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Abstract

Retrieval Augmented Generation (RAG) frame-001
works improve the accuracy of large language002
models (LLMs) by integrating external knowl-003
edge from retrieved documents, thereby over-004
coming the limitations of models’ static intrin-005
sic knowledge. However, these systems are sus-006
ceptible to adversarial attacks that manipulate007
the retrieval process by introducing documents008
that are adversarial yet semantically similar to009
the query. Notably, while these adversarial doc-010
uments resemble the query, they exhibit weak011
similarity to benign documents in the retrieval012
set. Thus, we propose a simple yet effective013
Graph-based Reranking against Adversarial014
Document Attacks (GRADA) framework aim-015
ing at preserving retrieval quality while sig-016
nificantly reducing the success of adversaries.017
Our study evaluates the effectiveness of our ap-018
proach through experiments conducted on five019
LLMs: GPT-3.5-Turbo, GPT-4o, Llama3.1-8b-020
Instruct, Llama3.1-70b-Instruct, and Qwen2.5-021
7b-Instruct. We use three datasets to assess per-022
formance, with results from the Natural Ques-023
tions dataset demonstrating up to an 80% reduc-024
tion in attack success rates while maintaining025
minimal loss in accuracy.026

1 Introduction027

Large Language Models (LLMs) (Brown et al.,028

2020) have demonstrated remarkable performance029

across a wide range of natural language process-030

ing tasks, including question answering(Fourrier031

et al., 2024), text summarization (Graff et al., 2003;032

Rush et al., 2015), and information retrieval (Yates033

et al., 2021). However, LLMs inherently rely on034

the static knowledge embedded in their training035

data, limiting their adaptability to new and domain-036

specific information. Retrieval-Augmented Gener-037

ation (RAG) (Lewis et al., 2020) was introduced038

to bridge this gap by integrating external retrieval039

modules, allowing LLMs to access and incorporate040

relevant, up-to-date knowledge.041

Question: "Who is the current CEO of Apple?"

RetrieverPoisoned
Corpus

Adversarial RAG
attacks exploit

query-document
similarity

⚠  Document #1 ⚠ 

"Who is the current CEO of Apple? The current CEO of Apple is Elon Musk"

Figure 1: An example of adversarial RAG attack which
exploits query-document similarity by prepending the
poisonous document with the query.

While RAG enhances the flexibility of LLMs, it 042

also introduces new vulnerabilities. Adversaries 043

can exploit retrieval mechanisms by injecting ma- 044

nipulated documents into the corpus (Zhong et al., 045

2023; Clop and Teglia, 2024; Greshake et al., 2023; 046

Pasquini et al., 2024), subtly altering rankings to 047

mislead LLM outputs. As shown in Figure 1, these 048

adversarial documents mimic query-relevant pat- 049

terns, making them difficult to detect while degrad- 050

ing the reliability of retrieval-based LLM systems. 051

Existing noise filtering methods, such as Hy- 052

brid List Aware Transformer Reranking (HLATR, 053

Zhang et al., 2022) and BAAI General Embed- 054

dings (BGE-reranker, Xiao et al., 2023), focus 055

on improving document relevance by filtering out 056

generic noise or low-quality content. However, 057

these methods are ineffective against adversarial 058

attacks that exploit query-document similarity pat- 059

terns to evade detection. On the other hand, special- 060

ized adversarial defenses, such as keyword filtering 061

and decoding aggregation (Xiang et al., 2024), can 062

successfully remove adversarial content but at the 063

cost of discarding valuable benign documents, ul- 064

timately weakening retrieval performance. This 065

trade-off highlights the need for a more nuanced 066
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Figure 2: An overview of GRADA. A vanilla RAG pipeline concatenates all retrieved documents along with the
question as the input to the LLM. However, the accuracy of this pipeline can be easily harmed by malicious passages.
In contrast, GRADA uses a graph-based approach to isolate and filter out malicious passages before passing the
retrieved documents as the LLM input.

defense mechanism that can distinguish between067

adversarial and benign documents without compro-068

mising retrieval quality.069

To address this challenge, we propose Graph-070

based Reranking against Adversarial Document071

Attacks (GRADA), a novel and effective defense072

framework designed to protect RAG systems from073

adversarial retrieval manipulations. Our key insight074

is that adversarial documents, while optimized for075

high query similarity, exhibit weaker semantic co-076

herence with genuinely relevant documents in the077

retrieval set. Leveraging this property, we con-078

struct a graph where each retrieved document is079

represented as a node, and edges capture document-080

document similarity relationships. By propagat-081

ing ranking scores through this graph structure,082

our approach prioritizes clusters of semantically083

consistent documents while suppressing adversar-084

ially crafted outliers. As illustrated in Figure 2,085

our method significantly enhances the robustness086

of RAG-based LLMs, mitigating adversarial in-087

fluences while preserving the integrity of benign088

retrieval results.089

We conducted comprehensive experiments on090

Natural Questions (NQ), MS-MARCO, and Hot-091

potQA across five different models. Our method092

has shown at least a 30% decrease in reducing the093

Attack Success Rate (ASR), with improvements of094

up to 80% across various adversarial attack strate-095

gies.096

We summarize our contributions as follows:097

• We introduce GRADA, a weighted similarity 098

graph among retrieved documents iteratively 099

propagates scores to mitigate the impacts of 100

adversarial passages. 101

• We introduce a novel scoring function that si- 102

multaneously captures both query-document 103

and document-document correlations, thereby 104

improving robustness against adversarial at- 105

tempts to mimic the query. 106

• Conducted comprehensive experiments across 107

three different datasets against four chosen 108

attacks. Showing GRADA’s advantages over 109

the current defense baselines. 110

2 Related Work 111

Corpus poisoning attacks (Zhong et al., 2023) show 112

a possible new attack surface on LLMs. However, 113

this method does not directly affect the accuracy 114

of the LLM; instead, it focuses on the retriever. 115

Later, prompt injection attacks were introduced to 116

bypass the retriever and affect the generator suc- 117

cessfully (Greshake et al., 2023; Pasquini et al., 118

2024). However, compared to the prior work, these 119

methods are unstable in ensuring the retriever re- 120

trieves the adversarial passage every time. 121

More recently, PoisonedRAG (Zou et al., 2024) 122

was proposed as a more stable attack. It uses two 123

passages concatenated together, with one of them 124

appended to guarantee the retrieval of the adver- 125

sarial passage and one to achieve a given adver- 126
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Figure 3: BM25 similarity matrix among retrieved doc-
uments, where D0-D4 are poisoned, and D5-D10 are
clean.

sarial goal on the generator. The goal is to let the127

LLM output the answer the attacker wants. Poi-128

sonedRAG inspired a lot of the new attacks. Phan-129

tom (Chaudhari et al., 2024), which introduces a130

trigger to the question and achieves the adversarial131

goal only when the trigger is shown in the query.132

Another Prompt Injection Attacks (PIA, Clop and133

Teglia, 2024) makes use of the passage that guaran-134

tees the retrieve in PoisonedRAG and focuses on135

the adversarial goal beyond misinformation.136

A recent study proposed a defense mechanism137

that generates responses independently and pro-138

duces an output based on the majority vote (Xiang139

et al., 2024). However, this method initiates its de-140

fense at the generator stage, which can impact the141

accuracy of the system, especially when multiple142

documents are required. GRADA addresses this143

issue by focusing on the stage before generation,144

specifically the reranking process.145

3 GRADA146

A defining characteristic of recent poisoning at-147

tacks on RAG (Zou et al., 2024) is their exclu-148

sive emphasis on ensuring semantic similarity to149

the query while introducing anomalous similari-150

ties among poisoned documents. However, these151

attacks overlook the relationships among benign re-152

trieved documents, as illustrated in Figures 2 and 3.153

Leveraging these abnormal similarity patterns, we154

propose a graph-based reranking method that uti-155

lizes document-document similarity to enhance re-156

trieval robustness. In Section 3.1, we detail the157

graph construction process, followed by a descrip- 158

tion of our reranking system in Section 3.2. 159

3.1 Graph Construction 160

We construct a weighted, undirected graph G = 161

(V,E), where each node vi ∈ V corresponds to 162

a document doci, and each edge eij ∈ E is an 163

undirected edge connecting node vi and vj . Each 164

edge is assigned a weight wij ∈ R+, which quanti- 165

fies the similarity between the corresponding doc- 166

uments, i.e., sim(vi, vj). The graph is undirected 167

because document relationships are not inherently 168

directional; rather, the connectivity structure de- 169

fines their associations. The edge weight wij can 170

be computed using two different approaches: 171

• Doc-to-Doc Similarity (D2DSIM): The weight 172

is directly determined by the similarity between 173

documents. 174

• Hybrid Relevance Similarity (HRSIM): A 175

function f that integrates both document- 176

document similarity and query-document rele- 177

vance: 178

wij = f
(
sim(vi, vj), sim(vi, q), sim(vj , q)

)
179

The second approach assigns edge weights that 180

not only reflect direct document-to-document sim- 181

ilarity but also incorporate each document’s rele- 182

vance to an external query. This dual consideration 183

leads to a more nuanced representation of docu- 184

ment relationships. 185

To mitigate the influence of adversarial pas- 186

sages—documents that mimic the query q to gain 187

higher rankings—we introduce a function f , which 188

adjusts the similarity score by applying a penalty 189

based on the document-to-query similarities. First, 190

we define the combined query relevance for a pair 191

of documents vi and vj as follows: 192

simsum = sim(vi, q) + sim(vj , q) 193

Then, the edge weight wij between vi and vj is 194

computed by subtracting a penalty term from their 195

direct similarity, ensuring that the weight remains 196

non-negative: 197

wij = max (sim(vi, vj)− α · simsum, 0) 198

Here, α is a penalty coefficient that controls the 199

influence of query similarity. If sim(vi, vj) < α · 200

[sim (vi, q) + sim (vi, q)], the edge weight is set to 201
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zero, effectively removing the connection between202

vi and vj .203

Regarding the similarity function, we explore204

two popular methods:205

• BM25: we use BM25 (Robertson and Zaragoza,206

2009) to calculate sim(vi, vj). Since BM25 is an207

asymmetric metric, we adopt the following ap-208

proach to compute the similarity score, ensuring209

symmetry in the process:210

wij =
1

2
(BM25 (vi, vj) + BM25 (vj , vi))211

• Embedding-based Distance (EBD): we trans-212

form the documents xi and xj into dense vectors213

vi and vj and compute their cosine distance:214

wij = sim(vi, vj) =
xi · xj

∥xi∥∥xj∥
215

3.2 Reranking216

Inspired by PageRank (Page et al., 1999), we refine217

document rankings through an iterative score prop-218

agation process after constructing the graph. This219

approach prioritizes well-connected nodes while220

mitigating the influence of adversarial documents,221

ensuring a more robust and reliable ranking.222

Initially, each node vi is assigned a score223

s∗i , forming the initial score vector s∗ =224

[s∗1, s
∗
2, . . . , s

∗
n]

⊤. The scores are then iteratively225

updated at each step t via:226

s
(t)
i = (1− d)s∗j + d

∑
vj∈N (i)

wij∑
vk∈N (j)wjk

s
(t−1)
j

(1)227

where N(i) represents the set of neighbor nodes228

connected by vi and d is the damping factor, typi-229

cally set to 0.85. The initial score vector s∗ is set230

by uniform initialization s∗ =
[

1
|V | ,

1
|V | , ...,

1
|V |

]
.231

For experiments comparing different initialization232

methods, please refer to Appendix D.233

The framework works as follows: The retriever234

identifies M documents most similar to the query,235

with n being the number of documents originally236

intended for retrieval and M ≥ n. We retrieve ad-237

ditional documents to maintain consistency in the238

number of documents in the non-defended scenario.239

By ensuring that poisoned documents do not form240

the majority in the retrieved set (with M ≥ 2n), we241

prevent adversarial documents, which may exploit242

the query for high relevance scores, from domi-243

nating. For example, if the original set of n doc-244

uments contains all poisoned ones (e.g., n = 5),245

adding ≥ n benign documents ensures the major- 246

ity is non-poisoned. This strategy guarantees that 247

non-poisoned documents remain a significant por- 248

tion of the final selection, enhancing the system’s 249

robustness against adversarial manipulation. 250

After the algorithm reaches a stationary score 251

distribution, the top n documents are retained, 252

while the remaining documents are discarded. 253

These top n documents are then provided as the 254

context of the model. 255

4 Experiments 256

This section begins by detailing the experimental 257

setup, followed by a comparison of our approach 258

with multiple baseline methods. Finally, we ana- 259

lyze the effectiveness of our approach across differ- 260

ent settings. 261

4.1 Experimental Setup 262

Attack setup. We conduct experiments on 263

three widely used english datasets: Natu- 264

ral Question (Kwiatkowski et al., 2019), MS- 265

MARCO (Nguyen et al., 2016) and Hot- 266

potQA (Yang et al., 2018). The victim models 267

chosen for this study are GPT-3.5-Turbo (version 268

0125) (Brown et al., 2020), GPT-4o (version 2024- 269

08-06) (OpenAI et al., 2024), Qwen2.5 (Qwen 270

et al., 2025) and LLaMA-3 (Grattafiori et al., 271

2024). The prompts used to generate answers are 272

detailed in Appendix A. Contriever (Izacard et al., 273

2021), is a dense retriever model used to find rel- 274

evant documents by calculating similarity scores 275

between the query and the knowledge base. It was 276

selected for this study due to its efficiency and abil- 277

ity to handle large datasets. In this work, we inves- 278

tigate four distinct attack strategies on RAG. Two 279

of them are Black-box attacks that have no knowl- 280

edge about the retriever: PoisonedRAG (Zou et al., 281

2024) and PIA (Greshake et al., 2023; Pasquini 282

et al., 2024; Perez and Ribeiro, 2022). The re- 283

maining two are white-box attacks, in which the 284

attacker has access to the victim’s retriever: Poi- 285

sonedRAG(Hotflip) (Zou et al., 2024) and Phan- 286

tom (Chaudhari et al., 2024) 287

Under default settings without any defense, as 288

in Zou et al. (2024), we retrieve the five most sim- 289

ilar documents from the knowledge database to 290

serve as the context for each question. We select 10 291

close-ended questions from each dataset, repeated 292

10 times and excluding questions that have already 293

been used in previous iterations, totaling 100 ques- 294
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tions for the attack experiments.295

However, in contrast to Zou et al. (2024), where296

five poisoned texts are generated and injected into297

the knowledge base, To provide a more realistic298

assessment of the attack’s effectiveness, we mod-299

ify the experiment to inject only a single poisoned300

document into the database. The original setup,301

which retrieved only poisoned documents, resulted302

in a 100% Attack Success Rate (ASR), making it303

impractical to evaluate the true impact of the at-304

tack. As shown in Figure 3, a similarity cluster305

of poisoned documents appears in the top-left cor-306

ner. By applying a clustering algorithm, we can307

identify and merge redundant information, effec-308

tively removing repetitive poisoned entries. This309

adjustment ensures that only one poisoned docu-310

ment is retrieved, allowing for a more meaningful311

evaluation of the attack’s success.312

Defense setup. We explore three similarity score313

combinations for GRADA: Embedding-based Dis-314

tance, BM25, and Hybrid Relevance Similarity315

with BM25 as the similarity function.1 Here, we316

utilize Contriever to encode both documents and317

queries, while for BM25, we adopt the imple-318

mentation provided by Lù (2024). We compare319

GRADA against two reranking models and one de-320

fense method: HLATR (Zhang et al., 2022), which321

achieved first place in the MS-MARCO Passage322

Ranking Leaderboard, BGE-reranker (Xiao et al.,323

2023), which achieves a high precision score in324

ranking tasks, and Keyword Aggregation (Xiang325

et al., 2024), the only existing defense specifically326

designed for RAG-based adversarial attacks, as a327

baseline.328

We evaluate the effectiveness of these defense329

methods by integrating them into our two-stage330

retrieval system described in Section 3. We ini-331

tially retrieve M = 10 documents, which are332

then reranked using the aforementioned methods333

(except for Keyword Aggregation). The top five334

ranked documents are subsequently provided as the335

context for the model to answer the query. This336

ensures that, regardless of the defense configura-337

tion, the model always receives a fixed number of338

five context documents to respond to the question.339

For Keyword Aggregation, which does not perform340

reranking, the model directly generates the output341

based on the algorithm’s selection.342

1We examine other similarity functions in Section 4.3

Evaluation metrics. In our experiments, we em- 343

ploy Attack Success Rate (ASR) and Exact Match 344

(EM) as metrics. ASR is defined as the ratio of suc- 345

cessful attacks to the total number of attacks con- 346

ducted. An attack is considered successful if the 347

intended poisoned answer appears as a substring 348

within the generated response from the model. This 349

definition accommodates attack strategies like PIA, 350

which aim to introduce harmful links into the out- 351

put of the model, allowing for some tolerance to 352

semantically equivalent responses. A higher ASR 353

indicates a more successful attack. This evaluation 354

methodology follows the approach used in previous 355

work (Zou et al., 2024). 356

To assess the question-answering accuracy of the 357

models, we adopt EM score. EM requires that the 358

predicted answer of the model matches the ground 359

truth answer exactly. This strict criterion ensures 360

that the response of the model is precise and fol- 361

lows the need for exact wording specified in the 362

query, as outlined in Appendix A. 363

4.2 Results and Discussions 364

Attacking without defense. As shown in Table 1, 365

including a single poisoned document in the re- 366

trieval process results in a high ASR score. For 367

instance, PoisonedRAG achieves an ASR of 50% 368

across three datasets on both GPT-3.5-Turbo and 369

Llama3.1-8b-Instruct. PIA achieves at least 69% 370

ASR on Llama3.1-8b-Instruct and up to 100% ASR 371

in GPT-3.5-Turbo. These findings emphasize that 372

even minimal adversarial input can achieve very 373

high ASR and degrade the model’s accuracy. 374

Effectiveness of GRADA. The impact of 375

GRADA on mitigating adversarial attacks is 376

demonstrated in Tables 1 and 2. As shown in Ta- 377

ble 1, on the NQ and MS-MARCO datasets us- 378

ing GPT-3.5-Turbo, the ASR for PIA decreases 379

from 98.0% and 88.0% to 2.0% and 3.0% by using 380

D2DSIM-EBD. With D2DSIM-EBD, GRADA is 381

also effective against PoisonedRAG, effectively re- 382

ducing the ASRs from 56.0% and 48.0% to 27.0% 383

and 28.0%. However, the reduction of ASR against 384

PoisonedRAG is more modest than against the 385

other attacks. On this attack, D2DSIM-BM25 386

and HRSIM led to significant improvements com- 387

pared to D2DSIM-EBD, where D2DSIM-BM25 388

achieved an extra 13% decrease in ASR to 14% and 389

15%. Beyond that, HRSIM which introduces penal- 390

ties for excessive similarity to the query, finalizes 391

the ASR to 3% and 9%. 392
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Defense
PoisonedRAG PIA Phantom

HotpotQA NQ MS-MARCO HotpotQA NQ MS-MARCO HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-3.5-Turbo

None 59.0 / 32.0 56.0 / 34.0 48.0 / 41.0 100.0 / 0.0 98.0 / 2.0 88.0 / 7.0 80.0 / 18.0 79.0 / 11.0 65.0 / 28.0
HLATR 64.0 / 29.0 51.0 / 37.0 34.0 / 51.0 100.0 / 0.0 92.0 / 4.0 84.0 / 9.0 74.0 / 22.0 84.0 / 12.0 51.0 / 39.0
BGE-reranker 54.0 / 38.0 46.0 / 44.0 31.0 / 59.0 98.0 / 2.0 37.0 / 43.0 43.0 / 43.0 78.0 / 16.0 54.0 / 24.0 44.0 / 41.0
Keyword Aggregation 13.0 / 63.0 2.0 / 48.0 3.0 / 62.0 0.0 / 65.0 0.0 / 51.0 0.0 / 58.0 0.0 / 53.0 0.0 / 47.0 0.0 / 58.0
GRADA (D2DSIM-EBD) 49.0 / 39.0 27.0 / 51.0 28.0 / 57.0 33.0 / 43.0 2.0 / 59.0 3.0 / 72.0 56.0 / 29.0 12.0 / 49.0 13.0 / 61.0
GRADA (D2DSIM-BM25) 45.0 / 40.0 14.0 / 57.0 15.0 / 65.0 42.0 / 33.0 12.0 / 55.0 2.0 / 69.0 27.0 / 32.0 6.0 / 51.0 1.0 / 68.0
GRADA (HRSIM) 10.0 / 52.0 3.0 / 59.0 9.0 / 72.0 27.0 / 42.0 2.0 / 59.0 1.0 / 74.0 23.0 / 38.0 0.0 / 51.0 0.0 / 70.0

Llama3.1-8b-Instruct

None 51.0 / 37.0 50.0 / 32.0 41.0 / 39.0 88.0 / 3.0 82.0 / 8.0 69.0 / 14.0 54.0 / 19.0 50.0 / 28.0 17.0 / 55.0
HLATR 52.0 / 36.0 39.0 / 42.0 35.0 / 44.0 91.0 / 3.0 69.0 / 17.0 50.0 / 20.0 48.0 / 32.0 47.0 / 30.0 16.0 / 50.0
BGE-reranker 50.0 / 38.0 41.0 / 40.0 33.0 / 43.0 81.0 / 9.0 29.0 / 41.0 21.0 / 44.0 32.0 / 39.0 24.0 / 41.0 8.0 / 61.0
Keyword Aggregation 4.0 / 35.0 3.0 / 39.0 6.0 / 38.0 0.0 / 33.0 0.0 / 42.0 0.0 / 41.0 0.0 / 33.0 0.0 / 36.0 0.0 / 39.0
GRADA (D2DSIM-EBD) 41.0 / 37.0 23.0 / 46.0 32.0 / 41.0 31.0 / 35.0 1.0 / 55.0 2.0 / 55.0 18.0 / 40.0 5.0 / 51.0 1.0 / 50.0
GRADA (D2DSIM-BM25) 31.0 / 40.0 8.0 / 53.0 20.0 / 49.0 39.0 / 29.0 8.0 / 48.0 0.0 / 55.0 27.0 / 37.0 5.0 / 53.0 0.0 / 54.0
GRADA (HRSIM) 7.0 / 43.0 2.0 / 57.0 11.0 / 53.0 23.0 / 37.0 2.0 / 56.0 0.0 / 58.0 14.0 / 40.0 0.0 / 54.0 0.0 / 60.0

Table 1: ASR and EM (%) for various defense methods on the three attack methods (PoisonedRAG, PIA, Phantom)
on GPT-3.5-Turbo and Llama3.1-8b-Instruct. The results of other models can be found in Tables 8 to 12. We
highlight the top-2 lowest ASR results in blue cells.

Defense HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-3.5-Turbo

None 64.0 / 30.0 54.0 / 29.0 39.0 / 51.0
HLATR 56.0 / 34.0 49.0 / 36.0 34.0 / 52.0
BGE-reranker 56.0 / 35.0 43.0 / 40.0 27.0 / 60.0
Keyword Aggregation 8.0 / 59.0 2.0 / 48.0 5.0 / 59.0
GRADA (D2DSIM-EBD) 44.0 / 37.0 9.0 / 56.0 9.0 / 69.0
GRADA (D2DSIM-BM25) 40.0 / 43.0 9.0 / 60.0 8.0 / 70.0
GRADA (HRSIM) 7.0 / 54.0 4.0 / 60.0 7.0 / 71.0

Llama3.1-8b-Instruct

None 49.0 / 31.0 51.0 / 29.0 53.0 / 31.0
HLATR 46.0 / 36.0 41.0 / 38.0 36.0 / 39.0
BGE-reranker 48.0 / 32.0 43.0 / 36.0 37.0 / 34.0
Keyword Aggregation 4.0 / 33.0 3.0 / 41.0 7.0 / 35.0
GRADA (D2DSIM-EBD) 37.0 / 37.0 10.0 / 51.0 17.0 / 52.0
GRADA (D2DSIM-BM25) 24.0 / 45.0 11.0 / 53.0 17.0 / 49.0
GRADA (HRSIM) 7.0 / 43.0 5.0 / 54.0 10.0 / 53.0

Table 2: ASR and EM (%) for various defense methods
on PoisonedRAG (Hotflip).

The defense methods demonstrate consistent393

effectiveness across the NQ and MS-MARCO394

datasets, achieving ASR reductions of over 30% in395

most cases. However, performance on HotpotQA396

is less stable, particularly for D2DSIM-EBD and397

D2DSIM-BM25, which achieve only around a 10%398

reduction in ASR against PoisonedRAG attacks. In399

contrast, HRSIM maintains its effectiveness, deliv-400

ering ASR reductions exceeding 30%, comparable401

to its performance on other datasets. This discrep-402

ancy likely stems from HotpotQA’s multi-hop rea-403

soning requirements, which pose challenges for404

single-document similarity metrics.405

In Table 1, HLATR and BGE-reranker exhibit406

limited ability to filter poisoned documents, with407

ASR remaining largely unchanged compared to sce-408

narios without any defense mechanisms. Although 409

BGE-reranker occasionally outperforms HLATR, 410

its overall performance remains inferior to GRADA 411

in handling adversarial cases. This discrepancy 412

underscores a critical limitation in contemporary 413

reranking systems, which are primarily optimized 414

for question relevance but insufficiently equipped 415

to address adversarial attacks with high question 416

relevance. 417

Keyword Aggregation is able to reduce ASR 418

significantly, especially for attacks like PIA and 419

Phantom. Keyword Aggregation works by extract- 420

ing keywords from the answers of each passage 421

to generate the final response, effectively neutral- 422

izing attack payloads designed to manipulate or 423

deny answers, such as producing advertisements. 424

However, while it reduces ASR effectively, its EM 425

scores are lower than those of GRADA. For exam- 426

ple, on Llama3.1-8b-Instruct in Table 1, GRADA’s 427

EM scores dominate Keyword Aggregation with at 428

most 21% difference as some critical information 429

may be lost during keyword extraction. This shows 430

the ability of GRADA to perform well on normal 431

answers even after mitigating adversarial contents. 432

Similar results to those presented in Table 1 can 433

also be observed in Table 2. Notably, GRADA 434

combined with HRSIM consistently outperforms 435

all other approaches, demonstrating that HRSIM 436

is a strong similarity scoring function compared to 437

the alternatives used in GRADA. 438

Table 3 highlights the impact of different de- 439

fense mechanisms on benign inputs. On GPT-3.5- 440

Turbo, both HLATR and BGE-reranker demon- 441

strate strong performance, outperforming GRADA 442
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Defense HotpotQA NQ MS-MARCO

GPT-3.5-Turbo

None 65.0 58.0 76.0
HLATR 69.0 62.0 78.0
BGE-reranker 70.0 66.0 78.0
Keyword Aggregation 56.0 49.0 58.0
GRADA (D2DSIM-EBD) 64.0 60.0 75.0
GRADA (D2DSIM-BM25) 58.0 66.0 77.0
GRADA (HRSIM) 54.0 63.0 77.0

Llama3.1-8b-Instruct

None 52.0 50.0 54.0
HLATR 55.0 51.0 57.0
BGE-reranker 58.0 54.0 59.0
Keyword Aggregation 33.0 41.0 40.0
GRADA (D2DSIM-EBD) 51.0 56.0 58.0
GRADA (D2DSIM-BM25) 48.0 51.0 54.0
GRADA (HRSIM) 44.0 54.0 57.0

Table 3: EM scores of defense methods when presented
with benign inputs.

and enhancing the model’s overall accuracy. these443

reranking systems yield at least a 2% improvement444

in EM scores, suggesting their effectiveness in mit-445

igating noise unrelated to the posed questions.446

GRADA with D2DSIM-EBD effectively pre-447

serves model performance on benign inputs across448

all datasets, with EM score deviations remaining449

within 2%. Notably, the use of D2DSIM-BM25450

leads to an 8% improvement in EM scores on451

NQ, matching the performance of BGE-reranker,452

which achieves the highest EM overall. However,453

on HotpotQA, HRSIM resulted in an 11% reduc-454

tion in EM scores when handling benign inputs.455

While this trade-off is significant, it corresponds456

to HRSIM’s remarkable ASR reduction. Striking457

a balance between retrieval quality and defense458

robustness remains a crucial challenge for future459

research.460

Keyword Aggregation has a much lower perfor-461

mance also in EM scores on benign input compared462

to GRADA. For example, in MS-MARCO, it re-463

sults in 40% compared to 57% on Llama3.1-8b-464

Instruct and 58% compared to 77% on GPT-3.5-465

Turbo. Indeed showing the cost of discarding valu-466

able information when facing benign documents.467

Using GRADA, we demonstrate that it is pos-468

sible to defend against the chosen attacks without469

compromising the model’s overall performance on470

EM. While reranking methods such as HLATR471

and BGE-reranker show promise in reducing noise,472

their limited effectiveness in countering adversarial473

attack noise highlights a critical gap in existing de-474

fenses. Similarly, Keyword Aggregation presents475

a valuable strategy for mitigating attack payloads476

but comes with trade-offs in EM scores.477
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Figure 4: Distribution of poisoned document positions
after applying GRADA (D2DSIM-BM25) in the MS-
MARCO dataset. Documents positioned below rank
5 are effectively mitigated by the ranking algorithm.
Other results are showed in Figure 11 and Tables 5 to 7

For the attack to be effective, the attackers must 478

ensure that the retriever selects the poisoned doc- 479

uments. To achieve this, they primarily focus on 480

making these documents resemble the queries, as 481

most retrieval models prioritize query-document 482

similarity when selecting relevant results. Addi- 483

tionally, poisoned documents typically exhibit only 484

weak similarity to other documents in the corpus. 485

This characteristic makes them less susceptible to 486

detection by defense mechanisms that compare re- 487

trieved documents against one another. 488

4.3 Additional Studies 489

Ranking distribution. We have demonstrated 490

the effectiveness of our approach in enhancing de- 491

fense performance. To gain a deeper understanding 492

of its impact, we further analyze how our method 493

systematically lowers the ranking of poisoned docu- 494

ments. As illustrated in Figure 4, the position distri- 495

bution of poisoned documents within the retrieval 496

set shifts significantly after applying GRADA with 497

D2DSIM-BM25. Notably, over 70% of poisoned 498

documents are relegated beyond the top five posi- 499

tions, substantially reducing their influence. These 500

findings confirm that GRADA is both robust and 501

effective in mitigating adversarial attacks. 502

Selections of HRSIM. Thus far, our focus has 503

primarily been on utilizing BM25 for HRSIM. In 504

this section, we explore other similarity functions 505

for HRSIM. As shown in Figure 5, we extend our 506

analysis by incorporating SBERT (Reimers and 507

Gurevych, 2019), alongside the three previously 508

discussed methods, to better capture document- 509

to-document similarity. Our results indicate that 510

both EBD and SBERT exhibit strong overall per- 511

formance against PIA and PoisonedRAG attacks. 512
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Figure 5: HRSIM performance with different similarity
functions selection on MSMARCO dataset. The figure
illustrates the proportion of test instances in which poi-
soned documents remain among the top five retrieved
results.

In contrast, BGE-Reranker struggles to effectively513

filter out poisoned documents, likely due to its514

primary training objective of computing query-515

to-document similarities rather than document-to-516

document relationships. HRSIM, when combined517

with BM25, effectively minimize the presence of518

poisoned documents, reducing them to just 14 out519

of 100 test instances. This outcome underscores520

its remarkable effectiveness in filtering malicious521

content.522

Impact of α and M . As shown in Figure 6, the523

number of poisoned documents in the context de-524

creases as α increases, reaching a minimum at525

α = 0.3 before starting to rise again after α = 0.8.526

The ASR follows a similar trend to the number of527

poisoned documents after α = 0.3. Conversely,528

the EM score exhibits a minimum at α = 0.7.529

We selected α = 0.4 because it strikes a balance,530

avoiding excessive penalization for query similar-531

ity, which could otherwise result in fewer query-532

related documents. When α = 0.4, all three met-533

rics (ASR, number of poisoned documents, and534

EM) are within an acceptable range, approaching535

the optimal performance values for α.536

Figure 7 illustrates the effect of selecting M = n.537

It shows that, regardless of how documents are re-538

ranked, poisoned documents can still remain within539

the context provided to the model. However, this540

approach results in a 17% decrease in ASR and a541

9% increase in EM, indicating that simply adjust-542

ing document positions can significantly impact543

model performance. This aligns with our observa-544

tions in Table 4, and the specific positions of the545

documents are detailed in Figure 4. By including546

additional documents for reranking and then re-547

trieving only the top n results, the ASR is further548

Alpha Value
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1.00.80.60.40.20.0
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Figure 6: Impact of the α value as it increases with three
metrics (ASR, number of poisoned documents, and EM)
on NQ dataset with GPT-3.5-Turbo.
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Figure 7: Impact of the M value as it changes with three
metrics (ASR, number of poisoned documents, and EM)
on MSMARCO dataset with GPT-3.5-Turbo.

reduced from 21% to 10%, with only 14% of poi- 549

soned documents remaining in the context provided 550

to the model. This demonstrates the importance 551

of including extra documents during reranking to 552

remove poisoned content and achieve better overall 553

performance effectively. 554

5 Conclusion 555

The study examines the robustness challenges faced 556

by RAG systems. We identify a critical vulnerabil- 557

ity in current adversarial attacks, which focus on 558

increasing semantic similarity to the query with- 559

out accounting for the relationships between the 560

retrieved documents. Our proposed graph-based 561

filtering framework, GRADA, enhances the robust- 562

ness of RAG systems by leveraging document sim- 563

ilarities and effectively mitigating adversarial im- 564

pacts through information flow. Experimental re- 565

sults on datasets such as MS-MARCO and NQ, 566

demonstrate at least 30% reductions in ASR across 567

various adversarial strategies. Overall, this work 568

presents a promising direction for developing more 569

secure and reliable RAG systems. 570
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Limitations571

Despite its effectiveness, our approach has limita-572

tions. First, it struggles with multi-hop reasoning573

tasks, facing attacks like PIA and Phantom. As the574

number of poisoned documents increases, system575

robustness deteriorates. Second, our method as-576

sumes poisoned documents are a minority. When577

they form the majority, their effectiveness declines,578

and future work should explore adaptive retrieval579

strategies to counter adversarial dominance.580

Ethics Statement581

Our study focuses on improving the robustness of582

RAG systems, thereby enhancing their reliability583

and minimizing harmful manipulations. We evalu-584

ated our proposed method, GRADA, using publicly585

available datasets as detailed in Appendix F. We586

do not engage in harmful data practices.587
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A Prompts to LLM750

Prompts given to LLMs

Prompt 1: You are a helpful assistant, be-
low is a query from a user and some relevant
contexts. Answer the question given the
information in those contexts / keywords.
Your answer should be short ,concise and
without explainations ,just answer with one
or two words like yes or no. If you cannot
find the answer to the question, just say "I
don’t know". Contexts / Keywords: [con-
text / keywords] Query: [question] Answer:
Prompt 2: You are a helpful assistant, be-
low is a query from a user and some relevant
contexts. Answer the question given the in-
formation in those contexts. If you cannot
find the answer to the question, just say "I
don’t know". Contexts: [context] Query:
[question] Answer:

Figure 8: Example of prompts given to LLM, Prompt 1
is used in all of the defence methods to generate the final
output. Prompt 2 is only used in the phase to generate
keywords.

B Deconstructing PoisonedRAG751

PoisonedRAG is an adversarial attack on RAG sys-752

tems that operates in two distinct stages. The first753

part enhances the relevance of the adversarial pas-754

sage to the query, ensuring semantic similarity to755

the query and increasing the likelihood of its re-756

trieval. The second part introduces adversarial con-757

tent to achieve the attack’s intended goal, which758

is typically to mislead the model into generating a759

specific incorrect response. This two-part structure760

has become a foundational template for several sub-761

sequent attack strategies targeting RAG systems.762

While the approach used to achieve the first part763

of the attack is effective, it is also relatively simple764

and naive. Specifically, the adversarial passage is765

constructed by using the query itself as the first part,766

a method that can easily be identified and filtered767

by humans. Moreover, as demonstrated in Figure 3768

and Figure 9, the attacks injected into the database769

often exhibit considerable similarity to one another.770

This redundancy presents an opportunity for im-771

provement: by employing a clustering algorithm,772

we can detect and merge these repetitive entries,773

Attack Method HotpotQA NQ MS-MARCO

Normal retrieved 59.0 56.0 48.0
w/o question 66.0 61.0 51.0

Poisoned in the middle 59.0 54.0 37.0
w/o question 63.0 51.0 34.0

Table 4: PoisonedRAG Attack Success Rate (%) where
the retrieval part is removed, and the poisoned docu-
ments are placed in the middle.

effectively removing redundant information and 774

weakening the attack’s overall impact. 775

Despite the simplicity of this approach, Poisone- 776

dRAG still manages to degrade model performance 777

significantly. As shown in Table 4 (first row), 778

even with just one adversarial passage, the attack 779

achieves an attack success rate (ASR) of approxi- 780

mately 50% across three different datasets. This un- 781

derscores the effectiveness of the adversarial strat- 782

egy, despite its seemingly straightforward nature, 783

in misleading the model and causing substantial 784

degradation in accuracy. 785

Interestingly, our analysis reveals that the first 786

part of the adversarial passage—composed of the 787

query itself—does not significantly affect the ASR. 788

In fact, as shown in Table 4, removing this part 789

actually leads to an increase in the ASR. This sug- 790

gests that the primary role of the query in the con- 791

text is not to contribute to the ASR directly but 792

to ensure that the retriever selects the adversarial 793

document. Furthermore, Table 4 shows another 794

significant finding: the position of the poisoned 795

document within the retrieved set plays a crucial 796

role in determining the overall ASR. Specifically, 797

the adversarial document’s position can influence 798

the effectiveness of the attack, with a potential de- 799

crease in ASR of up to 17%. This phenomenon 800

aligns with the lost-in-the-middle effect (Liu et al., 801

2024), where the adversarial document’s position 802

among other retrieved documents impacts its effec- 803

tiveness in influencing the model’s output. 804

A key characteristic of the PoisonedRAG attack 805

is its exclusive focus on ensuring semantic sim- 806

ilarity to the query without considering the rela- 807

tionships among the retrieved documents. This 808

limitation can be leveraged to defend against such 809

attacks. By focusing on the similarities between 810

the documents in the retrieved set, we can filter 811

out adversarial passages and mitigate the attack’s 812

effectiveness. 813
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PoisonedRAG Example

Question: "When did the apple iphone se come out?"
Benign documents 1: "March 21, 2017 iPhone SE shipped with iOS 9.3, supporting iPhone 6
and 6S-exclusive features such as Apple Pay, Live Photos, Retina Flash and always-on Siri voice
activation.[6][10][16]"
Benign documents 2: "On launch, it was released in models with either 16 or 64 GB of internal
storage; on March 21, 2017, Apple announced that these models would be replaced by new
improved models at the same launch price points, releasing on March 24, 2017.[11][12]"
Poisoned Document 1: "When did the apple iphone se come out. The Apple archive, housing
important launch events, mentions a significant one on April 15, 2015. On this day, the compact,
budget-friendly iPhone SE hit the market, impressing many gadget enthusiasts."
Poisoned Document 2: "When did the apple iphone se come out. The iPhone series has released
several models. Notable amongst them is the iPhone SE, introduced to the market on April 15,
2015, attracting considerable consumer attention."

Figure 9: Example of PoisonedRAG attacks. Poisoned documents injected into the database are all very similar to
each other and focus solely on ensuring similarity to the query, the similarities among the retrieved documents are
never considered.
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Figure 10: Impact of increasing poisoned documents on GRADA’s performance in NQ dataset (GPT-3.5-Turbo,
M = 10).

C Number of poisoned documents814

increase815

As shown in Figure 10a, GRADA’s effectiveness di-816

minishes as the proportion of poisoned documents817

increases. When using D2DSIM-EBD, its perfor-818

mance converges with that of an undefended sys-819

tem. However, HRSIM remains effective, achiev-820

ing a 27% reduction in ASR even when half of the821

retrieved documents are adversarial. This is further822

supported by Figure 10b, which shows that 38% of823

poisoned documents are still successfully filtered.824

D Different initial score vector825

Different initial score vectors can have a sig-826

nificant impact on the final distribution of827

documents in certain cases. For instance,828

we experimented with initializing the score 829

vector with query-document similarity s∗ = 830[
sim(q,v0)∑n
j=0 sim(q,vj)

, sim(q,v1)∑n
j=0 sim(q,vj)

, ..., sim(q,vn)∑n
j=0 sim(q,vj)

]
. 831

As illustrated in Figure 12a, using a query- 832

document initialization results in a greater number 833

of documents confined to positions 5 through 8, 834

rather than being ranked at the lower end of the 835

rankings. This issue arises because adversarial 836

documents may receive disproportionately high 837

initial scores compared to benign documents. 838

Such an imbalance gives adversarial documents a 839

substantial advantage, particularly when the edge 840

weights between documents are relatively small. 841

In these scenarios, the graph-based reranking 842

process may struggle to compensate for this initial 843

disparity, as demonstrated in Figure 13. From 844

12
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Figure 11: Distribution of Ground Truth document positions after applying GRADA in the NQ dataset with different
ranking methods.

the analysis in Figure 12b, we observe that this845

phenomenon is more prevalent in datasets like846

HotpotQA.847

E Computational Resources848

The estimated cost of a single defense run on GPT-849

3.5-Turbo is $0.50, identical to a standard query850

since the method does not introduce additional API851

calls. Experiments for LLaMA-3 and Qwen2.5852

were conducted on an A100 80GB GPU, with each853

defense run taking approximately one hour to com-854

plete.855

F License and Distribution Terms856

The dataset used in our experiments is publicly857

available under Creative Commons Attribution 4.0858

International (MS-MARCO) and Apache License859

2.0 (NQ, HotpotQA). The code used in our exper-860

iments is publicly available under MIT License861

(BM25s, PoisonedRAG).862
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Defense Method PoisonedRAG PoisonedRAG(Hotflip) PIA Phantom

Before After Before After Before After Before After

HLATR 99.0 100.0 99.0 100.0 96.0 93.0 94.0 89.0
BGE-reranker 99.0 100.0 99.0 98.0 96.0 47.0 94.0 58.0
GRADA (D2DSIM-EBD) 99.0 55.0 99.0 20.0 96.0 6.0 94.0 5.0
GRADA (D2DSIM-BM25) 99.0 25.0 99.0 16.0 96.0 6.0 94.0 4.0
GRADA (HRSIM) 99.0 13.0 99.0 8.0 96.0 7.0 94.0 2.0

Table 5: The percentage of poisoned documents in the given context to LLM before and after different defense
methods on NQ dataset. Method Keyword not included as it is not reranking anything.

Defense Method PoisonedRAG PoisonedRAG(Hotflip) PIA Phantom

Before After Before After Before After Before After

HLATR 98.0 98.0 99.0 96.0 89.0 85.0 65.0 70.0
BGE-reranker 98.0 98.0 99.0 98.0 89.0 48.0 65.0 53.0
GRADA (D2DSIM-EBD) 98.0 69.0 99.0 22.0 89.0 10.0 65.0 10.0
GRADA (D2DSIM-BM25) 98.0 34.0 99.0 15.0 89.0 2.0 65.0 2.0
GRADA (HRSIM) 98.0 19.0 99.0 8.0 89.0 1.0 65.0 2.0

Table 6: The percentage of poisoned documents in the given context to LLM before and after different defense
methods on MS-MARCO dataset.

Defense Method PoisonedRAG PoisonedRAG(Hotflip) PIA Phantom

Before After Before After Before After Before After

HLATR 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0
BGE-reranker 100.0 98.0 100.0 100.0 100.0 98.0 100.0 98.0
GRADA (D2DSIM-EBD) 100.0 84.0 100.0 66.0 100.0 52.0 100.0 49.0
GRADA (D2DSIM-BM25) 100.0 64.0 100.0 53.0 100.0 35.0 100.0 32.0
GRADA (HRSIM) 100.0 19.0 100.0 18.0 100.0 26.0 100.0 20.0

Table 7: The percentage of poisoned documents in the given context to LLM before and after different defense
methods on HotpotQA dataset.
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Figure 12: Impact of different initialization score vectors on GRADA’s performance (M = 10).
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Figure 13: A demonstration on different initial score vector and their results when the adversarial documents receive
significantly higher initial scores compared to benign documents.
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Model Defense HotpotQA NQ MS-MARCO

GPT-4o

None 62.0 59.0 65.0
HLATR 67.0 62.0 68.0
BGE-reranker 63.0 65.0 73.0
Keyword Aggregation 63.0 47.0 47.0
GRADA (D2DSIM-EBD) 58.0 54.0 62.0
GRADA (D2DSIM-BM25) 57.0 59.0 66.0
GRADA (HRSIM) 52.0 62.0 65.0

Llama3.1-70b-Instruct

None 57.0 59.0 54.0
HLATR 63.0 60.0 55.0
BGE-reranker 58.0 66.0 55.0
Keyword (Xiang et al., 2024) 27.0 35.0 61.0
GRADA (D2DSIM-EBD) 48.0 56.0 47.0
GRADA (D2DSIM-BM25) 41.0 58.0 52.0
GRADA (HRSIM) 38.0 54.0 55.0

Qwen2.5-7b-Instruct

None 44.0 46.0 50.0
HLATR 48.0 48.0 43.0
BGE-reranker 45.0 49.0 47.0
Keyword 12.0 17.0 23.0
GRADA (D2DSIM-EBD) 41.0 46.0 45.0
GRADA (D2DSIM-BM25) 38.0 50.0 44.0
GRADA (HRSIM) 33.0 46.0 51.0

Table 8: Defence methods performance on benign inputs.
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Model Defense HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-4o

None 42.0 / 41.0 28.0 / 40.0 24.0 / 46.0
HLATR 37.0 / 47.0 26.0 / 50.0 21.0 / 53.0
BGE-reranker 39.0 / 44.0 24.0 / 55.0 20.0 / 54.0
Keyword Aggregation 6.0 / 61.0 1.0 / 46.0 5.0 / 45.0
GRADA (D2DSIM-EBD) 37.0 / 41.0 10.0 / 47.0 19.0 / 51.0
GRADA (D2DSIM-BM25) 24.0 / 44.0 5.0 / 60.0 10.0 / 64.0
GRADA (HRSIM) 5.0 / 49.0 1.0 / 65.0 4.0 / 67.0

Llama3.1-70b-Instruct

None 58.0 / 37.0 56.0 / 30.0 55.0 / 28.0
HLATR 54.0 / 43.0 50.0 / 38.0 41.0 / 37.0
BGE-reranker 53.0 / 42.0 49.0 / 38.0 38.0 / 38.0
Keyword (Xiang et al., 2024) 2.0 / 26.0 2.0 / 39.0 0.0 / 59.0
GRADA (D2DSIM-EBD) 45.0 / 37.0 26.0 / 44.0 35.0 / 38.0
GRADA (D2DSIM-BM25) 36.0 / 38.0 12.0 / 57.0 15.0 / 51.0
GRADA (HRSIM) 9.0 / 38.0 3.0 / 53.0 9.0 / 52.0

Qwen2.5-7b-Instruct

None 62.0 / 24.0 50.0 / 27.0 49.0 / 29.0
HLATR 60.0 / 29.0 44.0 / 30.0 40.0 / 29.0
BGE-reranker 60.0 / 30.0 48.0 / 29.0 42.0 / 30.0
Keyword 4.0 / 15.0 0.0 / 17.0 9.0 / 24.0
GRADA (D2DSIM-EBD) 57.0 / 24.0 24.0 / 36.0 38.0 / 31.0
GRADA (D2DSIM-BM25) 43.0 / 27.0 12.0 / 45.0 23.0 / 39.0
GRADA (HRSIM) 7.0 / 34.0 6.0 / 41.0 12.0 / 40.0

Table 9: ASR and EM (%) for various defense methods on PoisonedRAG.
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Model Defense HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-4o

None 46.0 / 41.0 32.0 / 41.0 26.0 / 48.0
HLATR 43.0 / 44.0 29.0 / 46.0 23.0 / 51.0
BGE-reranker 40.0 / 42.0 27.0 / 49.0 20.0 / 55.0
Keyword Aggregation 8.0 / 61.0 1.0 / 46.0 4.0 / 46.0
GRADA (D2DSIM-EBD) 31.0 / 47.0 6.0 / 54.0 12.0 / 58.0
GRADA (D2DSIM-BM25) 21.0 / 47.0 5.0 / 61.0 8.0 / 65.0
GRADA (HRSIM) 5.0 / 48.0 1.0 / 65.0 4.0 / 67.0

Llama3.1-70b-Instruct

None 59.0 / 33.0 54.0 / 28.0 53.0 / 29.0
HLATR 51.0 / 38.0 46.0 / 35.0 34.0 / 33.0
BGE-reranker 47.0 / 45.0 43.0 / 38.0 37.0 / 32.0
Keyword (Xiang et al., 2024) 2.0 / 30.0 2.0 / 39.0 4.0 / 60.0
GRADA (D2DSIM-EBD) 35.0 / 39.0 12.0 / 52.0 18.0 / 46.0
GRADA (D2DSIM-BM25) 28.0 / 41.0 8.0 / 57.0 12.0 / 49.0
GRADA (HRSIM) 8.0 / 38.0 3.0 / 54.0 7.0 / 51.0

Qwen2.5-7b-Instruct

None 58.0 / 28.0 59.0 / 20.0 53.0 / 28.0
HLATR 59.0 / 31.0 53.0 / 29.0 38.0 / 34.0
BGE-reranker 57.0 / 34.0 49.0 / 31.0 43.0 / 31.0
Keyword 3.0 / 15.0 0.0 / 20.0 10.0 / 22.0
GRADA (D2DSIM-EBD) 41.0 / 33.0 16.0 / 46.0 19.0 / 35.0
GRADA (D2DSIM-BM25) 35.0 / 35.0 11.0 / 46.0 17.0 / 37.0
GRADA (HRSIM) 6.0 / 33.0 7.0 / 43.0 12.0 / 39.0

Table 10: ASR and EM (%) for various defense methods on PoisonedRAG(Hotflip).
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Model Defense HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-4o

None 99.0 / 0.0 96.0 / 4.0 80.0 / 11.0
HLATR 97.0 / 2.0 78.0 / 15.0 53.0 / 32.0
BGE-reranker 87.0 / 8.0 35.0 / 39.0 24.0 / 51.0
Keyword Aggregation 0.0 / 57.0 0.0 / 44.0 0.0 / 45.0
GRADA (D2DSIM-EBD) 31.0 / 43.0 2.0 / 57.0 2.0 / 60.0
GRADA (D2DSIM-BM25) 41.0 / 37.0 10.0 / 58.0 0.0 / 68.0
GRADA (HRSIM) 25.0 / 43.0 1.0 / 63.0 0.0 / 68.0

Llama3.1-70b-Instruct

None 100.0 / 0.0 98.0 / 2.0 88.0 / 8.0
HLATR 100.0 / 0.0 92.0 / 5.0 84.0 / 9.0
BGE-reranker 98.0 / 2.0 42.0 / 39.0 42.0 / 32.0
Keyword (Xiang et al., 2024) 0.0 / 25.0 0.0 / 35.0 0.0 / 60.0
GRADA (D2DSIM-EBD) 33.0 / 29.0 2.0 / 56.0 3.0 / 48.0
GRADA (D2DSIM-BM25) 42.0 / 25.0 12.0 / 52.0 2.0 / 53.0
GRADA (HRSIM) 26.0 / 32.0 1.0 / 56.0 1.0 / 54.0

Qwen2.5-7b-Instruct

None 4.0 / 23.0 6.0 / 16.0 5.0 / 27.0
HLATR 15.0 / 24.0 18.0 / 13.0 18.0 / 21.0
BGE-reranker 23.0 / 17.0 23.0 / 32.0 20.0 / 32.0
Keyword (Xiang et al., 2024) 0.0 / 14.0 0.0 / 19.0 0.0 / 24.0
GRADA (D2DSIM-EBD) 12.0 / 36.0 2.0 / 46.0 3.0 / 41.0
GRADA (D2DSIM-BM25) 15.0 / 28.0 8.0 / 42.0 1.0 / 44.0
GRADA (HRSIM) 8.0 / 36.0 2.0 / 47.0 1.0 / 44.0

Table 11: ASR and EM (%) for various defense methods on PIA.
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Model Defense HotpotQA NQ MS-MARCO
ASR ↓ / EM ↑ ASR ↓ / EM ↑ ASR ↓ / EM ↑

GPT-4o

None 68.0 / 4.0 37.0 / 21.0 44.0 / 37.0
HLATR 64.0 / 9.0 39.0 / 25.0 38.0 / 42.0
BGE-reranker 31.0 / 39.0 23.0 / 38.0 41.0 / 35.0
Keyword Aggregation 0.0 / 45.0 0.0 / 43.0 0.0 / 43.0
GRADA (D2DSIM-EBD) 27.0 / 32.0 1.0 / 48.0 10.0 / 45.0
GRADA (D2DSIM-BM25) 8.0 / 41.0 2.0 / 51.0 1.0 / 63.0
GRADA (HRSIM) 4.0 / 42.0 0.0 / 49.0 0.0 / 63.0

Llama3.1-70b-Instruct

None 8.0 / 46.0 6.0 / 39.0 11.0 / 48.0
HLATR 9.0 / 50.0 15.0 / 38.0 11.0 / 51.0
BGE-reranker 20.0 / 45.0 22.0 / 39.0 12.0 / 53.0
Keyword (Xiang et al., 2024) 0.0 / 23.0 0.0 / 29.0 0.0 / 53.0
GRADA (D2DSIM-EBD) 6.0 / 40.0 3.0 / 45.0 2.0 / 49.0
GRADA (D2DSIM-BM25) 28.0 / 24.0 6.0 / 49.0 1.0 / 55.0
GRADA (HRSIM) 17.0 / 25.0 0.0 / 51.0 0.0 / 54.0

Qwen2.5-7b-Instruct

None 1.0 / 26.0 1.0 / 20.0 3.0 / 38.0
HLATR 1.0 / 31.0 6.0 / 13.0 3.0 / 35.0
BGE-reranker 7.0 / 29.0 19.0 / 27.0 9.0 / 39.0
Keyword (Xiang et al., 2024) 0.0 / 4.0 0.0 / 5.0 0.0 / 5.0
GRADA (D2DSIM-EBD) 9.0 / 23.0 6.0 / 32.0 4.0 / 46.0
GRADA (D2DSIM-BM25) 25.0 / 27.0 6.0 / 35.0 0.0 / 45.0
GRADA (HRSIM) 18.0 /27.0 0.0 / 37.0 0.0 / 50.0

Table 12: ASR and EM (%) for various defense methods on Phantom.
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