-adaptive analysis and eliminates
 157 the worst-case variance dependency κ .

158 The seminal work of [Abbasi-Yadkori et al. \(2011\)](#) provided a variant of the Azuma-Hoeffding tail
 159 inequality for vector-valued martingales, under the assumption that the martingale difference η_t is
 160 M -sub-Gaussian. Their tail bound shows that $\|s_t\|_{\tilde{V}_t^{-1}} = \tilde{O}(M\sqrt{d})$, where $\tilde{V}_t = \sum_{i=1}^t x_i x_i^\top + \lambda \mathbf{I}$.
 161 Extending this result to (neural) logistic bandits, [Verma et al. \(2025\)](#) incorporated the worst-case

162 variance κ into the design matrix $V_t = \sum_{i=1}^t x_i x_i^\top + \kappa \lambda I$ to deduce
 163

$$164 \|s_t\|_{H_t^{-1}} \leq \sqrt{\kappa} \|s_t\|_{V_t^{-1}} \leq M \sqrt{\kappa \log \frac{\det V_t}{\det \kappa \lambda I} + 2\kappa \log(1/\delta)}.$$

166 Here, the first inequality is a consequence of $H_t \succeq (1/\kappa)V_t$, and this step incurs the factor $\sqrt{\kappa}$. Note
 167 that this bound is also data-adaptive, yielding an overall order of $\tilde{\mathcal{O}}(\sqrt{\kappa \tilde{d}})$.
 168

169 Another line of work by [Faury et al. \(2020\)](#) provided a Bernstein-type tail inequality for the same
 170 setting considered in Theorem 3.1, using $|\eta_t| \leq M (= 1)$, $\mathbb{E}[\eta_t^2 | \mathcal{G}_t] = \sigma_t^2$, and $\|x_t\|_2 \leq N (= 1)$
 171 for all $t \geq 1$. Their analysis directly takes the design matrix H_t , and they deduce the following
 172 inequality avoiding the $\sqrt{\kappa}$ factor:
 173

$$174 \|s_t\|_{H_t^{-1}} \leq \frac{2M\textcolor{red}{N}}{\sqrt{\lambda}} \left(\log \frac{\det H_t}{\det \lambda I} + \log(1/\delta) + d \log(2) \right) + \frac{\sqrt{\lambda}}{2M\textcolor{red}{N}}. \quad (1)$$

175 The inequality requires a specific λ value for the regularization term, given by $\lambda = \tilde{\mathcal{O}}(dM^2\textcolor{red}{N}^2)$,
 176 to achieve the final order of $\tilde{\mathcal{O}}(\sqrt{d})$. Although $\log \frac{\det H_t}{\det \lambda I}$ is data-adaptive, the term $d \log(2)$ intro-
 177 duces an explicit dependence on d that cannot be removed (even with a different choice of λ). The
 178 tail bound has been used in subsequent works [Abeille et al. \(2021\)](#); [Faury et al. \(2022\)](#), making
 179 a dependence on d inherent. Hence, we need a new variance-adaptive analysis for neural logistic
 180 bandits.
 181

182 [Compared with Faury et al. \(2020\)](#), our tail inequality in Theorem 3.1 is derived from a different
 183 technique based on Freedman’s inequality (Freedman (1975), Lemma H.1), which is the key factor
 184 behind our improvement. Unlike Faury et al. (2020), which works with a d -dimensional martingale
 185 and thereby incurs an explicit dependence on d , we instead use a one-dimensional martingale to
 186 track the growth of the self-normalized error $\|s_t\|_{H_t^{-1}}$, bypassing this vector-level issue. As a result,
 187 we obtain a data- and variance-adaptive inequality whose leading term depends on the effective
 188 dimension \tilde{d} , together with an improved dependence on κ , thanks to the variance sensitivity of
 189 Freedman’s inequality.
 190

191 4 NEURAL LOGISTIC BANDITS WITH IMPROVED UCB

192 This section introduces our first algorithm, NeuralLog-UCB-1, described in Algorithm 1. In the
 193 initialization step, we set the initial parameter θ_0 of the neural network according to the standard
 194 initialization process described in [Zhou et al. \(2020\)](#). For $1 \leq l \leq L-1$, W_l is set as $[\begin{smallmatrix} W & 0 \\ 0 & W \end{smallmatrix}]$, where
 195 each entry of W is independently sampled from $N(0, 4/m)$ while W_L is set to $[w, -w]$, where
 196 each entry of w is independently sampled from $N(0, 2/m)$. Next, we set the initial regularization
 197 parameter as $\lambda_0 = 8\sqrt{2}C_1L^{1/2}S^{-1}\log(4/\delta)$ for some absolute constant $C_1 > 0$. The value of λ_0
 198 is chosen so that λ_0 is less than the minimum value among $\lambda_1, \dots, \lambda_T$, where λ_t is updated as in
 199 Equation (4). We can verify this by showing that $\lambda_0 \leq \min \lambda_1$ and that $\{\lambda_t\}_{t \geq 1}$ is monotonically
 200 non-decreasing in t , which implies $\lambda_0 \leq \min \{\lambda_t\}_{t \geq 1}$.
 201

202 After the initialization step, in each round t , the agent receives the context set $\mathcal{X}_t \subset X$ and calculates
 203 $UCB_t(x) = \mu(f(x; \theta_{t-1})) + R\sqrt{\kappa}\nu_{t-1}^{(1)}\|g(x; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}$ for every action $x \in \mathcal{X}_t$, where
 204

$$205 \nu_t^{(1)} = C_6(1 + \sqrt{L}S + LS^2)\iota_t + 1, \quad (2)$$

$$206 \iota_t = 16 \sqrt{\log \det \left(\sum_{i=1}^t \frac{1}{4m\lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + I \right) \log \frac{4t^2}{\delta} + 8C_1 \sqrt{\frac{L}{\lambda_0}} \log \frac{4t^2}{\delta}}, \quad (3)$$

207 where $\delta \in (0, 1)$ is a confidence parameter, and S is a norm parameter of the parameter set de-
 208 fined in Definition 6.2 for some absolute constants $C_1, C_6 > 0$. The first term, $\mu(f(x; \theta_{t-1}))$,
 209 estimates the expected value of the reward, and the second term can be viewed as the explo-
 210 ration bonus. Then, we choose our action x_t optimistically by maximizing the UCB value, i.e.,
 211 $x_t = \arg \max_{x \in \mathcal{X}_t} UCB_t(x)$, and receive a reward r_t . At the end of each round, we update the
 212 parameters based on the observations $\{x_i, r_i\}_{i=1}^t$ collected so far. We set the regularization parameter
 213

216 **Algorithm 1** NeuralLog-UCB-1

217

218 **Input:** Neural network $f(x; \theta)$ with width m and depth L , initialized with parameter θ_0 , step size
219 η , number of gradient descent steps J , norm parameter S , confidence parameter δ
220 **Initialize:** $\lambda_0 = 8\sqrt{2}C_1L^{1/2}S^{-1}\log(4/\delta)$, $V_0 = \kappa\lambda_0\mathbf{I}$
221 1: **for** $t = 1, \dots, T$ **do**
222 2: $x_t \leftarrow \arg \max_{x \in \mathcal{X}_t} \mu(f(x; \theta_{t-1})) + R\sqrt{\kappa\nu_{t-1}^{(1)}}\|g(x; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}$
223 3: Select x_t and receive r_t
224 4: Update λ_t as in Equation (4), ι_t as in Equation (3), $\nu_t^{(1)}$ as in Equation (2)
225 5: $\theta_t \leftarrow \text{TrainNN}(\lambda_t, \eta, J, m, \{x_i, r_i\}_{i=1}^t, \theta_0)$
226 6: $V_t \leftarrow \sum_{i=1}^t \frac{1}{m}g(x_i; \theta_0)g(x_i; \theta_0)^\top + \kappa\lambda_t\mathbf{I}$
227 7: **end for**

228

229 **Subroutine** `TrainNN`

230

231 **Input:** Regularization parameter λ_t , step size η , number of gradient descent steps J , network width
232 m , observations $\{x_s, r_s\}_{s=1}^t$, initial parameter θ_0
233 1: Define $\mathcal{L}_t(\theta) = -\sum_{i=1}^t [r_i \log \mu(f(x_i; \theta)) + (1 - r_i) \log(1 - \mu(f(x_i; \theta)))] + \frac{1}{2}m\lambda_t\|\theta - \theta_0\|_2^2$
234 2: **for** $j = 1, \dots, J - 1$ **do**
235 3: $\theta^{(j+1)} = \theta^{(j)} - \eta \nabla \mathcal{L}_t(\theta^{(j)})$
236 4: **end for**
5: **return** $\theta^{(J)}$

237

238 λ_t , with an absolute constant $C_1 > 0$, as follows:
239

$$240 \quad \lambda_t \leftarrow \frac{64}{S^2} \log \det \left(\sum_{i=1}^t \frac{1}{4m\lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \mathbf{I} \right) \log \frac{4t^2}{\delta} + \frac{16C_1^2 L}{S^2 \lambda_0} \log^2 \frac{4t^2}{\delta}. \quad (4)$$

242 Then we update ι_t , $\nu_t^{(1)}$, and V_t . Lastly, as described in Subroutine `TrainNN`, we update the
243 parameters of the neural network through gradient descent to minimize the regularized negative
244 log-likelihood loss function $\mathcal{L}_t(\theta)$ and obtain θ_t . In contrast to Verma et al. (2025), which used
245 a constant regularization parameter λ , we adaptively control the regularization parameter λ_t and
246 employ it in both our design matrix V_t and our loss function $\mathcal{L}_t(\theta)$. This yields a fully data-adaptive
247 concentration inequality between θ_t and the desired parameter, as will be shown in Lemma 4.5.
248

249 Now, we present our theoretical results for Algorithm 1. Let \mathbf{H} denote the neural tangent kernel
250 (NTK) matrix computed on all TK context-arm feature vectors over T rounds. Its formal definition
251 is deferred to Definition C.1. Define $\mathbf{h} = [h(x)]_{x \in \mathcal{X}_t, t \in [T]} \in \mathbb{R}^{TK}$. We begin with the following
252 assumptions.
253

Assumption 4.1. *There exists $\lambda_{\mathbf{H}} > 0$ such that $\mathbf{H} \succeq \lambda_{\mathbf{H}}\mathbf{I}$.*

Assumption 4.2. *For every $x \in \mathcal{X}_t$ and $t \in [T]$, we have $\|x\|_2 = 1$ and $[x]_j = [x]_{j+d/2}$.*

256 Both assumptions are mild and standard in the neural bandit literature Zhou et al. (2020); Zhang et al.
257 (2021). Assumption 4.1 states that the NTK matrix is nonsingular, which holds if no two context
258 vectors are parallel. Assumption 4.2 ensures that $f(x^i; \theta_0) = 0$ for all $i \in [TK]$ at initialization.
259 This assumption is made for analytical convenience and can be ensured by building a new context
260 $x' = [x^\top, x^\top]^\top / \sqrt{2}$.

261 Next, define $\tilde{\mathbf{H}} = \sum_{t=1}^T \sum_{x \in \mathcal{X}_t} \frac{1}{m} g(x; \theta_0) g(x; \theta_0)^\top$, which is the design matrix containing all
262 possible context-arm feature vectors over the T rounds. Then, we can use the following definition:
263

Definition 4.3. *Let $\tilde{d} := \log \det(\frac{R}{\lambda_0} \tilde{\mathbf{H}} + \mathbf{I})$ denote the effective dimension.*

265 We mention that previous works Zhou et al. (2020); Verma et al. (2025) for neural contextual
266 bandits have defined the effective dimension \tilde{d} in slightly different ways. Zhou et al. (2020) set
267 $\tilde{d} = \log \det(\frac{1}{\lambda} \mathbf{H} + \mathbf{I}) / \log(1 + TK/\lambda)$ for neural contextual linear bandits, while Verma et al.
268 (2025) defined $\tilde{d} = \log \det(\frac{1}{\kappa\lambda} \tilde{\mathbf{H}} + \mathbf{I})$. However, these definitions have the same asymptotic order
269 as ours in Definition 4.3 up to logarithmic factors.

270

270 **Algorithm 2** NeuralLog-UCB-2

271 **Input:** Neural network $f(x; \theta)$ with width m and depth L , initialized with parameter θ_0 , step size
 272 η , number of gradient descent steps L , norm parameter S , confidence parameter δ
 273 **Initialize:** $\lambda_0 = 8\sqrt{2}C_1L^{1/2}S^{-1}\log(4/\delta)$, $W_0 = \lambda_0\mathbf{I}$
 274 1: **for** $t = 1, \dots, T$ **do**
 275 2: $x_t \leftarrow \arg \max_{x \in \mathcal{X}_t} g(x; \theta_0)^\top (\theta_{t-1} - \theta_0) + \nu_{t-1}^{(2)} \|g(x; \theta_0)/\sqrt{m}\|_{W_{t-1}^{-1}}$
 276 3: Select x_t and receive r_t
 277 4: Update λ_t as in Equation (4), ι_t as in Equation (3), $\nu_t^{(2)}$ as in Equation (5)
 278 5: $\theta_t \leftarrow \text{TrainNN}(\lambda_t, \eta, J, m, \{x_i, r_i\}_{i=1}^t, \theta_0)$
 279 6: $W_t \leftarrow \sum_{i=1}^t \frac{\dot{\mu}(f(x_i; \theta_i))}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}$
 280 7: **end for**

283 Next, to improve readability, we summarize the conditions for the upcoming theorems and lemmas:

284 **Condition 4.4.** Suppose Assumptions 2.1, 4.1 and 4.2 hold (a formal definition of Assumption 2.1 is
 285 deferred to Assumption 6.3). The width m is large enough to control the estimation error of the NN
 286 (details are deferred to Condition C.2). Set S as a norm parameter satisfying $S \geq \sqrt{2\mathbf{h}^\top \mathbf{H}^{-1} \mathbf{h}}$.
 287 The regularization parameter λ_t follows the update rule in Equation (4). For training the NN, set
 288 the number of gradient descent iterations as $J = 2 \log(\lambda_t S / (\sqrt{T} \lambda_t + C_4 T^{3/2} L)) T L / \lambda_t$, and the
 289 step size as $\eta = C_5 (m T L + m \lambda_t)^{-1}$ for some absolute constants $C_4, C_5 > 0$.

291 In particular, when m is sufficiently large, we observe that the true reward function $h(x)$ behaves
 292 like a linear function (see Lemma 6.1). Then, using the tail inequality given in Theorem 3.1 and
 293 the update rule for λ_t , we obtain the following data- and variance-adaptive concentration inequality
 294 between θ_t and θ^* :

295 **Lemma 4.5.** Define $H_t := \sum_{i=1}^t \frac{\dot{\mu}(g(x_i; \theta_0)^\top (\theta - \theta_0))}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}$. Under Condition
 296 4.4, there exists an absolute constant $C_1, C_6 > 0$, such that for all $t > 0$ with probability at least
 297 $1 - \delta$, $\sqrt{m} \|\theta^* - \theta_t\|_{H_t(\theta^*)} \leq \nu_t^{(1)}$, where $\nu_t^{(1)}$ is defined in Equation (2).

299 The proof is deferred to Section E.1. We now present Theorem 4.6, which gives the desired regret
 300 upper bound of Algorithm 1.

301 **Theorem 4.6.** Under Condition 4.4, with probability at least $1 - \delta$, the regret of Algorithm 1 satisfies

$$303 \text{Regret}(T) = \tilde{\mathcal{O}}\left(S^2 \tilde{d} \sqrt{\kappa T} + S^{2.5} \sqrt{\kappa \tilde{d} T}\right).$$

304 **Remark 1.** Our results, especially Theorem 3.1, extend naturally to the (neural) dueling bandit
 305 setting. In this variant, the learner selects a pair of context-arms $\{x_{t,1}, x_{t,2}\}$ in each round t and
 306 observes a binary outcome $r_t \in \{0, 1\}$ indicating whether $x_{t,1}$ is preferred over $x_{t,2}$. The preference
 307 probability is modeled as $\mathbb{P}(x_{t,1} \succ x_{t,2}) = \mathbb{P}(r_t = 1 | x_{t,1}, x_{t,2}) = \mu(h(x_{t,1}) - h(x_{t,2}))$. The prior
 308 work of (Verma et al., 2025, Theorem 3) establishes a regret upper bound of $\tilde{\mathcal{O}}(\kappa d \sqrt{T})$, whereas
 309 our analysis can improve this to $\tilde{\mathcal{O}}(\tilde{d} \sqrt{\kappa T})$.

311

5 Refined Algorithm with Neural Network-Estimated Variance

312 In this section, we explain NeuralLog-UCB-2, which guarantees the tightest regret upper bounds.
 313 Although Lemma 4.5 establishes a variance-adaptive concentration inequality with $H_t(\theta^*)$, the
 314 agent lacks full knowledge of θ^* and must therefore use the crude bound $H_t(\theta^*) \preceq \kappa^{-1} V_t$, which in-
 315 curs an extra factor of $\sqrt{\kappa}$. In this section, we introduce NeuralLog-UCB-2, which replaces $H_t(\theta^*)$
 316 with a neural network-estimated variance-adaptive design matrix. We begin by stating a concentra-
 317 tion result for θ^* around θ_t using the new design matrix W_t .

318 **Lemma 5.1.** Define $W_t = \sum_{i=1}^t \frac{\dot{\mu}(f(x_i; \theta_i))}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}$ and a confidence set \mathcal{W}_t as

$$321 \mathcal{W}_t = \{\theta : \sqrt{m} \|\theta - \theta_t\|_{W_t} \leq C_7 (1 + \sqrt{L} S + L S^2) \iota_t + 1 =: \nu_t^{(2)}\}, \quad (5)$$

322 with an absolute constant $C_7 > 0$, where ι_t is defined at Equation (3). Then under Condition 4.4,
 323 for all $t > 0$, $\theta^* \in \mathcal{W}_t$ with probability at least $1 - \delta$.

We give the proof of the lemma in Section F.1. The matrix W_t maintains sufficient statistics via the neural network-estimated variance, and the ellipsoidal confidence set \mathcal{W}_t changes the original problem into a closed-form optimistic formulation. Specifically, after the same initialization step as for Algorithm 1, the agent selects action x_t in each round t according to the following rule:

$$x_t \leftarrow \arg \max_{x \in \mathcal{X}_t, \theta \in \mathcal{W}_{t-1}} \langle g(x; \theta_0), (\theta - \theta_0) \rangle = \arg \max_{x \in \mathcal{X}_t} g(x; \theta_0)^\top (\theta_{t-1} - \theta_0) + \nu_{t-1}^{(2)} \|x\|_{W_{t-1}^{-1}}. \quad (6)$$

For the regret upper bound of Algorithm 2, we define another problem-dependent quantity κ^* as $1/\kappa^* = \frac{1}{T} \sum_{t=1}^T \dot{\mu}(h(x_t^*))$, consistent with the definition in Abeille et al. (2021). Both κ^* and κ scale exponentially with S . We now state our regret upper bound for NeuralLog-UCB-2 and provide a proof outline.

Theorem 5.2. *Under Condition 4.4, with probability at least $1 - \delta$, the regret of Algorithm 2 satisfies:*

$$\text{Regret}(T) = \tilde{\mathcal{O}}\left(S^2 \tilde{d} \sqrt{T/\kappa^*} + S^{2.5} \tilde{d}^{0.5} \sqrt{T/\kappa^*} + S^4 \kappa \tilde{d}^2 + S^{4.5} \kappa \tilde{d}^{1.5} + S^5 \kappa d\right).$$

Remark 2. *It is possible to further reduce the regret bound in Theorem 5.2 to $\tilde{\mathcal{O}}(S \tilde{d} \sqrt{T/\kappa^*})$ by combining Theorem 3.1 and the logistic bandit analysis of Faury et al. (2022), which achieved $\tilde{\mathcal{O}}(S \tilde{d} \sqrt{T/\kappa^*})$. However, this approach requires a projection step for θ_t , incurring an additional $\mathcal{O}(d^2 \log(1/\epsilon))$ computational cost for ϵ -accuracy. A couple of recent works eliminated the dependence on S in the leading term, achieving $\tilde{\mathcal{O}}(d \sqrt{T/\kappa^*})$. Nonetheless, Sawarni et al. (2024) relied on a nonconvex optimization subroutine, while the PAC-Bayes analysis in Lee et al. (2024a) with a uniform prior does not yield data-adaptive regret.*

6 REGRET ANALYSES

This section outlines the regret analysis for Algorithms 1 and 2 and provides proof sketch for Theorems 4.6 and 5.2. Let us start by stating some basic results on the NTK analysis and logistic bandits. The following lemma shows that for all $x \in \mathcal{X}_t$ and $t \in [T]$, the true reward function $h(x)$ can be expressed as a linear function.

Lemma 6.1 (Lemma 5.1, Zhou et al. (2020)). *If $m \geq C_0 T^4 K^4 L^6 \log(T^2 K^2 L/\delta)/\lambda_{\mathbf{H}}^4$ for some absolute constant $C_0 > 0$, then with probability at least $1 - \delta$, there exists $\theta^* \in \mathbb{R}^p$ such that*

$$h(x) = g(x; \theta_0)^\top (\theta^* - \theta_0), \quad \sqrt{m} \|\theta^* - \theta_0\|_2 \leq \sqrt{2 \mathbf{h}^\top \mathbf{H}^{-1} \mathbf{h}} \leq S,$$

for all $x \in \mathcal{X}_t$, $t \in [T]$.

Based on Lemma 6.1, we define the parameter set Θ and the parameters κ and R , which is consistent with the standard logistic bandits literature Faury et al. (2020):

Definition 6.2. *Let $\Theta := \{\theta \in \mathbb{R}^p : \sqrt{m} \|\theta - \theta_0\|_2 \leq S\}$ denote the parameter set.*

Assumption 6.3 (Formal). *There exist constants $\kappa, R > 0$ such that for all $x \in \mathcal{X}, \theta \in \Theta$,*

$$1/\kappa \leq \dot{\mu}(g(x; \theta_0)^\top (\theta - \theta_0)) \leq R.$$

6.1 PROOF SKETCH OF THEOREM 4.6

Let $|\mu(h(x)) - \mu(f(x; \theta_{t-1}))|$ denote the *prediction error* of x in round t , which is the estimation error between the true reward and our trained neural network. We show that with Lemma 4.5 and large enough m , the prediction error is upper bounded as follows:

Lemma 6.4. *Under Condition 4.4, for all $x \in \mathcal{X}_t$, $t \in [T]$, with probability at least $1 - \delta$,*

$$|\mu(h(x)) - \mu(f(x; \theta_{t-1}))| \leq R \sqrt{\kappa} \nu_t^{(1)} \|g(x; \theta_0) / \sqrt{m}\|_{V_{t-1}^{-1}} + \epsilon_{3,t-1},$$

where $\epsilon_{3,t} = C_3 R m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_0^{-2/3}$ for some absolute constant $C_3 > 0$.

Based on the results so far, we can upper bound the *per-round regret* in round t as follows:

$$\begin{aligned} \mu(h(x_t^*)) - \mu(h(x_t)) &\leq \mu(f(x_t^*; \theta_{t-1})) + R \sqrt{\kappa} \nu_t^{(1)} \|g(x_t^*; \theta_0) / \sqrt{m}\|_{V_{t-1}^{-1}} + \epsilon_{3,t-1} - \mu(h(x_t)) \\ &\leq \mu(f(x_t; \theta_{t-1})) + R \sqrt{\kappa} \nu_t^{(1)} \|g(x_t; \theta_0) / \sqrt{m}\|_{V_{t-1}^{-1}} + \epsilon_{3,t-1} - \mu(h(x_t)) \\ &\leq 2R \sqrt{\kappa} \nu_t^{(1)} \|g(x_t; \theta_0) / \sqrt{m}\|_{V_{t-1}^{-1}} + 2\epsilon_{3,t-1}, \end{aligned}$$

378 where the first and last inequalities follow from Lemma 6.4, and the second inequality holds due
 379 to the optimistic rule of Algorithm 1. The cumulative regret can be decomposed as $\text{Regret}(T) =$
 380 $\sum_{t=1}^T \mu(h(x_t^*)) - \mu(h(x_t)) \leq 2R\sqrt{\kappa\nu_T^{(1)}} \sqrt{T \sum_{t=1}^T \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}}^2} + 2T\epsilon_{3,T}$, for which we
 381 use the Cauchy-Schwarz inequality. We have $\nu_T^{(1)} = \tilde{O}(\sqrt{\tilde{d}})$, and using the elliptical potential
 382 lemma (Lemma H.2) on $\sum_{t=1}^T \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}}^2$ gives $\tilde{O}(\tilde{d})$. Finally, setting m large enough
 383 under Condition 4.4, the approximation error term gives $T\epsilon_{3,T} = \mathcal{O}(1)$. See Section G.1 for details.
 384

387 6.2 PROOF SKETCH OF THEOREM 5.2

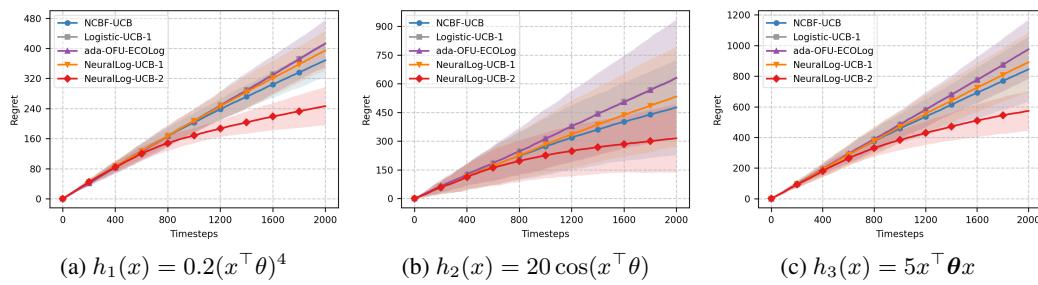
388 Let $(x_t, \tilde{\theta}_{t-1}) \in \mathcal{X}_t \times \mathcal{W}_{t-1}$ be selected by the optimistic rule at time t . The per-round regret can
 389 be decomposed with a second-order Taylor expansion as follows:

$$391 \mu(h(x_t^*)) - \mu(h(x_t)) \leq \mu(g(x_t; \theta_0)^\top (\tilde{\theta}_{t-1} - \theta_0)) - \mu(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\ 392 \leq \dot{\mu}(h(x_t))g(x_t; \theta_0)^\top (\tilde{\theta}_{t-1} - \theta^*) + 1 \cdot [g(x_t; \theta_0)^\top (\tilde{\theta}_{t-1} - \theta^*)]^2,$$

393 where the first inequality follows from the optimistic rule of Algorithm 2, and we use $\dot{\mu}(\cdot) \leq 1$ for
 394 the second one. To analyze the first term on the right-hand side of the second inequality, we compare
 395 $\dot{\mu}(h(x_t))$ and $\dot{\mu}(f(x_t; \theta_t))$ and rewrite the term as $\sqrt{\dot{\mu}(h(x_t))} \|\sqrt{\dot{\mu}(f(x_t; \theta_t))}g(x_t; \theta_0)\|_{W_{t-1}} \|\tilde{\theta}_{t-1} - \theta^*\|_{W_{t-1}}^{-1}$.
 396 Summing this for $t = 1, \dots, T$, we apply the elliptical potential lemma (Lemma H.2)
 397 and Lemma 5.1. For the second term, since we do not enforce any projection or constraint during
 398 training, θ_{t-1} may stay outside Θ . We show that the number of such rounds is $\tilde{O}(\kappa \tilde{d}^2)$. Applying
 399 Assumption 6.3 then yields a crude bound of $\kappa \|g(x_t; \theta_0)\|_{V_{t-1}}^2 \|\tilde{\theta}_{t-1} - \theta^*\|_{W_t}^2$. Based on this, the
 400 second term can be bounded from above in a similar way. Details are covered in Section G.2.
 401

404 7 EXPERIMENTS

405 In this section, we empirically evaluate the performance of our algorithms. Additional results along
 406 with further details are deferred to Section A due to space constraints.
 407



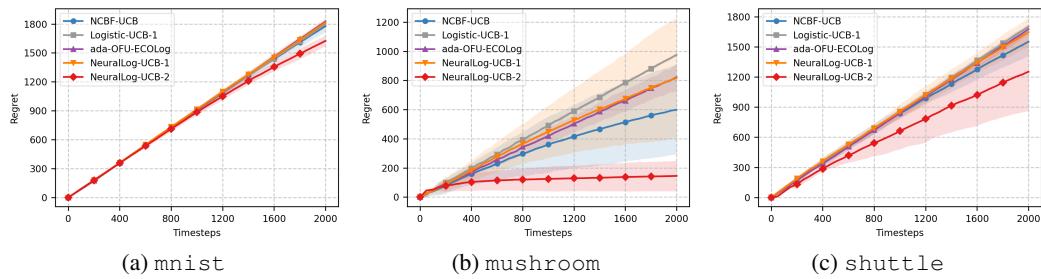
408 Figure 1: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.
 409

410 **Synthetic dataset.** We begin our experiments with a synthetic dataset. We use three nonlinear
 411 synthetic latent reward functions: $h_1(x) = 0.2(x^T \theta)^4$, $h_2(x) = 20 \cos(x^T \theta)$, $h_3(x) = 5x^T \theta x$,
 412 where x represents the features of a context-arm pair, and $\theta \in \mathbb{R}^d$ and $\theta \in \mathbb{R}^{d \times d}$ are parameters
 413 whose elements are independently sampled from $\text{Unif}(-1, 1)$. Subsequently, the agent receives a
 414 reward generated by $r_t \sim \text{Bern}(\mu(h_i(x)))$, for $i \in \{1, 2, 3\}$. We set the feature vector dimension to
 415 $d = 20$ and the number of arms to $K = 5$. We compare our method against five baseline algorithms
 416 in Section 1: (1) NCBF-UCB Verma et al. (2025); (2) Logistic-UCB-1 Faury et al. (2020); (3) ada-
 417 OFU-ECOLog Faury et al. (2022); (4) NeuralLog-UCB-1; and (5) NeuralLog-UCB-2. For brevity,
 418 we will denote algorithms by their number (e.g. algorithm (1)).
 419

420 Following practical adjustments from previous neural bandits experiments Zhou et al. (2020);
 421 Zhang et al. (2021); Verma et al. (2025), for algorithms (1,4,5), we use the gradient of the current
 422 neural network $g(x; \theta_t)$ instead of $g(x; \theta_0)$. We replace $g(x; \theta_t)/\sqrt{m}$ with $g(x; \theta_t)$ and

432 $m\lambda\|\theta - \theta_0\|_2^2/2$ with $\lambda\|\theta\|_2^2$. Previous works simplify the UCB estimation process by fixing
 433 parameters for the exploration bonus for practical reasons. In this work, however, we consider
 434 the time-varying data-adaptive values of the exploration bonus, characterized by $UCB_t(x) =$
 435 $\mu(x; \theta_{t-1}) + \sigma(x; \nu, \{x_i, \theta_{i-1}\}_{i=1}^{t-1}, \lambda, S, \kappa)$. Here, μ is the mean estimate and σ is the exploration
 436 bonus, parameterized by an exploration parameter ν , previous observations $\{x_i, \theta_{i-1}\}_{i=1}^{t-1}$, λ , S , and
 437 κ . Details of UCB for each algorithm are deferred to Section 5. We use $S = 1$, $\kappa = 10$ and fixed
 438 values of ν and λ with the best parameter values using grid search over $\{0.01, 0.1, 1, 10, 100\}$.

439 We use a two-layer neural network $f(x; \theta)$ with a width of $m = 20$. As in Zhou et al. (2020), to
 440 reduce the computational burden of the high-dimensional design matrices V_t and W_t , we approximated
 441 these matrices with diagonal matrices. We update the parameters every 50 rounds, using 100
 442 gradient descent steps per update with a learning rate of 0.01. For each algorithm, we repeat the
 443 experiments 10 times over $T = 2000$ timesteps and compare the average cumulative regret with a
 444 96% confidence interval.



455 Figure 2: Comparison of cumulative regret of baseline algorithms for real-world dataset.
 456

457 **Real-world dataset.** In the real-world experiments, we use three datasets from K -class classifica-
 458 tion tasks: `mnist` LeCun et al. (1998), `mushroom`, and `shuttle` from the UCI Machine Learning
 459 Repository Dua & Graff (2019). To adapt these datasets to the K -armed logistic bandit setting, we
 460 construct K context-arm feature vectors in each round t as follows: given a feature vector $x \in \mathbb{R}^d$,
 461 we define $x^{(1)} = [x, 0, \dots, 0], \dots, x^{(K)} = [0, \dots, 0, x] \in \mathbb{R}^{dK}$. The agent receives a reward of
 462 1 if it selects the correct class, and 0 otherwise. All other adjustments for the neural bandit exper-
 463 iments and the neural network training process follow the simulation setup. Details, including data
 464 preprocessing, are deferred to Section A.

465 **Regret comparison.** Figures 1 and 2 summarize the average cumulative regret for the five baseline
 466 algorithms (1–5) tested with the synthetic and real-world datasets, respectively. We observe that
 467 the algorithms using linear assumptions on the latent reward function $h(x)$, namely (2) and (3),
 468 exhibit the lowest performance, as the true function is nonlinear. Although algorithm (1) can handle
 469 nonlinear reward functions and achieves moderate performance, our proposed methods, especially
 470 (5), yield the best results by reducing the dependence on κ .

471 8 CONCLUSION AND FUTURE WORK

472 In this paper, we study the *neural logistic bandit* problem. We identify the unique challenges of this
 473 setting and propose a novel approach based on a new tail inequality for martingales. This inequality
 474 enables an analysis that is both variance- and data-adaptive, yielding improved regret bounds
 475 for neural logistic bandits. We introduce two algorithms: NeuralLog-UCB-1 that achieves a regret
 476 bound of $\tilde{\mathcal{O}}(\tilde{d}\sqrt{\kappa T})$ and NeuralLog-UCB-2 that attains a tighter bound of $\tilde{\mathcal{O}}(\tilde{d}\sqrt{T/\kappa^*})$ by lever-
 477 aging the neural network-estimated variance. Our experimental results validate these theoretical
 478 findings and demonstrate that our methods outperform the existing approaches.

479 One potential direction for future work is to improve the dependence on the norm of the unknown
 480 parameter S . Although recent frameworks due to Sawarni et al. (2024); Lee et al. (2024a) have
 481 removed the dependence on S from the leading term, they require an additional training step or
 482 impose additional constraints. Such requirements are undesirable when trying to integrate neural
 483 bandit frameworks. Hence, it is a promising future research direction to eliminate the dependence
 484 on S without additional computations. Additional future directions are deferred to Section ??.

486 REFERENCES
487

488 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
489 bandits. *Advances in neural information processing systems*, 24, 2011.

490 Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms for
491 logistic bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 3691–
492 3699. PMLR, 2021.

493 Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. EE-net: Exploitation-exploration neural
494 networks in contextual bandits. In *International Conference on Learning Representations*, 2022.
495 URL https://openreview.net/forum?id=X_ch3VrNSRg.

496 Shi Dong, Tengyu Ma, and Benjamin Van Roy. On the performance of thompson sampling on
497 logistic bandits. In *Conference on Learning Theory*, pp. 1158–1160. PMLR, 2019.

498 Dheeru Dua and Casey Graff. Uci machine learning repository. [https://archive.ics.uci.
499 edu/ml](https://archive.ics.uci.edu/ml), 2019. Accessed: 2025-03-21.

500 Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
501 rithms for logistic bandits. In *International Conference on Machine Learning*, pp. 3052–3060.
502 PMLR, 2020.

503 Louis Faury, Marc Abeille, Kwang-Sung Jun, and Clément Calauzènes. Jointly efficient and op-
504 timal algorithms for logistic bandits. In *International Conference on Artificial Intelligence and
505 Statistics*, pp. 546–580. PMLR, 2022.

506 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
507 generalized linear case. *Advances in neural information processing systems*, 23, 2010.

508 David A Freedman. On tail probabilities for martingales. *the Annals of Probability*, pp. 100–118,
509 1975.

510 Spencer B Gales, Sunder Sethuraman, and Kwang-Sung Jun. Norm-agnostic linear bandits. In
511 *International Conference on Artificial Intelligence and Statistics*, pp. 73–91. PMLR, 2022.

512 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
513 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

514 Yiling Jia, Weitong ZHANG, Dongruo Zhou, Quanquan Gu, and Hongning Wang. Learning neural
515 contextual bandits through perturbed rewards. In *International Conference on Learning Repre-
516 sentations*, 2022. URL <https://openreview.net/forum?id=7incJ3MhXt3>.

517 Kwang-Sung Jun, Lalit Jain, Blake Mason, and Houssam Nassif. Improved confidence bounds for
518 the linear logistic model and applications to bandits. In *International Conference on Machine
519 Learning*, pp. 5148–5157. PMLR, 2021.

520 Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In *International
521 Conference on Artificial Intelligence and Statistics*, pp. 240–278. PMLR, 2022.

522 Wonyoung Kim, Kyungbok Lee, and Myunghie Cho Paik. Double doubly robust thompson sam-
523 pling for generalized linear contextual bandits. In *Proceedings of the AAAI Conference on Artifi-
524 cial Intelligence*, volume 37, pp. 8300–8307, 2023.

525 Yeoneung Kim, Insoon Yang, and Kwang-Sung Jun. Improved regret analysis for variance-adaptive
526 linear bandits and horizon-free linear mixture mdps. *Advances in Neural Information Processing
527 Systems*, 35:1060–1072, 2022.

528 Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
529 Craig Boutilier. Randomized exploration in generalized linear bandits. In *International Confer-
530 ence on Artificial Intelligence and Statistics*, pp. 2066–2076. PMLR, 2020.

531 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
532 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

540 Joongkyu Lee and Min-hwan Oh. Nearly minimax optimal regret for multinomial logistic bandit.
 541 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 542 <https://openreview.net/forum?id=Q4NWFStqVf>.

543 Joongkyu Lee and Min-hwan Oh. Improved online confidence bounds for multinomial logistic
 544 bandits. *arXiv preprint arXiv:2502.10020*, 2025.

545 Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. A unified confidence sequence for generalized
 546 linear models, with applications to bandits. In *The Thirty-eighth Annual Conference on Neural
 547 Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=MDdOQayWTA>.

548 Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. Improved regret bounds of (multinomial)
 549 logistic bandits via regret-to-confidence-set conversion. In *International Conference on Artificial
 550 Intelligence and Statistics*, pp. 4474–4482. PMLR, 2024b.

551 Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
 552 personalized news article recommendation. In *Proceedings of the 19th international conference
 553 on World wide web*, pp. 661–670, 2010.

554 Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear context-
 555 ual bandits. In *International Conference on Machine Learning*, pp. 2071–2080. PMLR, 2017.

556 Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An em-
 557 pirical comparison of bayesian deep networks for thompson sampling. In *International Confer-
 558 ence on Learning Representations*, 2018. URL <https://openreview.net/forum?id=SyYe6k-CW>.

559 Ayush Sawarni, Nirjhar Das, Siddharth Barman, and Gaurav Sinha. Generalized linear bandits with
 560 limited adaptivity. In *The Thirty-eighth Annual Conference on Neural Information Processing
 561 Systems*, 2024. URL <https://openreview.net/forum?id=FTPDBQuT4G>.

562 Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
 563 tion in the bandit setting: no regret and experimental design. In *Proceedings of the 27th Interna-
 564 tional Conference on International Conference on Machine Learning*, ICML’10, pp. 1015–1022,
 565 Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

566 Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time anal-
 567 ysis of kernelised contextual bandits. In *Proceedings of the Twenty-Ninth Conference on Un-
 568 certainty in Artificial Intelligence*, UAI’13, pp. 654–663, Arlington, Virginia, USA, 2013. AUAI
 569 Press.

570 Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. Neural
 571 dueling bandits: Preference-based optimization with human feedback. In *The Thirteenth Interna-
 572 tional Conference on Learning Representations*, 2025. URL [https://openreview.net/
 573 forum?id=VELhv9BBfn](https://openreview.net/forum?id=VELhv9BBfn).

574 Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
 575 representation and shallow exploration. In *International Conference on Learning Representations*,
 576 2022. URL <https://openreview.net/forum?id=xnYACQquaGV>.

577 Tom Zahavy and Shie Mannor. Deep neural linear bandits: Overcoming catastrophic forgetting
 578 through likelihood matching. *arXiv preprint arXiv:1901.08612*, 2019.

579 Houssam Zenati, Alberto Bietti, Eustache Diemert, Julien Mairal, Matthieu Martin, and Pierre Gail-
 580 lard. Efficient kernelized ucb for contextual bandits. In *International Conference on Artificial
 581 Intelligence and Statistics*, pp. 5689–5720. PMLR, 2022.

582 Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In
 583 *International Conference on Learning Representations*, 2021. URL [https://openreview.net/
 584 forum?id=tkAtoZkcUrn](https://openreview.net/forum?id=tkAtoZkcUrn).

585 Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Improved regret and
 586 constant computation cost. *Advances in Neural Information Processing Systems*, 36, 2024.

594 Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
595 In *International Conference on Machine Learning*, pp. 11492–11502. PMLR, 2020.
596

597 Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learn-
598 ing for linear mixture markov decision processes. In *Conference on Learning Theory*, pp. 4532–
599 4576. PMLR, 2021.

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A DEFERRED EXPERIMENTS FROM SECTION 7
649650 Here we introduce the deferred details and experiments from section 7. All experiments were con-
651 ducted on a server equipped with an Intel Xeon Gold 6248R 3.00GHz CPU (32 cores), 512GB of
652 RAM, and 4 GeForce RTX 4090 GPUs.
653654 **Details of UCB.** We define the UCB value as $\mu(x; \theta_{t-1}) + \sigma(x; \nu, \{x_i, \theta_{i-1}\}_{i=1}^{t-1}, \lambda, S, \kappa)$. For
655 the exploration bonus σ , we match the orders of λ, S, κ , and the effective dimension \tilde{d} for
656 each algorithm and then multiply by the exploration parameter ν . Specifically, the effective di-
657 mension is defined as follows: for algorithm (1), we use $\log \det(\sum \frac{1}{\kappa} g(x; \theta) g(x; \theta)^\top + \mathbf{I})$; for
658 algorithms (2) and (3), we use $\log \det(\sum R x x^\top + \mathbf{I})$; and for algorithms (4) and (5) we use
659 $\log \det(\sum R g(x; \theta) g(x; \theta)^\top + \mathbf{I})$.
660661 Although algorithms (2) and (3) require an additional step (e.g., nonconvex projection) to ensure
662 that θ_t remains in the desired set, empirical observations from Faury et al. (2020; 2022) indicate that
663 θ_t almost always satisfies this condition. Consequently, we streamline all baseline algorithms into
664 two steps: (i) choose the action with the highest UCB and (ii) update the parameters via gradient
665 descent.
666667 **Preprocessing for real-world datasets.** For consistency with the synthetic environment, we rescale
668 each component of every feature vector $x \in \mathbb{R}^d$ to the range $[-1, 1]$ by applying a normalization of
669 $2 \frac{[x]_j - \min(x)}{\max(x) - \min(x)} - 1$ for all $j \in [d]$. In the `mnist` dataset, we resize each 28×28 image to 7×7 ,
670 flatten it, and treat the result as a 196-dimensional feature vector. The `mushroom` dataset provides
671 22 categorical features. We assign each character a random value in $[-1, 1]$ for normalization and set
672 the label to 1 for edible ('e') and 0 for poisonous ('p') mushrooms. The `shuttle` dataset consists
673 of 7 numerical features, to which we apply the same min–max normalization as used for `mnist`.
674675 **Varying effective dimension \tilde{d} .** To evaluate the influence of \tilde{d} on data-adaptive algorithms, we
676 compare cumulative regret across different values of \tilde{d} . We control \tilde{d} by limiting the total number
677 of context-arm feature vectors during training. Allowing redundant vectors reduces \tilde{d} . For a low
678 effective dimension (Figures 3a, 3d and 3g), we use only 10 feature vectors randomly placed across
679 the training. For a medium \tilde{d} (Figures 3b, 3e and 3h), we use 50 vectors. For a high \tilde{d} (Figures 3c,
680 3f and 3i), we use 10000 distinct vectors. Note that Figures 1 and 2 use 2500 vectors. Figure 3
681 shows that our algorithm, especially algorithm (5), performs best across all those settings and adapts
682 effectively to different environments of the effective dimensions.
683684 B RELATED WORK
685686 **Logistic bandits.** Filippi et al. (2010) introduced the generalized linear bandit framework and
687 derived a regret bound of $\tilde{\mathcal{O}}(\kappa d \sqrt{T})$, laying the groundwork for modeling logistic bandits. Subse-
688 quent work, starting with Faury et al. (2020), has focused on reducing the dependence on κ through
689 variance-aware analyses (see also Dong et al. (2019); Abeille et al. (2021)). In particular, Abeille
690 et al. (2021) established a lower bound of $\Omega(d \sqrt{T}/\kappa^*)$, statistically closing the gap. However,
691 there is still room for improvement in algorithmic efficiency Faury et al. (2022); Zhang & Sugiyama
692 (2024); Lee & Oh (2024) and in mitigating the influence of the norm parameter S , with several
693 recent advances addressing this issue Lee et al. (2024b); Sawarni et al. (2024); Lee et al. (2024a);
694 Lee & Oh (2025). Another line of research investigates the finite-action setting. When feature vec-
695 tors are drawn i.i.d. from an unknown distribution whose covariance matrix has a strictly positive
696 minimum eigenvalue, Li et al. (2017) achieved a regret of $\tilde{\mathcal{O}}(\kappa \sqrt{dT})$, while Kim et al. (2023) and
697 Jun et al. (2021) further improved it to $\tilde{\mathcal{O}}(\sqrt{\kappa dT})$ and $\tilde{\mathcal{O}}(\sqrt{dT})$, respectively.
698699 **Neural bandits.** Advances in deep neural networks have spurred numerous methods that integrate
700 deep learning with contextual bandit algorithms Riquelme et al. (2018); Zahavy & Mannor (2019);
701 Kveton et al. (2020). Zhou et al. (2020) was among the first to formalize neural bandits, proposing
702 the *NeuralUCB* algorithm, which attains a regret bound of $\tilde{\mathcal{O}}(\tilde{d} \sqrt{T})$ by leveraging neural tangent
703 kernel theory Jacot et al. (2018). Building on this foundation, many studies have extended linear
704 contextual bandit algorithms to the neural setting Zhang et al. (2021); Kassraie & Krause (2022);
705 Ban et al. (2022); Xu et al. (2022); Jia et al. (2022). The work most closely related to ours is Verma
706

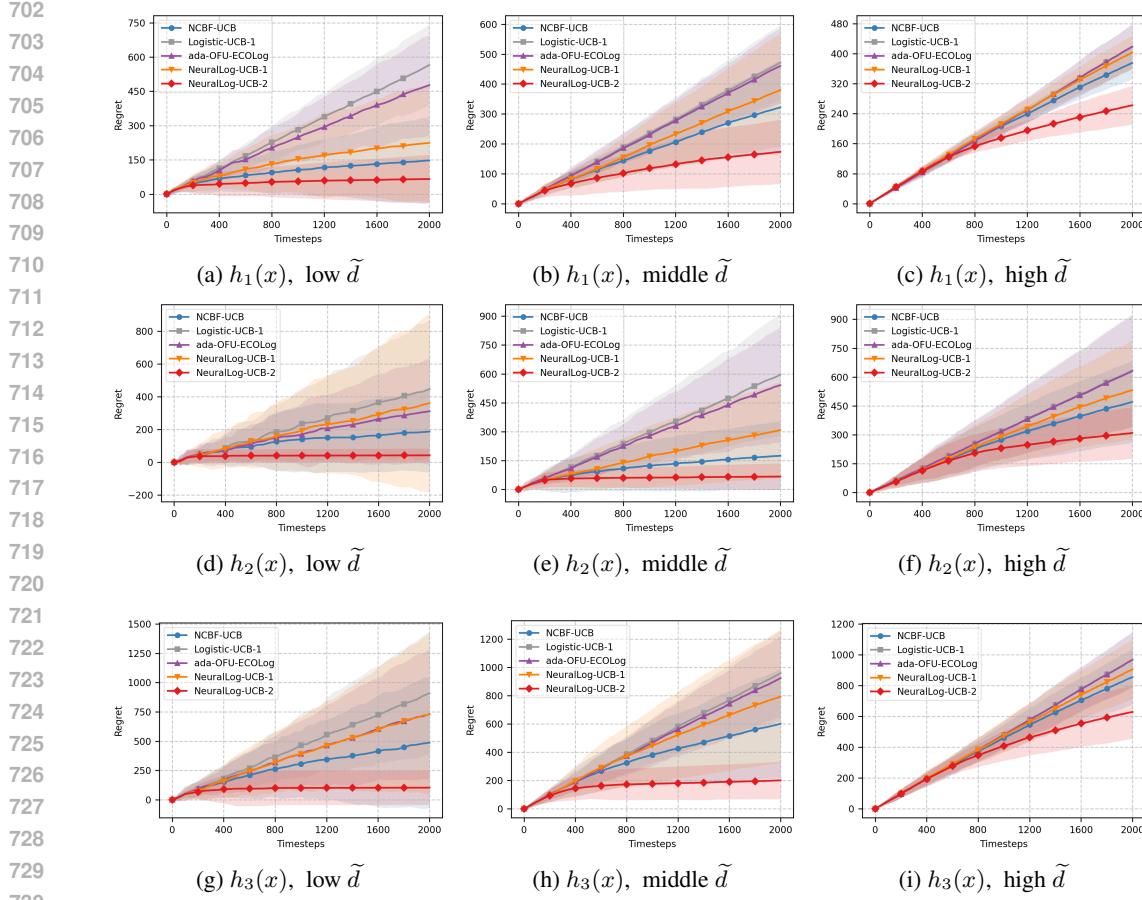


Figure 3: Comparison of cumulative regret of baseline algorithms with varying effective dimension \tilde{d} .

et al. (2025), which first addressed both logistic and dueling neural bandits and proposed UCB- and Thompson-sampling-based algorithms with a regret bound of $\tilde{\mathcal{O}}(\kappa\tilde{d}\sqrt{T})$.

C USEFUL LEMMAS FOR NEURAL BANDITS

In this section, we present several lemmas that enable the neural bandit analysis to quantify the approximation error incurred when approximating the unknown reward function $h(x)$ with the neural network $f(x; \theta)$. We begin with the definition of the neural tangent kernel (NTK) matrix Jacot et al. (2018):

Definition C.1. Denote all contexts until round T as $\{x^i\}_{i=1}^{TK}$. For $i, j \in [TK]$, define

$$\begin{aligned} \hat{\mathbf{H}}_{i,j}^{(1)} &= \Sigma_{i,j}^{(1)} = \langle x^i, x^j \rangle, \quad \mathbf{A}_{i,j}^{(l)} = \begin{pmatrix} \Sigma_{i,j}^{(l)} & \Sigma_{i,j}^{(l)} \\ \Sigma_{i,j}^{(l)} & \Sigma_{i,j}^{(l)} \end{pmatrix}, \\ \Sigma_{i,j}^{(l+1)} &= 2\mathbb{E}_{(u,v) \sim (\mathbf{0}, \mathbf{A}_{i,j}^{(l)})} \max\{u, 0\} \max\{v, 0\}, \\ \hat{\mathbf{H}}_{i,j}^{(l+1)} &= 2\hat{\mathbf{H}}_{i,j}^{(l)} \mathbb{E}_{(u,v) \sim N(\mathbf{0}, \mathbf{A}_{i,j}^{(l)})} \mathbf{1}(u \geq 0) \mathbf{1}(v \geq 0) + \Sigma_{i,j}^{(l+1)}. \end{aligned}$$

Then, $\mathbf{H} = (\hat{\mathbf{H}}^{(L)} + \Sigma^{(L)})/2$ is called the NTK matrix on the context set.

Next, we introduce a condition on the neural network width m , which is crucial for ensuring that the approximation error remains sufficiently small.

756 **Condition C.2.** For an absolute constant $C_0 > 0$, the width of the NN m satisfies:

$$758 \quad m \geq C_0 \max \left\{ T^4 K^4 L^6 \log(T^2 K^2 L / \delta) \lambda_{\mathbf{H}}^4, L^{-3/2} \lambda_0^{1/2} [\log(TKL^2 / \delta)]^{3/2} \right\}$$

$$759 \quad m(\log m)^{-3} \geq C_0 T^7 L^{21} \lambda_0^{-1} + C_0 T^{16} L^{27} \lambda_0^{-7} R^6 + C_0 T^{10} L^{21} \lambda_0^{-4} R^6 + C_0 T^7 L^{18} \lambda_0^{-4}.$$

761 We assume that m satisfies Condition C.2 throughout. For readability, we denote the error probability by δ in all probabilistic statements. We now restate Lemma 6.1, which shows that, for every $x \in \mathcal{X}_t$ and $t \in [T]$, the true reward function $h(x)$ can be represented as a linear function:

765 **Lemma C.3** (Lemma 5.1, Zhou et al. (2020)). If $m \geq C_0 T^4 K^4 L^6 \log(T^2 K^2 L / \delta) / \lambda_{\mathbf{H}}^4$ for some absolute constant $C_0 > 0$, then with probability at least $1 - \delta$, there exists $\theta^* \in \mathbb{R}^p$ such that

$$767 \quad h(x) = g(x; \theta_0)^\top (\theta^* - \theta_0), \quad \sqrt{m} \|\theta^* - \theta_0\|_2 \leq \sqrt{2 \mathbf{h}^\top \mathbf{H}^{-1} \mathbf{h}} \leq S,$$

769 for all $x \in \mathcal{X}_t$, $t \in [T]$.

771 Assuming θ_t remains close to its initialization θ_0 , we can apply the following lemmas: Lemma C.4 provides upper bounds on the norms $\|g(x; \theta)\|_2$ and $\|g(x; \theta) - g(x; \theta_0)\|_2$, while Lemma C.5 bounds the approximation error between $f(x; \theta)$ and its linearization $g(x; \theta_0)^\top (\theta - \theta_0)$.

774 **Lemma C.4** (Lemma B.5 and B.6, Zhou et al. (2020)). Let $\tau = 3 \sqrt{\frac{t}{m \lambda_t}}$. Then there exist absolute constants $C_1, C_2 > 0$, such that for all $x \in \mathcal{X}_t$, $t \in [T]$ and for all $\|\theta - \theta_0\|_2 \leq \tau$, with probability of at least $1 - \delta$,

$$778 \quad \|g(x; \theta)\|_2 \leq C_1 \sqrt{m L}$$

$$780 \quad \|g(x; \theta) - g(x; \theta_0)\|_2 \leq C_2 \sqrt{m \log m} \tau^{1/3} L^{7/2} = C_2 m^{1/3} \sqrt{\log m} t^{1/6} \lambda_t^{-1/6} L^{7/2}.$$

781 **Lemma C.5** (Lemma B.4, Zhou et al. (2020)). Let $\tau = 3 \sqrt{\frac{t}{m \lambda_t}}$. Then there exists an absolute constant $C_3 > 0$, for all $x \in \mathcal{X}_t$, $t \in [T]$, and for all $\|\theta - \theta_0\|_2 \leq \tau$, with probability of at least $1 - \delta$,

$$785 \quad \left| f(x; \theta) - g(x; \theta_0)^\top (\theta - \theta_0) \right|_2$$

$$787 \quad \leq C_3 \tau^{4/3} L^3 \sqrt{m \log m} = C_3 m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_t^{-2/3}.$$

789 Finally, we state a lemma that establishes an upper bound on the distance between θ_t and θ_0 . It also shows that, although the loss function $\mathcal{L}_t(\theta)$ is non-convex and hence the iterate θ_t obtained after J steps of gradient descent may differ from the ideal maximum likelihood estimator, this discrepancy remains sufficiently small. The proof is deferred to Section C.1:

794 **Lemma C.6.** Define the auxiliary loss function $\tilde{\mathcal{L}}(\theta)$ as

$$796 \quad \tilde{\mathcal{L}}(\theta) = - \sum_{i=1}^t r_i \log \mu(g(x_i; \theta_0)^\top (\theta - \theta_0)) + (1 - r_i) \log(1 - \mu(g(x_i; \theta_0)^\top (\theta - \theta_0)))$$

$$798 \quad + \frac{m \lambda_t}{2} \|\theta - \theta_0\|_2^2,$$

801 and the auxiliary sequence $\{\tilde{\theta}^{(j)}\}_{j=1}^J$ associated with the auxiliary loss $\tilde{\mathcal{L}}(\theta)$. Let the MLE estimator as $\hat{\theta}_t = \arg \min_{\theta} \tilde{\mathcal{L}}(\theta)$. Then there exist absolute constants $\{C_i\}_{i=1}^5 > 0$ such that if $J = 2 \log(\lambda_t S / (\sqrt{T} \lambda_t + C_4 T^{3/2} L)) T L / \lambda_t$ and $\eta = C_5 (m T L + m \lambda_t)^{-1}$, then with probability at least $1 - \delta$,

$$806 \quad \|\theta_t - \tilde{\theta}_t\|_2 \leq \sqrt{\frac{t}{m \lambda_t}}, \quad \|\theta_t - \theta_0\|_2 \leq 3 \sqrt{\frac{t}{m \lambda_t}} = \tau,$$

$$808 \quad \|\theta_t - \hat{\theta}_t\|_2 \leq 2(1 - \eta m \lambda_t)^{J/2} t^{1/2} m^{-1/2} \lambda_t^{-1/2}$$

$$809 \quad + C_2 m^{-2/3} \sqrt{\log m} t^{7/6} \lambda_t^{-7/6} L^{7/2} + C_1 C_3 R m^{-2/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda_t^{-5/3}.$$

810 C.1 PROOF OF LEMMA C.6
811

812 For simplicity, we omit the subscript t by default. First, recall the definition of the auxiliary sequence
813 $\{\tilde{\theta}^{(j)}\}_{j=1}^J$ associated with the auxiliary loss $\tilde{L}(\theta)$; its update rule is given by:
814

$$815 \tilde{\theta}^{(j+1)} = \tilde{\theta}^{(j)} - \eta \nabla \tilde{L}(\tilde{\theta}^{(j)}) \\ 816 = \tilde{\theta}^{(j)} - \eta \left[m\lambda \tilde{\theta}^{(j)} - \sum_{i=1}^t (\mu(g(x_i; \theta_0)^\top (\tilde{\theta}^{(j)} - \theta_0)) - r_i) g(x_i; \theta_0) \right]. \\ 818$$

819 Similarly, the update rule for $\theta^{(j)}$ is given by:
820

$$821 \theta^{(j+1)} = \theta^{(j)} - \eta \left[m\lambda \theta^{(j)} - \sum_{i=1}^t (\mu(f(x; \theta^{(j)})) - r_i) g(x_i; \theta^{(j)}) \right]. \\ 823$$

824 Also notice that

$$825 \nabla^2 \tilde{L}(\theta) = \sum_{i=1}^t \mu(g(x_i; \theta_0)^\top (\theta - \theta_0)) (1 - \mu(g(x_i; \theta_0)^\top (\theta - \theta_0))) g(x_i; \theta_0) g(x_i; \theta_0)^\top + m\lambda \mathbf{I}. \\ 828 \quad (7)$$

829 Now, we start the proof with

$$830 \|\theta^{(j+1)} - \hat{\theta}\|_2 \leq \underbrace{\|\tilde{\theta}^{(j+1)} - \hat{\theta}\|_2}_{\text{(term 1)}} + \underbrace{\|\theta^{(j+1)} - \tilde{\theta}^{(j+1)}\|_2}_{\text{(term 2)}} \quad (8)$$

834 For **(term 1)**, observe from Equation (7) that \tilde{L} is $(m\lambda)$ -strongly convex, since $(m\lambda)\mathbf{I} \preceq \nabla^2 \tilde{L}(\theta)$.
835 Moreover, \tilde{L} is a $C_5(tmL + m\lambda)$ -smooth function for some absolute constant $C_5 > 0$, because
836

$$837 \nabla^2 \tilde{L}(\theta) \preceq \sum_{i=1}^t \frac{1}{2} \cdot \frac{1}{2} \cdot g(x_i; \theta_0) g(x_i; \theta_0)^\top + m\lambda \mathbf{I} \\ 838 \preceq \left(\sum_{i=1}^t \frac{1}{4} \|g(x_i; \theta_0)\|_2^2 + m\lambda \right) \mathbf{I} \\ 839 \preceq C_5(tmL + m\lambda) \mathbf{I}, \\ 840$$

844 where the first inequality follows from $\mu(\cdot)(1 - \mu(\cdot)) \leq 1/4$, the second follows because for any
845 $u, x \in \mathbb{R}^d$, $u^\top x x^\top u \leq \|u\|_2^2 \|x\|_2^2 \leq u^\top (\|x\|_2^2 I) u$, and the last inequality follows from Lemma
846 **C.4**.

847 Then, with our choice of $\eta = C_5(tmL + m\lambda)$, standard results for gradient descent on \tilde{L} imply that
848 $\tilde{\theta}^{(j)}$ converges to $\hat{\theta}$ at the rate as
849

$$850 \|\tilde{\theta}^{(j)} - \hat{\theta}\|_2^2 \leq \frac{2}{m\lambda} \cdot (\tilde{L}(\tilde{\theta}^{(j)}) - \tilde{L}(\hat{\theta})) \\ 851 \leq (1 - \eta m\lambda)^j \cdot \frac{2}{m\lambda} \cdot (\tilde{L}(\theta_0) - \tilde{L}(\hat{\theta})) \\ 852 \leq (1 - \eta m\lambda)^j \cdot \frac{2}{m\lambda} \cdot \tilde{L}(\theta_0), \\ 853$$

856 where the first and the second inequalities follow from the strong convexity and the smoothness of
857 \tilde{L} . Furthermore, we have
858

$$859 \tilde{L}(\theta_0) = - \sum_{i=1}^t r_i \log \mu(0) + (1 - r_i) \log(1 - \mu(0)) + \frac{m\lambda_t}{2} \|\theta_0 - \theta_0\|_2^2 = - \sum_{i=1}^t \log 0.5 \leq t, \\ 860$$

862 Plugging this back gives

$$863 \|\tilde{\theta}^{(j)} - \hat{\theta}\|_2 \leq (1 - \eta m\lambda)^{j/2} \sqrt{2t/(m\lambda)}. \quad (9)$$

864 Next, consider **(term 2)**. From the definition of the update rule, it follows that:
 865

$$\begin{aligned}
 866 \quad & (\text{term 2}) \leq (1 - \eta m \lambda) \|\theta^{(j)} - \tilde{\theta}^{(j)}\|_2 \\
 867 \quad & + \eta \left\| \sum_{i=1}^t (\mu(f(x; \theta^{(j)}) - r_i) g(x_i; \theta^{(j)}) - \sum_{i=1}^t (\mu(g(x_i; \theta_0)^\top (\tilde{\theta}^{(j)} - \theta_0)) - r_i) g(x_i; \theta_0)) \right\|_2 \\
 868 \quad & \leq (1 - \eta m \lambda) \|\theta^{(j)} - \tilde{\theta}^{(j)}\|_2 + \eta \underbrace{\sum_{i=1}^t \left\| (\mu(f(x; \theta^{(j)}) - r_i) [g(x_i; \theta^{(j)}) - g(x_i; \theta_0)]) \right\|_2}_{(\text{term 3})} \\
 869 \quad & + \eta \underbrace{\sum_{i=1}^t \left\| [\mu(f(x; \theta^{(j)})) - \mu(g(x; \theta_0)^\top (\tilde{\theta}^{(j)} - \theta_0))] g(x_i; \theta_0) \right\|_2}_{(\text{term 4})}. \tag{10}
 \end{aligned}$$

870
 871 Considering each term of Equation (10), there exist absolute constants $C_1, C_2, C_3 > 0$ such that
 872

$$\begin{aligned}
 873 \quad & (\text{term 3}) \leq \eta \sum_{i=1}^t \left\| 1 \cdot [g(x_i; \theta^{(j)}) - g(x_i; \theta_0)] \right\|_2 \leq C_2 \eta m^{1/3} \sqrt{\log m} t^{7/6} \lambda^{-1/6} L^{7/2} \tag{11} \\
 874 \quad & (\text{term 4}) \leq \eta \sum_{i=1}^t \left\| R[f(x; \theta^{(j)}) - g(x; \theta_0)^\top (\tilde{\theta}^{(j)} - \theta_0)] g(x_i; \theta_0) \right\|_2 \\
 875 \quad & \leq \eta R \sum_{i=1}^t \left\| f(x; \theta^{(j)}) - g(x; \theta_0)^\top (\tilde{\theta}^{(j)} - \theta_0) \right\|_2 \cdot \|g(x_i; \theta_0)\|_2 \\
 876 \quad & \leq C_3 \eta R \sum_{i=1}^t m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda^{-2/3} \|g(x_i; \theta_0)\|_2 \\
 877 \quad & \leq C_1 C_3 \eta R m^{1/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda^{-2/3}. \tag{12}
 \end{aligned}$$

878 For **(term 3)**, we apply Lemma C.4. For **(term 4)**, the first inequality follows from the R -Lipschitz
 879 continuity of $\mu(\cdot)$, the second follows from the Cauchy–Schwarz inequality, the third follows from
 880 Lemma C.5, and the final inequality follows from Lemma C.4 after summing over t .
 881

882 Substituting Equations (11) and (12) into Equation (10) yields
 883

$$\begin{aligned}
 884 \quad & \|\theta^{(j+1)} - \tilde{\theta}^{(j+1)}\|_2 \leq (1 - \eta m \lambda) \|\theta^{(j)} - \tilde{\theta}^{(j)}\|_2 \\
 885 \quad & + C_2 \eta m^{1/3} \sqrt{\log m} t^{7/6} \lambda^{-1/6} L^{7/2} + C_1 C_3 \eta R m^{1/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda^{-2/3} \tag{13}
 \end{aligned}$$

886 By iteratively applying Equation (13) from 0 to j , we obtain
 887

$$\begin{aligned}
 888 \quad & \|\theta^{(j+1)} - \tilde{\theta}^{(j+1)}\|_2 \leq \frac{C_2 \eta m^{1/3} \sqrt{\log m} t^{7/6} \lambda^{-1/6} L^{7/2} + C_1 C_3 \eta R m^{1/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda^{-2/3}}{\eta m \lambda} \\
 889 \quad & \leq C_2 m^{-2/3} \sqrt{\log m} t^{7/6} \lambda^{-7/6} L^{7/2} + C_1 C_3 R m^{-2/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda^{-5/3}. \tag{14}
 \end{aligned}$$

890 By substituting Equations (9) and (14) into Equation (8) and setting $j = J - 1$, we complete the
 891 proof of the upper bound for $\|\theta_t - \hat{\theta}_2\|_2$. Likewise, from Equation (14), setting $j = J - 1$ and
 892 following the width condition in Condition 4.4 yields
 893

$$\begin{aligned}
 894 \quad & \|\theta_t - \tilde{\theta}_t\|_2 \leq \sqrt{\frac{t}{m \lambda_t}} \left(C_2 m^{-1/6} \sqrt{\log m} t^{2/3} \lambda_t^{-2/3} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m} L^{7/2} t^{7/6} \lambda_t^{-7/6} \right) \\
 895 \quad & \leq \sqrt{\frac{t}{m \lambda_t}} \left(C_2 m^{-1/6} \sqrt{\log m} T^{2/3} \lambda_0^{-2/3} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m} L^{7/2} T^{7/6} \lambda_0^{-7/6} \right) \\
 896 \quad & \leq \sqrt{\frac{t}{m \lambda}}, \tag{15}
 \end{aligned}$$

918 which completes the bound on $\|\theta_t - \tilde{\theta}_t\|_2$. Finally, observe that
919

$$920 \|\theta_t - \theta_0\|_2 \leq \|\theta_t - \tilde{\theta}_t\|_2 + \|\tilde{\theta}_t - \theta_0\|_2,$$

921 where Equation (15) gives $\|\theta_t - \tilde{\theta}_t\|_2 \leq \tau/3$, and for the second term
922

$$923 \frac{m\lambda_t}{2} \|\theta_t - \theta_0\|_2^2 \leq \tilde{L}(\tilde{\theta}_t) \leq \tilde{L}(\theta_0) = \sum_{i=1}^t r_i \log \mu(0) + (1 - r_i) \log(1 - \mu(0)) \leq t \log 2,$$

925 which implies $\|\tilde{\theta}_t - \theta_0\|_2 \leq 2\sqrt{t/(m\lambda_t)} = 2\tau/3$. Combining these results completes the proof of
926 the bound on $\|\theta_t - \theta_0\|_2$.
927

D PROOF OF THEOREM 3.1

931 Our proof technique is primarily inspired by the recent work of Zhou et al. (2021), which integrates
932 non-uniform variance into the analysis of linear bandits. For brevity, let $\sigma_t^2 = \dot{\mu}(x_t^\top \theta^*)$, which
933 yields

$$934 H_t = \sum_{i=1}^t \dot{\mu}(x_i^\top \theta^*) x_i x_i^\top + \lambda \mathbf{I} = \sum_{i=1}^t \sigma_i^2 x_i x_i^\top + \lambda \mathbf{I}.$$

937 We introduce the following additional definitions:

$$938 \beta_t = 8\sqrt{\log \frac{\det H_t}{\det \lambda I} \log(4t^2/\delta)} + \frac{4M\mathbf{N}}{\sqrt{\lambda}} \log(4t^2/\delta) \\ 939 s_t = \sum_{i=1}^t x_i \eta_i, \quad Z_t = \|s_t\|_{H_t^{-1}}, \quad w_t = \|x_t\|_{H_{t-1}^{-1}}, \quad \mathcal{E}_t = \mathbb{1}\{0 \leq s \leq t, Z_s \leq \beta_s\} \quad (16)$$

944 for $t \geq 1$, where we set $s_0 = 0, Z_0 = 0, \beta_0 = 0$.

945 Since $H_t = H_{t-1} + \sigma_t^2 x_t x_t^\top$, by the matrix inversion lemma,

$$946 H_t^{-1} = H_{t-1}^{-1} - \frac{H_{t-1}^{-1}(\sigma_t x_t)(\sigma_t x_t)^\top H_{t-1}^{-1}}{1 + (\sigma_t x_t)^\top H_{t-1}^{-1}(\sigma_t x_t)} \\ 947 = H_{t-1}^{-1} - \frac{\sigma_t^2 H_{t-1}^{-1} x_t x_t^\top H_{t-1}^{-1}}{1 + \sigma_t^2 w_t^2}. \quad (17)$$

951 We begin by establishing a crude upper bound on Z_t . In particular, we have

$$952 Z_t^2 = \|s_t\|_{H_t^{-1}}^2 = (s_{t-1} + x_t \eta_t)^\top H_t^{-1} (s_{t-1} + x_t \eta_t) \\ 953 = s_{t-1}^\top H_t^{-1} s_{t-1} + 2\eta_t x_t^\top H_t^{-1} s_{t-1} + \eta_t^2 x_t^\top H_t^{-1} x_t \\ 954 \leq Z_{t-1}^2 + \underbrace{2\eta_t x_t^\top H_t^{-1} s_{t-1}}_{\text{(term 1)}} + \underbrace{\eta_t^2 x_t^\top H_t^{-1} x_t}_{\text{(term 2)}},$$

958 where the inequality follows from the fact that $H_t \succeq H_{t-1}$. For **(term 1)**, from the matrix inversion
959 lemma Equation (17), we have

$$960 \text{(term 1)} = 2\eta_t \left(x_t^\top H_{t-1}^{-1} s_{t-1} - \frac{\sigma_t^2 x_t^\top H_{t-1}^{-1} x_t x_t^\top H_{t-1}^{-1} s_{t-1}}{1 + \sigma_t^2 w_t^2} \right) \\ 961 = 2\eta_t \left(x_t^\top H_{t-1}^{-1} s_{t-1} - \frac{\sigma_t^2 w_t^2 x_t^\top H_{t-1}^{-1} s_{t-1}}{1 + \sigma_t^2 w_t^2} \right) \\ 962 = \frac{2\eta_t x_t^\top H_{t-1}^{-1} s_{t-1}}{1 + \sigma_t^2 w_t^2}.$$

968 For **(term 2)**, again from the matrix inversion lemma Equation (17), we have

$$969 \text{(term 2)} = \eta_t^2 \left(x_t^\top H_{t-1}^{-1} x_t - \frac{\sigma_t^2 x_t^\top H_{t-1}^{-1} x_t x_t^\top H_{t-1}^{-1} x_t}{1 + \sigma_t^2 w_t^2} \right) = \eta_t^2 \left(w_t^2 - \frac{\sigma_t^2 w_t^4}{1 + \sigma_t^2 w_t^2} \right) = \frac{\eta_t^2 w_t^2}{1 + \sigma_t^2 w_t^2}. \quad (18)$$

972 Therefore, we have
 973

$$974 Z_t^2 \leq Z_{t-1}^2 + \frac{2\eta_t x_t^\top H_{t-1}^{-1} s_{t-1}}{1 + \sigma_t^2 w_t^2} + \frac{\eta_t^2 w_t^2}{1 + \sigma_t^2 w_t^2},$$

$$975$$

976 and by summing this up from $i = 1$ to t gives,
 977

$$978 Z_t^2 \leq \sum_{i=1}^t \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} + \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2}. \quad (19)$$

$$979$$

$$980$$

981 We give two lemmas to upper bound each term.
 982

983 **Lemma D.1.** *Let s_i, w_i, \mathcal{E}_i be as defined in Equation (16). Then, with probability at least $1 - \delta/2$, simultaneously for all $t \geq 1$ it holds that*

$$984 \sum_{i=1}^t \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1} \leq \frac{3}{4} \beta_t^2.$$

$$985$$

$$986$$

987 **Lemma D.2.** *Let w_i be as defined in Equation (16). Then, with probability at least $1 - \delta/2$, simultaneously for all $t \geq 1$ it holds that*

$$988 \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \leq \frac{1}{4} \beta_t^2.$$

$$989$$

$$990$$

$$991$$

$$992$$

993 Now consider the event \mathcal{E} in which the conclusions of Lemma D.1 and Lemma D.2 hold. We
 994 claim that, on this event, for any $i \geq 0$, $Z_i \leq \beta_i$. We prove this by induction on i . For the
 995 base case $i = 0$, the claim holds by definition, since $\beta_0 = 0 = Z_0$. Now fix any $t \geq 1$ and
 996 assume that for all $0 \leq i < t$ we have $Z_i \leq \beta_i$. Under this induction hypothesis, it follows that
 997 $\mathcal{E}_1 = \mathcal{E}_2 = \dots = \mathcal{E}_{t-1} = 1$. Then by Equation (19), we have

$$998 Z_t^2 \leq \sum_{i=1}^t \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} + \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} = \sum_{i=1}^t \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1} + \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2}. \quad (20)$$

$$999$$

$$1000$$

1001 Since on the event \mathcal{E} the conclusion of Lemma D.1 and Lemma D.2 hold, we have
 1002

$$1003 \sum_{i=1}^t \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1} \leq \frac{3}{4} \beta_t^2, \quad \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \leq \frac{1}{4} \beta_t^2. \quad (21)$$

$$1004$$

$$1005$$

1006 Therefore, substituting Equation (21) into Equation (20) yields $Z_t \leq \beta_t(\delta)$, which completes the
 1007 induction. By a union bound, the events in Lemma D.1 and Lemma D.2 both hold with probability
 1008 at least $1 - \delta$. Hence, with probability at least $1 - \delta$, for all t , $Z_t \leq \beta_t$.

1009 D.1 PROOF OF LEMMA D.1

1010 We now proceed to apply Freedman's inequality, as stated in Lemma H.1. We have
 1011

$$1012 \left| \frac{2x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1} \right| \leq \frac{2\|x_i\|_{H_{i-1}^{-1}} [\|s_{i-1}\|_{H_{i-1}^{-1}} \mathcal{E}_{i-1}]}{1 + \sigma_i^2 w_i^2} \leq \frac{2w_i \beta_{i-1}}{1 + \sigma_i^2 w_i^2} \leq \min\{1/\sigma_i, 2w_i\} \beta_{i-1}. \quad (22)$$

$$1013$$

$$1014$$

$$1015$$

$$1016$$

1017 Here, the first inequality follows from the Cauchy–Schwarz inequality, the second follows from the
 1018 definition of \mathcal{E}_{i-1} , and the final inequality follows by simple algebra. For simplicity, let ℓ_i denote
 1019

$$1020 \ell_i = \frac{2\eta_i x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1}.$$

$$1021$$

1022 We now apply Freedman's inequality from Lemma H.1 to the sequences $(\ell_i)_i$ and $(\mathcal{G}_i)_i$. First, note
 1023 that $\mathbb{E}[\ell_i | \mathcal{G}_i] = 0$. Moreover, by Equation (22), the following inequalities hold almost surely:
 1024

$$1025 |\ell_i| \leq M \beta_{i-1} \min\{1/\sigma_i, 2w_i\} \leq \frac{2MN}{\sqrt{\lambda}} \beta_t, \quad (23)$$

$$1026$$

$$1027$$

1026 where the last inequality follows since $(\beta_i)_i$ is non-decreasing in i and by the fact that
 1027

$$1028 \quad w_i = \|x_i\|_{H_{i-1}^{-1}} \leq \|x_i\|_2 / \sqrt{\lambda} \leq N / \sqrt{\lambda}. \quad (24)$$

1029 We also have
 1030

$$\begin{aligned} 1031 \quad \sum_{i=1}^t \mathbb{E}[\ell_i^2 | \mathcal{G}_i] &\leq \sum_{i=1}^t \sigma_i^2 \left(\frac{2x_i^\top H_{i-1}^{-1} s_{i-1}}{1 + \sigma_i^2 w_i^2} \mathcal{E}_{i-1} \right)^2 \\ 1034 &\leq \sum_{i=1}^t \sigma_i^2 (\min\{1/\sigma_i, 2w_i\} \beta_{i-1})^2 \\ 1037 &= \sum_{i=1}^t (\min\{1, 2w_i \sigma_i\} \beta_{i-1})^2 \\ 1040 &\leq 4\beta_t^2 \sum_{i=1}^t \min\{1, (w_i \sigma_i)^2\}, \end{aligned}$$

1042 where the first inequality holds by the definition of σ_i , the second inequality follows from Equation
 1043 (22), the third inequality holds since $(\beta_i)_i$ is non-decreasing. Since

$$1044 \quad \sum_{i=1}^t \min\{1, (w_i \sigma_i)^2\} = \sum_{i=1}^t \min\{1, \|\sigma_i x_i\|_{H_{i-1}^{-1}}^2\} \leq 2 \log \frac{\det H_t}{\det \lambda \mathbf{I}}, \quad (25)$$

1047 where the last inequality follows from Lemma H.2. Substituting this back yields,
 1048

$$1049 \quad \sum_{i=1}^t \mathbb{E}[\ell_i^2 | \mathcal{G}_i] \leq 8\beta_t^2 \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right). \quad (26)$$

1051 Therefore, by Equations (23) and (26), using Lemma H.1, we know that for any t , with probability
 1052 at least $1 - \delta/(4t^2)$, we have
 1053

$$\begin{aligned} 1054 \quad \sum_{i=1}^t \ell_i &\leq \sqrt{16\beta_t^2 \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} + \frac{2}{3} \cdot \frac{2MN}{\sqrt{\lambda}} \beta_t \log(4t^2/\delta) \\ 1057 &\leq \frac{\beta_t^2}{4} + 16 \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta) + \frac{\beta_t^2}{4} + \frac{4M^2 N^2}{\lambda} \log^2(4t^2/\delta) \\ 1060 &\leq \frac{\beta_t^2}{2} + \frac{1}{4} \left[8 \sqrt{\log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} + \frac{4MN}{\sqrt{\lambda}} \log(4t^2/\delta) \right]^2 \\ 1063 &= \frac{3}{4} \beta_t^2, \end{aligned} \quad (27)$$

1066 where the second inequality follows from the fact that $2\sqrt{|ab|} \leq |a| + |b|$, and the final equality
 1067 follows from the definition of β_t . Applying a union bound to Equation (27) from $t = 1$ to ∞ and
 1068 using the fact that $\sum_{t=1}^{\infty} t^{-2} < 2$ completes the proof.

1069 D.2 PROOF OF LEMMA D.2

1071 Similarly to Lemma D.1, we apply Freedman's inequality from Lemma H.1 to the sequences $(\ell_i)_i$
 1072 and $(\mathcal{G}_i)_i$, where now
 1073

$$1074 \quad \ell_i = \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} - \mathbb{E} \left[\frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \middle| \mathcal{G}_i \right].$$

1077 First, with Equation (24), we derive a crude upper bound for the following term:

$$1078 \quad \left| \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \right| \leq |\eta_i^2 w_i^2| \leq \frac{M^2 N^2}{\lambda}. \quad (28)$$

Now, for any i , we have $\mathbb{E}[\ell_i | \mathcal{G}_i] = 0$ almost surely. Furthermore, we can see that

$$\begin{aligned}
\sum_{i=1}^t \mathbb{E}[\ell_i^2 | \mathcal{G}_i] &\leq \sum_{i=1}^t \mathbb{E} \left[\frac{\eta_i^4 w_i^4}{(1 + \sigma_i^2 w_i^2)^2} \middle| \mathcal{G}_i \right] \\
&\leq \frac{M^2 N^2}{\lambda} \sum_{i=1}^t \mathbb{E} \left[\frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \middle| \mathcal{G}_i \right] \\
&\leq \frac{M^2 N^2}{\lambda} \sum_{i=1}^t \frac{\sigma_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \\
&\leq \frac{2M^2 N^2}{\lambda} \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right),
\end{aligned} \tag{29}$$

where the first inequality follows from the fact that $\mathbb{E}(X - \mathbb{E}[X])^2 \leq \mathbb{E}[X^2]$, the second follows from Equation (28), the third follows from the definition of η_i , and the fourth follows from the bound $\sigma_i^2 w_i^2 / (1 + \sigma_i^2 w_i^2) \leq \min\{1, \sigma_i^2 w_i^2\}$ together with the result in Equation (25). Furthermore, applying Equation (28) again gives

$$|\ell_i| \leq \left| \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \right| + \left| \mathbb{E} \left[\frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \middle| \mathcal{G}_i \right] \right| \leq \frac{2M^2 N^2}{\lambda}, \quad (30)$$

almost surely. Therefore by Equation (29) and Equation (30), using Lemma H.1, we know that for any t , with probability at least $1 - \delta/(4t^2)$, we have

$$\begin{aligned}
& \sum_{i=1}^t \frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \\
& \leq \sum_{i=1}^t \mathbb{E} \left[\frac{\eta_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} \middle| \mathcal{G}_i \right] + \sqrt{\frac{4M^2 N^2}{\lambda} \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} \\
& \quad + \frac{2}{3} \cdot \frac{2M^2 N^2}{\lambda} \log(t^2/\delta) \\
& \leq \sum_{i=1}^t \frac{\sigma_i^2 w_i^2}{1 + \sigma_i^2 w_i^2} + \sqrt{\frac{4M^2 N^2}{\lambda} \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} \\
& \quad + \frac{4M^2 N^2}{\lambda} \log(4t^2/\delta) \\
& \leq 2 \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) + \sqrt{\frac{4M^2 N^2}{\lambda} \log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} \\
& \quad + \frac{4M^2 N^2}{\lambda} \log(4t^2/\delta) \\
& \leq \frac{1}{4} \cdot \left[8 \sqrt{\log \det \left(\sum_{i=1}^t \frac{\sigma_i^2}{\lambda} x_i x_i^\top + \mathbf{I} \right) \log(4t^2/\delta)} + \frac{4MN}{\sqrt{\lambda}} \log(4t^2/\delta) \right]^2 \\
& = \frac{1}{4} \beta_t^2,
\end{aligned} \tag{31}$$

where the second inequality follows from the definition of σ_i^2 , the third follows from the bound $\sigma_i^2 w_i^2 / (1 + \sigma_i^2 w_i^2) \leq \min\{1, \sigma_i^2 w_i^2\}$ together with the result in Equation (25), and the final inequality follows from the definition of β_t . Applying a union bound to Equation (31) for $t = 1$ to ∞ and using the fact that $\sum_{t=1}^{\infty} t^{-2} < 2$ completes the proof.

1134 E PROOF OF LEMMAS IN SECTION 6
11351136 For clarity, we assume that Condition 4.4 always holds. We then define the quantity $\alpha(z', z'')$ via
1137 the mean-value theorem, and introduce two additional analogous definitions for brevity as follows:
1138

1139
$$\alpha(z', z'') = \frac{\mu(z') - \mu(z'')}{z' - z''} = \int_{v=0}^1 \dot{\mu}(z' + v(z'' - z')) dv,$$

1140
1141
$$\alpha(x, \theta', \theta'') = \alpha\left(g(x; \theta_0)^\top(\theta' - \theta_0), g(x; \theta_0)^\top(\theta'' - \theta_0)\right),$$

1142
1143
$$\alpha(x', x'', \theta) = \alpha\left(g(x'; \theta_0)^\top(\theta - \theta_0), g(x''; \theta_0)^\top(\theta - \theta_0)\right). \quad (32)$$

1144

1145 For the design matrix X_t associated with the time-varying regularization parameter λ_t , we denote
1146 by \tilde{X}_t the corresponding matrix formed using the initial regularization parameter λ_0 . For example,
1147

1148
$$\tilde{V}_t = \sum_{i=1}^t \frac{1}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \kappa \lambda_0 \mathbf{I},$$

1149
1150
$$\tilde{H}_t(\theta) = \sum_{i=1}^t \frac{1}{m} \dot{\mu}(g(x_i; \theta_0)^\top(\theta_i - \theta_0)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_0 \mathbf{I}$$

1151
1152
$$\tilde{W}_t = \sum_{i=1}^t \frac{1}{m} \dot{\mu}(f(x_i; \theta_i)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_0 \mathbf{I}. \quad (33)$$

1153
1154
1155
1156

1157 E.1 PROOF OF LEMMA 4.5
11581159 First, we define the auxiliary loss $\tilde{L}_t(\theta)$

1160
1161
$$\tilde{L}_t(\theta) = - \sum_{i=1}^t r_i \log \mu(g(x_i; \theta_0)^\top(\theta - \theta_0)) + (1 - r_i) \log(1 - \mu(g(x_i; \theta_0)^\top(\theta - \theta_0)))$$

1162
1163
1164
$$+ \frac{m \lambda_t}{2} \|\theta - \theta_0\|_2^2,$$

1165

1166 and its maximum likelihood estimator $\hat{\theta}_t = \arg \min_{\theta} \tilde{L}_t(\theta)$. Then, we use the following definitions:
1167

1168
$$\gamma_t(\theta) = \sum_{i=1}^t \frac{1}{m} \mu(g(x_i; \theta_0)^\top(\theta - \theta_0)) g(x_i; \theta_0) + \lambda_t(\theta - \theta_0)$$

1169
1170
$$\Gamma_t(\theta', \theta'') = \sum_{i=1}^t \frac{1}{m} \alpha(x_i, \theta', \theta'') g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I},$$

1171
1172
1173

1174 where $\alpha(x_i, \theta', \theta'')$ is defined at Equation (32). We can see that

1175
$$\gamma_t(\theta) - \gamma_t(\theta^*)$$

1176
1177
$$= \sum_{i=1}^t \frac{1}{m} \left(\mu(g(x_i; \theta_0)^\top(\theta - \theta_0)) - \mu(g(x_i; \theta_0)^\top(\theta^* - \theta_0)) \right) g(x_i; \theta_0) + \lambda_t(\theta - \theta^*)$$

1178
1179
1180
$$= \sum_{i=1}^t \frac{1}{m} \alpha(x_i, \theta, \theta^*) g(x_i; \theta_0) g(x_i; \theta_0)^\top(\theta - \theta^*) + \lambda_t(\theta - \theta^*)$$

1181
1182
1183
$$= \Gamma_t(\theta, \theta^*)(\theta - \theta^*),$$

1184 which implies that

1185
$$\|\theta - \theta^*\|_{\Gamma_t(\theta, \theta^*)} = \|\gamma(\theta) - \gamma(\theta^*)\|_{\Gamma_t^{-1}(\theta, \theta^*)}. \quad (34)$$

1186
1187

Now we provide the following two lemmas:

1188 **Lemma E.1.** For $\delta \in (0, 1]$, define
 1189

$$1190 \quad \mathcal{C}_t = \left\{ \theta : \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{H_t^{-1}(\theta)} \leq \iota_t \right\}, \quad (35)$$

1192 where ι_t is defined at Equation (3). Then for all $t \geq 0$, $\theta^* \in \mathcal{C}_t$ with probability at least $1 - \delta$
 1193

1194 **Lemma E.2.** Let $\delta \in (0, 1]$. Define \mathcal{C}_t as in Equation (35). There exists an absolute constant $C_1 > 0$
 1195 such that for all $\theta \in \mathcal{C}_t$,

$$1196 \quad H_t(\theta) \preceq \left(1 + C_1^2 \frac{L}{\lambda_t} \iota_t^2 + C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t \right) \Gamma_t(\theta, \hat{\theta}_t), \quad H_t(\hat{\theta}_t) \preceq \left(1 + C_1^2 \frac{L}{\lambda_t} \iota_t^2 + C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t \right) \Gamma_t(\theta, \hat{\theta}_t).$$

1199 Now we are ready to start the proof.
 1200

1201 *Proof of Lemma 4.5.* For the absolute constants $\{C_i\}_{i=1}^3$, we can start with
 1202

$$1203 \quad \sqrt{m} \|\theta_t - \theta^*\|_{H_t(\theta^*)} \quad (36)$$

$$1205 \leq \sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\theta^*)} + \sqrt{m} \|\theta_t - \hat{\theta}_t\|_{H_t(\theta^*)}$$

$$1206 \leq \sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\theta^*)} + \sqrt{m} \|\theta_t - \hat{\theta}_t\|_2 \cdot (\lambda_t + C_1 t L)$$

$$1208 \leq \underbrace{\sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\theta^*)}}_{\text{(term 1)}} + \underbrace{2(\lambda_t + C_1 t L)(1 - \eta m \lambda_t)^{J/2} t^{1/2} \lambda_t^{-1/2}}_{\text{(term 2)}}$$

$$1210 + (\lambda_t + C_1 t L) \underbrace{\left[C_2 m^{-1/6} \sqrt{\log m} t^{7/6} \lambda_t^{-7/6} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m} L^{7/2} t^{5/3} \lambda_t^{-5/3} \right]}_{\text{(term 3)}}. \quad (37)$$

1215 The first inequality is due to triangle inequality. The second inequality is due to $\lambda_{\max}(H_t(\theta^*)) \leq$
 1216 $\lambda_t + t \times \|\sqrt{\mu(\cdot)/m} \cdot g(\cdot)\|_2^2 \leq \lambda_t + C_1 t L$ where we used Lemma C.4. Finally, the last inequality
 1217 follows from Lemma C.6.

1218 For **(term 1)**, we rewrite the definition of ι_t and λ_t :

$$1220 \quad \iota_t = 16 \sqrt{\log \det \left(\sum_{i=1}^t \frac{1}{4m^2 \lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \mathbf{I} \right) \log \frac{4t^2}{\delta} + 8C_1 \sqrt{\frac{L}{\lambda_0}} \log \frac{4t^2}{\delta}}$$

$$1224 \quad \lambda_t = \frac{64}{S^2} \log \det \left(\sum_{i=1}^t \frac{1}{4m \lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \mathbf{I} \right) \log \frac{4t^2}{\delta} + \frac{16C_1^2 L}{S^2 \lambda_0} \log^2 \frac{4t^2}{\delta}.$$

1226 We can see that $\iota_t^2 / \lambda_t \leq 8S^2$ (and $\iota_t / \sqrt{\lambda_t} \leq 2\sqrt{2}S$) by the fact that $(a + b)^2 \leq 2a^2 + 2b^2$.
 1227 Therefore, applying these with Lemmas E.1 and E.2 gives
 1228

$$1229 \quad H_t(\theta^*) \preceq (1 + 2\sqrt{2}C_1 \sqrt{LS} + 8C_1^2 LS^2) \Gamma_t(\theta^*, \hat{\theta}_t), \quad (38)$$

1231 for some absolute constant $C_1 > 0$. Now, back to **(term 1)**, we have

$$1233 \quad \sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\theta^*)} \leq \sqrt{m(1 + 2\sqrt{2}C_1 \sqrt{LS} + 8C_1^2 LS^2)} \|\hat{\theta}_t - \theta^*\|_{\Gamma_t(\hat{\theta}_t, \theta^*)}$$

$$1235 = \sqrt{m(1 + 2\sqrt{2}C_1 \sqrt{LS} + 8C_1^2 LS^2)} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{\Gamma_t^{-1}(\hat{\theta}_t, \theta^*)}$$

$$1237 \leq (1 + 2\sqrt{2}C_1 \sqrt{LS} + 8C_1^2 LS^2) \sqrt{m} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{H_t^{-1}(\theta^*)}$$

$$1239 \leq (1 + 2\sqrt{2}C_1 \sqrt{LS} + 8C_1^2 LS^2) \iota_t.$$

1241 where the first and the second inequalities follow from Equation (38), the equality is due to Equation (34), and the last inequality follows from Lemma E.1.

1242 For **(term 2)**, plugging in $J = 2 \log(\lambda_t S / (T^{1/2} \lambda_t + C_4 T^{3/2} L)) TL / \lambda_t$, $\eta = C_5(mTL + m\lambda_t)^{-1}$
 1243 gives

$$\begin{aligned} 1245 \quad & 2(\lambda_t + C_1 t L)(1 - \eta m \lambda_t)^{J/2} t^{1/2} \lambda_t^{-1/2} \\ 1246 \quad & \leq 2(\lambda_t + C_1 t L)(1 - \lambda_t / (T L))^{J/2} T^{1/2} \lambda_t^{-1/2} \\ 1247 \quad & \leq 2S\sqrt{\lambda_t} \\ 1248 \quad & \leq \iota_t, \end{aligned}$$

1250 where the last inequality follows from the definition of λ_t and the fact that $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. For
 1251 **(term 3)**, recall that $\lambda_0 \leq \min\{\lambda_t\}_{t \geq 1}$, then we have

$$\begin{aligned} 1253 \quad & C_2 m^{-1/6} \sqrt{\log m t}^{7/6} \lambda_t^{-1/6} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m L}^{7/2} t^{5/3} \lambda_t^{-2/3} \\ 1254 \quad & + C_1 C_2 m^{-1/6} \sqrt{\log m t}^{13/6} \lambda_t^{-7/6} L^{9/2} + C_1^2 C_3 R m^{-1/6} \sqrt{\log m L}^{9/2} t^{8/3} \lambda_t^{-5/3} \\ 1255 \quad & \leq C_2 m^{-1/6} \sqrt{\log m} T^{7/6} \lambda_0^{-1/6} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m} L^{7/2} T^{5/3} \lambda_0^{-2/3} \\ 1256 \quad & + C_1 C_2 m^{-1/6} \sqrt{\log m} T^{13/6} \lambda_0^{-7/6} L^{9/2} + C_1^2 C_3 R m^{-1/6} \sqrt{\log m} L^{9/2} T^{8/3} \lambda_0^{-5/3} \\ 1257 \quad & \leq 1, \end{aligned}$$

1260 where the last inequality can be verified that if the width of the NN m is large enough, satisfying the
 1261 condition on Condition **C.2**, **(term 3)** ≤ 1 .

1262 Substituting **(term 1)**, **(term 2)**, and **(term 3)** back to Equation (37) gives

$$\begin{aligned} 1264 \quad & \sqrt{m} \|\theta_t - \theta^*\|_{H_t(\theta^*)} \leq (2 + 2\sqrt{2}C_1\sqrt{L}S + 8C_1^2LS^2)\iota_t + 1 \\ 1265 \quad & \leq C_6(1 + \sqrt{L}S + LS^2)\iota_t + 1, \end{aligned}$$

1266 for some absolute constant $C_6 > 0$, concludes the proof. \square

E.2 PROOF OF LEMMA E.1

1270 Recall the definition of $\tilde{\mathcal{L}}_t(\theta)$, $\hat{\theta}_t$, $\gamma_t(\theta)$, and $\Gamma_t(\theta', \theta'')$ from Section E.1. Since $\hat{\theta}_t$ is a maximum
 1271 likelihood estimator, $\tilde{\mathcal{L}}_t(\hat{\theta}_t) = 0$, which gives

$$1273 \quad \sum_{i=1}^t \frac{1}{m} \mu(g(x_i; \theta_0)^\top (\hat{\theta}_t - \theta_0)) g(x_i; \theta_0) + \lambda_t (\hat{\theta}_t - \theta_0) = \sum_{i=1}^t \frac{1}{m} r_i g(x_i; \theta_0). \quad (39)$$

1276 Therefore, we can see that

$$\begin{aligned} 1277 \quad & \sqrt{m} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{H_t^{-1}(\theta^*)} \\ 1278 \quad & = \sqrt{m} \left\| \sum_{i=1}^t \frac{1}{m} [\mu(g(x_i; \theta_0)^\top (\hat{\theta}_t - \theta_0)) - \mu(g(x_i; \theta)^\top (\theta^* - \theta_0))] g(x_i; \theta_0) + \lambda_t \hat{\theta}_t - \lambda_t \theta^* \right\|_{H_t^{-1}(\theta^*)} \\ 1279 \quad & = \sqrt{m} \left\| \sum_{i=1}^t \frac{1}{m} [r_i - \mu(g(x_i; \theta_0)^\top (\theta^* - \theta_0))] g(x_i; \theta_0) - \lambda_t (\theta^* - \theta_0) \right\|_{H_t^{-1}(\theta^*)} \\ 1280 \quad & \leq \underbrace{\left\| \sum_{i=1}^t \frac{1}{\sqrt{m}} [r_i - \mu(g(x_i; \theta_0)^\top (\theta^* - \theta_0))] g(x_i; \theta_0) \right\|_{H_t^{-1}(\theta^*)}}_{(term 1)} + \underbrace{\sqrt{\lambda_t m} \|\theta^* - \theta_0\|_2}_{(term 2)}, \quad (40) \end{aligned}$$

1289 where the first equality follows from the definition, the second equality is due to Equation (39), and
 1290 the first inequality follows from triangle inequality, and the fact that $\lambda_{\max}(H_t^{-1}(\theta^*)) \leq 1/\sqrt{\lambda_t}$.

1292 For **(term 1)**, we are going to use our new tail inequality for martingales in Theorem 3.1. Define
 1293 $\eta_i = r_i - \mu(g(x_i; \theta_0)^\top (\theta^* - \theta_0)) = r_i - \mu(h(x_i))$. Then, we can see the following conditions are
 1294 satisfied:

$$1295 \quad |\eta_i| \leq 1, \mathbb{E}[\eta_i | \mathcal{G}_i] = 0, \mathbb{E}[\eta_i^2 | \mathcal{G}_i] = \mu(g(x_i; \theta_0)^\top (\theta^* - \theta_0)).$$

1296 By Lemma C.4 we have $\|g(x_i; \theta_0)/\sqrt{m}\|_2 \leq C_1\sqrt{L}$ for some absolute constant $C_1 > 0$. Therefore,
 1297 applying Theorem 3.1 gives

$$\begin{aligned}
 1299 & \left\| \sum_{i=1}^t \frac{1}{\sqrt{m}} \eta_t g(x_i; \theta_0) \right\|_{H_t^{-1}(\theta^*)} \\
 1300 & \leq \left\| \sum_{i=1}^t \frac{1}{\sqrt{m}} \eta_t g(x_i; \theta_0) \right\|_{\tilde{H}_t^{-1}(\theta^*)} \\
 1301 & \leq 8 \sqrt{\log \det \left(\sum_{i=1}^t \frac{1}{4m\lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + I \right) \log \frac{4t^2}{\delta} + 4C_1 \sqrt{\frac{L}{\lambda_0}} \log \frac{4t^2}{\delta}}, \quad (41)
 \end{aligned}$$

1308 with probability at least $1 - \delta$. Substituting Equation (41) into Equation (40) gives

$$\begin{aligned}
 1309 & \sqrt{m} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{H_t^{-1}(\theta^*)} \\
 1310 & \leq 8 \sqrt{\log \det \left(\sum_{i=1}^t \frac{1}{4m\lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + I \right) \log \frac{4t^2}{\delta} + 4C_1 \sqrt{\frac{L}{\lambda_0}} \log \frac{4t^2}{\delta} + S\sqrt{\lambda_t}} \\
 1311 & \leq 16 \sqrt{\log \det \left(\sum_{i=1}^t \frac{1}{4m\lambda_0} g(x_i; \theta_0) g(x_i; \theta_0)^\top + I \right) \log \frac{4t^2}{\delta} + 8C_1 \sqrt{\frac{L}{\lambda_0}} \log \frac{4t^2}{\delta}} \\
 1312 & = \iota_t. \quad (42)
 \end{aligned}$$

1318 where the last inequality is due to the update rule of λ_t and the fact that $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. We
 1319 finish the proof.

E.3 PROOF OF LEMMA E.2

1323 We modified the previous results of Abeille et al. (2021) (Lemma 2), and Faury et al. (2022) (proof
 1324 of Lemma 1), proper to our settings.

1325 **Lemma E.3.** *Let $\delta \in (0, 1]$. Define \mathcal{C}_t as in Equation (35). There exists an absolute constant
 1326 $C_1 > 0$ such that for all $\theta \in \mathcal{C}_t$:*

$$1327 \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)} \leq C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t^2 + \iota_t.$$

1330 The proof is deferred to Section E.4. Following the proof of Lemma E.3, from Equation (43), we
 1331 have

$$\begin{aligned}
 1332 \Gamma_t(\theta, \hat{\theta}_t) & \geq \left(1 + C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)} \right)^{-1} H_t(\theta) \\
 1333 & \geq \left(1 + C_1^2 \frac{L}{\lambda_t} \iota_t^2 + C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t \right)^{-1} H_t(\theta)
 \end{aligned}$$

1336 where the last inequality follows from applying Lemma E.3 again.

1338 One can achieve the same result for $H_t(\hat{\theta}_t)$ in a similarly way by starting the proof of Lemma E.3
 1339 with

$$\begin{aligned}
 1340 \Gamma_t(\theta, \hat{\theta}_t) & = \sum_{i=1}^t \alpha(x_i, \theta, \hat{\theta}_t) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\
 1341 & \geq \sum_{i=1}^t (1 + |g(x_i; \theta_0)^\top (\theta - \hat{\theta}_t)|)^{-1} \dot{\mu}(g(x_i; \theta_0)^\top (\hat{\theta}_t - \theta_0)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\
 1342 & \geq \left(1 + C_1 \sqrt{\frac{L}{\lambda_t}} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)} \right)^{-1} H_t(\hat{\theta}_t) \\
 1343 & \geq \left(1 + C_1^2 \frac{L}{\lambda_t} \iota_t^2 + C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t \right)^{-1} H_t(\hat{\theta}_t),
 \end{aligned}$$

1350 where the first inequality follows from Lemma H.3, the second inequality follows the same process
 1351 of Equation (43), and the last inequality follows from Lemma E.3, finishing the proof.
 1352

1353 E.4 PROOF OF LEMMA E.3 1354

1355 Recall the definition of Γ_t and $\alpha(x, \theta', \theta'')$ from Equation (32). We start with
 1356

$$1357 \Gamma_t(\theta, \hat{\theta}_t) = \sum_{i=1}^t \alpha(x_i, \theta, \hat{\theta}_t) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\ 1358 \geq \sum_{i=1}^t \underbrace{(1 + |g(x_i; \theta_0)^\top (\theta - \hat{\theta}_t)|)}_{(\text{term 1})}^{-1} \dot{\mu}(g(x_i; \theta_0)^\top (\theta - \theta_0)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}, \\ 1360 \\ 1361 \\ 1362$$

1363 where the inequality follows from Lemma H.3. For **(term 1)**, we have,
 1364

$$1365 (\text{term 1}) \leq \|g(x_i; \theta_0) / \sqrt{m}\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)} \cdot \sqrt{m} \|\theta - \hat{\theta}_t\|_{\Gamma_t(\theta, \hat{\theta}_t)} \\ 1366 \leq C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\theta - \hat{\theta}_t\|_{\Gamma_t(\theta, \hat{\theta}_t)} \\ 1367 \leq C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}, \\ 1368 \\ 1369$$

1370 where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality follows from the fact that $\lambda_{\max}(\Gamma(\cdot)^{-1}) \leq \lambda_t^{-1}$ and Lemma C.4, and the last inequality follows from Equation (34). Substituting **(term 1)** back gives,
 1371
 1372
 1373

$$1374 \Gamma_t(\theta, \hat{\theta}_t) \geq \left(1 + C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}\right)^{-1} \\ 1375 \times \sum_{i=1}^t \dot{\mu}(g(x_i; \theta_0)^\top (\theta - \theta_0)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\ 1376 \\ 1377 \\ 1378 \geq \left(1 + C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}\right)^{-1} \\ 1379 \times \left(\sum_{i=1}^t \dot{\mu}(g(x_i; \theta_0)^\top (\theta - \theta_0)) g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}\right) \\ 1380 \\ 1381 \\ 1382 \\ 1383 = \left(1 + C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}\right)^{-1} H_t(\theta) \quad (43)$$

1386 Using this results, we can further obtain
 1387

$$1388 \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}^2 \\ 1389 \leq \left(1 + C_1 L^{1/2} \lambda_t^{-1/2} \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}\right) \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{H_t^{-1}(\theta)}^2 \\ 1390 \\ 1391 \leq \iota_t^2 + C_1 L^{1/2} \lambda_t^{-1/2} \iota_t^2 \cdot \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}, \\ 1392 \\ 1393$$

1394 where the last inequality follows from Lemma E.1. We solve the polynomial inequality in
 1395 $\sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)}$ using a fact that for $b, c > 0$ and $x \in \mathbb{R}$, following implication
 1396 holds: $x^2 \leq bx + c \implies x \leq b + \sqrt{c}$, which finally gives
 1397

$$1398 \sqrt{m} \|\gamma_t(\theta) - \gamma_t(\hat{\theta}_t)\|_{\Gamma_t^{-1}(\theta, \hat{\theta}_t)} \leq C_1 \sqrt{\frac{L}{\lambda_t}} \iota_t^2 + \iota_t \\ 1399 \\ 1400$$

1401 E.5 PROOF OF LEMMA 6.4 1402

1403 First, we show that we can upper bound on the prediction error for all $x \in \mathcal{X}_t$, $t \in [T]$, which is the
 1404 difference between the true reward $\mu(h(x))$ with our prediction with the neural network $\mu(f(x; \theta_t))$.
 1405

1404 For $x \in \mathcal{X}_{t+1}$ and the absolute constant $C_3 > 0$, the prediction error is defined as
 1405

$$\begin{aligned}
 1406 \quad & |\mu(h(x)) - \mu(f(x; \theta_t))| \\
 1407 \quad & \leq R[h(x) - f(x; \theta_t)] \\
 1408 \quad & = R[g(x; \theta_0)^\top(\theta^* - \theta_0) - f(x; \theta_t)] \\
 1409 \quad & \leq R[\underbrace{g(x; \theta_0)^\top(\theta^* - \theta_0) - g(x; \theta_0)^\top(\theta_t - \theta_0)}_{(\text{term 1})} + C_3 m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_t^{-2/3}], \quad (44)
 \end{aligned}$$

1413 where the first inequality is due to the fact that $\mu(\cdot)$ is R -Lipschitz function, the equality follows
 1414 from Lemma 6.1, and the last inequality follows from Lemma C.5. For **(term 1)**, we have
 1415

$$\begin{aligned}
 1416 \quad & (\text{term 1}) = g(x; \theta_0)^\top(\theta^* - \theta_t) \\
 1417 \quad & = \frac{1}{\sqrt{m}} g(x; \theta_0)^\top \cdot H_t^{-1/2}(\theta^*) \cdot H_t^{1/2}(\theta^*) \cdot \sqrt{m}(\theta^* - \theta_t) \\
 1418 \quad & \leq \|g(x; \theta_0)/\sqrt{m}\|_{H_t^{-1}(\theta^*)} \cdot \sqrt{m} \|\theta^* - \theta_t\|_{H_t(\theta^*)} \\
 1419 \quad & \leq \sqrt{\kappa} \|g(x; \theta_0)/\sqrt{m}\|_{V_t^{-1}} \cdot \sqrt{m} \|\theta^* - \theta_t\|_{H_t(\theta^*)} \\
 1420 \quad & \leq \sqrt{\kappa} \|g(x; \theta_0)/\sqrt{m}\|_{V_t^{-1}} \cdot (C_6(1 + \sqrt{L}S + LS^2)\iota_t + 1), \quad (45)
 \end{aligned}$$

1424 where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality is
 1425 due to the Assumption 6.3 that $\frac{1}{\kappa} V_t \preceq H_t^{-1}(\theta^*)$, and the last inequality follows from Lemma 4.5.
 1426 Plugging Equation (45) into Equation (44) gives

$$\begin{aligned}
 1427 \quad & |\mu(h(x)) - \mu(f(x; \theta_t))| \\
 1428 \quad & \leq R \sqrt{\kappa} (C_6(1 + \sqrt{L}S + LS^2)\iota_t + 1) \|g(x; \theta_0)/\sqrt{m}\|_{V_t^{-1}} + C_3 R m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_t^{-2/3} \\
 1429 \quad & \leq R \sqrt{\kappa} (C_6(1 + \sqrt{L}S + LS^2)\iota_t + 1) \|g(x; \theta_0)/\sqrt{m}\|_{V_t^{-1}} + \epsilon_{3,t}, \quad (46)
 \end{aligned}$$

1433 where the second inequality follows from the fact that $\lambda_0 \leq \min\{\lambda_t\}_{t \geq 1}$ and the definition of $\epsilon_{3,t}$.
 1434

1435 F PROOF OF LEMMAS IN SECTION 5

1436 F.1 PROOF OF LEMMA 5.1

1439 Recall the definition of $\tilde{L}_t(\theta)$, $\hat{\theta}_t$, $\gamma_t(\theta)$, $\Gamma_t(\theta', \theta'')$, ι_t , and λ_t from Section E.1. We also use
 1440

$$\begin{aligned}
 1441 \quad & W_t = \sum_{i=1}^t \frac{\dot{\mu}(f(x_i; \theta_i))}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\
 1442 \quad & H_t(\hat{\theta}_t) = \sum_{i=1}^t \frac{\dot{\mu}(g(x_i; \theta_0)^\top(\hat{\theta}_t - \theta_0))}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} \\
 1443 \quad & Z_t = \sum_{i=1}^t \frac{|\dot{\mu}(f(x_i; \theta_i)) - \dot{\mu}(g(x_i; \theta_0)^\top(\hat{\theta}_t - \theta_0))|}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I}
 \end{aligned}$$

1450 By the definition of Z_t , for any $x \in \mathbb{R}^p$, we have
 1451

$$\|x\|_{W_t} \leq \|x\|_{H_t(\hat{\theta}_t) + Z_t} \leq \|x\|_{H_t(\hat{\theta}_t)} + \|x\|_{Z_t}.$$

1454 Now with the above inequality, we can start with
 1455

$$\sqrt{m} \|\theta_t - \theta^*\|_{W_t} \leq \underbrace{\sqrt{m} \|\theta_t - \theta^*\|_{H_t(\hat{\theta}_t)}}_{(\text{term 1})} + \underbrace{\sqrt{m} \|\theta_t - \theta^*\|_{Z_t}}_{(\text{term 2})}. \quad (47)$$

1458 For **(term 1)**, we directly follow the proof of Lemma 4.5 in Section E.1. Therefore, for the absolute
 1459 constants $\{C_i\}_{i=1}^3$, we have

$$\begin{aligned}
 1461 \sqrt{m} \|\theta_t - \theta^*\|_{H_t(\hat{\theta}_t)} &\leq \sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\hat{\theta}_t)} + \sqrt{m} \|\theta_t - \hat{\theta}_t\|_{H_t(\hat{\theta}_t)} \\
 1462 &\leq \underbrace{\sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\hat{\theta}_t)}}_{\text{(term 3)}} + \underbrace{2(\lambda_t + C_1 t L)(1 - \eta m \lambda_t)^{J/2} t^{1/2} \lambda_t^{-1/2}}_{\text{(term 4)}} \\
 1463 &\quad + \underbrace{(\lambda_t + C_1 t L) \left[C_2 m^{-1/6} \sqrt{\log m} t^{7/6} \lambda_t^{-7/6} L^{7/2} + C_1 C_3 R m^{-1/6} \sqrt{\log m} L^{7/2} t^{5/3} \lambda_t^{-5/3} \right]}_{\text{(term 5)}}.
 \end{aligned}$$

1466 Using the same argument as in Section E.1, we can see that

$$\text{(term 4)} \leq 2S\sqrt{\lambda_t} \leq \iota_t, \quad \text{(term 5)} \leq 1/2.$$

1467 Note that the upper bound for **(term 5)** has been changed from 1 to 1/2 solely to unify the constant
 1468 in the concentration inequalities of Lemma 4.5 and Lemma 5.1. For **(term 3)**, we have

$$\begin{aligned}
 1469 \sqrt{m} \|\hat{\theta}_t - \theta^*\|_{H_t(\hat{\theta}_t)} &\leq \sqrt{m(1 + 2\sqrt{2}C_1\sqrt{LS} + 8C_1^2 LS^2)} \|\hat{\theta}_t - \theta^*\|_{\Gamma_t(\hat{\theta}_t, \theta^*)} \\
 1470 &= \sqrt{m(1 + 2\sqrt{2}C_1\sqrt{LS} + 8C_1^2 LS^2)} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{\Gamma_t^{-1}(\hat{\theta}_t, \theta^*)} \\
 1471 &\leq (1 + 2\sqrt{2}C_1\sqrt{LS} + 8C_1^2 LS^2) \sqrt{m} \|\gamma(\hat{\theta}_t) - \gamma(\theta^*)\|_{H_t^{-1}(\theta^*)} \\
 1472 &\leq (1 + 2\sqrt{2}C_1\sqrt{LS} + 8C_1^2 LS^2) \iota_t,
 \end{aligned}$$

1473 where the first and the second inequalities follow from Lemma E.2, the equality follows from Equation
 1474 (38), and the last inequality follows from Lemma E.1. Plugging **(term 3-5)** into **(term 1)** gives

$$\text{(term 1)} \leq (2 + C_1\sqrt{LS} + C_1 LS^2) \iota_t + 1/2.$$

1475 Now, moving on to **(term 2)**, we have

$$\sqrt{m} \|\theta_t - \theta^*\|_{Z_t} \leq \underbrace{\sqrt{m} \|\theta_t - \theta^*\|_2}_{\text{(term 6)}} \times \underbrace{\lambda_{\max}^{1/2}(Z_t)}_{\text{(term 7)}}.$$

1476 For **(term 7)**, we have

$$\begin{aligned}
 1477 \lambda_{\max}^{1/2}(Z_t) &= \lambda_{\max}^{1/2} \left(\sum_{i=1}^t \frac{|\dot{\mu}(f(x_i; \theta_i)) - \dot{\mu}(g(x_i; \theta_0)^\top(\hat{\theta}_t - \theta_0))|}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top \right) \\
 1478 &\leq \lambda_{\max}^{1/2} \left(\sum_{i=1}^t \frac{C_3 R m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_t^{-2/3}}{m} g(x_i; \theta_0) g(x_i; \theta_0)^\top \right) \\
 1479 &\leq C_3 R^{1/2} m^{-1/12} (\log m)^{1/4} t^{5/6} L^2 \lambda_t^{-1/3}.
 \end{aligned}$$

1480 Here, the first inequality follows from the Lipschitz continuity of $\dot{\mu}$, the bounds $|\dot{\mu}| \leq \dot{\mu} \leq R$, and
 1481 Lemma C.5, while the final inequality follows from $\lambda_{\max}(\sum_{i=1}^t x_i x_i^\top) \leq \sum_{i=1}^t \|x_i\|_2^2$ and used
 1482 Lemma C.4. For **(term 6)** we have

$$\sqrt{m} \|\theta_t - \theta^*\|_2 \leq \sqrt{m} \|\theta_t - \theta_0\|_2 + \sqrt{m} \|\theta^* - \theta_0\|_2 \leq 3t^{1/2} \lambda_t^{-1/2} + S,$$

1483 where the last inequality follows from Lemmas C.6 and 6.1. Plugging **(term 6-7)** back to **(term 2)**
 1484 gives,

$$\begin{aligned}
 1485 \text{(term 2)} &\leq C_3 R^{1/2} m^{-1/12} (\log m)^{1/4} t^{4/3} L^2 \lambda_t^{-5/6} + C_3 S R^{1/2} m^{-1/12} (\log m)^{1/4} t^{5/6} L^2 \lambda_t^{-1/3} \\
 1486 &\leq C_3 R^{1/2} m^{-1/12} (\log m)^{1/4} T^{4/3} L^2 \lambda_0^{-5/6} + C_3 S R^{1/2} m^{-1/12} (\log m)^{1/4} T^{5/6} L^2 \lambda_0^{-1/3} \\
 1487 &\leq 1/2 + 2S\lambda_t^{1/2} \\
 1488 &\leq 1/2 + \iota_t,
 \end{aligned}$$

1512 where the third inequality is followed by the condition on m in Condition C.2, and the last inequality
 1513 is due to the update rule of λ_t . Finally, substituting (term 1-2) into Equation (47) gives
 1514

$$\begin{aligned} 1515 \sqrt{m} \|\theta_t - \theta^*\|_{W_t} &\leq (3 + 2\sqrt{2}C_1\sqrt{LS} + 8C_1^2LS^2)\iota_t + 1 \\ 1516 &\leq C_7(1 + \sqrt{LS} + LS^2)\iota_t + 1, \end{aligned}$$

1518 for some absolute constant $C_7 > 0$, finishing the proof.
 1519

1520 G REGRET ANALYSES

1522 G.1 PROOF OF THEOREM 4.6

1524 We start with a proposition for the per-round regret:
 1525

1526 **Proposition G.1.** *Under Condition 4.4, for all $x \in \mathcal{X}_t$, $t \in [T]$, with probability at least $1 - \delta$,*

$$1527 \mu(h(x_t^*)) - \mu(h(x_t)) \leq 2R\sqrt{\kappa}((CLS^2 + 2)\iota_{t-1} + 1)\|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}} + 2\epsilon_{3,t-1}. \\ 1528$$

1529 *Proof.* We follow the standard procedure to upper bound the per-round regret with the prediction
 1530 error under the optimistic rule. For all $t \in [T]$ we have
 1531

$$\begin{aligned} 1532 \mu(h(x_t^*)) - \mu(h(x_t)) \\ 1533 &\leq \mu(f(x_t^*; \theta_{t-1})) + R\sqrt{\kappa}(C_6(1 + \sqrt{LS} + LS^2)\iota_t + 1)\|g(x_t^*; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}} + \epsilon_{3,t-1} - \mu(h(x_t)) \\ 1534 &\leq \mu(f(x_t; \theta_{t-1})) + R\sqrt{\kappa}(C_6(1 + \sqrt{LS} + LS^2)\iota_t + 1)\|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}} + \epsilon_{3,t-1} - \mu(h(x_t)) \\ 1535 &\leq 2R\sqrt{\kappa}((CLS^2 + 2)\iota_{t-1} + 1)\|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}} + 2\epsilon_{3,t-1}, \\ 1536 \\ 1537 \end{aligned}$$

1538 where the first and the last inequalities follow from Lemma 6.4, the second inequality comes from
 1539 the optimistic rule of Algorithm 1, finishing the proof. \square
 1540

1541 With Proposition G.1, we have
 1542

$$\begin{aligned} 1543 \mu(h(x_t^*)) - \mu(h(x_t)) &\leq \min \left\{ 2R\sqrt{\kappa}\nu_{t-1}^{(1)}\|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}} + 2\epsilon_{3,t-1}, 1 \right\} \\ 1544 &\leq \min \left\{ 2R\sqrt{\kappa}\nu_{t-1}^{(1)}\|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}, 1 \right\} + 2\epsilon_{3,t-1} \\ 1545 &\leq 2R\sqrt{\kappa}\nu_{t-1}^{(1)} \min \left\{ \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}, 1 \right\} + 2\epsilon_{3,t-1} \\ 1546 &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \min \left\{ \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}, 1 \right\} + 2\epsilon_{3,T}. \\ 1547 \\ 1548 \\ 1549 \\ 1550 \end{aligned}$$

1551 Here, the first inequality follows from $0 \leq |\mu(\cdot) - \mu(\cdot)| \leq 1$, the second from the bound $\min\{a +$
 1552 $b, 1\} \leq \min\{a, 1\} + b$ for $b > 0$, the third from the facts that $2R\sqrt{\kappa} \geq 1$ and $\nu_t^{(1)} \geq 1$ for all t ,
 1553 thereby using $\min\{ab, 1\} \leq a \min\{b, 1\}$ if $a \geq 1$, and the last inequality follows from the fact that
 1554 both ν_t and $\epsilon_{3,t}$ are monotonically non-decreasing in t .
 1555

1556 Now, we can proceed as
 1557

$$\begin{aligned} 1558 \text{Regret}(T) &= \sum_{t=1}^T \mu(h(x_t^*)) - \mu(h(x_t)) \\ 1559 &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \sum_{t=1}^T \min \left\{ \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}, 1 \right\} + 2T\epsilon_{3,T}, \\ 1560 \\ 1561 \\ 1562 \\ 1563 \end{aligned}$$

1564 where we can see that by the condition of m in Condition C.2,
 1565

$$T\epsilon_{3,T} = C_3Rm^{-1/6}\sqrt{\log m}L^3T^{5/3}\lambda_0^{-2/3} \leq 1,$$

1566 plugging this back gives,
 1567

$$\begin{aligned}
 \text{Regret}(T) &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \sum_{t=1}^T \min \left\{ \left\| g(x_t; \theta_0) / \sqrt{m} \right\|_{V_{t-1}^{-1}}, 1 \right\} + 1 \\
 &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \sqrt{T \sum_{i=1}^T \min \left\{ \left\| g(x_t; \theta_0) / \sqrt{m} \right\|_{\tilde{V}_{t-1}^{-1}}^2, 1 \right\}} + 1 \\
 &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \sqrt{2T \log \det \left(\sum_{t=1}^T \frac{1}{\kappa m \lambda_0} g(x_t; \theta_0) g(x_t; \theta_0)^\top + \mathbf{I} \right)} + 1 \\
 &\leq 2R\sqrt{\kappa}\nu_T^{(1)} \sqrt{2T \tilde{d}} + 1,
 \end{aligned}$$

1579 where the second inequality follows from the Cauchy–Schwarz inequality and the relation $V_{t-1} \succeq \tilde{V}_{t-1}$,
 1580 the third follows from Lemma H.2, and the final inequality follows from the definition of \tilde{d} .
 1581 Notice that

$$\begin{aligned}
 \nu_T &= 16 \sqrt{\log \det \left(\sum_{t=1}^T \frac{1}{4m\lambda_0} g(x_t; \theta_0) g(x_t; \theta_0)^\top + \mathbf{I} \right) \log \frac{4T^2}{\delta}} + 8C_1 \sqrt{\frac{L}{\lambda_0} \log \frac{4T^2}{\delta}} \\
 &\leq 16 \sqrt{\tilde{d} \log(4T^2/\delta)} + \sqrt{4C_1(2L)^{1/2} S \log^{-1}(4/\delta)} \log(4T^2/\delta),
 \end{aligned}$$

1582 where the last inequality follows from the definition of \tilde{d} and the initialization rule of λ_0 , which
 1583 gives $\nu_T^{(1)} = \tilde{\mathcal{O}}(S^2 \sqrt{\tilde{d}} + S^{2.5})$. Finally, plugging $\nu_T^{(1)}$ in gives,
 1584

$$\text{Regret}(T) = \tilde{\mathcal{O}}(S^2 \tilde{d} \sqrt{\kappa T} + S^{2.5} \sqrt{\kappa \tilde{d} T}),$$

1585 finishing the proof.
 1586

1587 G.2 PROOF OF THEOREM 5.2

1588 First, for each $t \in \mathbb{N}$, define the set of timesteps
 1589

$$\mathcal{T}_1(t) = \left\{ t' \in [t] : |f(x_{t'}; \theta_{t'}) - g(x_{t'}; \theta_0)^\top (\theta^* - \theta_0)| \geq 1 \right\}. \quad (48)$$

1590 This set contains exactly those timesteps where $\theta_{t'}$ lies outside the parameter set (when $\|\theta_{t'} - \theta_0\|_2 > S$).
 1591 Based on this, we form a pruned design matrix by removing the corresponding feature vectors
 1592 while preserving their original order. In particular, for the regularized covariance matrix V_t , we
 1593 obtain

$$\underline{V}_t = \sum_{i=1}^t \frac{1}{m} \mathbb{1}\{i \notin \mathcal{T}_1\} g(x_i; \theta_0) g(x_i; \theta_0)^\top + \lambda_t \mathbf{I} = \sum_{i=1}^{t-|\mathcal{T}_1(t)|} \frac{1}{m} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_t \mathbf{I}.$$

1594 Here, $\tau : \{1, \dots, t - |\mathcal{T}_1(t)|\} \rightarrow \{1, \dots, t\}$ maps each j to the j -th smallest element of $[t] \setminus \mathcal{T}_1(t)$.
 1595 Similarly, we define $H_t(\theta)$ and W_t as:
 1596

$$\begin{aligned}
 \underline{H}_t(\theta) &= \sum_{i=1}^{t-|\mathcal{T}_1(t)|} \frac{\dot{\mu}(g(x_{\tau(i)}; \theta_0)^\top (\theta - \theta_0))}{m} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_t \mathbf{I}, \\
 \underline{W}_t &= \sum_{i=1}^{t-|\mathcal{T}_1(t)|} \frac{\dot{\mu}(f(x_{\tau(i)}; \theta_{\tau(i)}))}{m} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_t \mathbf{I}.
 \end{aligned}$$

1597 Same way as before, we will denote \tilde{V}_t , $\tilde{H}_t(\theta)$, \tilde{W}_t as the design matrix where the regularization
 1598 parameter λ_t is replaced to λ_0 .
 1599

1600 Using our new design matrices and the self-concordant property of the logistic function (see Lemma
 1601 H.3; cf. Lemma 9 of Faury et al. (2020), Lemma 7 of Abeille et al. (2021), and Lemma 5 of Jun
 1602 et al. (2021)), we can show that the true-variance design matrix $\underline{H}(\theta^*)$ is bounded by the empirical-
 1603 variance design matrix \underline{W}_t .
 1604

1620 **Proposition G.2.** We have $3\underline{H}_t(\theta^*) \succeq \underline{W}_t \succeq \frac{1}{3}\underline{H}_t(\theta^*)$.
 1621

1622 Next, we define three additional sets of timesteps derived from \mathcal{T}_1 :

$$\begin{aligned} \mathcal{T}_2 &= \left\{ t \in [T - |\mathcal{T}_1(T)|] : |g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)| \geq 1 \right\}, \\ \mathcal{T}_3 &= \left\{ t \in [T - |\mathcal{T}_1(T)|] : \left\| g(x_{\tau(t)}; \theta_0) / \sqrt{m} \right\|_{\tilde{V}_{\tau(t-1)}^{-1}} \geq 1 \right\}, \\ \mathcal{T}_4 &= \left\{ t \in [T - |\mathcal{T}_1(T)|] : \left\| \sqrt{\mu(f(x_{\tau(t)}; \theta_{\tau(t)}))} g(x_{\tau(t)}; \theta_0) / \sqrt{m} \right\|_{\tilde{W}_{\tau(t-1)}^{-1}} \geq 1 \right\}. \end{aligned} \quad (49)$$

1630 We define \mathcal{T}_2 to measure the distance between $g(x_{\tau(t)}; \theta_0)^\top \tilde{\theta}_{\tau(t)-1}$ and $h(x_{\tau(t)})$ and
 1631 control the estimation error of the neural network. We introduce $\mathcal{T}_3, \mathcal{T}_4$ to control the value of
 1632 $\|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\tilde{V}_{\tau(t-1)}^{-1}}$ and $\|\sqrt{\mu(f(x_{\tau(t)}; \theta_{\tau(t)}))} g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\tilde{W}_{\tau(t-1)}^{-1}}$ in order to apply the
 1633 elliptical potential lemma (Lemma H.2).
 1634

1635 Next, we introduce two propositions to bound the cardinality of $\mathcal{T}_1(T), \mathcal{T}_2, \mathcal{T}_3$ and \mathcal{T}_4 :

1636 **Proposition G.3.** We have $|\mathcal{T}_1(T)| \leq 4\kappa\tilde{d}\nu_T^{(1)2} + 1$ and $|\mathcal{T}_2| \leq 24\kappa\tilde{d}\nu_T^{(2)2}$, where $\nu_t^{(1)}$ and $\nu_t^{(2)}$ are
 1637 defined at Equations (2) and (5), respectively.
 1638

1639 **Proposition G.4.** We have $|\mathcal{T}_3|, |\mathcal{T}_4| \leq 2\tilde{d}$.

1640 For Proposition G.3, we use the concentration inequalities between $\theta_{\tau(t)}$ and θ^* , and $\tilde{\theta}_{\tau(t)-1}$ and
 1641 θ^* using Lemmas 4.5 and 5.1. For Proposition G.4 we modified previous results appropriate to our
 1642 setting called the elliptical potential count lemma (Lemma 7 of Gales et al. (2022), Lemma 4 of Kim
 1643 et al. (2022)).
 1644

1645 Now we can start the proof of Theorem 5.2.

1646 *Proof of Theorem 5.2.* At time t , from the optimistic rule in Equation (6), denote
 1647

$$(x_t, \tilde{\theta}_{t-1}) \leftarrow \arg \max_{x \in \mathcal{X}_t, \theta \in \mathcal{W}_{t-1}} \langle g(x; \theta_0), \theta - \theta_0 \rangle \quad (50)$$

1650 We use $\mathcal{T}_1(T) = \mathcal{T}_1$ for brevity. From Equations (48) and (49), we define the combined set of
 1651 timesteps as

$$\mathcal{T} = \{\mathcal{T}_2 \cup \mathcal{T}_3 \cup \mathcal{T}_4\}.$$

1654 Then we have,

$$\begin{aligned} \text{Regret}(T) &\leq |\mathcal{T}_1| + \sum_{t=1}^{T-|\mathcal{T}_1|} \mu(h(x_{\tau(t)}^*)) - \mu(h(x_{\tau(t)})) \\ &\leq |\mathcal{T}_1| + |\mathcal{T}_2| + |\mathcal{T}_3| + |\mathcal{T}_4| + \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\mu(h(x_{\tau(t)}^*)) - \mu(h(x_{\tau(t)}))] \\ &\leq 4\kappa\tilde{d}\nu_T^{(1)2} + 24\kappa\tilde{d}\nu_T^{(2)2} + 4\tilde{d} + 1 + \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\mu(h(x_{\tau(t)}^*)) - \mu(h(x_{\tau(t)}))]}_{=: \text{Regret}^c(T)}, \end{aligned} \quad (51)$$

1666 where the second inequality follows from the definition of \mathcal{T} , and the last inequality follows from
 1667 Propositions G.3 and G.4. For $\text{Regret}^c(T)$, we have

$$\begin{aligned} \text{Regret}^c(T) &= \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\mu(g(x_{\tau(t)}^*; \theta_0)^\top (\theta^* - \theta_0)) - \mu(g(x_{\tau(t)}; \theta_0)^\top (\theta^* - \theta_0))] \\ &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\mu(g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta_0)) - \mu(g(x_{\tau(t)}; \theta_0)^\top (\theta^* - \theta_0))] \end{aligned}$$

where the equality follows from Lemma 6.1, and the inequality follows from the optimistic rule in Equation (50) since $\tilde{\theta}_{\tau(t)-1}, \theta^* \in \mathcal{W}_{\tau(t)-1}$. With the definition of $\alpha(x, \theta', \theta'')$ at Equation (32), we can continue with

$$\begin{aligned} \text{Regret}^c(T) &\leq \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta^* - \theta_0)) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)]}_{\text{(term 1)}} \\ &\quad + \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\alpha(x_{\tau(t)}, \tilde{\theta}_{\tau(t)-1}, \theta^*) [g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)]^2]}_{\text{(term 2)}}, \end{aligned} \quad (52)$$

where we used a second-order Taylor expansion and the fact that $|\ddot{\mu}| \leq \dot{\mu}$.

For **(term 2)** we have

$$\begin{aligned} \text{(term 2)} &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [1 \cdot [g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)]^2] \\ &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{W}_{\tau(t-1)}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2. \end{aligned} \quad (53)$$

For $\|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{W}_{\tau(t-1)}}$, we have

$$\begin{aligned} \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{W}_{\tau(t-1)}} &\leq \sqrt{3} \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{H}_{\tau(t-1)}^{-1}(\theta^*)} \\ &\leq \sqrt{3\kappa} \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}, \end{aligned} \quad (54)$$

where the first inequality follows from Proposition G.2 and the second inequality follows from Assumption 6.3. For $\sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}$, we have

$$\begin{aligned} \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}} &\leq \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t)-1}} \\ &\leq \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{W_{\tau(t)-1}} \\ &\leq \left(\sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta_{\tau(t)-1}\|_{W_{\tau(t)-1}} + \sqrt{m} \|\theta_{\tau(t)-1} - \theta^*\|_{W_{\tau(t)-1}} \right) \\ &\leq 2\nu_{\tau(t)-1}^{(2)}, \end{aligned} \quad (55)$$

where the first and the second inequality are due to the fact that $\tau(t-1) \leq \tau(t)-1$ and $\underline{W}_t \preceq W_t$ for all t , respectively. The third inequality follows from the triangle inequality, and the last inequality follows from Lemma 5.1 since $\tilde{\theta}_{\tau(t)-1}, \theta^* \in \mathcal{W}_{\tau(t)-1}$. Plugging Equations (54) and (55) back to **(term 2)** gives

$$\begin{aligned} \text{(term 2)} &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot 3\kappa \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2 \cdot 4(\nu_{\tau(t)-1}^{(2)})^2 \\ &\leq 12\kappa (\nu_T^{(2)})^2 \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2, \end{aligned}$$

where the inequality holds since $\nu_t^{(t)}$ is monotonically non-decreasing in t . By the definition of \mathcal{T}_3 , we have $\|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}} < 1$ for all $t \in [T - |\mathcal{T}_1|]$. Therefore,

$$\begin{aligned} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2 &= \min \left\{ 1, \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2 \right\} \\ &\leq \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2 \right\} \\ &\leq \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\tilde{V}_{\tau(t-1)}^{-1}}^2 \right\}, \end{aligned} \quad (56)$$

where the last inequality follows from the fact that $\lambda_0 \leq \lambda_t$. Substituting Equation (56) gives

$$\begin{aligned}
\text{(term 2)} &\leq 12\kappa(\nu_T^{(2)})^2 \sum_{t=1}^{T-|\mathcal{T}_1|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\tilde{V}_{\tau(t-1)}}^2 \right\} \\
&\leq 24\kappa(\nu_T^{(2)})^2 \log \frac{\det \tilde{V}_{\tau(T-|\mathcal{T}_1|)}}{\det \kappa \lambda_0 \mathbf{I}} \\
&\leq 24\kappa(\nu_T^{(2)})^2 \log \det \left(\sum_{t=1}^T \frac{1}{\kappa m \lambda_0} g(x_t; \theta_0) g(x_t; \theta_0)^\top + \mathbf{I} \right) \\
&\leq 24\kappa(\nu_T^{(2)})^2 \tilde{d}, \tag{57}
\end{aligned}$$

where the second inequality follows from Lemma H.2, and the last inequality follows from the definition of \tilde{d} .

For **(term 1)**, we consider 2 cases where:

(case 1). if $\dot{\mu}(h(x_{\tau(t)})) \leq \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)}))$

(case 2). if $\dot{\mu}(h(x_{\mathcal{T}(t)})) > \dot{\mu}(f(x_{\mathcal{T}(t)}; \theta_{\mathcal{T}(t)}))$

In (case 1), for **(term 1)**, we continue with

$$\begin{aligned}
& \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta^* - \theta_0)) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)] \\
&= \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \sqrt{\dot{\mu}(h(x_{\tau(t)}))} g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*) \\
&\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \sqrt{\dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)}))} g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*), \quad (58)
\end{aligned}$$

where the last inequality follows from the assumption of (case 1). For brevity, we denote $\dot{g}(x_t; \theta_0) = \sqrt{\dot{\mu}(f(x_t; \theta_t))} g(x_t; \theta_0)$. Notice that we can represent W_t as $W_t = \sum_{i=1}^t \frac{1}{m} \dot{g}(x_i; \theta_0) \dot{g}(x_i; \theta_0)^\top + \lambda_t \mathbf{I}$. Then we can continue as

$$\begin{aligned}
\text{(term 1)} &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \cdot \dot{g}(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*) \\
&\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \cdot \|\dot{g}(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{W_{\tau(t-1)}^{-1}} \cdot \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{W_{\tau(t-1)}}
\end{aligned}$$

For $\mathbb{1}\{t \notin \mathcal{T}\} \|\dot{g}(x_{\tau(t)}; \theta_0)\|_{W_{\tau(t-1)}^{-1}}$, we have

$$\begin{aligned} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|\dot{g}(x_{\tau(t)}; \theta_0)\|_{\underline{W}_{\tau(t-1)}^{-1}} &= \min \left\{ 1, \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|\dot{g}(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}} \right\} \\ &\leq \min \left\{ 1, \|\dot{g}(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\widetilde{W}_{\tau(t-1)}^{-1}} \right\}, \end{aligned} \quad (59)$$

where the inequality follows from the definition of \mathcal{T}_4 and the fact that $\lambda_0 \leq \lambda_t$ for all t . Also, using the previous results of Equation (55), we have $\sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{W_{\tau(t-1)}} \leq 2\nu_{\tau(t)-1}^{(2)}$. Substituting these back gives

$$\begin{aligned}
\text{(term 1)} &\leq 2\nu_T^{(2)} \sum_{t=1}^{T-|\mathcal{T}_1|} \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \cdot \left\{ 1, \|\dot{g}(x_{\tau(t)}; \theta_0) / \sqrt{m} \|_{\widetilde{W}_{\tau(t-1)}^{-1}}^2 \right\} \\
&\leq 2\nu_T^{(2)} \underbrace{\sqrt{\sum_{t=1}^{T-|\mathcal{T}_1|} \dot{\mu}(h(x_{\tau(t)}))}}_{\text{(term 3)}} \cdot \underbrace{\sqrt{\sum_{t=1}^{T-|\mathcal{T}_1|} \left\{ 1, \|\dot{g}(x_{\tau(t)}; \theta_0) / \sqrt{m} \|_{\widetilde{W}_{\tau(t-1)}^{-1}}^2 \right\}}}_{\text{(term 4)}}
\end{aligned}$$

1782 where the first inequality is by the monotonicity of $\mu_t^{(2)}$ in t , and the second inequality follows from
 1783 the Cauchy-Schwarz inequality. For **(term 4)**, we have
 1784

$$\begin{aligned}
 1785 \sqrt{\sum_{t=1}^{T-|\mathcal{T}_1|} \left\{ 1, \|\dot{g}(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\widetilde{W}_{\tau(t-1)}^{-1}}^2 \right\}} &\leq \sqrt{2 \log \frac{\det \widetilde{W}_{\tau(T-|\mathcal{T}_1|)}}{\det \lambda_0 \mathbf{I}}} \\
 1786 &\leq \sqrt{2 \log \det \left(\sum_{t=1}^T \frac{\dot{\mu}(f(x_t; \theta_t))}{m \lambda_0} g(x_t; \theta_0) g(x_t; \theta_0)^\top + \mathbf{I} \right)} \\
 1787 &\leq \sqrt{2 \widetilde{d}},
 \end{aligned}$$

1795 where the first inequality follows from Lemma H.2, and the last inequality follows from the definition of \widetilde{d} .
 1796

1797 For **(term 3)**, we have
 1798

$$\begin{aligned}
 1800 \mathbf{(term 3)}^2 &\leq \sum_{t=1}^T \dot{\mu}(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\
 1801 &\leq \sum_{t=1}^T \dot{\mu}(g(x_t^*; \theta_0)^\top (\theta^* - \theta_0)) + \sum_{t=1}^T \alpha(x_t, x_t^*, \theta^*) (g(x_t; \theta_0) - g(x_t^*; \theta_0))^\top (\theta^* - \theta_0) \\
 1802 &= \frac{T}{\kappa^*} + \sum_{t=1}^T \alpha(x_t, x_t^*, \theta^*) (g(x_t; \theta_0) - g(x_t^*; \theta_0))^\top (\theta^* - \theta_0) \\
 1803 &\leq \frac{T}{\kappa^*} + \sum_{t=1}^T \alpha(x_t, x_t^*, \theta^*) (g(x_t^*; \theta_0) - g(x_t; \theta_0))^\top (\theta^* - \theta_0) \\
 1804 &= \frac{T}{\kappa^*} + \sum_{t=1}^T \mu(g(x_t^*; \theta_0)^\top (\theta^* - \theta_0)) - \mu(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\
 1805 &= \frac{T}{\kappa^*} + \sum_{t=1}^T \mu(h(x_t^*)) - \mu(h(x_t)) \\
 1806 &= \frac{T}{\kappa^*} + \text{Regret}(T). \tag{60}
 \end{aligned}$$

1822 Here, the second inequality follows from a first-order Taylor expansion together with the bound
 1823 $|\dot{\mu}| \leq \dot{\mu}$ and the definition of $\alpha(x', x'', \theta)$ in Equation (32), the first equality follows from the
 1824 definition of κ^* , namely $1/\kappa^* = \frac{1}{T} \sum_{t=1}^T \dot{\mu}(h(x_t^*))$, the third inequality uses the fact that $h(x_t^*) \geq$
 1825 $h(x_t)$, the second equality follows from the mean-value theorem, and the final equality follows from
 1826 the definition of regret.
 1827

1828 Finally, substituting **(term 3)** and **(term 4)** back gives
 1829

$$\mathbf{(term 1)} \leq 2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\widetilde{d}}. \tag{61}$$

1830 Now we consider about (case 2), where $\dot{\mu}(h(x_{\tau(t)})) > \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)}))$. For **(term 1)**, we have
 1831

$$\begin{aligned}
& \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} [\dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta^* - \theta_0)) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)] \\
& \leq \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta_0)) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)}_{\text{(term 4)}} \\
& + \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot 1 \cdot [g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta^*) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)]}_{\text{(term 5)}},
\end{aligned}$$

where the inequality follows from the Taylor expansion, and by the fact that $|\ddot{\mu}| \leq \dot{\mu} \leq 1$. For **(term 5)** we have,

$$\begin{aligned}
& \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot 1 \cdot [g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta^*) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)] \\
& \leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{W}_{\tau(t-1)}}^2 \\
& \quad \times \sqrt{m} \|\theta_{\tau(t)} - \theta^*\|_{\underline{W}_{\tau(t-1)}} \times \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}. \\
\text{We have } & \mathbb{1}\{t \notin \mathcal{T}\} \cdot \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{W}_{\tau(t-1)}}^2 \leq 3\kappa \min\{1, \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}}^2\} \text{ using} \\
\text{Equations (54) and (56). Also we have } & \sqrt{m} \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}} \leq 2\nu_{\tau(t)-1}^{(2)} \text{ using Equation (55).} \\
\text{For } \sqrt{m} \|\theta_{\tau(t)} - \theta^*\|_{\underline{W}_{\tau(t-1)}}, \text{ we have} & \\
& \sqrt{m} \|\theta_{\tau(t)} - \theta^*\|_{\underline{W}_{\tau(t-1)}} \leq \sqrt{m} \|\theta_{\tau(t)} - \theta^*\|_{\underline{W}_{\tau(t)}} \leq \sqrt{m} \|\theta_{\tau(t)} - \theta^*\|_{W_{\tau(t)}} \leq \nu_{\tau(t)}^{(2)}.
\end{aligned}$$

Plugging results back gives

$$\begin{aligned}
\text{(term 5)} & \leq \sum_{t=1}^{T-|\mathcal{T}_1|} 3\kappa \min\left\{1, \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\underline{V}_{\tau(t-1)}}^2\right\} \cdot \nu_{\tau(t)}^{(2)} \cdot 2\nu_{\tau(t)-1}^{(2)} \\
& \leq 6\kappa (\nu_T^{(2)})^2 \sum_{t=1}^{T-|\mathcal{T}_1|} \min\left\{1, \|g(x_{\tau(t)}; \theta_0) / \sqrt{m}\|_{\tilde{V}_{\tau(t-1)}}^2\right\} \\
& \leq 12\kappa (\nu_T^{(2)})^2 \log \frac{\det \tilde{V}_{\tau(T-|\mathcal{T}_1|)}}{\det \kappa \lambda_0 \mathbf{I}} \\
& \leq 12\kappa \tilde{d} (\nu_T^{(2)})^2
\end{aligned}$$

where the second inequality is because $\nu_{\tau(t)}^{(2)}$ is non-decreasing in t , the third inequality follows from Lemma H.2, and the last inequality follows from the definition of \tilde{d} .

Now, for **(term 4)**, we have

$$\begin{aligned}
& \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta_0)) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*) \\
& = \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)})) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)}_{\text{(term 6)}} \\
& + \underbrace{\sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \left(\dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta_0)) - \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)}))\right) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)}_{\text{(term 7)}}.
\end{aligned}$$

1890 For **(term 7)**, recall the definition of \mathcal{T}_2 . Then for some absolute constant $C_3 > 0$, we have
 1891

$$\begin{aligned}
 1892 \mathbf{(term 7)} &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \left| \dot{\mu}(g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta_0)) - \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)})) \right| \cdot |g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)| \\
 1893 &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} R \left| g(x_{\tau(t)}; \theta_0)^\top (\theta_{\tau(t)} - \theta_0) - f(x_{\tau(t)}; \theta_{\tau(t)}) \right| \cdot 1 \\
 1894 &\leq T \cdot C_3 R m^{-1/6} \sqrt{\log m} L^3 T^{2/3} \lambda_0^{-2/3} \\
 1895 &\leq 1,
 \end{aligned}$$

1901 where the second inequality follows from the definition of \mathcal{T}_2 , the third inequality is due to the
 1902 fact that $\mu(\cdot)$ is a R -Lipschitz function, the third inequality follows from Lemma C.5, and the last
 1903 inequality follows from the condition of m in Condition C.2.

1904 For **(term 6)**, we have
 1905

$$\begin{aligned}
 1906 \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)})) g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*) \\
 1907 &\leq \sum_{t=1}^{T-|\mathcal{T}_1|} \mathbb{1}\{t \notin \mathcal{T}\} \cdot \sqrt{\dot{\mu}(h(x_{\tau(t)}))} \sqrt{\dot{\mu}(f(x_{\tau(t)}; \theta_{\tau(t)}))} g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*),
 \end{aligned}$$

1912 where the inequality follows from the assumption of (case 2). Notice that expression is same as
 1913 the **(term 1)** of (case 1) at Equation (58). Therefore, using the result of Equation (61), we have
 1914 **(term 6)** $\leq 2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\tilde{d}}$.

1915 Finally, plugging **(term 4-7)** into **(term 1)** gives,
 1916

$$\mathbf{(term 1)} \leq 2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\tilde{d}} + 12\kappa\tilde{d}(\nu_T^{(2)})^2 + 1.$$

1917 Recall the upper bound of **(term 1)** in (case 1) at Equation (61), which is **(term 1)** \leq
 1918 $2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\tilde{d}}$. Since the upper bound value in (case 2) is strictly larger than
 1919 that of (case 1), we give a naive bound of **(term 1)** by using the result of (case 2).

1920 Now, substituting **(term 1-2)** into Equation (52) gives
 1921

$$\text{Regret}^c(T) \leq 2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\tilde{d}} + 36\kappa\tilde{d}(\nu_T^{(2)})^2 + 1.$$

1922 Substituting $\text{Regret}^c(T)$ into Equation (51) gives
 1923

$$\text{Regret}(T) \leq 2\nu_T^{(2)} \sqrt{\text{Regret}(T) + T/\kappa^*} \cdot \sqrt{2\tilde{d}} + 4\tilde{d} + 4\kappa\tilde{d}(\nu_T^{(1)})^2 + 60\kappa\tilde{d}(\nu_T^{(2)})^2 + 2.$$

1924 Finally, using the fact that for $b, c > 0$ and $x \in \mathbb{R}$, $x^2 - bx - c \leq 0 \implies x^2 \leq 2b^2 + 2c$, and
 1925 substituting $\nu_T^{(1)}, \nu_T^{(2)} = \tilde{\mathcal{O}}(S^2\sqrt{\tilde{d}} + S^{2.5})$, we have
 1926

$$\begin{aligned}
 1927 \text{Regret}(T) &\leq 16(\nu_T^{(2)})^2 + 4\nu_T^{(2)} \sqrt{2\tilde{d}T/\kappa^*} + 8\tilde{d} + 8\kappa\tilde{d}(\nu_T^{(1)})^2 + 120\kappa\tilde{d}(\nu_T^{(2)})^2 + 4 \\
 1928 &\leq \tilde{\mathcal{O}}\left(S^2\tilde{d}\sqrt{T/\kappa^*} + S^{2.5}\tilde{d}^{0.5}\sqrt{T/\kappa^*} + S^4\kappa\tilde{d}^2 + S^{4.5}\kappa\tilde{d}^{1.5} + S^5\kappa\tilde{d}\right),
 \end{aligned}$$

1929 finishing the proof. □
 1930

G.3 PROOF OF PROPOSITION G.2

1931 We suitably modify Lemma 5 of Jun et al. (2021) for our setting. Define $d(t) =$
 1932 $|f(x_t; \theta_t) - g(x_t; \theta_0)^\top (\theta^* - \theta_0)|$. By the definition of \mathcal{T}_1 , for all $t \notin \mathcal{T}_1(T)$, $d(t) \leq 1$. Recall
 1933

1944 the definition of $\alpha(z', z'')$ at Equation (32). Then for all $t \notin \mathcal{T}_1(T)$, we have
 1945

$$\begin{aligned}
 1946 \quad \dot{\mu}(f(x_t; \theta_t)) &\geq \frac{d(t)}{\exp(d(t)) - 1} \cdot \alpha\left(f(x_t; \theta_t), g(x_t; \theta_0)^\top (\theta^* - \theta_0)\right) \\
 1947 \quad &\geq \frac{d(t)}{\exp(d(t)) - 1} \cdot \frac{1 - \exp(-d(t))}{d(t)} \dot{\mu}(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\
 1948 \quad &= \frac{1}{\exp(d(t))} \cdot \mu(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\
 1949 \quad &\geq \frac{1}{d(t)^2 + d(t) + 1} \cdot \mu(g(x_t; \theta_0)^\top (\theta^* - \theta_0)) \\
 1950 \quad &\geq \frac{1}{2d(t) + 1} \cdot \mu(g(x_t; \theta_0)^\top (\theta^* - \theta_0)),
 \end{aligned}$$

1951 where the first and the second inequalities follow from the self-concordant property in Lemma H.3,
 1952 the third and the fourth inequalities hold since $d(t) \leq 1$. This implies that
 1953

$$1954 \quad \underline{W}_t \succeq \frac{1}{2 \max\{d(t')\}_{(t' \in [t]) \cap (t' \notin \mathcal{T}_1(t))} + 1} \underline{H}_t(\theta^*) \succeq \frac{1}{3} \underline{H}_t(\theta^*),$$

1955 In a similar way, we can have
 1956

$$1957 \quad \underline{H}_t(\theta^*) \succeq \frac{1}{2 \max\{d(t')\}_{(t' \in [t]) \cap (t' \notin \mathcal{T}_1(t))} + 1} \underline{W}_t \succeq \frac{1}{3} \underline{W}_t.$$

1958 Combining these results, we finish the proof.
 1959

1960 G.4 PROOF OF PROPOSITION G.3

1961 We start with the upper bound of $|\mathcal{T}_1|$. For an absolute constant $C_3 > 0$, we have:
 1962

$$\begin{aligned}
 1963 \quad |\mathcal{T}_1| \cdot \min\{1, 1^2\} &\leq \sum_{t=1}^T \min\left\{1, |f(x_t; \theta_t) - g(x_t; \theta_0)^\top (\theta^* - \theta_0)|^2\right\} \\
 1964 \quad &\leq \sum_{t=1}^T \min\left\{1, 2|f(x_t; \theta_t) - g(x_t; \theta_0)^\top (\theta_t - \theta_0)|^2 + 2|g(x_t; \theta_0)^\top (\theta_t - \theta^*)|^2\right\},
 \end{aligned}$$

1965 For $2|f(x_t; \theta_t) - g(x_t; \theta_0)^\top (\theta_t - \theta_0)|^2$, we have $|f(x_t; \theta_t) - g(x_t; \theta_0)^\top (\theta_t - \theta_0)| \leq$
 1966 $C_3 m^{-1/6} \sqrt{\log m} L^3 t^{2/3} \lambda_t^{-2/3}$ using Lemma C.5. Since the error term is positive, we can take it
 1967 out of the $\min\{1, \cdot\}$ term, which gives
 1968

$$\begin{aligned}
 1969 \quad |\mathcal{T}_1| &\leq \sum_{t=1}^T \min\left\{1, 2|g(x_t; \theta_0)^\top (\theta_t - \theta^*)|^2\right\} + C_3^2 m^{-1/3} (\log m) L^6 T^{7/3} \lambda_0^{-4/3} \\
 1970 \quad &\leq 2 \sum_{t=1}^T \min\left\{1, |g(x_t; \theta_0)^\top (\theta_t - \theta^*)|^2\right\} + 1,
 \end{aligned}$$

1971 where the last inequality is due to the condition of m at Condition 4.4, and the fact that $\min\{1, ab\} \leq$
 1972 $a \min\{1, b\}$ if $a \geq 1$. We further proceed as
 1973

$$1974 \quad |\mathcal{T}_1| \leq 2 \sum_{t=1}^T \min\left\{1, \|g(x_t; \theta_0)/\sqrt{m}\|_{H_{t-1}^{-1}(\theta^*)}^2 \cdot m \|\theta_t - \theta^*\|_{H_{t-1}(\theta^*)}^2\right\} + 1.$$

1975 For $m \|\theta_t - \theta^*\|_{H_{t-1}(\theta^*)}^2$, we have
 1976

$$1977 \quad m \|\theta_t - \theta^*\|_{H_{t-1}(\theta^*)}^2 \leq m \|\theta_t - \theta^*\|_{H_t(\theta^*)}^2 \leq (\nu_t^{(1)})^2.$$

1998 Since $\nu_t^{(1)} \geq 1$ we can take out of the $\min\{1, \cdot\}$ term, and by the monotonicity of $\nu_t^{(1)}$ in t , we have
1999

$$\begin{aligned} 2000 \quad |\mathcal{T}_1| &\leq 2(\nu_T^{(1)})^2 \sum_{t=1}^T \min \left\{ 1, \|g(x_t; \theta_0)/\sqrt{m}\|_{H_{t-1}^{-1}(\theta^*)}^2 \right\} + 1 \\ 2001 \quad &\leq 2\kappa(\nu_T^{(1)})^2 \sum_{t=1}^T \min \left\{ 1, \|g(x_t; \theta_0)/\sqrt{m}\|_{\tilde{V}_{t-1}}^2 \right\} + 1 \\ 2002 \quad &\leq 4\kappa(\nu_T^{(1)})^2 \log \frac{\det \tilde{V}_T}{\det \kappa \lambda_0 \mathbf{I}} + 1 \\ 2003 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2004 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2005 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2006 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2007 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2008 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \\ 2009 \quad &\leq 4\kappa \tilde{d}(\nu_T^{(1)})^2 + 1, \end{aligned}$$

2010 where the second inequality follows from $\kappa \geq 1$, and $H_t(\theta^*) \succeq (1/\kappa)V_t \succeq (1/\kappa)\tilde{V}_t$, the third
2011 inequality follows from Lemma H.2, and the last inequality follows from the definition of \tilde{d} .

2012 Next we can show the upper bound of $|\mathcal{T}_2|$ in a similar way:
2013

$$\begin{aligned} 2014 \quad |\mathcal{T}_2| \cdot \min\{1, 1^2\} &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, |g(x_{\tau(t)}; \theta_0)^\top (\tilde{\theta}_{\tau(t)-1} - \theta^*)|^2 \right\} \\ 2015 \quad &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \right\} \\ 2016 \quad &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \right\} \\ 2017 \quad &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \right\} \\ 2018 \quad &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \right\} \\ 2019 \quad &\leq \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \cdot m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \right\} \end{aligned}$$

2020 We have $\|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{W}_{\tau(t-1)}^{-1}}^2 \leq \sqrt{3\kappa} \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2$ using the result of Equation
2021 (54). Also, we have $m \|\tilde{\theta}_{\tau(t)-1} - \theta^*\|_{\underline{W}_{\tau(t-1)}}^2 \leq 4(\nu_{\tau(t)-1}^{(2)})^2$ using the result of Equation (55).

2022 Since $\nu_t^{(2)}$ is non-decreasing in t , substituting results back gives
2023

$$\begin{aligned} 2024 \quad |\mathcal{T}_2| &\leq 12\kappa(\nu_T^{(2)})^2 \sum_{t=1}^{T-|\mathcal{T}_1(T)|} \min \left\{ 1, \|g(x_{\tau(t)}; \theta_0)/\sqrt{m}\|_{\underline{V}_{\tau(t-1)}^{-1}}^2 \right\} \\ 2025 \quad &\leq 24\kappa(\nu_T^{(2)})^2 \log \frac{\det \tilde{V}_{\tau(T-|\mathcal{T}_1|)}}{\det \kappa \lambda_0 \mathbf{I}} \\ 2026 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \\ 2027 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \\ 2028 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \\ 2029 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \\ 2030 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \\ 2031 \quad &\leq 24\kappa \tilde{d}(\nu_T^{(2)})^2, \end{aligned}$$

2032 where the second inequality follows from Lemma H.2, and the last inequality follows from the
2033 definition of \tilde{d} , finishing the proof.
2034

2035 G.5 PROOF OF PROPOSITION G.4

2036 We begin with the case of \mathcal{T}_3 . We define a new design matrix that consists of all feature vectors of
2037 \underline{V}_t up to time t , in their original order, including only those corresponding to timesteps in $\mathcal{T}_3(t)$:
2038

$$2039 \quad \tilde{V}_t = \sum_{i=1}^{t-|\mathcal{T}_1(t)|} \frac{1}{m} \mathbb{1}\{i \in \mathcal{T}_3\} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_0 \mathbf{I}$$

2040 For brevity we define $j(t) = \tau(t - |\mathcal{T}_1(t)|)$. Then we have
2041

$$\begin{aligned} 2042 \quad \det(\tilde{V}_T) &= \det \left(\sum_{i=1}^{j(T)} \frac{1}{m} \mathbb{1}\{i \in \mathcal{T}_3\} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_0 \mathbf{I} \right) \\ 2043 \quad &= \det \left(\tilde{V}_{\tau(j(T)-1)} + \frac{1}{m} \mathbb{1}\{\tau(j(T)) \in \mathcal{T}_3\} g(x_{\tau(j(T))}; \theta_0) g(x_{\tau(j(T))}; \theta_0)^\top \right) \\ 2044 \quad &= \det \left(\tilde{V}_{\tau(j(T)-1)} \right) \left(1 + \mathbb{1}\{\tau(j(T)) \in \mathcal{T}_3\} \|g(x_{\tau(j(T))}; \theta_0)/\sqrt{m}\|_{\underline{V}_{\tau(j(T)-1)}^{-1}}^2 \right) \\ 2045 \quad &\geq \det \left(\tilde{V}_{\tau(j(T)-1)} \right) \left(1 + \mathbb{1}\{\tau(j(T)) \in \mathcal{T}_3\} \right), \end{aligned}$$

2052 where the third equality follows from the matrix determinant lemma, and the inequality follows from
 2053 the definition of \mathcal{T}_3 . Repeating inequalities to $\underline{V}_\tau(0)$ gives
 2054

$$2055 \det(\tilde{V}_T) \geq \det(\tilde{V}_{\tau(0)}) \cdot \left(1 + \mathbb{1}\{\tau(j(T)) \in \mathcal{T}_3\}\right)^{T-|\mathcal{T}_1(T)|} = \det(\kappa\lambda_0\mathbf{I}) \cdot (1+1)^{|\mathcal{T}_3|}.$$

2056 Therefore, we can rewrite as
 2057

$$2058 |\mathcal{T}_3| \leq \frac{1}{\log 2} \cdot \log \frac{\det \tilde{V}_T}{\det \kappa\lambda_0\mathbf{I}} \leq \frac{1}{\log 2} \cdot \log \frac{\det \tilde{V}_T}{\det \kappa\lambda_0\mathbf{I}} \leq 2\tilde{d},$$

2061 where the last inequality follows from the definition of \tilde{d} . We can prove $|\mathcal{T}_4| \leq 2\tilde{d}$ in a similar way,
 2062 starting by defining $\tilde{W}_t = \sum_{i=1}^{t-|\mathcal{T}_1(t)|} \frac{\dot{\mu}(f(x_{\tau(i)}; \theta_0))}{m} \mathbb{1}\{i \in \mathcal{T}_4\} g(x_{\tau(i)}; \theta_0) g(x_{\tau(i)}; \theta_0)^\top + \lambda_0\mathbf{I}$ and
 2063 following the above process.
 2064

2065 H AUXILIARY LEMMAS

2067 **Lemma H.1** (Freedman (1975)). Let $M, v > 0$ be fixed constants. Let $\{x_i\}_{i=1}^n$ be a stochastic
 2068 process, $\{\mathcal{G}_i\}_i$ be a filtration so that for all $i \in [n]$, x_i is \mathcal{G}_i -measurable, while almost surely
 2069 $\mathbb{E}[x_i | \mathcal{G}_{i-1}] = 0$, $|x_i| \leq M$ and
 2070

$$2071 \sum_{i=1}^n \mathbb{E}[x_i^2 | \mathcal{G}_{i-1}] \leq v.$$

2072 Then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$2073 \sum_{i=1}^n x_i \leq \sqrt{2v \log(1/\delta)} + 2/3 \cdot M \log(1/\delta).$$

2075 **Lemma H.2** (Lemma 11 Abbasi-Yadkori et al. (2011)). For any $\lambda > 0$ and sequence $\{x_t\}_{t=1}^T \in \mathbb{R}^d$,
 2076 define $Z_t = \lambda\mathbf{I} + \sum_{i=1}^t x_i x_i^\top$. Then, provided that $\|x_t\|_2 \leq L$ holds for all $t \in [T]$, we have
 2077

$$2078 \sum_{t=1}^T \min\{1, \|x_t\|_{Z_{t-1}}^2\} \leq 2 \log \frac{\det Z_T}{\det \lambda\mathbf{I}} \leq 2d \log \frac{d\lambda + TL^2}{d\lambda}$$

2083 **Lemma H.3** (Lemma 7 Abeille et al. (2021)). For any $z', z'' \in \mathbb{R}$, we have,
 2084

$$2085 \dot{\mu}(z') \frac{1 - \exp(1 - |z' - z''|)}{|z' - z''|} \leq \int_0^1 \dot{\mu}(z' + v(z'' - v')) dv \leq \dot{\mu}(z') \frac{\exp(|z' - z''|) - 1}{|z' - z''|},$$

2086 Also, we have,
 2087

$$2088 \int_0^1 \dot{\mu}(z' + v(z'' - v')) dv \geq \frac{\dot{\mu}(z')}{1 + |z' - z''|}, \quad \int_0^1 \dot{\mu}(z' + v(z'' - v')) dv \geq \frac{\dot{\mu}(z'')}{1 + |z' - z''|}.$$

2092 I THOMPSON SAMPLING-BASED VARIANTS

2094 In this section, we introduce the Thompson sampling-based variants of Algorithm 1, which we call
 2095 NeuralLog-TS-1. The proof for the regret of Neural-TS-1 can be obtained by exactly following the
 2096 proof of Theorem 3.5 of Zhang et al. (2021). To reuse the result of previous work, we match the
 2097 notations by using the following definitions:
 2098

$$2099 \sigma_t(x)^2 := \kappa\lambda_t \|g(x; \theta_0)/\sqrt{m}\|_{V_t^{-1}}^2$$

$$2100 \nu_t := \nu_t^{(1)} \lambda_t^{-1/2} = C_6 \lambda_t^{-1/2} (1 + \sqrt{LS} + LS^2) \iota_t + \lambda_t^{-1/2}$$

$$2101 c_t := \nu_T (1 + \sqrt{2 \log(Kt^2)})$$

2103 and denote \mathcal{F}_t as a filtration containing the history of observations up to iteration t . Also define the
 2104 set of saturated points as
 2105

$$\mathcal{S}_t = \{x \in \mathcal{X}_t : \Delta_t(x) > c_{t-1}\sigma_{t-1}(x) + 2\epsilon'_{t-1}\}, \quad (62)$$

2106 where $\Delta_t(x) = h(x_t^*) - h(x)$ and $\epsilon'_t = R^{-1}\epsilon_{3,t}$. Note that $x_t^* \notin \mathcal{S}_t$.

2107 In round t , for each $x \in \mathcal{X}_t$, we sample a latent reward $\tilde{r}_t(x)$ from the normal distribution

$$2109 \quad \forall x \in \mathcal{X}_t, \quad \tilde{r}_t(x) \sim \mathcal{N}(f(x; \theta_{t-1}), \nu_T^2 \sigma_{t-1}^2(x)),$$

2110 and choose an arm following

$$2112 \quad x_t = \arg \max_{x \in \mathcal{X}_t} \tilde{r}_t(x).$$

2114 Now we introduce two good events: First, define the event $\mathcal{E}_1(t)$ when the following inequality holds for all $x \in \mathcal{X}_t$:

$$2117 \quad |h(x) - f(x; \theta_{t-1})| \leq \nu_T \sigma_{t-1}(x) + \epsilon'_{t-1}. \quad (63)$$

2119 Then, by the direct result of Lemma 6.4, $\mathbb{P}(\mathcal{E}_1(t)) \geq 1 - \delta$. Next, define the event $\mathcal{E}_2(t)$ when the following inequality holds for all $x \in \mathcal{X}_t$:

$$2121 \quad |\tilde{r}_t(x) - f(x; \theta_{t-1})| \leq \nu_T \sqrt{2 \log(Kt^2)} \sigma_{t-1}(x). \quad (64)$$

2123 Since $\tilde{r}_t(x)$ is sampled from $\mathcal{N}(f(x; \theta_{t-1}), \nu_T^2 \sigma_{t-1}^2(x))$, we can use the concentration inequality on Gaussian distributions to obtain $\mathbb{P}(\mathcal{E}_2(t) | \mathcal{F}_{t-1}) \geq 1 - 1/t^2$ for any possible filtration \mathcal{F}_{t-1} .

2125 Next, recall the definition of the set of saturated points in Equation (62). We reuse the result of Lemma 4.5 of Zhang et al. (2021) as follows

$$2127 \quad \mathbb{P}(x_t \in \mathcal{X}_t \setminus \mathcal{S}_t | \mathcal{F}_{t-1}, \mathcal{E}_1(t)) \geq (4e\sqrt{\pi})^{-1} - 1/t^2. \quad (65)$$

2129 We skip the proof as the same argument can be found in Section B.4 of Zhang et al. (2021). Instead, 2130 we give a high-level intuition. By construction, saturated arms are those whose posterior mean 2131 reward is significantly worse than that of the optimal arm. Under the good events $\mathcal{E}_1(t)$ and $\mathcal{E}_2(t)$, 2132 this gap is reflected both in their true means and in their posterior samples, so with high probability 2133 a saturated arm cannot catch up to the optimal arm in terms of the sampled reward.

2134 On the other hand, the posterior for the optimal arm enjoys an anti-concentration property, which 2135 is, with constant probability, its sample exceeds its mean by a suitable margin. This is where the 2136 factor $(4e\sqrt{\pi})^{-1}$ comes from. Combining these facts, with constant probability the sampled reward 2137 of the optimal arm is larger than the samples of all saturated arms, so the arm selected by Thompson 2138 sampling must be unsaturated. The $1/t^2$ term accounts for the small probability that one of the good 2139 events $\mathcal{E}_1(t)$ or $\mathcal{E}_2(t)$ fails.

2140 Now, with the previous results in place, we derive an upper bound on the expected instantaneous 2141 regret. Define $d_t = h(x_t^*) - h(x_t)$. Again, we reuse the result of Lemma 4.6 of Zhang et al. (2021) 2142 as follows:

$$2143 \quad \mathbb{E}[d_t | \mathcal{F}_{t-1}, \mathcal{E}_1(t)] \leq 44e\sqrt{\pi} C_1 c_t \sqrt{L} \mathbb{E}[\min\{1, \sigma_t(x_t)\} | \mathcal{F}_{t-1}, \mathcal{E}_1(t)] + 4\epsilon'_{t-1} + 2/t^2,$$

2144 where $C_1 > 0$ is the same absolute constant that appears in Lemma C.4. By Equation (65), Neural- 2145 TS-1 selects an unsaturated arm with constant probability, so in expectation the posterior standard 2146 deviation of the played arm is comparable to that of the best unsaturated arm. Under the good 2147 events, the posterior means stay close to the true means and saturated arms have very small gaps, 2148 which allows us to bound the instantaneous regret d_t by a constant multiple of $\min\{1, \sigma_t(x_t)\}$ plus 2149 the approximation terms $4\epsilon'_{t-1} + 2/t^2$. Taking the conditional expectation and using a global control 2150 on the posterior variances over time then yields the stated bound.

2151 Now we are ready to start the proof for the regret. Define a stochastic process $(Y_t)_{t=0}^T$ where

$$2153 \quad \bar{d}_t = d_t \mathbf{1}\{\mathcal{E}_1(t)\}$$

$$2154 \quad X_t = \bar{d}_t - 44e\sqrt{\pi} C_1 c_t \sqrt{L} \min\{1, \sigma_t(x_t)\} - 4\epsilon'_{t-1} - 2/t^2$$

$$2156 \quad Y_t = \sum_{i=1}^t X_i, \quad Y_0 = 0$$

2159 We can see that (Y_t) is a supermartingale with respect to \mathcal{F}_t since $\mathbb{E}[Y_t - Y_{t-1} | \mathcal{F}_{t-1}] = \mathbb{E}[X_t | \mathcal{F}_{t-1}] \leq 0$. Now we prepare to apply the Azuma-Hoeffding inequality for a supermartingale:

2160 **Lemma I.1** (Azuma-Hoeffding inequality for supermartingale). *If a supermartingale Y_t , corresponding to a filtration \mathcal{F}_t satisfies $|Y_t - Y_{t-1}| \leq B_t$, then for any $(0, 1)$, with probability at least $1 - \delta$,*

$$2164 \quad Y_t - Y_0 \leq \sqrt{2 \log(1/\delta) \sum_{i=1}^t B_i^2}.$$

2167 To derive an upper bound on $|Y_t - Y_{t-1}|$, we have

$$2169 \quad |Y_t - Y_{t-1}| = |X_t| \leq |\bar{d}_t| + 44e\sqrt{\pi}C_1c_t\sqrt{L} \min\{1, \sigma_t(x_t)\} + 4\epsilon'_{t-1} + 2/t^2 \\ 2170 \quad \leq 4 + 44e\sqrt{\pi}C_1^2c_tL + 4\epsilon'_{t-1}.$$

2172 where the last inequality follows from Lemma C.4, and $1/t^2 \leq 1$. Now, applying Lemma I.1 with
2173 $B_t = 4 + 44e\sqrt{\pi}C_1^2c_tL + 4\epsilon'_{t-1}$ to (Y_t) , with probability at least $1 - \delta$, we have

$$2175 \quad \sum_{t=1}^T \bar{d}_t \leq \underbrace{\sum_{t=1}^T 44e\sqrt{\pi}C_1c_t\sqrt{L} \min\{1, \sigma_t(x_t)\}}_{\text{(term 1)}} + \underbrace{\sum_{t=1}^T 4\epsilon'_{t-1} + \sum_{t=1}^T 2/t^2}_{\text{(term 2)}} \\ 2176 \quad + \underbrace{\sqrt{2 \log(1/\delta) \sum_{t=1}^T (4 + 44e\sqrt{\pi}C_1^2c_tL + 4\epsilon'_{t-1})^2}}_{\text{(term 3)}}. \quad (66)$$

2184 For **(term 1)**, applying Cauchy-Schwarz inequality,

$$2186 \quad \text{(term 1)} \leq 44e\sqrt{\pi}C_1\nu_T^{(1)}(1 + \sqrt{2 \log(KT^2)})\sqrt{\kappa L} \sqrt{T \sum_{t=1}^T \min\{1, \|g(x_t; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}^2\}} \\ 2187 \quad = \tilde{\mathcal{O}}(S^2\tilde{d}\sqrt{\kappa T} + S^{2.5}\sqrt{\kappa\tilde{d}T})$$

2191 For **(term 2)**, by the condition of m in Condition 4.4, $\sum_{t=1}^T 4\epsilon'_{t-1} \leq 1$, and $\sum_{t=1}^T 2/t^2 \leq \pi^2/3$.

2192 For **(term 3)**, since $\nu_T^{(1)} = \tilde{\mathcal{O}}(S^2\sqrt{\tilde{d}} + S^{2.5})$, and $\lambda_0^{-1/2} = \mathcal{O}(S^{0.5})$

$$2194 \quad \text{(term 3)} \leq (4 + 44e\sqrt{\pi}C_1^2\nu_T^{(1)}\lambda_0^{-1/2}(1 + \sqrt{2 \log(KT^2)}) + 4\epsilon'_T)\sqrt{2 \log(1/\delta)T} \\ 2195 \quad = \tilde{\mathcal{O}}(S^{2.5}\sqrt{\tilde{d}T} + S^3\sqrt{T})$$

2197 Combining results, we have

$$2199 \quad \sum_{t=1}^T \tilde{d}_t \leq \tilde{\mathcal{O}}(S^2\tilde{d}\sqrt{\kappa T} + S^{2.5}\sqrt{\kappa\tilde{d}T} + S^3\sqrt{T})$$

2202 with probability at least $1 - \delta$. Notice that $\text{Regret}(T) \leq \sum_{t=1}^T R|h(x_t^*) - h(x_t)|$. Therefore
2203 $R \sum_{t=1}^T \tilde{d}_t$ upper bounds the regret with probability at least $1 - \delta$. Finally, replacing δ by $\delta/2$
2204 for both cases and applying the union bound finishes the proof.

2206 **Remark 3** (Discussion on Thompson sampling-based variants of NeuralLog-UCB-2). *In analogy
2207 with the Thompson sampling extension of NeuralLog-UCB-1, one can also consider a Thompson
2208 sampling-based variant of NeuralLog-UCB-2 as follows. Define $\sigma'_t(x)^2 := \lambda_t\|g(x; \theta_0)/\sqrt{m}\|_{W_{t-1}^{-1}}$
2209 and $\nu'_t := \nu_{t-1}^{(2)}\lambda_t^{-1/2}$, and for all $x \in \mathcal{X}_t$ sample $\tilde{r}'_t(x) \sim \mathcal{N}(g(x; \theta_0)^\top(\theta_{t-1} - \theta_0), \nu_T'^2\sigma'^2_{t-1}(x))$,
2210 then choose $x_t = \arg \max_{x \in \mathcal{X}_t} \tilde{r}'_t(x)$. However, our current regret analysis for Thompson sampling-
2211 based algorithms proceeds by defining a stochastic process associated with the per-round regret and
2212 then applying a concentration inequality for this process to obtain an upper bound on the per-round
2213 regret. In order to fully exploit W_t from Algorithm 2 within this framework, a much more delicate
analysis of the second-order Taylor expansion of the per-round regret would be required.*

More concretely, if we proceed the analysis in a naive way and consider the regret bound obtained for such a NeuralLog-TS-2 algorithm, then, denoting by **(term 1')** the counterpart of **(term 1)** in Equation (66), and focusing only on the dependence on κ , we obtain

$$(\text{term 1}') \lesssim \sum_{t=1}^T \min\{1, \|g(x; \theta_0)/\sqrt{m}\|_{W_{t-1}^{-1}}\} \lesssim \sqrt{\kappa T \sum_{t=1}^T \min\{1, \|g(x; \theta_0)/\sqrt{m}\|_{V_{t-1}}^2\}},$$

where we see that the additional $\sqrt{\kappa}$ factor is reintroduced. Treating this issue within our current proof technique therefore appears to be a non-trivial problem, and we leave a sharper analysis of such Thompson sampling-based variants of NeuralLog-UCB-2 for future work.

As we have seen in Remark 3, although NeuralLog-TS-2 does not attain a regret bound with the same dependence on κ as NeuralLog-UCB-2, the algorithm itself is well defined, just like NeuralLog-TS-1. In Section J, we present additional experiments including these two algorithms and demonstrate their practical performance.

J ADDITIONAL EXPERIMENTS

We compare five baseline algorithms with our algorithms including the Thompson sampling-based variants introduced in Section I. Where NeuralLog-TS-1 and NeuralLog-TS-2 both choose the arm with best sampled reward where

$$\begin{aligned} \text{For NeuralLog-TS-1, } \tilde{r}_t(x) &\sim \mathcal{N}(f(x; \theta_{t-1}), \nu_T^2 \sigma_{t-1}^2(x)), \\ \text{For NeuralLog-TS-2, } \tilde{r}'_t(x) &\sim \mathcal{N}(g(x; \theta_0)^\top (\theta_{t-1} - \theta_0), \nu_T'^2 \sigma_{t-1}^2(x)). \end{aligned}$$

We include the synthetic latent reward functions which are also used in Zhou et al. (2020): $h_4(x) = 10(x^\top \theta)^2$, $h_5(x) = x^\top \Theta^\top \Theta x$, $h_6(x) = \cos(3x^\top \theta)$. All other experimental parameters and details follow the same as described in Section 7.

Next, we include 3 more K -class classification tasks from Dua & Graff (2019): We reuse the same min–max normalization to $[-1, 1]$ as described in Section A. In the `magic` dataset (MAGIC Gamma Telescope), we convert all features to real-valued variables, impute any missing entries with 0, and then map the original class labels to a binary label by setting $y = 1$ for gamma ('g') events and $y = 0$ for hadron ('h') events. In the `banknote` dataset (UCI Banknote Authentication), we use the four real-valued attributes provided in the repository and keep the original binary labels $y \in \{0, 1\}$. For the `phoneme` dataset (Connectionist Bench (Nettalk Corpus)), we treat any categorical fields as numeric by casting them to an appropriate numeric type, and replace missing values with 0.

Figures 4 and 5 summarize the average cumulative regret of the five baseline algorithms together with our two Thompson sampling-based variants. Consistent with the results already observed in Figures 1 and 2, our NeuralLog-UCB-2 algorithm steadily achieves the best performance across the considered settings. Moreover, the two Thompson sampling-based variants also exhibit competitive performance compared to the baselines. Figure 6 demonstrates the influence of \tilde{d} on data-adaptive algorithms by comparing cumulative regret across different values of \tilde{d} .

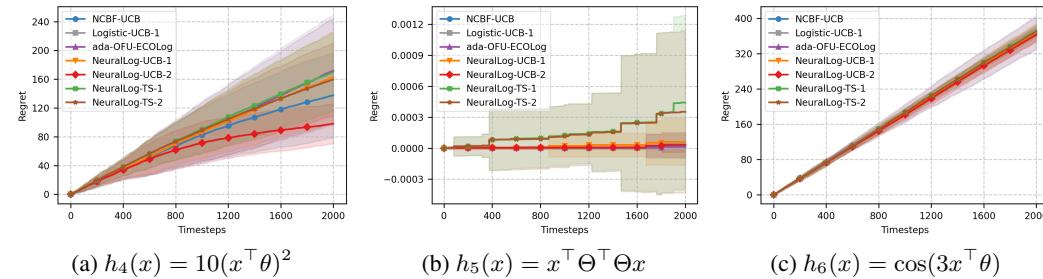


Figure 4: Comparison of cumulative regret of baseline algorithms for nonlinear reward functions.

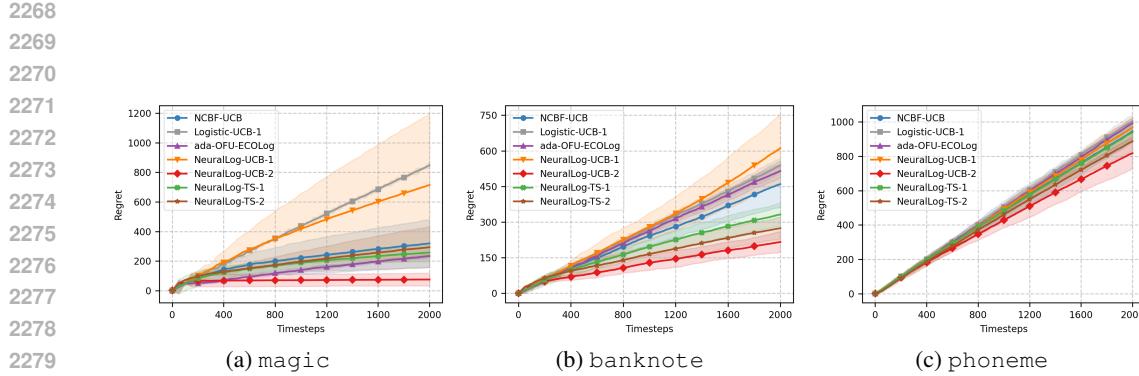
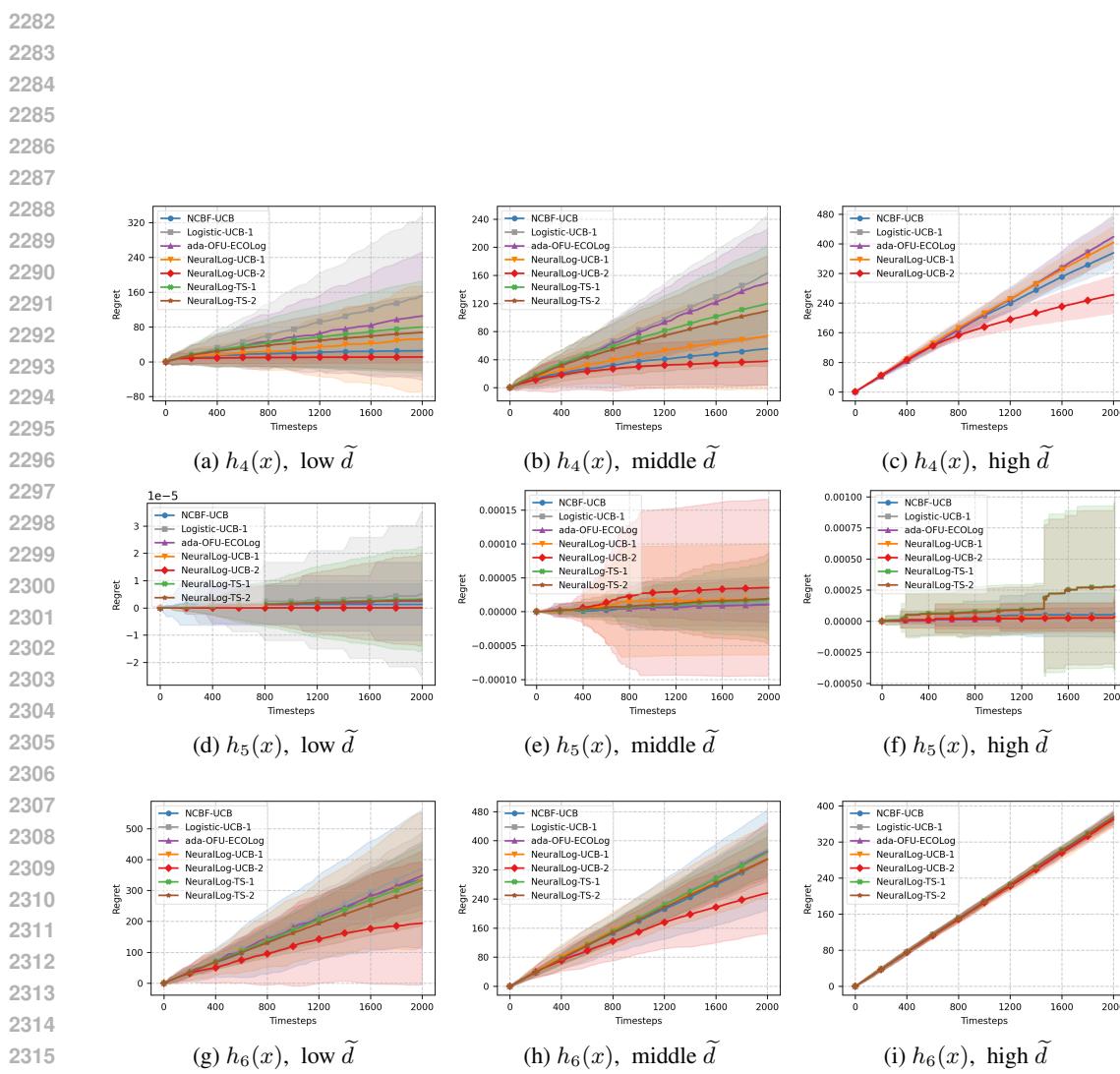


Figure 5: Comparison of cumulative regret of baseline algorithms for real-world dataset.

Figure 6: Comparison of cumulative regret of baseline algorithms with varying effective dimension \tilde{d} .

2322 **K ADDITIONAL FUTURE DIRECTIONS**
23232324 Although we successfully remove the direct dependence on p from the regret bound, a direct
2325 dependence on p reappears when we examine the per-round computational complexity. This is prob-
2326 lematic in neural bandit settings where p scales with the horizon T , making the resulting algorithm
2327 computationally inefficient.2328 Let us briefly analyze the computational complexity of our algorithms. Since Algorithms 1 and 2
2329 have the same order of complexity, we focus on Algorithm 1. For action selection, we must compute
2330 $f(x; \theta_{t-1})$ for K actions, which costs $\mathcal{O}(p)$ per action, and the quantity $\|g(x; \theta_0)/\sqrt{m}\|_{V_{t-1}^{-1}}$, which
2331 costs $\mathcal{O}(p^2)$ per action. Hence, the action-selection step has complexity $\mathcal{O}(Kp^2)$. The updates of the
2332 parameters λ_t , ι , and $\nu_t^{(1)}$ cost $\mathcal{O}(p^2)$ by their definitions. For neural network training, at round t we
2333 apply gradient steps over the full dataset of size t , which costs $\mathcal{O}(tp)$ per gradient step. Performing
2334 J_t iterations therefore costs $\mathcal{O}(J_t tp)$, where $J_t = \tilde{\mathcal{O}}(TL/\lambda_t)$. Finally, updating the design matrix V_t
2335 costs $\mathcal{O}(p^2)$. Altogether, the per-round computational complexity is $\mathcal{O}(J_t tp + Kp^2 + p^2)$. Moreover,
2336 Verma et al. (2025) can be seen to have essentially the same computational complexity, as their
2337 algorithm and training pipeline are close to ours.
23382339 In contrast, in the classical logistic bandit literature the algorithms operate directly in the feature
2340 space of dimension d , which is typically much smaller than p . For example, Filippi et al. (2010);
2341 Faury et al. (2020) obtain overall complexity on the order of $\mathcal{O}(d^2 K + d^2 T)$, and there has been
2342 significant recent progress on designing computationally efficient algorithms for logistic bandits:
2343 Abeille et al. (2021) achieve $\mathcal{O}(d^2 KT)$, and Faury et al. (2022) even propose an algorithm with
2344 complexity $\tilde{\mathcal{O}}(d^2 K)$. However, these favorable guarantees rely crucially on the strong assumption
2345 that the latent reward model is linear in the feature representation. From the perspective of practical
2346 applications, it is therefore important to develop neural bandit algorithms that retain the modeling
2347 flexibility of neural networks while achieving comparable computational efficiency, which we view
2348 as an important direction for future work.
23492350 As one illustrative example, in light of the connection between NTK-based neural bandits and ker-
2351 nelized bandits, one could consider importing techniques such as Nyström approximation as in
2352 Zenati et al. (2022) to reduce the effective computational cost in the neural bandit setting. Another
2353 approach is to adapt the method proposed in Xu et al. (2022) where an NTK-based neural bandit
2354 formulation is also used, but the neural network is trained so that its output is not the reward itself,
2355 but instead a new d -dimensional feature vector. The problem is then reduced to solving a linear
2356 bandit in this learned feature space with respect to an unknown parameter θ^* . This strategy can
2357 substantially reduce computational complexity and is attractive from an applied viewpoint, but it
2358 requires an additional Lipschitz-type assumption on the neural network on the theoretical side.
23592360 **L USE OF LARGE LANGUAGE MODELS**
23612362 This manuscript is reviewed and edited for grammar and clarity using ChatGPT-5.
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375