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Abstract
Out-of-distribution (OOD) detection is a crucial
task in reliable and safety-critical applications.
Previous studies primarily focus on developing
score functions while neglecting the design of de-
cision rules based on these scores. A recent work
(Ma et al., 2024) is the first to highlight this issue
and proposes the generalized BH (g-BH) algo-
rithm to address it. The g-BH algorithm relies on
empirical p-values, with the calibrated set playing
a central role in their computation. However, the
impact of calibrated set on the performance of
g-BH algorithm has not been thoroughly investi-
gated. This paper aims to uncover the underlying
mechanisms between them. Theoretically, we
demonstrate that conditional expectation of true
positive rate (TPR) on calibrated set for the g-
BH algorithm follows a beta distribution, which
depends on the prescribed level and size of cali-
brated set. This indicates that a small calibrated
set tends to degrade the performance of g-BH
algorithm. To address the limitation of g-BH algo-
rithm on small calibrated set, we propose a novel
ensemble g-BH (eg-BH) algorithm which inte-
grates various empirical p-values for making deci-
sions. Finally, extensive experimental results vali-
date the effectiveness of our theoretical findings
and demonstrate the superiority of our method
over g-BH algorithm on small calibrated set.

1. Introduction
Out-of-Distribution (OOD) detection is a critical task in ma-
chine learning and computer vision (Hendrycks & Gimpel,
2017; Liu et al., 2020). It addresses the challenge of deter-
mining whether a given input sample belongs to the same
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distribution as the training data (Hendrycks et al., 2022;
Djurisic et al., 2023). In real-world applications, models
trained on in-distribution (ID) data from a specific domain
often encounter OOD data from unseen distributions dur-
ing deployment. This discrepancy between the training and
deployment leads to poor model performance (Liang et al.,
2018; Sastry & Oore, 2020; Kaur et al., 2022). The im-
portance of OOD detection has grown with the increasing
reliance on deep learning models in safety-critical appli-
cations, such as autonomous driving (Li et al., 2022) and
medical diagnosis (Frolova et al., 2022).

Numerous studies have proposed various methods to address
the OOD detection problem (Liu et al., 2020; 2023; Regmi
et al., 2024; Lu et al., 2024). These methods mainly focus
on designing the score functions which enables to learn
critical discriminative information in training data. A recent
work (Ma et al., 2024) is the first to point out that existing
OOD detection methods neglect the systematic study of
the decision rule based on the score functions, and propose
a novel generalized BH (g-BH) algorithm to tackle this
problem. The g-BH algorithm establishes a connection
between score functions and multiple hypothesis testing
framework through the empirical p-values. The calibrated
set is crucial for computing empirical p-values and thus has
a profound impact on the detection performance of the g-
BH algorithm. However, to the best of our knowledge, the
impact of the calibrated set on the performance of the g-BH
algorithm remains unexplored. This paper aims to address
the above issue.

Intuitively, a larger calibration set enhances the performance
of the g-BH algorithm. Our experimental results in Figure
1 confirm this conjecture: as the size of calibrated set in-
creases, both the TPR and F1-score monotonically increase.
Theoretically, we demonstrate that the TPR expectation con-
ditional on calibrated set for the g-BH algorithm follows a
beta distribution, with its shape parameters determined by
the prescribed significance level and the size of calibrated
set. This shows that a smaller calibrated set tends to de-
grade the detection performance of the g-BH algorithm. To
address the limitation of the g-BH algorithm on small cal-
ibrated set, we propose a novel ensemble g-BH (eg-BH)
algorithm which integrates multiple empirical p-values for
decision-making. Moreover, we extend the theoretical re-
sults on the g-BH algorithm from (Ma et al., 2024) and
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Figure 1. OOD detection performance of the g-BH algorithm with varying size of calibrated set. The score function is the Energy (Liu
et al., 2020). The x-axis corresponds to the size of the calibrated set, and the y-axis represents the values of metrics.

demonstrate that the eg-BH algorithm controls the false
discovery rate (FDR) for p-values without clear structural
dependence.

Finally, we conduct extensive experiments to verify the
theoretical results on the conditional expectation of TPR
and the effectiveness of the eg-BH algorithm. Experimental
results demonstrate the superiority of our method over the
g-BH algorithm on small calibrated set.

We summarize our core contributions as follows:

• We empirically find that a larger calibrated set improves
the performance of the g-BH algorithm, whereas a
smaller calibrated set adversely affects its performance.

• We theoretically demonstrate that the TPR expecta-
tion conditional on the calibrated set follows a beta
distribution, with its shape parameters determined by
the prescribed significance level and the size of the
calibrated set, which supports our findings.

• To address the limitation of the g-BH algorithm on the
small calibrated set, we propose a novel eg-BH algo-
rithm that integrates multiple empirical p-values for
decision-making. Besides, our theoretical results pro-
vide a statistical guarantee for the integrated p-values
in our eg-BH algorithm.

• Extensive experimental results demonstrate the superi-
ority of our method over the g-BH algorithm on small
calibrated set.

2. Background
We donote by X ⊆ Rd the feature space and Y =
{1, 2, 3, . . . ,K} the label space with unknown joint dis-
tribution P , and X has marginal distribution Dx.

During the prediction phase, it is typically assumed that the
testing data are drawn from the same distribution Dx as the
training data. However, in practical applications, test inputs

may originate from unseen distributions, where the corre-
sponding label space may be disjoint from Y . These OOD
samples should be identified and excluded from prediction.

The objective of OOD detection is to identify OOD exam-
ples in the testing set. In prior work, the OOD detection task
is formulated as a binary decision problem:

ϕ(x) =

{
ID, if s(x) ≥ s∗

OOD, if s(x) < s∗
(1)

where s(·) is the score function and the threshold s∗ is
empirically selected so that the ture positive rate (TPR) on
ID validation set is 95% before testing (Sun et al., 2022;
Wei et al., 2022).

Prior work on OOD detection has primarily focused on de-
signing powerful score functions to capture discriminative
information in ID data (Hendrycks & Gimpel, 2017; Liu
et al., 2020; Djurisic et al., 2023; Liu et al., 2023). However,
Ma et al. (2024) highlight that these studies lacks system-
atic research on the decision rule on the score functions.
Moreover, the decision rule in Eq (1) is empirical and lacks
theoretical guarantee for its outputs. Different from the pre-
vious studies, Ma et al. (2024) studies the OOD detection
problem from the perspective of multiple hypothesis testing,
and propose the g-BH algorithm to tackle it.

3. Multiple Hypothesis Testing Framework for
OOD Detection

We first introduce the hypothesis testing framework for
OOD detection in Ma et al. (2024). For mathematical
convenience, we follow the notations of Ma et al. (2024).
Given a testing set T test = {Xtest

1 , Xtest
2 , . . . , Xtest

n }, For
i = 1, · · · , n, the OOD detection task is formulated as the
following multiple hypothesis testing problem:

H1;0 : Xtest
1 ∼ Dx, H1;1 : Xtest

1 ≁ Dx

· · · · · ·
Hn;0 : Xtest

n ∼ Dx, Hn;1 : Xtest
n ≁ Dx

(2)
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where Hi;0 and Hi;1 are called null hypothesis and alterna-
tive hypothesis, respectively. Then, if Hi;0 is rejected, we
declare that Xtest

i is OOD.

In statistics, the decision to accept or reject the null hypoth-
esis is made based on the concept of the p-value, which is
generally defined as follows:

Definition 3.1. [p-value (Casella & Berger, 2002)] Given
a sample X̃ 4. A statistic p(X̃) is called p-value correspond-
ing to the null hypothesis H0, if p(X̃) satisfies

P[p(X̃) ≤ t|H0] ≤ t (3)

for every 0 ≤ t ≤ 1.

If the statistic p(X̃) follows the uniform distribution on
(0, 1) under the null hypothesis, it is a valid p-value. A
small p-value typically provides strong evidence against the
null hypothesis. It is noteworthy that the p-value has clear
statistical interpretation. For example, if the p-value of a
OOD testing example Xtest

i is 0.01, this implies that, for
any subsequent testing example Xtest

j , the probability that
Xtest

j is more similar to OOD data than Xtest
i is 0.01. In

other words, it is highly unlikely to find an example less
similar to the OOD data than Xtest

i . Hence, it provides
strong evidence that Xtest

i is OOD.
Remark 3.2. In statistics, the following terminology char-
acterizes the distribution of null p-values: if P[p(X̃) ≤
t|H0] = t, the p-value p(X̃) is called exact or uniform; if
P[p(X̃) ≤ t|H0] < t, p(X̃) is called conservative. Com-
pared to an exact p-value, a conservative one tends to under-
state the evidence against the null Hypothesis.

Based on the work (Benjamini & Hochberg, 1995), Ma
et al. (2024) propose the g-BH algorithm to tackle the OOD
detection problem. Define two function classes:

F1 = {f(x) : f+(0) = 0, f ′(x) > 0,

∫ 1

0

1

f(x)
dx ≤ 1}

F2 = {f(x) : f+(0) = 0, f ′(x) ≥ 1},

where f+(0) = limx→0+ f(x) for x ∈ (0, 1). Based on F1

and F2, the g-BH algorithm is defined as follows:

Definition 3.3 (g-BH algorithm (Ma et al., 2024)). Given
the p-values p1, p2, · · · , pn corresponding to the null hy-
potheses H1;0, H2;0, · · · , Hn;0, let p(i) be the i-th order
statistics from the smallest to the largest. For a pre-specified
level α ∈ (0, 1), define

i∗g−BH = max{i ∈ [n] : f(p(i)) ≤
i

n
α}, (4)

where f(·) ∈ F1 ∪ F2. Then, the null hypothesis H(i);0 is
rejected if i ≤ i∗g−BH .

4A sample means a sequence of examples.

Ma et al. (2024) demonstrate that if p-values are independent
or positive regression dependence on subset (PRDS), the g-
BH algorithm controls the FDR at prescribed level α. FDR
is defined as

FDR = E
[

|R ∩ H0|
max{1, |R|}

]
where R is the set of indices of the rejected null hypotheses
and H0 is the set of indices for the true null hypotheses.
(Ma et al., 2024) demonstrates that the g-BH algorithm can
control the FDR at a prescribed level if p-values are mutually
independent or satisfy the positive regression dependence
on subset (PRDS) condition (Benjamini & Yekutieli, 2001).

4. Impact of Calibrated Set on Generalized
BH Algorithm

In most multiple hypothesis testing literature (Benjamini &
Hochberg, 1995; Benjamini & Yekutieli, 2001; Blanchard &
Roquain, 2008; Delattre & Roquain, 2015; Cao et al., 2022),
the p-values or the distribution of the testing statistic are
assumed to be known. Denote by F (·) the cumulative dis-
tribution function of s(X) where s(·) is the score function
and X ∼ Dx. Then, for a given example Xtest, its p-value
can be expressed as

p(Xtest) = PX∼Dx
(s(X) ≤ s(Xtest))

= F (s(Xtest)). (5)

According to the Definition 2, under the H0 (Xtest is the
ID data), we have

P
(
F (s(Xtest)) ≤ x

)
= P

(
s(Xtest) ≤ F−1(x)

)
= F (F−1(x)) = x,

where F−1(·) is the inverse function of F (·). Therefore, the
random variable F (s(Xtest)) follows the uniform distribu-
tion on (0, 1), namely, p(Xtest) is a valid p-value and is
exact. Obviously, small score s(Xtest) results in a small
p-value, which aligns with the classical setting of OOD
detection in Eq.(1) and the interpretation of the p-value.

However, in the context of the OOD detection, we often
have little prior information about underlying distribution
F (·). Hence, Ma et al. (2024) propose using the empirical
p-values in the g-BH algorithm, which is a nonparametric
estimation method for the p-value p(Xtest). Given a cal-
ibrated set T cal = {Xcal

1 , Xcal
2 , . . . , Xcal

m } consisting of
the ID examples, for a testing example Xtest

i , the empirical
p-value pi corresponding to null hypothesis Hi;0 is defined
as

pi = p̂(Xtest
i ) =

∑m
j=1 1(s(X

cal
j ) ≤ s(Xtest

i )) + 1

m+ 1
,

(6)
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(c) α = 0.12

Figure 2. Density distribution functions of the TPR conditional on calibrated set for the g-BH algorithm with varying level α and size m
of calibrated set.

where s(·) is a certain score function. According to Arlot
et al. (2010), we can easily verify that empirical p-value in
Eq. (6) satisfies the Definition 3.1.

Note that the g-BH algorithm directly makes the decisions
based on the empirical p-values. Therefore, the calibrated
set plays a critical role in the OOD detection performance
of g-BH algorithm. However, to the best of our knowl-
edge, there is no literature that thoroughly investigates the
influence of calibrated set on the performance of the g-BH
algorithm. This paper aims to systematically study this
important problem.

In this paper, we focus on the situation where only ID data
is available before testing. Thus, we first investigate how
the size m of calibrated set influences the conditional ex-
pectation of TPR on the calibrated set T cal for the g-BH
algorithm: E(TPR|T cal).

To derive the distribution characteristics of conditional
expectation of TPR, we need the concept of empirical
distribution function. Given the calibrated set T cal =
{Xcal

1 , Xcal
2 , . . . , Xcal

m }, for any input x, the empirical dis-
tribution F̂ (·) of score function s(·) on T cal can be ex-
pressed as

F̂ (x) =
1

m

n∑
i=1

1(s(Xcal
i ) ≤ s(x))

=


0, if s(x) < s(Xcal

(1) )
k
m if s(Xcal

(k)) ≤ s(x) < s(Xcal
(k+1))

1, if s(x) ≥ s(Xcal
(m)),

where k = 1, 2, · · · ,m and Xcal
(k) is the k-th order statistic

of Xcal
1 , Xcal

2 , . . . , Xcal
m from the smallest to the largest.

Obviously, we have

F̂ (Xcal
(k)) =

k

n
.

In addition, we denote [·] the floor function. Then, we have
the following theoretical result.

Theorem 4.1. Given the calibrated set T cal =
{Xcal

1 , Xcal
2 , . . . , Xcal

m } and the score function s(·) that is
continuous. For a prescribed level α, the density function of
E(TPR|T cal) for the g-BH algorithm can be expressed as

ftpr(x) =

{
m
(
m−1
β−1

)
xm−β(1− x)β−1 if 0 < x < 1

0 otherwise,

where

β = [f−1(α)(m+ 1)]− 1

and f ∈ F1 ∪ F2,namely E(TPR|T cal) follows the beta
distribution Be(m− β + 1, β).

The proof of the Theorem 4.1 is presented in Appendix A.1.
Theorem 4.1 indicates that the pre-specified level α and the
size of the calibrated set m play pivotal roles in determin-
ing the distributional characteristics of the g-BH algorithm.
We visualize the probability distribution of E(TPR|T cal)
with different α and the size m of calibrated set in Figure
2. From Figure 2, we find that if we choose a larger α, the
g-BH algorithm tends to achieve smaller TPR with appre-
ciable probability. For example, with the calibration exam-
ples m = 200, we have P(E(TPR|T cal) ≤ 0.9) = 0.14
for α = 0.08 and P(E(TPR|T cal) ≤ 0.85) = 0.81 for
α = 0.12. The reason behind this phenomenon is that a
larger α induces the g-BH algorithm to adopt more aggres-
sive decision-making strategies. In other words, the g-BH
algorithm tends to classify more testing examples as OOD.
More importantly, a small calibrated set causes the g-BH
algorithm to achieve poor detection performance in terms of
TPR. In contrast, a large calibrated set easily ensures a high
TPR with a high probability. For example, with α = 0.05,
we obtain P(E(TPR|T cal) ≤ 0.9) = 0.32 for m = 200,
and P(E(TPR|T cal) ≤ 0.9) < 0.01 for m = 500. There-
fore, a large calibrated set significantly improves the perfor-
mance of the g-BH algorithm. In Section 6, we also conduct
extensive experiments on the real datasets to validate this
conclusion.
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5. Ensemble Generalized BH Algorithm for
Small Calibrated Set

In Section 4, we demonstrate that a large calibrated set tends
to improve the detection performance of the g-BH algorithm,
but a small calibrated set easily leads to a poor results. In
practice, we usually separate a portion of data from the
training set to serve as the calibrated set. If the training set
is small, a large calibrated set takes up more of the training
data and further leads to the underfitting of neural networks.
To address this problem, we propose the ensemble g-BH
(eg-BH) algorithm to address this challenges faced by the
g-BH algorithm.

Our motivation arises from the practical significance of p-
values. A small calibrated set leads to under-representative
empirical p-values, which fail to capture the distributional
characteristics of the ID data. To address this issue, a natural
approach is to generate multiple empirical p-values using
the entire training set, thereby fully utilizing the available
information. We then integrate these empirical p-values to
make decisions.

For the given training data T , we first partition T into
T1, T2, · · · , TL. Denote T cal

i = Ti and T train
−i = T \Ti

where “\ ” is the difference operation. Then, we train
the score function s(·) based on T train

−i . For simplicity,
we denote si(·) the score trained on T train

−i . Besides, de-
note by |T cal

i | the size of T cal
i . Hence, for a testing ex-

ample Xtest, we enable to compute various empirical p-
values using trained score function and calibrated set pairs
{si(·), T cal

i }Li=1:

p̂i(X
test) =

|{Xcal ∈ T cal
i : si(X

cal) ≤ si(X
test)}|+ 1

|T cal
i |+ 1

for i = 1, 2, · · · , L. After computing the empirical p-values
p̂1(X

test), p̂2(X
test), · · · , p̂L(Xtest), the next problem is

how to integrate these empirical p-values. A direct approach
is to average them:

p̄(Xtest) =
p̂1(X

test) + p̂2(X
test) + · · ·+ p̂L(X

test)

L
.

Unfortunately, p̄(Xtest) does not necessarily satisfy the
definition of the p-value (Rüschendorf, 1982; Meng, 1994).

To obtain a more general method of integrating the p-
values, we first introduce a universal notion of average (Kol-
mogorov & Castelnuovo, 1930): given the p-values p =
{p1, p2, · · · , pL} and weights w = {w1, w2, · · · , wL}
where wi > 0 and

∑L
i=1 wi = 1, define

Ω(p,w) = g−1 (w1g(p1) + w2g(p2) + · · · , wLg(pL))

where g(·) is a continuous and strictly monotonic function,
and g−1(·) is its inverse function. If wi =

1
L , Ω(·) is the

Algorithm 1 eg-BH algorithm
1: Input: Training data T , testing set T test =

{Xtest
1 , Xtest

2 , . . . , Xtest
n }, prescribed leve α ∈ (0, 1).

2: partition T into T1, T2, · · · , TL, and let T cal
i = Ti and

T train
−i = T \Ti.

3: for j = 1 to L do
4: Train the score function s(x) on T train

−j , denote by
si(·) the score trained on T train

−j .
5: end for
6: for i = 1 to n do
7: for j = 1 to L do
8: Compute the empirical p-values for testing exam-

ple Xtest
i based on sj(·) and T cal

j :

p̂i,j =
|{X ∈ T cal

j : sj(X) ≤ sj(X
test
i )}|+ 1

|T cal
j |+ 1

9: end for
10: Integrate the empirical p-values p̂i,1, · · · , p̂i,L for

Xtest
i :

p̄i =

(κ+ 1)

L∑
j=1

wj p̂
κ
i,j

 1
κ

(7)

11: end for
12: Compute i∗ = max{i ∈ [n] : f(p̄(i)) ≤ i

nα} where
p̄(i) is the i-th order statistic from the smallest to the
largest for p̄1, ·, p̄n.

13: Output: Declare that Xtest
(i) is OOD if i ≤ i∗, and the

rests are ID.

arithmetic mean when g(x) = x; Ω(·) is the geometric
mean when g(x) = log x; Ω(·) is the harmonic mean when
g(x) = 1

x . For a random variable X , its α-quantile is
defined as Q(X,α) = sup

x∈R
{P(X ≤ x) < α}.

Q(X,α) = sup
x∈R

{P(X ≤ x) < α}.

Clearly, Q(X, 1) is the essential supremum of X . In ad-
dition, denote by P the set of all p-values. Suppose that
the function h(·) : [0, 1]L → [0, ∞) is continuous and
increasing, we define

Q∗(h,p, α) = inf
pi∈P

{Q(h(p1, · · · , pL), α)}

where p = {p1, · · · , pL}. To construct our method, we
need following technical lemma.
Lemma 5.1. Suppose that the function g(·) is continuous
and monotonically increasing on [0, 1]. Then, for any α ∈
(0, 1), we have

∫ α

0
g(x) dx ≤ α

∫ 1

0
g(x) dx.

The proof of Lemma 5.1 is presented in Appendix A.2.
Based on this lemma, we have following theoretical result.

5



A Closer Look at Generalized BH algorithm for Out-of-Distribution Detection

Theorem 5.2. Suppose that the function g(·) is continuous
and monotonically increasing on [0, 1]. Then, for any α ∈
(0, 1), we have

P
(
Ω(p,w) ≤ g−1

(
1

α

∫ α

0

g(x) dx

))
≤ α.

The proof of Theorem 5.2 is presented in Appendix A.3.
Theorem 5.2 provide a significant region for the level α. By
Theorem 5.2, we can choose appropriate function g(·) to
integrate various p-values.
Theorem 5.3. Given the empirical p-values p1, p2, · · · .pL
and the function g(x) = xκ where κ > 0, then

((κ+ 1)(w1p
κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L))

1
κ

is a valid p-value. Specifically,

2(p1 + p2 + · · ·+ pL)

L

and
max{p1, p2, · · · , pL}

are the valid p-values.

The proof of Theorem 5.3 is presented in Appendix A.4.
According to Theorem 5.3. we can choose appropriate
function g(x) = xκ to integrate various empirical p-values
for decision-making. The following theorem provide an
consideration for the choice of κ in g(x).
Theorem 5.4. Given the empirical p-values p1, p2, · · · .pL
and the function g(x) = xκ, denote w∗ =
max{w1, w2, · · · , wL}. If w∗ ≤ 1

2 and w∗

1−w∗ ≤ κ ≤
1−w∗

w∗ , then we have

sup
pi∈P

{
P
(
h̃(p) ≤ α

) }
= α.

where h̃(p) = ((κ+ 1)(w1p
κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L))

1
κ .

The proof of Theorem 5.4 is presented in Appendix A.5.
Theorem 5.4 indicates that if we choose κ such that w∗

1−w∗ ≤
κ ≤ 1−w∗

w∗ , the integrated p-value h̃(p) can be exact, which
benefits the improvement of power for the hypothesis testing
algorithm. Based on the analysis above, we summarize our
proposed method in Algorithm 1, called ensemble g-BH
(eg-BH) algorithm.

6. Experiments
In this section, we aims to verify the effectiveness of Theo-
rem 4.1 and the superiority of our proposed eg-BH algorithm
over the g-BH algorithm. Our experimental framework is
based on Ma et al. (2024) and use the same evaluation met-
rics. The experimental results show the superiority of the
eg-BH algorithm over the g-BH algorithm on small cali-
brated set.

6.1. Experimental Settings

Scores. We choose two famous methods MSP(Hendrycks
& Gimpel, 2017) and Energy(Liu et al., 2020) as the score
functions in our method.

Benchmarks. We use CIFAR-10 (Krizhevsky et al., 2009)
as ID data, and use CIFAR-100, ImageNet (Krizhevsky
et al., 2017), SVHN (Netzer et al., 2011), Fashion-MNIST
(F-MNIST) (Xiao et al., 2017), Places365 (Zhou et al., 2018)
and MNIST (Deng, 2012), as OOD data.

Metrics. We use the same practical evaluation metrics as
Ma et al. (2024), including TPR, FPR and F1-score.

Model. The score functions in this paper are based on
the ResNet18 and WideResNet, respectively. We mainly
follow the experimental implementation in (Yang et al.,
2022; Zhang et al., 2023), and our codes are based on (Zhang
et al., 2023). More details are found in (Zhang et al., 2023).

6.2. Impact of Calibrated Set on Generalized BH
Algorithm

In this experiment, we aims to reveal how the calibrated set
influences the detection performance of the g-BH algorithm.
We first split the training data equally into two parts. One
part is employed to train the neural networks for construct-
ing the score function, and the other serves as the largest
calibrated set T cal

M . Then, from T cal
M , we extract samples at

various proportions r to construct several relatively smaller
calibrated sets, where r = {0.2, 0.3, · · · , 1.0}. The experi-
mental results of practical metrics based on the Energy (Liu
et al., 2020) are presented in Tables 1 and 3. The results
based on the MSP (Hendrycks & Gimpel, 2017) are pre-
sented in Tables 2 and 4. Because of the space limitation,
all experimental results of using MNIST as OOD data are
presented in Appendix B.

From Table 1, we find that with the increase of size for the
calibrated set, the evaluation metrics TPR and F1-score con-
siderably increases, accompanied by a marginal rise in FPR.
For example, we use the SVHN as the OOD data, and use
the Energy as our score function based on ResNet18. When
sampling ratio r = 0.2, the F1-score, TPR and FPR of g-
BH algorithm are 52.25%, 35.41% and 0.05%,respectively.
When r = 0.8, the corresponding F1-score, TPR and FPR
are 75.78%, 61.51% and 0.31%, respectively, which leads
to the direct improvements of 23.53% and 26.10% for F1-
score and TPR, at a negligible cost of 0.26% increase in
FPR. Notably, as shown in Tables 2, 3 and 4, this trend is
consistent for other socre function MSP, network architec-
ture WideResNet and OOD data. Therefore, large calibrated
set improves the performance of the g-BH algorithm with-
out the dependence on the distribution assumptions of OOD
data. The above analysis demonstrates the effectiveness of
Theorem 4.1.
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Table 1. Experimental results (%) of practical metrics on CIFAR-10 as ID data. Energy (Liu et al., 2020) is used as the score function
based on the ResNet18. We compare the detection performance of g-BH algorithm with different sizes of calibrated set.

Ratio CIFAR-100 TinyImageNet SVHN Place365 F-MNIST
F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR

0.2 63.63 47.12 0.98 33.06 32.47 0.29 52.25 35.41 0.05 51.84 35.35 0.19 62.94 45.99 0.68
0.3 66.06 49.91 1.20 39.76 34.58 0.35 54.81 37.80 0.05 54.01 37.53 0.24 65.74 47.83 0.97
0.4 67.88 52.07 1.35 43.34 36.19 0.40 58.03 40.95 0.07 56.00 39.31 0.30 68.16 52.79 1.42
0.5 70.19 54.92 1.56 45.27 40.63 0.55 62.27 45.31 0.08 58.11 41.48 0.35 70.95 54.98 1.46
0.6 71.90 57.99 1.61 53.81 43.04 0.67 65.66 49.00 0.10 59.67 42.37 0.44 72.78 57.51 1.69
0.7 74.35 60.54 2.31 57.75 46.94 0.87 73.18 58.05 0.23 61.27 44.92 0.47 75.58 59.25 2.15
0.8 76.16 63.53 3.30 62.05 52.61 1.41 75.78 61.51 0.31 66.15 48.26 0.87 76.52 62.98 2.47
0.9 77.90 64.94 3.95 65.91 53.63 1.49 79.71 82.34 5.42 68.92 56.14 1.11 78.43 67.61 4.79
1 79.26 69.50 5.87 70.52 64.03 3.51 84.03 86.68 11.64 73.84 71.76 5.36 80.74 70.68 6.51

Table 2. Experimental results (%) of practical metrics on CIFAR-10 as ID data. MSP (Hendrycks & Gimpel, 2017) is used as the score
function based on the ResNet18. We compare the detection performance of g-BH algorithm with different sizes of calibrated set.

Ratio CIFAR-100 TinyImageNet SVHN Place365 F-MNIST
F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR

0.2 62.27 45.62 0.91 48.49 32.47 0.29 51.55 34.76 0.04 50.31 33.81 0.16 62.12 45.36 0.68
0.3 64.89 48.56 1.11 50.08 33.95 0.33 55.67 38.63 0.06 53.42 36.75 0.23 64.89 48.45 0.89
0.4 67.88 52.07 1.35 52.38 36.19 0.40 58.03 40.95 0.07 54.19 37.51 0.25 67.84 51.93 1.17
0.5 70.19 54.92 1.56 53.81 37.64 0.45 61.22 44.21 0.08 57.02 40.37 0.33 70.20 54.83 1.39
0.6 71.81 57.00 1.76 55.64 39.53 0.51 65.66 49.00 0.10 60.16 43.68 0.42 71.81 56.89 1.56
0.7 74.35 60.54 2.31 58.74 42.97 0.67 67.76 51.39 0.12 62.77 46.63 0.53 74.37 60.50 2.20
0.8 75.26 62.03 2.82 62.05 46.94 0.87 71.67 56.10 0.17 65.41 49.92 0.74 75.19 61.76 2.51
0.9 78.49 67.87 5.06 65.42 51.84 1.33 75.78 61.51 0.31 68.82 54.55 1.09 76.98 64.80 3.56
1 81.28 77.63 13.40 69.63 70.05 6.23 79.71 86.34 11.64 74.26 70.23 5.18 79.58 70.25 6.30

Table 3. Experimental results (%) of practical metrics on CIFAR-10 as ID data. Energy (Liu et al., 2020) is used as the score function
based on the WideResNet. We compare the detection performance of g-BH algorithm with different sizes of calibrated set.

Ratio CIFAR-100 TinyImageNet SVHN Place365 F-MNIST
F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR

0.2 63.52 50.19 4.53 46.42 35.22 2.49 38.08 36.97 1.97 48.78 36.41 1.32 64.30 47.85 1.77
0.3 65.84 50.88 5.99 48.92 36.49 3.24 52.95 39.86 2.49 52.64 37.58 1.79 65.89 51.21 2.25
0.4 67.22 52.79 7.24 50.15 38.84 4.08 56.71 41.48 3.05 54.88 39.73 2.04 67.19 53.79 2.86
0.5 68.85 56.17 8.06 50.79 40.16 4.99 57.46 43.15 3.41 56.49 40.89 2.65 70.53 55.84 3.59
0.6 70.28 59.06 8.55 53.84 42.55 5.71 59.25 45.89 3.97 58.34 44.25 3.02 73.48 59.39 4.01
0.7 73.43 61.72 9.09 54.75 44.63 6.38 62.94 47.74 4.33 61.75 48.84 3.48 75.59 62.41 4.64
0.8 74.58 64.66 13.27 56.88 48.18 7.45 64.77 50.91 4.82 64.48 53.79 3.99 77.11 64.29 5.29
0.9 77.53 67.18 14.62 60.13 66.09 10.04 65.96 52.76 5.12 66.52 56.68 4.51 79.49 69.49 6.89
1 78.97 78.73 22.79 61.52 67.75 12.84 67.18 56.57 5.79 70.16 71.41 8.79 83.09 82.23 16.52

Table 4. Experimental results (%) of practical metrics on CIFAR-10 as ID data. MSP (Hendrycks & Gimpel, 2017) is used as the score
function based on the WideResNet. We compare the detection performance of g-BH algorithm with different sizes of calibrated set.

Ratio CIFAR-100 TinyImageNet SVHN Place365 F-MNIST
F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR

0.2 62.65 48.10 5.45 45.95 34.11 2.87 43.45 36.49 2.13 49.95 35.13 1.52 64.30 48.30 1.93
0.3 63.95 49.74 5.82 47.27 35.68 3.06 53.15 38.56 2.51 52.33 37.66 1.72 65.80 50.09 2.15
0.4 66.19 52.69 6.52 48.99 37.84 3.33 55.24 40.85 2.71 53.86 39.34 1.84 68.04 52.88 2.55
0.5 67.60 54.74 7.21 49.96 39.12 3.50 56.90 42.82 2.96 55.39 41.05 1.97 69.76 55.18 3.03
0.6 69.91 58.43 8.72 52.21 42.06 3.81 58.45 44.69 3.16 58.34 44.62 2.29 72.01 58.31 3.64
0.7 70.69 59.79 9.37 53.01 43.26 3.99 60.24 46.97 3.44 60.37 47.35 2.61 74.07 61.43 4.45
0.8 73.31 64.87 12.11 55.25 47.07 4.66 61.43 48.49 3.60 64.49 53.90 3.63 75.52 63.91 5.34
0.9 74.66 67.93 14.03 59.25 66.70 11.69 63.33 51.20 4.03 65.23 55.37 3.94 78.27 68.94 7.21
1 76.76 78.66 26.30 59.56 63.51 14.95 65.50 55.82 5.61 68.14 69.35 9.37 81.22 81.04 18.51
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(d) SVHN

Figure 3. Comparison between g-BH algorithm and our eg-BH algorithm in terms of F1-score and TPR. The x-axis corresponds to the
number L in Algorithm 1, and the y-axis represents the value of metrics.

Table 5. Experimental results (%) of practical metrics on CIFAR-
10 as ID data. The score function is Energy based on ResNet18.
We compare the performance between g-BH and eg-BH based on
the same score function.

Data g-BH eg-BH
F1 TPR FPR F1 TPR FPR

CIFAR-100 82.16 88.59 27.05 91.17 92.91 25.80
TinyImageNet 59.34 53.51 34.45 73.25 70.43 30.02

SVHN 75.16 59.13 29.06 89.00 79.43 31.30
Place365 56.07 64.16 33.09 78.55 84.71 31.50
F-MNIST 84.89 87.91 23.82 88.10 90.26 24.05
MNIST 79.09 88.23 14.87 82.77 89.91 12.60

Average 69.45 73.59 27.06 83.81 84.61 25.88

Table 6. Experimental results (%) of practical metrics on CIFAR-
10 as ID data. The score function is MSP based on ResNet18. We
compare the performance between g-BH and eg-BH based on the
same score function.

Data g-BH eg-BH
F1 TPR FPR F1 TPR FPR

CIFAR-100 80.70 82.53 25.60 89.09 87.28 25.48
TinyImageNet 73.25 78.43 33.02 82.78 88.05 31.55

SVHN 86.00 87.43 4.30 91.17 92.15 4.06
Place365 78.55 83.99 14.50 86.08 90.17 13.09
F-MNIST 85.26 82.63 21.79 90.11 89.27 19.05
MNIST 81.26 85.30 19.87 86.78 90.92 16.70

average 80.84 83.39 19.85 87.67 89.64 18.32

6.3. Comparison between g-BH and eg-BH on Small
Calibrated Set

In this experiment, we aim to compare the detection perfor-
mance between vanilla g-BH algorithm and our proposed

eg-BH algorithm on the small calibrated set. We first ran-
domly divide the training data into L equal parts. For the
g-BH algorithm, one of these parts is used as the calibrated
set. Note that a larger L implies a smaller calibrated set. For
our proposed method, we directly apply the strategies in the
algorithm 1. When L = 5, the corresponding experimental
results of practical metrics are presented in Tables 5 and 6 .

As tables 5 and 6 shown, we observe the FPR of our pro-
posed eg-BH algorithm achieves a certain degree of improve-
ment compared with g-BH algorithm. More significantly,
the TPR and F1-score are considerably improved. For exam-
ple, when using Energy as score function and TinyImageNet
as OOD data, compared to g-BH algorithm, our method re-
duce reduce the FPR from 34.45% to 30.02%, improve the
TPR by 16.92% and the F1-score by 20.91%. Obviously,
this improvement still exists for Different OOD data and
score function MSP. The above analysis demonstrates the
superiority of our method over the g-BH algorithm on small
calibrated set.

To assess the impact of L on both the g-BH algorithm and
eg-BH algorithm. we set L = {6, 7, 8, 9, 10} and conduct
the corresponding experiments using Energy as score func-
tion based on the ResNet18. The experimental results are
presented in Figure 3. From Figure 3, we find that our
proposed method outperform the g-BH algorithm in terms
of F1-score and TPR across different values of L. More-
over, for larger value L (i.e. smaller calibrated set), the
performance gap between our method and g-BH algorithm
becomes more pronounced, especially when L = 9 and
L = 10. This demonstrates the superiority of our proposed
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eg-BH algorithm over the g-BH algorithm on the smaller
calibrated set.

7. conclusion
In this paper, we thoroughly analyze the g-BH algorithm and
demonstrate that a large calibrated set improves the perfor-
mance of the g-BH algorithm in terms of TPR, while a small
calibrated set weakens its performance. To address this is-
sue, we propose a novel eg-BH algorithm that integrates
multiple p-values for decision-making. Extensive experi-
ments demonstrate the validity of our theoretical results and
the superiority of our method over the g-BH algorithm.
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A. Proofs
A.1. Proof of Theorem 4.1

Proof. To obtain an explicit analytical solution, we assume that the testing data comes sequentially in a stream. Then, given
a testing set T test = {Xtest

1 , Xtest
2 , . . . , Xtest

n } consisting of ID data (TPR only focus on the detection performance of ID
data), the expectation of TPR conditional on calibrated set T cal for the g-BH algorithm can be expressed as

E(TPR|T cal) = E

(
1

n

n∑
i=1

1(f(p(Xtest
i )) > α)|T cal

)

Note that the ID data Xtest
1 , Xtest

2 , . . . , Xtest
n are independent and identically distributed, we have

E(TPR|T cal) = E
(
1(f(p(Xtest

1 )) > α)|T cal
)

= P(f(p(Xtest
1 )) > α|T cal).

Note that the empirical p-value

p̂(Xtest
1 ) =

∑m
j=1 1(s(X

cal
j ) ≤ s(Xtest

i )) + 1

m+ 1
.

Since f ′(·) ∈ F1 ∪ F2, f ′(·) > 0 and thus f(·) is increasing. Denote by f−1(·) the inverse function of f(·). Then, we
obtain

E(TPR|T cal) = P(f(p(Xtest
1 )) > α|T cal)

= P

(∑m
j=1 1(s(X

cal
j ) ≤ s(Xtest

i )) + 1

m+ 1
> f−1(α)|T cal

)

= P

 m∑
j=1

1(s(Xcal
j ) ≤ s(Xtest

i )) > f−1(α)(m+ 1)− 1|T cal


= P

(∑m
j=1 1(s(X

cal
j ) ≤ s(Xtest

i ))

m
>

f−1(α)(m+ 1)− 1

m
|T cal

)

= P
(
F̂ (s(Xtest

i )) >
f−1(α)(m+ 1)− 1

m
|T cal

)
Without loss of generality, we suppose that the random variable s(Xtest

1 ) follows continuous distribution. Denote by F (·)
the real cumulative distribution function of s(Xtest

1 ) and by F̂−1(·) the inverse function of F̂ (·). In addition, we denote [·]
the floor function. Then, we get

E(TPR|T cal) = 1− P
(
F̂ (s(Xtest

i )) ≤ f−1(α)(m+ 1)− 1

m
|T cal

)
= 1− P

(
F̂ (s(Xtest

i )) ≤ [f−1(α)(m+ 1)]− 1

m
|T cal

)
= 1− P

(
s(Xtest

i ) ≤ F̂−1(
[f−1(α)(m+ 1)]− 1

m
)|T cal

)
= 1− F

(
F̂−1

(
[f−1(α)(m+ 1)]− 1

m

))
.

For simplicity, we denote β = [f−1(α)(m+ 1)]− 1. Note that F̂ (Xcal
(β)) =

β
m . Therefore, we have

E(TPR|T cal) = 1− F (Xcal
(β)).

According to Eq. (5), E(TPR|T cal) = 1− p(Xcal
(β)).

To complete our proof, we need the following technical lemma.
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Lemma A.1. Suppose the continuous random variable X have the cumulative distribution function F (·). Then, the random
variable F (X) follows the uniform distribution on (0, 1).

For the examples Xcal
1 , Xcal

2 , . . . , Xcal
m , we denote p(Xcal

i ) = F (Xcal
i ), i = 1, 2, · · · ,m and p(Xcal

(β)) is the β-th order
statistic from the smallest to the largest. By Lemma A.1, p(Xcal

i ) follows the uniform distribution on (0, 1). Next, we aims to
derive the probability density function of p(Xcal

(β)). According to the Definition of p(Xcal
i ), p(Xcal

1 ), p(Xcal
2 ), · · · , p(Xcal

m )

are independent and identically distributed. Denote by Fp(·) the cumulative distribution function of p(Xcal
i ). For any x in

the support set of Fp(·) and a sufficiently small δ, we have

P
(
x ≤ p(Xcal

(β)) < x+ δ
)
= P( one of the p(Xcal)′s ∈ [x, x+ δ) and β − 1 of the others < x)

=

n∑
i=1

P
(
p(Xcal

i ) ∈ [x, x+ δ) and exactly β − 1 of the others < x
)

= nP
(
p(Xcal

1 ) ∈ [x, x+ δ) and β − 1 of the others < x
)

= nP
(
p(Xcal

1 ) ∈ [x, x+ δ)
)
P(β − 1 of the others < x)

= nP
(
p(Xcal

1 ) ∈ [x, x+ δ)
)((m− 1

β − 1

)
P(p(Xcal

1 ) < x)β−1P (p(Xcal
1 ) > x)m−β

)
(8)

Then, the probability density function of p(Xcal
(β)) is

fβ(x) = lim
δ→0

P
(
x ≤ p(Xcal

(β)) < x+ δ
)

δ

= m

(
m− 1

β − 1

)
F β−1(x)(1− F (x))m−βF ′(x)

=

{
m
(
m−1
β−1

)
xβ−1(1− x)m−β if 0 < x < 1

0 otherwise.

Therefore, the probability density function of E(TPR|T cal) = 1− F (Xcal
(β)) can be expressed as

fE(TPR|T cal)(x) = fβ(1− x)

=

{
m
(
m−1
β−1

)
xm−β(1− x)β−1 if 0 < x < 1

0 otherwise.

The above result indicates that E(TPR|T cal) follows beta distribution with shape parameters m − β + 1 and β, which
completes the proof.

A.2. Proof of Lemma 5.1

Proof. Since function g(·) is increasing, g(x) is integrable, namely,
∫ 1

0
g(x) dx < ∞. Note that

α

∫ 1

0

g(x) dx = α

∫ α

0

g(x) dx+ α

∫ 1

α

g(x) dx

then, we have ∫ α

0

g(x) dx− α

∫ 1

0

g(x) dx =

∫ α

0

g(x) dx− α

∫ α

0

g(x) dx− α

∫ 1

α

g(x) dx

= (1− α)

∫ α

0

g(x) dx− α

∫ 1

α

g(x) dx.
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By the first mean value theorem for integration, there exist ξ1 ∈ (0, α) and ξ2 ∈ (α, 1) such that∫ α

0

g(x) dx = αg(ξ1),

∫ 1

α

g(x) dx = (1− α)g(ξ2).

Obviously, ξ1 ≤ ξ2. Since g(x) is increasing, then g(ξ1) ≤ g(ξ2). Therefore, we have∫ α

0

g(x) dx− α

∫ 1

0

g(x) dx = α(1− α)(g(ξ1)− g(ξ2)) ≤ 0,

namely, for any α ∈ (0, 1), ∫ α

0

g(x) dx ≤ α

∫ 1

0

g(x) dx.

A.3. Proof of Theorem 5.2

Proof. Denote Yi = g(pi) where pi ∈ P . Without loss of generality, we assume that the p-values p1, · · · , pL are exact.
Note that for any t ∈ (0, 1), we have

P (Yi ≤ t) = P (g(pi) ≤ t) = P
(
pi ≤ g−1(t)

)
= g−1(t).

Therefore, g−1(·) is the cumulative distribution function of Yi. Based on the theoretical results in Bernard et al. (2014), we
obtain

Q∗(h,p, α) = inf
pi∈P

{Q(Ω(p,w), 1)}

where h(p1, · · · , pL) = Ω(p,w) and

Ω(p,w) = g−1 (w1g(p1) + w2g(p2) + · · · , wLg(pL))

Note that Q((w1g(p1) + w2g(p2) + · · · , wLg(pL)) , 1) is the essential supremum of w1g(p1) +w2g(p2) + · · · , wLg(pL),
thus the following relations holds:

Q((w1g(p1) + w2g(p2) + · · · , wLg(pL)) , 1) ≥ E (w1g(p1) + w2g(p2) + · · · , wLg(pL)) .

Since g(p1), g(p2), · · · , g(pL) are identically distributed sharing the cumulative distribution function g−1(·), we have

E (w1g(p1) + w2g(p2) + · · · , wLg(pL)) = w1E(g(p1)) + w2E(g(p2)) + · · · , wLE(g(pL))
= (w1 + w2 + · · ·+ wL)E(g(p1))

= E(g(p1)) =
∫ 1

0

g(x) dx

By Lemma 5.1, we get

Q((w1g(p1) + w2g(p2) + · · · , wLg(pL)) , 1) ≥
1

α

∫ α

0

g(x) dx

Because g(·) is continuous and increasing, g−1(·) is also continuous and increasing. Hence, for any pi ∈ P we have

Q(g−1 ((w1g(p1) + w2g(p2) + · · · , wLg(pL))) , 1) ≥ g−1

(
1

α

∫ α

0

g(x) dx

)
,

namely, g−1
(
1
α

∫ α

0
g(x) dx

)
is the lower bound of Q(g−1 ((w1g(p1) + w2g(p2) + · · · , wLg(pL))) , 1). Then, we get

Q∗(h,p, α) = inf
pi∈P

{
Q(g−1 ((w1g(p1) + w2g(p2) + · · · , wLg(pL))) , 1)

}
≥ g−1

(
1

α

∫ α

0

g(x) dx

)
.

According to the definition of α-quantile, we obtain

P
(
Ω(p,w) ≤ g−1

(
1

α

∫ α

0

g(x) dx

))
≤ P (Ω(p,w) ≤ Q(Ω(p,w), α)) ≤ α.

13
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A.4. Proof of Theorem 5.3

Proof. When g(x) = xκ, g−1(x) = x
1
κ . According to the Theorem 5.2, we have

g−1

(
1

α

∫ α

0

g(x) dx

)
=

(
1

κ+ 1
ακ

) 1
κ

= (κ+ 1)−
1
κα.

and

P
(
Ω(p,w) ≤ g−1

(
1

α

∫ α

0

g(x) dx

))
= P

(
(w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ ≤ (κ+ 1)−

1
κα
)

= P
(
(κ+ 1)

1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ ≤ α

)
≤ α

Therefore,
(κ+ 1)

1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ

is a valid p-value. Specifically, when κ = 1 and wi =
1
L ,

(κ+ 1)
1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ =

2(p1 + p2 + · · ·+ pL)

L
.

Denote wk∗ = max{p1, p2, · · · , pL}, Note that

(κ+ 1)
1
κ (wk∗pκk∗)

1
κ ≤ (κ+ 1)

1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ ≤ (κ+ 1)

1
κ (pκk∗)

1
κ

further,
lim
κ→∞

(κ+ 1)
1
κ (wk∗pκk∗)

1
κ = lim

κ→∞
(κ+ 1)

1
κ (pκk∗)

1
κ = pk∗

Hence, when κ → ∞, we have

lim
κ→∞

(κ+ 1)
1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ = max{p1, p2, · · · , pL}.

A.5. Proof of Theorem 5.4

Proof. According the proof of Theorem 5.2, if g(x) = xκ, we have

Q∗(h,p, α) = inf
pi∈P

{Q(Ω(p,w), 1)} = inf
pi∈P

{
Q((w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ , 1)

}
Then,

(Q∗(h,p, α))κ = inf
pi∈P

{Q((w1p
κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L), 1)} ≥ ακ

κ+ 1
.

Note that κ > 0, the probably density function of g(pi) is monotone on its support set. By Wang & Wang (2016),

(Q∗(h,p, α))κ = inf
pi∈P

{Q((w1p
κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L), 1)} =

ακ

κ+ 1
.

if and only if the “mean condition”is satisfied:

w∗ακ ≤ ακ

κ+ 1
≤ (w1 + w2 + · · ·+ wL)α

κ − w∗ακ = (1− w∗)ακ.

Equivalently, w∗ ≤ 1
2 and w∗

1−w∗ ≤ κ ≤ 1−w∗

w∗ . further, we have

Q∗(h̃,p, α) = inf
pi∈P

{
Q((κ+ 1)

1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ , 1)

}
= α, (9)
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where h̃(p) = (κ+ 1)
1
κ (w1p

κ
1 + w2p

κ
2 + · · ·+ wLp

κ
L)

1
κ . Next, based on the condition in Eq. (9), we aim to demonstrate

sup
pi∈P

{
P
(
h̃(p) ≤ α

) }
= α.

If Q∗(h̃,p, α) = α, for any α ∈ (0, 1) and arbitrary p-values p1, p2, · · · , pL where pi ∈ P , we have Q(h̃(p), α) ≥ α
according to the definition of Q∗(h̃,p, α). By the definition of α-quantile, P(h̃(p) < α) ≤ α. It follows that

P
(
h̃(p) ≤ α

)
≤ P

(
h̃(p) < α+ δ

)
≤ α+ δ,

which indicates
P
(
h̃(p) ≤ α

)
≤ α

since δ is arbitrary. On the other hand, according to the definition of infimum, for any δ ∈ (0, 1), there exist the p-values
p∗1, · · · , p∗L ∈ P such that Q(h̃(p∗), α) ∈ [α, α+ δ), and thus P(h̃(p∗) ≤ α+ δ) ≥ α where p∗ = {p∗1, · · · , p∗L}. Since δ
is arbitrary, then we have

sup
pi∈P

{
P
(
h̃(p) ≤ α

) }
= α.

B. Additional Experimental Results
In this section, we present additional experimental results. The results on MNIST as OOD data are presented in Tables 7.
Table 7 shows the same conclusions as those of tables in main text.

Table 7. Experimental results (%) of practical metrics on CIFAR-10 as ID data. The MNIST is OOD data. Energy and MSP are used as
the score functions. We compare the detection performance of g-BH algorithm with different sizes of calibrated set.

Score Energy MSP
ResNet18 WideResNet ResNet18 WideResNet

Ratio F1 TPR FPR F1 TPR FPR F1 TPR FPR F1 TPR FPR

0.2 63.48 47.94 4.94 63.16 45.87 1.98 62.87 48.25 5.25 62.46 46.45 2.29
0.3 65.15 50.15 5.78 65.09 49.12 2.35 64.23 50.10 5.90 64.95 49.40 2.72
0.4 67.57 52.95 6.95 66.97 53.99 3.04 66.67 53.69 6.37 67.95 53.13 3.25
0.5 69.53 57.39 7.27 70.15 56.75 3.59 66.67 54.68 7.59 69.76 55.61 3.82
0.6 72..94 59.82 8.54 71.59 59.44 4.25 69.91 58.59 9.02 70.88 57.20 4.19
0.7 73.82 62.29 10.11 75.53 63.17 6.11 71.19 60.79 10.00 72.91 60.20 4.94
0.8 74.75 65.87 13.68 77.46 66.57 6.79 71.82 62.19 11.00 74.83 63.37 6.00
0.9 75.59 68.57 15.35 79.85 69.44 8.26 73.52 66.55 14.49 78.13 69.69 8.70
1 76.81 75.49 19.54 81.74 73.39 10.79 75.59 81.51 34.14 79.15 72.47 10.65

15


