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ABSTRACT

We present GameNGen, the first game engine powered entirely by a neural model
that also enables real-time interaction with a complex environment over long tra-
jectories at high quality. When trained on the classic game DOOM, GameNGen
extracts gameplay and uses it to generate a playable environment that can inter-
actively simulate new trajectories. GameNGen runs at 20 frames per second on
a single TPU and remains stable over extended multi-minute play sessions. Next
frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compres-
sion. Human raters are only slightly better than random chance at distinguishing
short clips of the game from clips of the simulation, even after 5 minutes of auto-
regressive generation. GameNGen is trained in two phases: (1) an RL-agent learns
to play the game and the training sessions are recorded, and (2) a diffusion model
is trained to produce the next frame, conditioned on the sequence of past frames
and actions. Conditioning augmentations help ensure stable auto-regressive gener-
ation over long trajectories, and decoder fine-tuning improves the fidelity of visual
details and text.

Figure 1: A human player is playing DOOM on GameNGen at 20 FPS. See supplementary material
for multi-minute real-time video recordings of people interactively playing with GameNGen.

1 INTRODUCTION

Computer games are manually crafted software systems centered around the following game loop:
(1) update the game state based on user input, and (2) render the game state to screen pixels. This
game loop, running at high frame rates, creates the illusion of an interactive virtual world for the
player. Such game loops are classically run on standard computers, and while there have been many
impressive attempts at running games on bespoke hardware (e.g. the iconic game DOOM has been
run on kitchen appliances, a treadmill, a camera, and within the game of Minecraft1), in all of these
cases the hardware is still emulating the manually written game software as-is. Furthermore, while
vastly different game engines exist, the game state updates and rendering logic in all are composed
of a set of manual rules, programmed or configured by hand.

1See https://www.reddit.com/r/itrunsdoom/
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In recent years, generative models made significant progress in producing images and videos con-
ditioned on multi-modal inputs, such as text or images. At the forefront of this wave, diffusion
models became the de-facto standard in media (i.e. non-language) generation, with works like Dall-
E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022) and Sora (Brooks et al., 2024). At
a glance, simulating the interactive worlds of video games may seem similar to video generation.
However, interactive world simulation is more than just very fast video generation. The requirement
to condition on a stream of input actions that is only available throughout the generation breaks
some assumptions of existing diffusion model architectures. Notably, it requires generating frames
autoregressively which tends to be unstable and leads to sampling divergence (see section 3.2.1).

Several important works (Ha & Schmidhuber, 2018; Kim et al., 2020; Bruce et al., 2024) (see Section
6) simulate interactive video games with neural models. Nevertheless, most of these approaches are
limited in respect to the complexity of the simulated games, simulation speed, stability over long
time periods, or visual quality (see Figure 2). It is therefore natural to ask:

Can a neural model running in real-time simulate a complex game at high quality?

In this work we demonstrate that the answer is yes. Specifically, we show that a complex video game,
the iconic game DOOM, can be run on a neural network, an augmented version of the open Stable
Diffusion v1.4 (Rombach et al., 2022), in real-time, while achieving a visual quality comparable to
that of the original game. While not an exact simulation (see limitations in Section 7), the neural
model is able to perform complex game state updates, such as tallying health and ammo, attacking
enemies, damaging objects, opening doors, and more generally persist the game state over long
trajectories.

Our key contribution is a demonstration that a complex video game (DOOM) can be simulated by
a neural network in real time with high quality on a single TPU. We provide concrete architecture
and technical insights on how to (1) adapt a text-to-image diffusion model in a stable auto-regressive
setup via noise augmentation, (2) achieve visual quality comparable to the original via fine-tuning
the latent decoder, and (3) collect training data from an existing game at scale via an RL agent.

More broadly, demonstrating that real-time simulation of complex games on existing hardware is
possible addresses one important question on the path towards a new paradigm for game engines –
one where games are automatically generated, much like how images and videos have been gener-
ated by neural models in recent years. While bigger questions remain, such as how to use human
input to create entirely new games instead of simulating existing ones, we are nevertheless excited
for the possibilities of this new paradigm (see Section 7 for further discussion).

World Models GameGAN Ours

Figure 2: GameNGen compared to prior simulations of DOOM: World Models Ha & Schmid-
huber (2018) and GameGAN Kim et al. (2020). Note that prior models are trained on different data.

2 INTERACTIVE WORLD SIMULATION

An Interactive Environment E consists of a space of latent states S, a space of observations of the
latent space O, a partial projection function V : S → O, a set of actions A, and a transition
probability function p(s|a, s′) such that s, s′ ∈ S, a ∈ A.

For example, in the case of the game DOOM, S is the program’s dynamic memory contents, O is
the rendered screen pixels, V is the game’s rendering logic, A is the set of key presses, and p is the
program’s logic given the player’s input (including any potential non-determinism).

2
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Figure 3: Method overview (see Section 3).

Given an input interactive environment E , and an initial state s0 ∈ S , an Interactive World Simula-
tion is a simulation distribution function q(on|o<n, a≤n), oi ∈ O, ai ∈ A. Given a distance metric
between observations D : O × O → R, a policy, i.e. a distribution on agent actions given past
actions and observations π(an|o<n, a<n), a distribution S0 on initial states, and a distribution N0

on episode lengths, the Interactive World Simulation objective consists of minimizing E(D(oiq, o
i
p))

where n ∼ N0, 0 ≤ i ≤ n, and oiq ∼ q, oip ∼ V (p) are sampled observations from the environ-
ment and the simulation when enacting the agent’s policy π. Importantly, the conditioning actions
for these samples are always obtained by the agent interacting with the environment E , while the
conditioning observations can either be obtained from E (the teacher forcing objective) or from the
simulation (the auto-regressive objective).

We always train our generative model with the teacher forcing objective. Given a simulation distri-
bution function q, the environment E can be simulated by auto-regressively sampling observations.

3 GAMENGEN

GameNGen (pronounced “game engine”) is a generative diffusion model that learns to simulate the
game under the settings of Section 2. In order to collect training data for this model at scale, with
the teacher forcing objective, we first train a separate model to interact with the environment. The
two models (agent and generative) are trained in sequence. The entirety of the agent’s actions and
observations corpus Tagent during training is maintained and becomes the training dataset for the
generative model in a second stage. See Figure 3.

3.1 DATA COLLECTION VIA AGENT PLAY

Our end goal is to have human players interact with our simulation. To that end, the policy π as
in Section 2 is that of human gameplay. Since we cannot sample from that directly at scale, we
start by approximating it via teaching an automatic agent to play. Unlike a typical RL setup which
attempts to maximize game score, our goal is to generate training data which resembles human play,
or at least contains enough diverse examples, in a variety of scenarios, to maximize training data
efficiency. To that end, we design a simple reward function, which is the only part of our method
that is environment-specific (see Appendix A.5).

We record the agent’s training trajectories throughout the entire training process, which includes
different skill levels of play, starting with a random policy when the agent is untrained. This set of
recorded trajectories is our Tagent dataset, used for training the generative model (see Section 3.2).

3
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Figure 4: Auto-regressive drift. Top: we present every 10th frame of a simple trajectory with 50
frames in which the player is not moving. Quality degrades fast after 20-30 steps. Bottom: the same
trajectory with noise augmentation does not suffer from quality degradation.

3.2 TRAINING THE GENERATIVE DIFFUSION MODEL

We now train a generative diffusion model conditioned on the agent’s trajectories Tagent (actions
and observations) collected during the previous stage.

We re-purpose a pre-trained text-to-image diffusion model, Stable Diffusion v1.4 (Rombach et al.,
2022) to predict the next frame in the game. We condition the model fθ on trajectories T ∼ Tagent,
i.e. on a sequence of previous actions a<n and observations (frames) o<n and remove all text condi-
tioning. Specifically, to condition on actions (i.e. key presses), we simply learn an embedding Aemb

from each action into a single token and replace the cross attention from the text into this encoded
actions sequence. In order to condition on observations (i.e. previous frames) we encode them into
latent space using the auto-encoder ϕ and concatenate them in the latent channels dimension to the
noised latents (see Figure 3). We also experimented with conditioning on these past observations
via cross-attention but observed no meaningful improvements.

We train the model to minimize the diffusion loss with velocity parameterization (Salimans & Ho,
2022):

L = Et,ϵ,T

[
∥v(ϵ, x0, t)− vθ′(xt, t, {ϕ(oi<n)}, {Aemb(ai<n)})∥22

]
(1)

where T = {oi≤n, ai≤n} ∼ Tagent, x0 = ϕ(on), t ∼ U(0, 1), ϵ ∼ N (0, I), xt =
√
ᾱtx0 +√

1− ᾱtϵ, v(ϵ, x0, t) =
√
ᾱtϵ−

√
1− ᾱtx0, and vθ′ is the v-prediction output of the model fθ. The

noise schedule ᾱt is linear, similarly to Rombach et al. (2022).

3.2.1 MITIGATING AUTO-REGRESSIVE DRIFT USING NOISE AUGMENTATION

The domain shift between training with teacher-forcing and auto-regressive sampling leads to error
accumulation and fast degradation in sample quality, as demonstrated in Figure 4 (top). To avoid this
divergence due to auto-regressive application of the model, we corrupt context frames by adding a
varying amount of Gaussian noise to encoded frames in training time, while providing the noise level
as input to the model, following Ho et al. (2021). To that effect, we sample a noise level α uniformly
up to a maximal value, discretize it and learn an embedding for each bucket (see Figure 3). This
allows the network to correct information sampled in previous frames, and is critical for preserving
frame quality over time. During inference, the added noise level can be controlled to maximize
quality, although we find that even with no added noise the results are significantly improved. We
ablate the impact of this method in section 5.2.2.

3.2.2 LATENT DECODER FINE-TUNING

The pre-trained auto-encoder of Stable Diffusion v1.4, which compresses 8x8 pixel patches into
4 latent channels, results in meaningful artifacts when predicting game frames, which affect small
details and particularly the bottom bar HUD (“heads up display”). To hopefully leverage some of

4
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the pre-trained knowledge while improving image quality, we train just the decoder of the latent
auto-encoder using an MSE loss computed against the target frame pixels. Importantly, note that
this fine tuning process happens completely separately from the U-Net fine-tuning, and that notably
the auto-regressive generation isn’t affected by it (we only condition auto-regressively on the latents,
not the pixels). Appendix A.2 shows examples of generations with and without fine-tuning the auto-
encoder.

3.3 INFERENCE

3.3.1 SETUP

We use DDIM sampling (Song et al., 2022). We employ Classifier-Free Guidance (Ho & Salimans,
2022) only for the past observations condition o<n. We didn’t find guidance for the past actions
condition a<n to improve quality. The weight we use is relatively small (1.5) as larger weights
create artifacts which increase due to our auto-regressive sampling.

3.3.2 DENOISER SAMPLING STEPS

During inference, we need to run both the U-Net denoiser (for a number of steps) and the auto-
encoder. On our hardware configuration (a single TPU-v5), a single denoiser step and an evaluation
of the auto-encoder both takes 10ms. If we ran our model with a single denoiser step, the minimum
total latency possible in our setup would therefore be 20ms per frame, or 50 frames per second.
Usually, generative diffusion models, such as Stable Diffusion, don’t produce high quality results
with a single denoising step, and instead require dozens of sampling steps to generate a high quality
image. Surprisingly, we found that we can robustly simulate DOOM, with only 4 DDIM sampling
steps (Song et al., 2020). In fact, we observe no degradation in simulation quality when using 4
sampling steps vs 20 steps or more (see Table 1 and Appendix A.6). Using just 4 denoising steps

Table 1: Generation with Varying Sampling Steps. We evaluate the generation quality of a
GameNGen model with an increasing number of steps using PSNR and LPIPS metrics. “D” marks
a 1-step distilled model. See Appendix A.6 for more details.

Steps PSNR ↑ LPIPS ↓
D 31.10± 0.098 0.208± 0.002
1 25.47± 0.098 0.255± 0.002
2 31.91± 0.104 0.205± 0.002
4 32.58± 0.108 0.198± 0.002
8 32.55± 0.110 0.196± 0.002

16 32.44± 0.110 0.196± 0.002
32 32.32± 0.110 0.196± 0.002
64 32.19± 0.110 0.197± 0.002

leads to a total U-Net cost of 40ms (and total inference cost of 50ms, including the auto encoder)
or 20 frames per second. We hypothesize that the negligible impact to quality with few steps in our
case stems from a combination of: (1) a constrained images space, and (2) strong conditioning by
the previous frames.

Since we do observe degradation when using just a single sampling step, we also experimented
with model distillation similarly to (Yin et al., 2024; Wang et al., 2023) in the single-step setting.
Distillation does help substantially there (allowing us to reach 50 FPS as above), but still comes at
a some cost to simulation quality, so we opt to use the 4-step version without distillation for our
method (see Appendix A.6).

4 EXPERIMENTAL SETUP

4.1 AGENT TRAINING

The agent model is trained using PPO (Schulman et al., 2017), with a simple CNN as the feature
network, following Mnih et al. (2015b). It is trained on CPU using the Stable Baselines 3 infras-

5
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tructure (Raffin et al., 2021). The agent is provided with downscaled versions of the frame images
and in-game map, each at resolution 160x120. The agent also has access to the last 32 actions it
performed. The feature network computes a representation of size 512 for each image. PPO’s ac-
tor and critic are 2-layer MLP heads on top of a concatenation of the outputs of the image feature
network and the sequence of past actions. We train the agent to play the game using the ViZDoom
environment (Wydmuch et al., 2019). We run 8 games in parallel, each with a replay buffer size of
512, a discount factor γ = 0.99, and an entropy coefficient of 0.1. In each iteration, the network is
trained using a batch size of 64 for 10 epochs, with a learning rate of 1e-4. We perform a total of
50M environment steps.

4.2 GENERATIVE MODEL TRAINING

We train all simulation models from a pretrained checkpoint of Stable Diffusion 1.4, unfreezing all
U-Net parameters. We use a batch size of 128 and a constant learning rate of 2e-5, with the Adafactor
optimizer without weight decay (Shazeer & Stern, 2018) and gradient clipping of 1.0. The context
frames condition is dropped with probability 0.1 to allow CFG during inference. We train using
128 TPU-v5e devices with data parallelization. Unless noted otherwise, all results in the paper are
after 700,000 training steps. For noise augmentation (Section 3.2.1), we use a maximal noise level
of 0.7, with 10 embedding buckets. We use a batch size of 2,048 for optimizing the latent decoder,
other training parameters are identical to those of the denoiser. For training data, we use a random
subset of 70M examples from the recorded trajectories played by the agent during RL training and
evaluation (see Appendix A.3 for results with smaller datasets). All image frames (during training,
inference, and conditioning) are at a resolution of 320x240 padded to 320x256. We use a context
length of 64 (i.e. the model is provided its own last 64 predictions as well as the last 64 actions).

5 RESULTS

5.1 SIMULATION QUALITY

Overall, our method achieves a simulation quality comparable to the original game over long tra-
jectories in terms of image quality. Human raters are only slightly better than random chance at
distinguishing between short clips of the simulation and the actual game.

Image Quality. We measure LPIPS (Zhang et al., 2018) and PSNR using the teacher-forcing setup
described in Section 2, where we sample an initial state and predict a single frame based on a trajec-
tory of ground-truth past observations. When evaluated over a random holdout of 2048 trajectories
taken in 5 different levels, our model achieves a PSNR of 29.43 and an LPIPS of 0.249. The PSNR
value is similar to lossy JPEG compression with quality settings of 20-30 (Petric & Milinkovic,
2018). Figure 5 shows examples of model predictions and the corresponding ground truth samples.

Video Quality. We use the auto-regressive setup described in Section 2, where we iteratively sample
frames following the sequences of actions defined by the ground-truth trajectory, while conditioning
the model on its own past predictions. When sampled auto-regressively, the predicted and ground-
truth trajectories often diverge after a few steps, mostly due to the accumulation of small amounts of
different movement velocities between frames in each trajectory. For that reason, per-frame PSNR
and LPIPS values gradually decrease and increase respectively, as can be seen in Figure 6. The
predicted trajectory is still similar to the actual game in terms of content and image quality, but
per-frame metrics are limited in their ability to capture this (see Appendix A.1 for samples of auto-
regressively generated trajectories).

We therefore measure the FVD (Unterthiner et al., 2019) computed over a random holdout of 512
trajectories, measuring the distance between the predicted and ground truth trajectory distributions,
for simulations of length 16 frames (0.8 seconds) and 32 frames (1.6 seconds). For 16 frames our
model obtains an FVD of 114.02. For 32 frames our model obtains an FVD of 186.23.

Human Evaluation. As another measurement of simulation quality, we provided 10 human raters
with 130 random short clips (of lengths 1.6 seconds and 3.2 seconds) of our simulation side by
side with the real game. The raters were tasked with recognizing the real game (see Figure 17 in
Appendix A.8). The raters only choose the actual game over the simulation in 58% or 60% of the
time (for the 1.6 seconds and 3.2 seconds clips, respectively). To evaluate the impact of accumulated
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Figure 5: Model predictions vs. ground truth. Only the last 4 frames of the past observations
context are shown.

Figure 6: Auto-regressive evaluation. PSNR and LPIPS metrics over 64 auto-regressive steps.

errors from auto-regressive generation, we generated 150 additional side-by-side comparisons using
clips of 3 seconds in length after 5 to 10 minutes of gameplay. Despite the extended period of auto-
regressive generation, raters still performed at chance level, identifying the real game only 50% of
the time. While human raters struggled to distinguish between the simulation and real gameplay in
short clips, it is important to note that the authors, who are familiar with the specific limitations of
the simulation, could often identify the real game after just a few seconds of play. For qualitative
assessment of longer multi-minute clips, refer to the videos in the supplementary material.

5.2 ABLATIONS

To evaluate the importance of the different components of our methods, we sample trajectories from
the evaluation dataset and compute LPIPS and PSNR metrics between the ground truth and the
predicted frames.

5.2.1 CONTEXT LENGTH

We evaluate the impact of changing the number N of past observations in the conditioning context by
training models with N ∈ {1, 2, 4, 8, 16, 32, 64} (recall that our method uses N = 64). This affects
both the number of historical frames and actions. We train the models for 200,000 steps keeping
the decoder frozen and evaluate on test-set trajectories from 5 levels. See the results in Table 2. As
expected, we observe that generation quality improves with the length of the context. Interestingly,
we observe that while the improvement is large at first (e.g. between 1 and 2 frames), we quickly
approach an asymptote and further increasing the context size provides only small improvements
in quality. This is somewhat surprising as even with our maximal context length, the model only
has access to a little over 3 seconds of history. Notably, we observe that much of the game state
is persisted for much longer periods (see Section 7). While the length of the conditioning context

7
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is an important limitation, Table 2 hints that we’d likely need to change the architecture or training
scheme of our model to efficiently support longer contexts, and employ better selection of the past
frames to condition on, which we leave for future work.

Table 2: Number of history frames. We ablate the number of history frames used as context
using 8912 test-set examples from 5 levels. More frames generally improve both PSNR and LPIPS
metrics.

History Context Length PSNR ↑ LPIPS ↓
64 22.36± 0.033 0.295± 0.001
32 22.31± 0.033 0.296± 0.001
16 22.28± 0.033 0.296± 0.001
8 22.26± 0.033 0.296± 0.001
4 22.26± 0.034 0.298± 0.001
2 22.03± 0.037 0.304± 0.001
1 20.94± 0.044 0.358± 0.001

5.2.2 NOISE AUGMENTATION

To ablate the impact of noise augmentation we train a model without added noise. We evaluate both
our standard model with noise augmentation and the model without added noise (after 200k training
steps) auto-regressively and compute PSNR and LPIPS metrics between the predicted frames and
the ground-truth over a random holdout of 512 trajectories. We report average metric values for each
auto-regressive step up to a total of 64 frames in Figure 7.

Without noise augmentation, LPIPS distance from the ground truth increases rapidly compared to
our standard noise-augmented model, while PSNR drops, indicating a divergence of the simulation
from ground truth.

Figure 7: Impact of Noise Augmentation. The plots show average LPIPS (lower is better) and
PSNR (higher is better) values for each auto-regressive step. When noise augmentation is not used
quality degrades quickly after 10-20 frames. This is prevented by noise augmentation.

5.2.3 AGENT PLAY

We compare training on agent-generated data to training on data generated using a random policy.
For the random policy, we sample actions following a uniform categorical distribution that doesn’t
depend on the observations. We compare the random and agent datasets by training 2 models for
700k steps along with their decoder. The models are evaluated on a dataset of 2048 human-play
trajectories from 5 levels. We compare the first frame of generation, conditioned on a history context
of 64 ground-truth frames, as well as a frame after 3 seconds of auto-regressive generation.

Overall, we observe that training the model on random trajectories works surprisingly well, but is
limited by the exploration ability of the random policy. When comparing the single frame generation
the agent works only slightly better, achieving a PNSR of 25.06 vs 24.42 for the random policy.
When comparing a frame after 3 seconds of auto-regressive generation, the difference increases to
19.02 vs 16.84. When playing with the model manually, we observe that some areas are very easy
for both, some areas are very hard for both, and in some the agent performs much better. With that,
we manually split 456 examples into 3 buckets: easy, medium, and hard, manually, based on their

8
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Table 3: Performance on Different Difficulty Levels. We compare the performance of models
trained using Agent-generated and Random-generated data across easy, medium, and hard splits of
the dataset. Easy and medium have 112 items, hard has 232 items. Metrics are computed for each
trajectory on a single frame after 3 seconds.

Difficulty Level Data Generation Policy PSNR ↑ LPIPS ↓
Easy Agent 20.94± 0.76 0.48± 0.01

Random 20.20± 0.83 0.48± 0.01

Medium Agent 20.21± 0.36 0.50± 0.01
Random 16.50± 0.41 0.59± 0.01

Hard Agent 17.51± 0.35 0.60± 0.01
Random 15.39± 0.43 0.61± 0.00

distance from the starting position in the game. We observe that on the easy and hard sets, the agent
performs only slightly better than random, while on the medium set the difference is much larger in
favor of the agent as expected (see Table 3). See Figure 16 in Appendix A.7 for an example of the
scores during a single session of human play.

6 RELATED WORK

Game Simulation and World Models. Several works attempted to train models for game simu-
lation with actions inputs. Yang et al. (2023) build a diverse dataset of real-world and simulated
videos and train a diffusion model to predict a continuation video given a previous video segment
and a textual description of an action. Menapace et al. (2021) and Bruce et al. (2024) focus on unsu-
pervised learning of actions from videos. Menapace et al. (2024) converts textual prompts to game
states, which are later converted to a 3D representation using NeRF. Another line of work explored
learning a predictive model of the environment and using it for training an RL agent. Ha & Schmid-
huber (2018) train a Variational Auto-Encoder (Kingma & Welling, 2014) to encode game frames
into a latent vector, and then use an RNN to mimic the ViZDoom game environment, training on
random rollouts from a random policy (i.e. selecting an action at random). Then controller policy is
learned by playing within the “hallucinated” environment. Hafner et al. (2020) demonstrate that an
RL agent can be trained entirely on episodes generated by a learned world model in latent space.

Also close to our work is Kim et al. (2020), that use an LSTM architecture for modeling the world
state, coupled with a convolutional decoder for producing output frames and jointly trained un-
der an adversarial objective. Yan et al. (2021) apply a decoder-only transformer architecture to
video generation using a discrete latent space learned by a VQ-VAE, and show that it can be used
for action-conditioned video generation on the VizDoom simulator. Hu et al. (2023) focuses on
the problem of action-conditioned world modeling in the domain of driving. A multi-modal auto-
regressive transformer acts as the world model and predicts the latent-space image token based on
past image, text and action tokens. Then a diffusion video decoder translates the image tokens into
a pixel-space video. The models are trained on large corpus of real-work driving data (420M unique
images). Finally, concurrently with our work, Alonso et al. (2024) train a diffusion world model to
predict the next observation given observation history, and iteratively train the world model and an
RL model on Atari games. More recent version of their work also included a high-res simulation of
Counter-Strike, trained on 95 hours of human game play recording.

Auto-regressive Diffusion Models. Some recent work explored auto-regressive architectures of
diffusion models. Chen et al. (2024) diverge from traditional diffusion architectures by allowing
each token to have its own level of noise in each time step, reporting this approach to improve sta-
bility of video generation beyond the training horizon, when using a convolutional RNN backbone.
Ruhe et al. (2024) also allow variable levels of noise for different tokens, using a sliding window
denoising process. Such approaches are interesting to explore for real-time game simulation, and
we leave this to future work.

DOOM. When DOOM was released in 1993 it revolutionized the gaming industry. Introducing
groundbreaking 3D graphics technology, it became a cornerstone of the first-person shooter genre,
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influencing countless other games. DOOM was studied by numerous research works. It provides
an open-source implementation and a native resolution that is low enough for small sized models to
simulate, while being complex enough to be a challenging test case. Finally, the authors have spent
countless youth hours with the game. It was a trivial choice to use it in this work.

7 DISCUSSION

Summary. We introduced GameNGen, and demonstrated that high-quality real-time gameplay at
20 frames per second is possible on a neural model.

Limitations. (1) GameNGen suffers from a limited amount of memory. The model only has access
to a little over 3 seconds of history, so it’s remarkable that much of the game logic is persisted for
drastically longer time horizons (see the supplementary for multi-minute gameplay). While some of
the game state is persisted through screen pixels (e.g. ammo and health tallies, available weapons,
etc.), the model likely learns strong heuristics that allow meaningful generalizations. For example,
the model infers the current location from the rendered view, and can guess if enemies in an area
are defeated from the ammo and health tallies. That said, it’s easy to create situations where this
context length is not enough (see video in the supplementary). Also, these heuristics might be
wrong, for example, if the player repeatedly shoots, GameNGen might decide to spawn an enemy,
as the agent would usually shoot when enemies are present. Continuing to increase the context
size with our existing architecture yields only marginal benefits (Section 5.2.1), and the model’s
short context length remains an important limitation. (2) The second important limitation are the
remaining differences between the agent’s behavior and those of human players. For example, our
agent, even at the end of training, still does not explore all of the game’s locations and interactions,
leading to erroneous behavior in those cases (see video in the supplementary). (3) Another important
limitation, is that we are not able to easily produce new games with GameNGen. Like traditional
game engines, GameNGen interactively runs the game-loop (update state based on input and render
it to the screen). However, most game engines offer another important feature which is the ability to
easily create new games, which GameNGen currently lacks.

Future Work. We demonstrate GameNGen on the classic game DOOM. It would be interesting to
test it on other games or more generally on other interactive software systems; We note that nothing
in our technique is DOOM specific except for the reward function for the RL-agent. We plan on
addressing that in a future work; While GameNGen manages to maintain game state accurately, it
isn’t perfect, as per the discussion above. A more sophisticated architecture and training scheme
might be needed to mitigate these; GameNGen currently has a limited capability to leverage more
than a minimal amount of memory. Experimenting with further expanding the memory effectively
could be critical for more complex games/software; GameNGen runs at 20 or 50 FPS2 on a TPUv5.
It would be interesting to experiment with further optimization techniques to get it to run at higher
frame rates and on consumer hardware.

Towards a New Paradigm for Interactive Video Games. Today, video games are programmed by
humans. GameNGen is a proof-of-concept for one part of a new paradigm where games are weights
of a neural model, not lines of code. GameNGen shows that an architecture and model weights
exist such that a neural model can effectively run a complex game (DOOM) interactively on existing
hardware. While many important questions remain, we are hopeful that this paradigm could have
important benefits. For example, the development process for video games under this new paradigm
might be less costly and more accessible, whereby games could be developed and edited via textual
descriptions or examples images. A small part of this vision, namely creating modifications or novel
behaviors for existing games, might be achievable in the shorter term. For example, we might be able
to convert a set of frames into a new playable level or create a new character just based on example
images, without having to author code (see Appendix A.4). Other advantages of this new paradigm
include strong guarantees on frame rates and memory footprints. We have not experimented with
these directions yet and much more work is required here, but we are excited to try! Hopefully this
small step will someday contribute to a meaningful improvement in people’s experience with video
games, or maybe even more generally, in day-to-day interactions with interactive software systems.

2Faster than the original game DOOM ran on the some of the authors’ 80386 machines at the time!
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BROADER IMPACT

Societal impact. GameNGen demonstrates that it is possible to simulate interactive games in real-
time using neural networks, opening up new possibilities for game development. Similarly to other
generative technologies like LLMs, text-to-image and text-to-video models, it will be important to
explore how to empower users and game developers to build new experiences responsibly.

Reproducibility. We prioritized reproducibility in our implementation choices. We opt to use
a relatively small open-source and open-weights foundation model (Stable Diffusion 1.4) which is
widely accessible for fine-tuning. The game environment we use, VizDoom, is well-documented and
open-source. Finally, we include detailed descriptions of training parameters and data generation
configurations, and share performance metrics as a baseline for future work.
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Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, and Elisa Ricci.
Playable video generation, 2021. URL https://arxiv.org/abs/2101.12195.
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A APPENDIX

A.1 SAMPLES

Figs. 8,9,10,11 provide selected samples from GameNGen.

Figure 8: Auto-regressive evaluation of the simulation model: Sample #1. Top row: Context
frames. Middle row: Ground truth frames. Bottom row: Model predictions.

Figure 9: Auto-regressive evaluation of the simulation model: Sample #2. Top row: Context
frames. Middle row: Ground truth frames. Bottom row: Model predictions.
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Figure 10: Auto-regressive evaluation of the simulation model: Sample #3. Top row: Context
frames. Middle row: Ground truth frames. Bottom row: Model predictions.

Figure 11: Auto-regressive evaluation of the simulation model: Sample #4. Top row: Context
frames. Middle row: Ground truth frames. Bottom row: Model predictions.
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A.2 FINE-TUNING LATENT DECODER EXAMPLES

Fig. 12 demonstrates the effect of fine-tuning the vae decoder.

Figure 12: A comparison of generations with the standard latent decoder from Stable Diffusion v1.4
(Left), our fine-tuned decoder (Middle), and ground truth (Right). Artifacts in the frozen decoder
are noticeable (e.g. in the numbers in the bottom HUD).
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Figure 13: Impact of dataset size. PSNR vs. training step curves across different dataset sizes (1M,
5M, 10M, 70M examples), evaluated on 2048 unseen test trajectories. Note that given our batch size
of 128, 10K steps correspond to a little over 1M examples.

A.3 DATASET SIZE ANALYSIS

To evaluate the performance of GameNGen on datasets of different sizes, we trained three addi-
tional models with only 1M, 5M, and 10M examples. Fig. 13 shows the PSNR curves of mod-
els trained on these different datasets. PSNR for next frame prediction is evaluated on 2048 un-
seen trajectories from the test set. We observe that, as expected, for smaller datasets the test-set
performance peaks earlier. For the 70M dataset, the performance continues to improve beyond
700k steps. As a qualitative measure, we also recorded human gameplay in models with 1M
and 10M examples. For each model, we used the checkpoint with the lowest test-set loss (see
files condition{1,2} {1M,10M} examples.mp4 in the supplementary material). The model
trained on 1M examples can render novel viewpoints well but struggles with consistency and game
logic (it cannot kill monsters). With 10M examples, we observe improvements in detail and consis-
tency.

A.4 OUT-OF-DISTRIBUTION SAMPLING

To further explore GameNGen’s ability to generate behaviors not present in the training data, we
performed initial experiments by taking frames from the game, editing them with a graphical pic-
ture editor, and starting the generation from the edited frames. Specifically, we replicate the same
frame for the entirety of the history buffer, with the “no key pressed” action. To encourage further
generalization, in this setup we train a new GameNGen model where we randomize the agent’s start-
ing location. Due to the noise augmentation (Section 3.2.1), small local changes get ignored. When
performing more substantial changes, the model usually generates unseen levels and situations. For
example, Fig. 14 shows examples of pasting a game character into areas where they do not appear
in the training data (e.g., inserting a monster from an advanced level into an early one). We observe
that the model often consistently integrates the added characters into the new location, and they
move, shoot at the player, and cause damage. Figure 15 demonstrates modifying a level’s layout by
inserting features such as walls, doors, or pools from other areas. The model successfully integrates
these into the environment, rendering new viewpoints as the player navigates. We hope to further
explore these preliminary results in future work.
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Original Frame Edited Frame Generated Frames

Figure 14: Adding Characters. Frames generated by GameNGen when starting generation from a
manually edited state which includes characters from a different area.
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Original Frame Edited Frame Generated Frames

Figure 15: Changing Structures. Frames generated by GameNGen when starting generation from
a manually edited state that combine level layout features from different levels not present in the
training data.
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A.5 REWARD FUNCTION

The RL-agent’s reward function, the only part of our method which is specific to the game DOOM,
is a sum of the following conditions:

1. Player hit: -100 points.
2. Player death: -5,000 points.
3. Enemy hit: 300 points.
4. Enemy kill: 1,000 points.
5. Item/weapon pick up: 100 points.
6. Secret found: 500 points.
7. New area: 20 * (1 + 0.5 * L1 distance) points.
8. Health delta: 10 * delta points.
9. Armor delta: 10 * delta points.

10. Ammo delta: 10 * max(0, delta) + min(0, delta) points.

Further, to encourage the agent to simulate smooth human play, we apply each agent action for 4
frames and additionally artificially increase the probability of repeating the previous action.

A.6 REDUCING INFERENCE STEPS

We evaluated the performance of a GameNGen model with varying amounts of sampling steps when
generating 2048 frames using teacher-forced trajectories on 35FPS data (the maximal sampling rate
allowed by ViZDoom, lower than the maximal rate our model achieves with distillation, see below).
Surprisingly, we observe that quality does not deteriorate when decreasing the number of steps to 4,
but does deteriorate when using just a single sampling step (see Table 1).

As a potential remedy, we experimented with distilling our model, following Wang et al. (2023)
and Yin et al. (2024). During distillation training we use 3 U-Nets, all initialized with a GameN-
Gen model: generator, teacher, and fake-score model. The teacher remains frozen throughout the
training. The fake-score model is continuously trained to predict the outputs of the generator with
the standard diffusion loss. To train the generator, we use the teacher and the fake-score model to
predict the noise added to an input image - ϵreal and ϵfake. We optimize the weights of the generator to
minimize the generator gradient value at each pixel weighted by ϵreal − ϵfake. When distilling we use
a CFG of 1.5 to generate ϵreal. We train for 1000 steps with a batch size of 128. Note that unlike Yin
et al. (2024) we train with varying amounts of noise and do not use a regularization loss (we hope
to explore other distillation variants in future work). With distillation we are able to significantly
improve the quality of a 1-step model (see “D” in Table 1), enabling running the game at 50FPS,
albeit with a small impact to quality.

A.7 AGENT VS RANDOM POLICY

Figure 16 shows the PSNR values compared to ground truth for a model train on the RL-agent’s data
and a model trained on the data from a random policy, after 3 second of auto-regressive generation,
for a short session of human play. We observe that the agent is sometimes comparable to and
sometime much better than the random policy.

A.8 HUMAN EVAL TOOL

Figure 17 depicts a screenshot of the tool used for the human evaluations (Section 5.1).

A.9 SIMULATING A PLATFORM GAME

We experimented with the simple platform game ”Chrome Dino” to demonstrate GameNGen’s abil-
ity to simulate a different game type (see Fig. 18). For data gathering, we train an RL-Agent utilizing
the Deep Q-Network (DQN Mnih et al. (2015a)) algorithm with experience replay, where the reward
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Figure 16: RL-Agent vs. random policy over a short human play session. Comparison of PSNR
values between generated frame and ground truth for the agent (orange) and random policy (blue)
after 3 second of auto-regressive generation. The values are smoothed with an EMA factor of 0.05.

Figure 17: A screenshot of the tool used for human evaluations (see Section 5.1).

function is derived from the in-game score. The agent selects actions based on an epsilon greedy
policy, with a decaying factor of 0.9995. During training, we recorded 2K episodes and used them
to train the diffusion model using the same settings detailed in the main paper, with the following
modifications: (1) we used a 32-frame context, (2) a resolution of 256x512, and (3) performed only
3,000 training steps. Similar to the results with DOOM, the simulation generated by GameNGen is
fully playable over long trajectories in real-time, with visual quality comparable to the source game
(see example video in the supplementary).

In addition, GameNGen supports simulating game-session management actions, such as game termi-
nation and automatic game replay. To achieve this, we concatenated two randomly selected episodes
and sampled 32 frames from the combined sequence. This approach allows transitions between ses-
sions to be represented when the sampled context spans both episodes.
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Figure 18: Simulation of ”Chrome Dino”. GameNGen automatically restarts the game session
upon termination.

A.10 ADDITIONAL RELATED WORK

Interactive 3D Simulation. Interactive 2D and 3D simulations are well-developed in computer
graphics (Akenine-Mller et al., 2018). Game engines like Unreal and Unity a stream of images
based on user input, tracking world state (e.g., player position, objects, lighting) and game logic
(e.g., score). While film productions uses computationally intensive ray tracing (Shirley & Morley,
2008), game engines prioritize speed (30-60 FPS) with optimized polygon rasterization via GPUs.
Physical effects, such as shadows and lighting, are approximated for efficiency rather than simulated
with full accuracy.

Neural 3D Simulation. Neural methods for reconstructing 3D representations have made signifi-
cant advances over the last years. NeRFs (Mildenhall et al., 2020) parameterize radiance fields using
a deep neural network that is specifically optimized for a given scene from a set of images taken from
various camera poses. Once trained, novel point of views of the scene can be sampled using volume
rendering methods. Gaussian Splatting (Kerbl et al., 2023) approaches build on NeRFs but represent
scenes using 3D Gaussians and adapted rasterization methods, unlocking faster training and render-
ing times. While demonstrating impressive reconstruction results and real-time interactivity, these
methods are often limited to static scenes.

Video Diffusion Models. Diffusion models achieved state-of-the-art results in text-to-image gen-
eration (Saharia et al., 2022; Rombach et al., 2022; Ramesh et al., 2022; Podell et al., 2023), a line
of work that has also been applied for text-to-video generation tasks (Ho et al., 2022; Blattmann
et al., 2023b;a; Gupta et al., 2023; Girdhar et al., 2023; Bar-Tal et al., 2024). Despite impressive
advancement in realism, text adherence and temporal consistency, video diffusion models remain
too slow for real-time applications. Our work extends this line of work and adapts it for real-time
generation conditioned autoregressively on a history of past observations and actions.
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