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Abstract—Federated Learning (FL) enables collaborative
training of Deep Learning (DL) models where the data is retained
locally. Like DL, FL has severe security weaknesses that the
attackers can exploit, e.g., model inversion and backdoor attacks.
Model inversion attacks reconstruct the data from the training
datasets, whereas backdoors misclassify only classes containing
specific properties, e.g., a pixel pattern. Backdoors are prominent
in FL and aim to poison every client model, while model inversion
attacks can target even a single client.

This paper introduces a novel technique to allow backdoor
attacks to be client-targeted, compromising a single client while
the rest remain unchanged. The attack takes advantage of state-
of-the-art model inversion and backdoor attacks. Precisely, we
leverage a Generative Adversarial Network to perform the model
inversion. Afterward, we shadow-train the FL network, in which,
using a Siamese Neural Network, we can identify, target, and
backdoor the victim’s model. Our attack has been validated using
the MNIST, F-MNIST, EMNIST, and CIFAR-100 datasets under
different settings—achieving up to 99% accuracy on both source
(clean) and target (backdoor) classes and against state-of-the-art
defenses, e.g., Neural Cleanse, opening a novel threat model to
be considered in the future.

Index Terms—Federated Learning, Deep Learning, Backdoor
attack

I. INTRODUCTION

Deep learning (DL) achieves state-of-the-art performance

in various machine learning tasks, e.g., computer vision [48],

speech recognition [20], and natural language processing [7].

Unfortunately, DL has severe security and privacy flaws that

have been exploited in recent years, e.g., backdoors [21] and

inference attacks [28]. Therefore, research has also focused

on creating secure DL algorithms that prevent leaking data or

causing misbehavior [17].
Contrary to centralized DL algorithms, where data and the

model are stored in a single point and trained, in 2016, Google

developed a privacy-preserving decentralized and collaborative

training approach, i.e., Federated Learning (FL) [26]. FL is

composed of a set of clients and an aggregator (server), where

clients store their data and train the same DL model locally

for a couple of epochs. Then, the model parameters are shared

with the aggregator, which merges them, joining the properties

of heterogeneous datasets without accessing them.
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Though their decentralized structures, FL protocols are also

prone to security and privacy attacks [1], [27]. The most

popular attacks in FL are the backdoor and inference attacks.

While backdoor attacks focus on modifying the training set to

cause behavior at inference time [21], [22], inference attacks

extract private information from the DL model [9], [38]. More

precisely, backdoor attacks focus on altering the training set

by including specific triggers in the input space, which cause

misbehavior of the DL model only under the presence of the

trigger. If it is not present, the DL model will behave normally.

Backdoor attacks have been adapted to FL, where modifying a

single client dataset can cause the joined model to misbehave,

poisoning each client in the network [3], [39], [43].

Note that the existing backdoor attacks on FL cause all

clients to end up with a backdoored model. However, there

could be scenarios where the server targets a single client or a

subset of the clients, not all. For example, imagine a scenario

where competitive banks want to train a model for credit scores

jointly. Among those banks, one is targeted by the attacker,

who may support or remain neutral to the other banks and thus

does not want to backdoor them. This single-target scenario is

unexplored and leads to the following question: Is it possible to
launch a backdoor attack, where only targeted (victim) clients
get a backdoored model, whereas the remaining (non-victim)
clients get a clean model?

A. Our Contributions

In this work, we positively answer this question by pro-

viding a backdoor attack that can be client-targeted, only

poisoning a subset of clients while the models of the other

clients remain unaltered. Our attack combines state-of-the-

art inference and backdoor attacks to recover datasets from

clients, identify the target clients, and inject the backdoor.

Precisely, to achieve a targeted backdoor, we redesign the

existing inference attacks by making them client-specific,

allowing the generation of client-like datasets. Furthermore,

we create a shadow network in FL, which, combined with an

SNN, allows identifying the victim among all the clients. This

results in a client-targeted backdoor, where the victim gets a

poisoned model while the rest of the clients get a clean one.

Our main contributions are:



• We present, to the best of our knowledge, the first client-

targeted backdoor attacks for FL settings, which first

identifies the victim, then injects the backdoor only for

the victim, but not the other clients.

• We adapt and train a Siamese Neural Network (SNN)

for their use with triplet loss, which enables identifying

anonymous clients in the FL network with up to 92%

accuracy.

• We extend and analyze the capabilities of backdoor

attacks, injecting the trigger at near convergence and fo-

cusing on a target client, achieving up to 99% accuracy in

clean and backdoor test sets and confirming the viability

of our attack.

• We apply state-of-the-art defense mechanisms to our

protocol. Since most of the defenses are on the server side

or do not fit our setup, we modified them to fit our attack

scenario, e.g., we adapted Trojanzoo [30], a backdoor

testing framework, to utilize our attack. More precisely,

we consider Neural Cleanse [42] and smoothing [51].

To improve reproducibility, we share the source code of our

work.1

B. Related Work

FL has gained attention as a privacy-driven alternative to

centralized learning—granting the ability to train a DL algo-

rithm without sharing the data and splitting the computational

power [37]. However, it has been shown that FL is also

vulnerable to attacks that make the DL models misbehave at

inference time, i.e., poisoning or backdoor attacks [3], [21],

[34], or causing privacy leakages, i.e., inference attacks [28].

Comprehensive studies about the attacks on FL are given

in [1], [27]. In this work, we focus on inference and backdoor

attacks.

Inference attacks aim to learn private information about the

training process, which can be used to check if a data sample

is used in the training set (membership inference) [9], [28],

[38] or to reconstruct the training set (model inversion) [14]. A

backdoor is a particular type of poisoning attack whose goal is

to misclassify a sample just under a presence of a property or

a characteristic. Backdoor attacks have been widely mitigated

for different machine learning tasks, e.g., audio or images [8],

[25], [41], [42]. In the FL learning setting, the backdoor attack

can be applied by the clients or the aggregator [3], [39], [43],

[52]. The backdoor attack in the FL setting is more challenging

than in the centralized setting since each client has a weighted

effect on the global model. To overcome this issue, attackers

can either amplify the weights of backdoored model [3] or

distribute the backdoor to several clients [52]. The existing

backdoor attacks on FL settings degrade the global model for

all clients, whereas, to the best of our knowledge, there is no

client-targeted backdoor attack.

In addition to the attacks, several defense protocols have

been proposed to mitigate them. In general, the defenses

are based on either dataset inspection [8], [41] or model

1https://github.com/GorkaAbad/Sniper-Backdoor

inspection [25], [42]. Moreover, there are defense mechanisms

for FL setting [2], [4], [15], [16], [51], which are mainly

based on the addition of noise or an alternative reweighting

performed by an honest aggregator. The details of the defense

mechanisms are given in Section VI.

II. BACKGROUND

This section starts with an overview of deep learning and

federated learning. Afterward, we discuss backdoor attacks,

inference attacks, Generative Adversarial Networks, and SNN.

A. Deep Learning & Federated Learning

a) Deep Learning: DL algorithms are parameterized

functions Fθ that maps an input x ∈ R
a to an output y ∈ R

b. In

the image domain, the dataset is constructed from a collection

of images and their labels {x, y}n of size n where x is a vector

of pixel values and y is a vector of probabilities of belonging

to a class c ∈ C. The parameters, θ, are iteratively set by

finding the optimal value for which Fθ(x) = y, achieved by

training. During training, large sets of data are provided, and

the distance from the predicted output Fθ(x) to the ground

truth value y is measured, penalizing predictions that are far

away, using a loss function L. Therefore, the optimal values

of the parameters θ′ are given by the following equation:

θ′ = argmin
θ

n∑

i=1

L(Fθ({xi, yi})). (1)

b) Federated Learning: FL is a privacy-driven decen-

tralized scheme for collaborative training of ML models. It

was introduced by Google, where they proposed creating a

network of clients who own distinct datasets to train a global

model without directly sharing their datasets [26]. The network

is composed of a server (aggregator) and N clients. Every

participant of the network, upon consensus, decides to train the

same model W under the same conditions, e.g., learning rate

(LR) and the number of epochs. After local training, following

Eq. (1), clients upload their model updates ut (the differences

with the previous epoch) to the aggregator, who joins them by

averaging, and sends the new model Wt+1 back to each client.

The FL procedure is repeated for t epochs until convergence

is reached:

Wt+1 ←Wt +
1

N

N∑

i=1

ui
t+1.

B. Backdoor Attacks

Backdoor attacks compromise DL networks during training,

causing misbehavior at inference time by injecting poisoned

samples into the training set. A poisoned sample has a trigger

embedded in the clean data sample that assigns a target label

ŷ ∈ C different from the ground truth label ŷ �= y. In source

class-targeted backdoors, only samples of a given source class

are poisoned and assigned the target class, whereas in one-to-

all attacks, all source classes are poisoned and assigned the

target class. Furthermore, attacks are classified as targeted or

untargeted if the attacker targets a specific label or creates an

uncontrolled misclassification [27].



In the image domain, the backdoor trigger is usually a

modified pixel or group of pixels, e.g., a pixel square, with

a given size and position, e.g., left-top corner or center. The

percentage of poisoned samples in the training set is controlled

by ε = m
n+m where m� n and the poisoned set is shown by

D̂train. Here, a small value ε usually implies that it is more

challenging to include backdoor behavior, but it causes a more

stealthy attack. During the training procedure with D̂train, the

backdoor effect is injected into the DL algorithm given by the

loss function taking into account the backdoor accuracy:

θ′ = argmin
θ

n∑

i=1

L(Fθ({xi, yi})) +
m∑

j=1

L(Fθ({x̂j , ŷj})).

In FL, when a backdoored model is submitted to the

server, the poison weights vanish due to aggregation since a

single vector of outline values gets averaged with the rest of

the clients, thus making the poisoned weights less relevant.

However, the vanishing effect can be overcome by upscaling

the weights of the model [3], [39], [43].

C. Inference & Model Inversion Attacks

Inference attacks measure information leakage through a

DL model about its training data. There are different ways in

which the attacker obtains private information; for example,

by observing the input and outcome of a DL model or by

observing the inner computation if the attacker has access to

the model [28]. In FL scenarios, the attacker could be either the

aggregator who has access to the individual updates over the

epochs or the clients who have access to the joined model and

can control the parameters of the model to update. Depending

on the attacker’s knowledge and capabilities, the attacker can

perform a passive attack only by observing the computations

or an active attack that modifies the model’s parameters.

Similarly, model inversion attacks exploit confidence values

obtained during the predictions for reconstructing data from

the training dataset of a DL model [14]. Furthermore, in FL,

Generative Adversarial Networks (GANs) enable the recovery

of user-specific data records [9], [38].

D. Generative Adversarial Networks (GANs)

Deep learning aims to create rich models representing the

probability distribution of different data. In contrast, deep-

generative models aim to generate data samples with a dis-

tribution similar to the one provided. So far, deep generative

models leverage the max-likelihood estimation for such a

task. However, approximating the probability computation

on the max-likelihood estimation is hard. Goodfellow et al.

developed a framework for estimating generative models via

an adversarial process [19]:

J (G) = −1

2
Ezexp(σ

−1(D(G(z)))),

where J is the cost function, σ is the logistic sigmoid function,

G is the generator, and D is the discriminator. G and D are

the two parties involved in Generative Adversarial Networks,

which follow an estimation process based on simulation train-

ing via a zero-sum game, also called minimax game:

θ(G)′ = argmin
θ(G)

max
θ(D)

V (θ(D), θ(G)).

G takes noise z ∼ pZ samples from some distribution

and creates actual data samples, while D distinguishes fake

samples from real ones. Both trains simultaneously until they

achieve the Nash equilibrium, where G can generate real-

enough data samples that D cannot differentiate. Thus, the

distribution of the generated fake samples pG(Z) converges

towards the distribution of real data samples. GANs have been

widely used in different domains, e.g., image creation [32],

NLP [7]. Concerning security, GANs have also played an

important role, performing inference attacks [53] or generating

adversarial examples [49].

E. Siamese Neural Networks (SNNs)

SNN is a type of architecture constructed by two identical

networks (having the same parameters and structure) to find

similarities in input by comparing the latent space of their

feature vectors [6]. Since SNN involves pairwise data for train-

ing, the loss function has to optimize the model to minimize

the distance, e.g., Euclidean distance, between similar inputs

and maximize it between different inputs. Triplet loss [33]

improves learning embeddings of inputs and is usually used

to improve SNN performance during training. The same class

inputs are close together (in the embedding space) while

different class inputs are well separated.2 Triplet networks

gained popularity with the development of FaceNet [33]. Since

then, triplet networks have been used in diverse domains, e.g.,

side-channel analysis [47] or learning image similarity [44].

Triplet loss (L) is formally defined as a function that

maximizes the distance between the embedding space with

respect to the anchor samples (A), positive (P ), and negative

(N ) by some margin α. Since A and P samples have the

same label, triplet loss optimizes the model so that the distance

between A and N samples is more significant than between

A and P :

LA,P,N = max(||f(A)− f(P )||2− ||f(A)− f(N)||2 +α, 0).

During the minimization of L, ||f(A) − f(P )||2 is pushed

towards 0, while ||f(A) − f(N)||2 is larger than ||f(A) −
f(P )||2+α. The loss can also be represented in different forms

according to the three triplet categories: (i) Easy triplets where

the negative sample is sufficiently distant from the anchor

compared to the positive sample from the anchor, (ii) Hard
triplets where the distance between the negative sample and

the anchor is less than the positive to the anchor, and (iii)

Semi-Hard triplets where the distance between the negative

and the anchor is greater than the positive to the anchor

but is not larger than a margin α, i.e., ||f(A) − f(P )||2 <
||f(A)− f(N)||2 < ||f(A)− f(P )||2 + α.

2Similar to support vector machines [11], where some margin separates
different classes’ samples.



Triplet samples are constructed via online triplet mining,

where the anchor, positive, and negative samples are computed

on the fly for every batch of inputs. The correct selection

of triplets will influence the quality of the model. Therefore,

in our research and following the suggestions of the original

paper [33], we use the semi-hard triplets.

III. THREAT MODEL

This section discusses the scenario we follow and the

assumptions we make. Afterward, we provide details about

the adversary’s objectives and capabilities.

A. Our Scenario and Assumptions

Following the training procedure of FL, we assume that

a group of clients agree on a common learning objective and

collaboratively train a shared model. Clients own IID (indepen-
dent and identically distributed) or Non-IID distributed data.

To be comprehensive, we considered both data distributions

in our attack, and as a use case, the shared model is aimed

at classifying images. Regarding the server, we assume it is

malicious, aiming to inject a backdoor into the victim’s model,

also referred to as the target client, while the rest receive

a clean (non-backdoored) model. The malicious server could

either passively analyze periodic client updates or modify the

global model parameters. The presented scenario is commonly

adopted in most of the existing attacks [5], [9], [38].

Additionally, aiming to consider a more realistic scenario,

we assume that clients simultaneously share their models

anonymously with the aggregator, i.e., their identity cannot be

matched to the model submitted. For example, clients could

leverage Tor [13] for anonymization, as considered in recent

works [9], [38].

B. Adversarial Objectives & Capabilities

We consider a set of clients who wishes to train a DL

algorithm for finding the optimal parameters, Fθ′ , each of

them using a non-colluding dataset Dtrain. Each client shares

Fθ with the aggregator, which returns the joined parameters

after each epoch. Before achieving convergence of the joined

model, the attacker injects and returns a set of malicious

parameters to the victim, including backdoor behavior θ̂ ← θ′.
The attacker has access to the training function, Fθ, and has

to carefully adjust the training process to determine the best

values for θ̂. The attacker poisons the holdout training dataset

D̂train that includes triggers in the samples and obtains the

poisoned parameters θ̂ ← Fθ(D̂train). For a successful attack,

the attacker should achieve high accuracy on the main task,

i.e., on the client’s validation set and the backdoor task.

Note that the backdoor creation function is independent of

our pipeline. Depending on the defensive mechanisms applied

by the clients, the attacker could use a simple approach

(BadNets [21]) or a more complex input-aware dynamic

backdoor [29]. To show the adaptability of our attack, we

consider both types of backdoor attacks.

To evaluate the performance of the attack, we utilize four

metrics:

1) Clean accuracy: measures the overall accuracy of the

backdoor model over a clean test set.

2) Clean accuracy degradation: measures the drop in clean

accuracy of the clean model and the backdoor model.

3) Source class accuracy: measures the accuracy of the

source class in a clean test set.

4) Target class accuracy: measures the target class accu-

racy over a fully poisoned test set, also known as Attack

Success Rate (ASR).

IV. PROPOSED CLIENT-WISE TARGETED BACKDOOR

In this section, we start with an overview of the proposed

attack. Afterward, we discuss each component of the attack.

A. Attack Overview

Our attack injects a backdoor into the model of a target

client (victim). This section provides an overview of our

framework; see Figure 1 for guidance.

1 The clients and the server initialize a common model.

Clients locally train their models and submit them for ag-

gregation with the server. This process is iteratively repeated

until convergence is met. 2 During training, and at every

epoch t, the malicious server (attacker) collects and saves

clients’ models (uN
t ) for later use as a historical record. 3

For each client, the attacker initializes the GAN discriminator

with a model’s weights chosen from the historical record.

The discriminator is then trained until it can generate real

enough samples. 4 The attacker uses each trained GAN to

create a dataset for every client. 5 The attacker replicates

the FL network, named the shadow network. The clients of the

shadow network, i.e., shadow clients, locally train their models

using Dtrain. As in the second step, the attacker collects a

historical record of the shadow models submitted. 6 Using

the historical record of shadow models, the attacker trains

an SNN. 7 After training, the SNN can precisely identify

models of clients at different epochs, enabling the victim’s

identification. 8 Lastly, the attacker injects a backdoor into

the global model and shares it with the victim.

B. Training the Network

The FL network is composed of clients whose datasets are

either IID or Non-IID split. Each client in the network trains

the same DL algorithm with their private dataset and shares the

locally trained model with the aggregator. The attacker keeps

a historical record of each anonymously submitted model and

a representative at each epoch. A representative is a simpler

representation of the model, acquired by querying a holdout

data piece through the convolutional layers of the model,

extracting the embedded space. Therefore, the representatives

will later ease the training of the SNN. The representatives are

computed by querying the same image through the model to

get a more stable representative [38].

Finally, the server aggregates each update by FedAvg [26]

and shares the joined model back to clients. This procedure is

repeated until convergence is reached. See Algorithm 1 for a

summary.
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Fig. 1: The overview of the attack: in 1 and 2 , the FL is trained, and the attacker keeps a collection of submitted models.

The attacker generated fake image samples in 3 and 4 . In 5 , the attacker trains a shadow network. In 6 and 7 , the

attacker identifies the victim using an SNN. Lastly, in 8 , the attacker injects the backdoor on the victim’s model.

Algorithm 1 FL Network Training

1: Input: A set of clients K. The number of clients N . Number of
epochs T . Client local model u. Global model W .

2: Output: A collection of anonymous clients’ representatives
Drep. A collection of anonymous clients’ models per epoch M .

3: Initialize: W
4: x← get_sample() � Get the fixed sample.
5: for each epoch t = 1, 2, 3, ..., T do
6: for each client k ∈ K do � k is anonymous for the server.
7: uk

t+1 ← client_update(k,Wt) � Local training of k.
8: Dk

rep t+1 ← uk
t+1(x) � Representatives over input x

9: Mk
t+1 ← uk

t+1

10: Wt+1 ←Wt +
1
N

∑N
i=1 u

i
t+1

C. Creating Synthetic Data

The attacker aims to replicate the FL network to collect

information on the clients’ behavior. The replica of the FL

network is called a shadow network and is composed of

shadow clients. For training, shadow clients require datasets

that should be as close as possible to the distribution of the

clients’ datasets. To get data similar to the clients’ datasets,

we implement a GAN-based model inversion attack, adapting

prior work [38]. To mimic the data distribution of a specific

client, we initialize the discriminator’s weights by the weights

of the victim model, as suggested in [9].

It is essential to carefully choose the model from which

the weights are transferred to the discriminator. In FL, the

models merge their unique properties due to aggregation at

every iteration. Intuitively, models at early epochs have not yet

acquired other models’ properties. Consequently, choosing the

epoch from which the model will replace the discriminator is

essential for mimicking clients’ data.

Selecting the right epoch t is dependent on the use case.

For simpler models and datasets, a few epochs are enough to

learn the properties of the own model without fully merging

the rest. However, more complex setups could require more

training. We observe that carefully choosing t is essential for

the Non-IID case. In IID settings, models are similar from the

beginning; thus, this effect is almost invisible. For details, see

Section V. The procedure is summarized in Algorithm 2.

Algorithm 2 Creating Synthetic Data

1: Input: K set of clients. M collection of anonymous clients’
models. Trained global model W ′. T number of epochs. D is
the discriminator, and G is the generator.

2: Output: DGAN collection of GAN generated datasets.
3: Initialize: t = 1 � Set a low value of t.
4: for each client k = 1, 2, 3, ...,K do
5: Initialize: G and D.
6: D ←W

′k
t

7: for each epoch t = 1, 2, 3, ..., T do
8: z← generate_noise()
9: train(G,M, z)

10: z ← generate_noise()
11: x← G(z) � Create fake data.
12: {x, y} ←W ′(x) � Label data.
13: Xk ← {x, y}

D. Shadow Training

Shadow models were introduced by Shokri et al. [35] for

a membership inference attack. We modify the base idea

to fit the FL requirements. Under our settings, we replicate

the entire FL network in an isolated environment, namely a

shadow network. It is composed of shadow clients, models,

datasets, and a server. The attacker gains white-box access to

the shadow training procedure by mimicking the FL network.

We emphasize that the actual clients, their datasets, and the

server are used in the shadow network. The shadow clients

have the GAN-generated samples DGAN as their training set

and locally train the same DL algorithm in the “real” FL

procedure.

Similarly, we also extract the shadow representatives of the

shadow models (which are not anonymous) and keep a record

of them for each shadow client and epoch. By shadow training,

the attacker gains knowledge of the relationship between



datasets and models in a similar way to the actual procedure.

The procedure is summarized in Algorithm 3.

Algorithm 3 Shadow Training

1: Input: A set of GAN generated dataset DGAN . Set of shadow
clients K̂. Number of epochs T . The number of shadow clients
N̂ . û shadow client local model. Ŵ shadow global model.

2: Output: D̂rep shadow clients’ representatives dataset.
3: x← get_sample() � Get the fixed sample for calculating

clients’ representatives.
4: Initialize: Ŵ
5: for each epoch t = 1, 2, 3, ..., T do
6: for each client k̂ ∈ K̂ do
7: ûk

t+1 ← client_update(k̂, Ŵt, D
k̂
GAN )

8: D̂k̂
rep t+1 ← ûk̂

t+1(x)
9: Ŵt+1 ← Ŵt +

1

N̂

∑N̂
i=1 û

i
t+1

E. SNN Training & Update Identification

SNN has already been used for inference attacks, e.g., [38].

During the training of the SNN, the authors used two represen-

tatives of different models as input. The SNN seeks similarities

between them and outputs a value between “0” and “1”, where

zero means very similar.

In our attack, we use SNN to identify the victim from the

models’ representatives gathered previously. However, first,

the attacker needs to train the SNN. The attacker owns a

record of anonymous model updates from the “real” network

and a copy of not anonymous (labeled) updates from the

shadow network. The attacker aims to find relations between

the labeled dataset to identify the unlabeled dataset. Since data

is multidimensional, we use triplet mining for SNN, which

requires three inputs for training, which are constructed on

the fly, i.e., online triplet mining. By doing so, the SNN can

measure the similarity between two representatives, allowing

it to match a client’s identity with its representative.

Before injecting the backdoor, it is necessary first to iden-

tify the victim. Clients’ updates are dissimilar at the first

epochs, and they get similar as the aggregation process is

repeated—a model from the first epoch and another from the

last are highly different. We develop a client identification

algorithm, greedy searching for the closest relation between

representatives across epochs, which links models from early

and last epochs. We use the trained SNN and the anonymous

set of model representatives acquired in Section IV-B, which

stores anonymous representations of every client model at

every epoch. Precisely, a representative is chosen repit=0 at

the first epoch t = 0, and compared with another one in the

subsequent epoch t = 1 : {0, 1} ← SNN(repit=0, rep
j
t=1).

If the representatives are similar 1 � SNN(repit=0, rep
j
t=1),

then it belongs to the same client i = j. The process is

repeated for all consecutive epochs in training. Subsequently,

the algorithm maps the representatives across epochs, easing

the identification of the upcoming model.

Furthermore, since the generated dataset is created from a

client model, this process allows the mapping between the

dataset and the client, easing the identification of the victim.

F. Backdoor Attack

Backdoor attacks directly inject the adversarial effect into

the model, fired by a trigger in the input sample. The backdoor

is created by injecting a four-pixel pattern in the bottom right

corner into the samples (Figure 2) or with a sample-specific

pattern (Figure 3). Different trigger types, positioning, and

combinations lead to variations in the clean data and backdoor

accuracy, which we omit here. We refer the reader to [21] for

the details of the effectiveness of different triggers.

Backdoor attacks poison the dataset for several epochs in

ML and FL, starting from the first epoch [21]. However, our

proposal injects the backdoor by retraining the model for a

few epochs, which is then sent to the victim client, while the

rest receive the non-poisoned one, see Algorithm 4.

With the victim identified, the attacker can inject the back-

door into the global model and share it with the victim. Thus,

the attacker injects the backdoor before the FL training ends,

i.e., before convergence. The attacker estimates the conver-

gence of the model considering prior models. The attacker

defines a stop criterion to know at which epoch the backdoor

should be injected. For example, the stop criterion could be

a negligible change in the model performance from previous

epochs, indicating that the model is near convergence.

(a) MNIST (b) F-MNIST (c) EMNIST

Fig. 2: Backdoored images.

Fig. 3: Samples containing dynamic backdoor triggers.

V. EXPERIMENTAL RESULTS

This section provides an overview of the evaluated datasets

and experimental setup, followed by the results and discussion.

A. Datasets

We evaluate the performance of our attack on the

MNIST [24], EMNIST [10], F-MNIST [50], and CIFAR-

100 [23] datasets. MNIST is a common benchmark dataset

in computer vision containing labeled grayscale images from

handwritten digits. Dataset labels range from “0” to “9”.



Algorithm 4 Client identification & Backdoor

1: Input: Unidentified clients’ representatives Drep. Target class ct.
Source class cs. GAN generated datasets DGAN . Poisoned data
rate ε.

2: Output: Backdoored model Wθ̂ .
3: for each unidentified client representative pair x, x′ ∈ Drep :

x �= y do
4: SNN(x, x′) � Similarity calculation as in Section IV-E

5: Define: uv � Define a victim client
6: D̂train ← backdoor(cs, ct, D

v
GAN , ε)

7: Wθ̂ ← train(D̂train, uv)
8: Send Wθ̂ to victim client v.

EMNIST is a grayscale dataset containing handwritten char-

acters of the alphabet containing 26 classes of images. F-

MNIST is a grayscale dataset containing ten types of clothing.

Every dataset contains 70 000 28×28×1 grayscale samples,

60 000 for training, and 10 000 for the test set. CIFAR-100

dataset consists of 60 000 32×32 color images in 100 classes

with 600 images per class for the training set and 10 000

samples for the test set.3 Our selection of datasets allows us

to consider standard settings and investigate scenarios with

different number classes.

B. FL Network Settings

For MNIST, F-MNIST, and EMNIST datasets, the model

is a convolutional neural network (CNN), with three convo-

lutional layers and one fully connected, with stochastic gra-

dient descent, LeakyRelu as an activation function, and batch

normalization in each layer except the last. Experimentally

set training settings are shown in Table I. The architecture

is shown in Table II, and it is a commonly used convolution

network for image classification tasks [40]. For the CIFAR-

100 dataset, we use VGG11 with batch normalization [36]

architecture, and we use transfer learning from pretrained

weights from ImageNet1K [12] by freezing the convolutional

layers during training.

TABLE I: Training settings.

Dataset LR Momentum
Local
Epoch

FL
Epoch

No. of
Clients

No. of
Classes

MNIST 0.1 0.9 2 50 5 10
F-MNIST 0.00001 0.0 1 200 5 10

EMNIST 0.01 0.9 2 200/30† 13 26
CIFAR100 0.001 0.9 1 23 10 100

† represents the number of epochs for Non-IID/IID.

After training, with the Non-IID setting, the network

achieves 95% accuracy on MNIST, 78% on F-MNIST, 80% on

EMNIST, and 65% on CIFAR-100, see Figures 10b, 11b, 12b,

and 13b in Appendix VIII.4 Regarding the IID setting, the

model reaches better results, 99% on MNIST, 80% on F-

MNIST, 88% on EMNIST, and 76% on CIFAR-100, see

Figures 10a, 10a, 12a, and 13a in Appendix VIII. Models

are trained over non-colluding (Non-IID) or overlapping (IID)

3We upscale CIFAR-100 images to 128×128 to improve training quality.
4Results are averaged over ten executions.

TABLE II: CNN architecture.

Layer Out Shape # Param

Conv2D (None, 64, 14, 14) 640
LeakyReLu (None, 64, 14, 14) -

Conv2D (None, 128, 7, 7) 73 856
BatchNorm2D (None, 128, 7, 7) 256

LeakyReLu (None, 128, 7, 7) -
Conv2D (None, 256, 3, 3) 295 168

BatchNorm2D (None, 256, 3, 3) 512
LeakyReLu (None, 256, 3, 3) -

Linear (None, 10†) 23 050

Total 393 482

† “10” changes with the number of classes.

labeled data and evaluated with a test dataset containing all

the labels. As epochs progress, models perform better over the

test set, acquiring properties from other datasets.

For the design of the GAN, we follow the deep convo-

lutional GAN architecture presented by Radford et al. [31].

For MNIST, F-MNIST, and EMNIST datasets, the gener-

ator is composed of 4 deconvolutional layers with batch

normalization and ReLu activation functions followed by a

tanh activation, see Table III. The discriminator has four

convolutional layers with batch normalization and Leaky ReLu

activation functions with a sigmoid function in the last layer;

see Table IV.

For CIFAR-100, the generator has five deconvolutional

layers instead of four, with batch normalization and ReLu

activation functions followed by a tanh. The discriminator also

contains five convolutional layers with batch normalization and

Leaky ReLu activation functions followed by a sigmoid.

The discriminator is initialized with the weights of the

client’s model for generating client-specific data. Precisely, the

weights of the convolutional layers are assigned to the discrim-

inator. During training, the generator creates fake images that

the discriminator has to differentiate from the actual ones.

We train the GAN for 950 epochs in the CIFAR-100 dataset

and 1 000 epochs for the rest of the datasets. The LR is set

to 0.002, and Adam is used as the optimizer, as suggested

in [31]. Using the global model at a certain epoch, the attacker

generates 5 000 labeled images per client (Figure 4) that would

be used in the shadow training.

C. Shadow Network Training Settings

A shadow network replicates the original FL network intro-

duced in Section IV-B and utilizes the same hyperparameters

as in Section V-B. The shadow network contains shadow

clients and shadow datasets. Shadowing the FL network allows

the attacker to gain white-box access to the entire training

procedure. Shadow clients own shadow datasets, i.e., the

synthetic dataset generated previously containing 5 000 data

samples. Shadow clients train their shadow models and upload

them to the shadow server. The attacker extracts each shadow

model representative and matches them with a shadow client

at every epoch. Since the shadow models are trained with

synthetic data, their shadow models’ accuracies are lower than



(a) Epoch 1 MNIST. (b) Epoch 1 F-MNIST. (c) Epoch 1 EMNIST. (d) Epoch 1 CIFAR-100.

(e) Epoch 1 000 MNIST. (f) Epoch 1 000 F-MNIST. (g) Epoch 1 000 EMNIST. (h) Epoch 950 CIFAR-100.

Fig. 4: GAN generated MNIST, F-MNIST, EMNIST, and CIFAR-100 images at different epochs.

TABLE III: Generator architecture.

Layer
# Channels

CIFAR-100 Others
ConvTranspose2D (None, 512, 4, 4) (None, 256, 64, 64)

BatchNorm2D (None, 512, 4, 4) (None, 256, 64, 64)
ReLu (None, 512, 4, 4) (None, 256, 64, 64)

ConvTranspose2D (None, 256, 8, 8) (None, 128, 7, 7)
BatchNorm2D (None, 256, 8, 8) (None, 128, 7, 7)

ReLu (None, 256, 8, 8) (None, 128, 7, 7)
ConvTranspose2D (None, 128, 16, 16) (None, 64, 14, 14)

BatchNorm2D (None, 128, 16, 16) (None, 64, 14, 14)
ReLu (None, 128, 16, 16) (None, 64, 14, 14)

ConvTranspose2D (None, 64, 32, 32) -
BatchNorm2D (None, 64, 32, 32) -

ReLu (None, 64, 32, 32) -
ConvTranspose2D (None, 3, 64, 64) (None, 1, 28, 28)

Tanh (None, 3, 64, 64) (None, 1, 28, 28)

TABLE IV: Discriminator architecture.

Layer
# Channels

CIFAR-100 Others
Conv2D (None, 64, 32, 32) (None, 64, 14, 14)

LeakyReLu (None, 64, 32, 32) (None, 64, 14, 14)
Conv2D (None, 128, 16, 16) (None, 128, 7, 7)

BatchNorm2D (None, 128, 16, 16) (None, 128, 7, 7)
LeakyReLu (None, 128, 16, 16) (None, 128, 7, 7)

Conv2D (None, 256, 8, 8) (None, 256, 3, 3)
BatchNorm2D (None, 256, 8, 8) (None, 256, 3, 3)

LeakyReLu (None, 256, 8, 8) (None, 256, 3, 3)
Conv2D (None, 512, 4, 4) -

BatchNorm2D (None, 512, 4, 4) -
LeakyReLu (None, 512, 4, 4) -

Conv2D (None, 1, 1, 1) (None, 1, 1, 1)
Sigmoid (None, 1, 1, 1) (None, 1, 1, 1)

the actual models. However, the shadow models’ accuracy is

irrelevant and is just used to extract identified representatives.

After this process, the attacker owns a dataset of shadow model

representatives.

D. Triplet SNN Training Settings

Each model of the SNN is composed of three fully con-

nected layers with dropout layers between them. This simple,

yet effective design, grants excellent performance with low

amounts of data. More complex models could easily overfit.

Furthermore, we require triplet mining to improve the quality

of the network. The network inputs are an anchor, a positive,

and a negative 8 192-dimensional samples for the CIFAR-100

use case and 2 304-dimensional samples for the rest of the

cases. The online triplet mining procedure selects the best

triplet combination, being the anchor and the positive sample

representatives from the same client, while the negative is from

another client.

The outputs from the last layers are embedded in a five-

dimensional space (experimentally set as a trade-off between

network complexity and data dimensionality) and sent to a dis-

tance computing layer that calculates the Euclidean distance.

After training, given two inputs, the SNN yields values close to

0 if they are similar and close to 1 otherwise. Our experiments

show the network reaches an accuracy of 97% and IID and

80% with Non-IID for MNIST, 80% and IID and 78% with

Non-IID for F-MNIST, 90% and IID and 88% with Non-IID

for EMNIST, after 20 epochs, α 0.2, and an LR of 0.0001, with

Adam as the optimizer. For the CIFAR-100 case, we train the

SNN for 100 epochs, achieving an accuracy of 85% in the IID

case and 89% in the Non-IID case. We can observe a slight

degradation in the SNN accuracy with IID data caused by the

high similarity between models.

E. Backdoor Attack Settings

As stated before, the backdoor generation function is inde-

pendent of our pipeline, allowing the attacker to adapt smartly

to defense mechanisms. To show the attack’s modularity,

we implement two backdoors: BadNets [21] and input-aware

dynamic backdoors [29].



In BadNets, the trigger is generated by adding white pixels

on top of the original image. To be precise, we used four white

pixels placed in the bottom right corner of the image, as shown

in Figure 2. To make the attack class targeted, we only poison

images of a given source class. Note that the pixel pattern is

the same for all samples.

Regarding the input-aware dynamic approach, the backdoor

pattern is created individually per sample using a trigger

generator network. The generated poisoned samples are shown

in Figure 3. We use the Trojanzoo [30] framework for this

process.

After generating the poisoned training set by some of the

abovementioned methods, the attacker injects the backdoor

into the global model. A value ε controls the amount of

poisoned data in the dataset. A successful backdoor should

maintain high accuracy for both source and target classes,

measured by the metrics defined in Section III-B.

We experimentally test the input-aware dynamic backdoor

in the CIFAR-100 dataset and the BadNets approach in the rest

of the datasets. The input-aware dynamic backdoor is trained

for 100 epochs with a LR of 0.001 and Adam as the SGD
optimizer.

For BadNets, we train for ten epochs, LR 0.0001, SGD as

the optimizer, and momentum 0.9 for MNIST and EMNIST

for both IID and Non-IID settings. For F-MNIST, we retrain

the model for 20 epochs, LR 0.01, SGD as an optimizer, and

momentum of 0.9 for both IID and Non-IID. Using these

hyperparameters, we define two attack scenarios: 0 to 9, where

“0” is the source class and “9” is the target class, and 1 to 7
where “1” is the source and “7” the target class, respectively,

for MNIST. In the F-MNIST dataset, “0” corresponds to “T-

shirt”, “1” to “Trousers”, “7” to “Sneakers”, and “9” to Ankle

boot”. Regarding EMNIST, “0” corresponds to “a”, “1” to “b”,

“7” to “h”, and “9” to “j”.

We further evaluate the attack for different ε values and

validate the attack performance by checking the target class

ASR. For BadNets, we observe high ASR in all settings, see

Figure 5, and almost no degradation in either the source or

target class with respect to the accuracy of the main task

(Figure 6). With IID and non-IID settings, the achieved ASR

in the target class is up to 99% in MNIST, 94% in F-MNIST,

and 96% in EMNIST. However, the ASR is slightly lower in

the input-aware dynamic backdoor in the CIFAR-100 dataset,

achieving up to 84% in Non-IID and 77% in IID; see Figure 7.

Note that the attacker should be careful when setting a

large value of ε, which could cause degradation on the main

task while achieving higher accuracy on the backdoor task.

Furthermore, using a very large ε value such as ε = 1, i.e.,

no source class in the training set, could cause the model

to “forget” the source class, causing the model to perform

poorly in that specific class. This finding could potentially be

used to defend against such targeted attacks, as discussed in

Section VI.

F. Comparison with the Existing Backdoor Attacks in FL

This section compares our results with the state-of-the-art

backdoor attacks in FL. Before discussing the results, it is

important to note that none of the existing methods target a

single client; we try our best to find comparable results.

Sun et al. [39] introduced backdoors attacks in FL, where a

subset of clients are chosen as attackers who train their model

on poisoned data. They used a CNN model and EMNIST as

the dataset, similar to ours. Despite training with a different

number of clients, more epochs, and different LR, we still

achieve similar results on the main and backdoor task, up to

80% ASR, and less than 1% degradation on the main task.

Since backdoor models have a substantially larger norm than

non-infected models, they test their attack against a norm

threshold as a defense, drastically reducing the ASR while

maintaining high accuracy on the main task.

Wang et al. [43] investigated the same threat in FL in

the image and text domains. The authors leverage edge
case samples—data pieces that rarely appear in the training

dataset—as candidates for injecting the backdoor. They evalu-

ate their attack against different existing techniques, bypassed

by a projected gradient descent attack or clipping the norm

of the model. Without defenses, despite the use of a different

dataset (CIFAR-10 with some added edge case samples), they

achieve comparable accuracy on the main (99%) and backdoor

accuracies (80%).

Lastly, DBA [52] is a distributed attack that separates the

triggers into pieces and shares each with the attackers in the

FL network. At the same epochs, the attackers will share the

poisoned model—trained on a poisoned dataset containing the

trigger piece—merging the trigger pieces at aggregation. The

result is a fully backdoored model, more stealthy than other

centralized backdoor attacks. Their attack achieves 91% ASR

on the MNIST dataset, with the trigger placed at the upper

left corner, similar to our approach.

VI. DEFENSES

In this section, we explain the state-of-the-art defense mech-

anisms against backdoor attacks and evaluate and discuss their

effectiveness and applicability against our attack.

A. Generic Defense Methods

To prevent backdoor attacks, several defense mechanisms

have been developed recently. Specifically for centralized ML,

dataset inspection techniques analyze the training set to re-

move outliners, assuming that the poisoned samples compose

a small separate cluster [8]. Similarly, Neo [41] generates

different variants of the input sample, masking the dominant

color, and checks the attack success rate for every pixel in each

variant. The model is flagged as malicious if the attack success

rate exceeds some threshold. STRIP [18] perturbs the samples

by adding different patterns and observing the randomness

of the model’s outcome, which measures its entropy, and

can detect if a model is poisoned or not. Dataset inspection

defenses do not hold for FL settings, where the datasets are

private; thus, we do not consider them for our experimentation.



Fig. 5: ASR on the target class under different settings.

Fig. 6: Accuracy degradation (%) on the target and source classes in a clean test set under different settings.



Fig. 7: ASR in the CIFAR-100 dataset under different settings.

Neural Cleanse [42] and ABS [25] defend against backdoor

attacks using an optimization method to find the smallest

perturbation that causes the model to behave abnormally.

Since both defense mechanisms work similarly, in this work,

we implement the Neural Cleanse defense mechanism and

evaluate its effectiveness against our attack. Neural Cleanse

is based on the intuition that a poisoned model requires much

less modification to cause misclassification into the trigger

label than the rest. Iteratively, Neural Cleanse creates the

same number of potential triggers as classes in the model,

requiring minimal pixel changes to cause misclassification.

Subsequently, an outline detection algorithm selects smaller

triggers than the rest as malicious, assigns an anomaly score,

and successfully reconstructs the target label and trigger. The

authors suggest using “2” as a threshold to find malicious

labels.

We implement this defense against our attack using Tro-
janzoo [30] for the BadNets attack, which has to be slightly

modified to support source class targeted backdoors. However,

the input-aware dynamic backdoor is not tested again on Neu-

ral Cleanse since the triggers are uniquely generated for each

sample, preventing the reconstruction performed by Neural

Cleanse [29]. We set up Neural Cleanse with the suggested

hyperparameters and set it as default in the Trojanzoo imple-

mentation. We observe that Neural Cleanse cannot identify the

target class as malicious, i.e., classes with an anomaly score

greater than “2”, in none of our attack settings (Figure 8). The

attack reports primarily false positives, assigning high anomaly

scores to several classes, sometimes even not including the

targeted one. We observe that this effect is due to fixing the

source class in our attack, given the intuition provided by the

authors of Neural Cleanse: “Our key intuition of detecting
backdoors is that in an infected model, it requires much
smaller modifications to cause misclassification into the target
label than into other uninfected labels” [42]. In attacks where

the source class is not fixed, all the classes are converted

to the target class, thus making the above statement true.

However, when only a single class is used to trigger, only small

modifications to the input of the source class make it easier to

cause misclassification in the target model. Therefore, we can

conjecture that: “In an infected model, detecting backdoors
in an infected model requires much smaller modifications to

cause misclassification into the target label from the source
class than into other uninfected labels or other classes distinct
from the source”.

B. Defense Methods Specific to the FL Setting

FL specific methods, e.g., Krum [4], FoolsGold [16], Baf-
fle [2], CRLF [51], and Fu et al. [15] are adopted by the

entire network and consider several assets of it. Krum is a

robust aggregation mechanism that allows training even with

colluding Byzantine clients in the network; using a majority-

based scheme, aggregate the models that are closer, i.e., more

similar. On the same basis, FoolsGold uses cosine similarity

between models to discard dissimilar ones. The intuition

is that malicious clients collaborating to achieve the same

goal have similar cosine models, which differ from honest

clients. Regarding our threat model, assuming that the server

is malicious, defenses that require server participation are not

applicable to our settings, i.e., the FL network cannot assume

that those will be implemented. Furthermore, the attack is not

launched from the client, which is always sharing an honest

model.

Similarly, Baffle defends against backdoor attacks by a

feedback-based voting mechanism, where every client tests

their model with their dataset and submits the results to the

server. Thus, the server expects an incremental improvement

in accuracy. If most clients report a negative impact on the ac-

curacy, the global model is flagged as malicious. This defense

does not work on our attack setting since only one client is

backdoored and would report that the accuracy has lowered.

However, the majority of clients would report high accuracy

since they are not backdoored, causing a false negative. On

the same basis, Fu et al. [15] developed a robust aggregation

algorithm using residual-based reweighting, which defends

against backdoor attacks. This defense mechanism does not

apply to our setup since the server supposed to aggregate with

the new weighting system is malicious, and the clients cannot

validate the correctness of the weighted aggregation.

Xie et al. [51] developed a clipping and smoothing method

to defend against backdoor attacks in FL named CRLF. They

theorized that norm clipping the model’s weights at every

epoch and adding Gaussian noise during training time in

combination with randomized parameter smoothing at test

time could prevent backdoors. We test this defense against our

attack by cleanly training a CNN model for the MNIST and

EMNIST datasets, keeping the same setting as in our approach,

and for defense, we set σ = 0.01 to generate 1 000 smoothed

models and error tolerance of α = 0.01, the maximum norm

at 100 and the clipping threshold at 15. After applying the

smoothing, we did not observe any significant reduction, i.e.,

less than 1%, in the ASR; see Figure 9 in Appendix VIII. Our

experiments show that smoothing by itself is not successful

in preventing backdoor attacks. However, clipping cannot be

applied since it requires an honest server, which cannot be

guaranteed in our settings.



Fig. 8: Anomaly detection of different attacks using Neural Cleanse [42].

C. Discussion

We tested our attack against the state-of-the-art defenses,

and we now briefly discuss two potential evasion techniques

against our attack and the limitations of our attack.

1) Backdoor models slightly degrade the accuracy of the

model. In our approach, since just a subset of clients is

backdoored, comparing the accuracy of every model will

create inconsistency. Defenses following that approach

from [45] assume that the server is trusted, which does

not hold for our attack. However, adapting the defense to

be executed by a trusted third party could be a feasible

defense mechanism.

2) Differential privacy is widely used to prevent inference

attacks [46]. Adding noise to the model’s weights affects

the reconstructed data by model inversion attacks, making

the obtained data noisy. Since our attack relies heavily on

reconstructing clients’ datasets, this defense could make

it difficult to launch our attack.

Lastly, our attack is subject to some limitations. First, the

attack is costly both in time and computational resources.

Therefore, an attacker who lacks these may not be able to

perform the attack. Second, despite many attacks considering

the server as malicious, it could be a stronger assumption than

just assuming a malicious client. Therefore, our attack could

not be implemented in scenarios where the server’s trust is

guaranteed.

VII. CONCLUSIONS & FUTURE WORK

This paper studies the viability of client-targeted backdoor

attacks and demonstrates the high performance of the attack.

The first phase of our proposal investigated the creation of

client data through a model inversion attack. The second part

combines similarity matching and different backdoor tech-

niques to target a single client in an FL network. Our findings

suggest that the combination of model inversion attacks and

backdoors is a powerful duple, laying the groundwork for new

threats. It also demonstrates that the client-targeted backdoor

attack poses a real threat to an FL system, highlighting the

importance of further research and proposing specific defense

strategies against them. Similarly, state-of-the-art defenses



either fail to defend our attack or do not apply to the setup.

Therefore, we find that developing defense mechanisms that

consider client-specific backdoors is necessary.

The generalizability of our results is subject to certain lim-

itations. For instance, broader experimentation with different,

more complex models, datasets, and numbers of clients is

a natural progression of this work. Nevertheless, this study

reinforces the idea that an attacker can cause severe model

degradation in a client-targeted manner. Furthermore, we un-

ravel two research directions to be addressed in the future. The

first one simplifies the attack’s time and computational com-

plexity and makes it suitable for a broader range of setups. The

second is to relax the defined assumptions, thus empowering

the attack and adapting it to more realistic scenarios. These

findings could lead the research toward performing a client-

targeted backdoor where a client is an attacker.
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VIII. ADDITIONAL EXPERIMENTAL RESULTS

Figure 9 represents the results of the backdoor attack after

smoothing is applied as a defense mechanism. The experimen-

tation shows negligible degradation in accuracy.

Figures 10, 11, 12, and 13 show the accuracy of training on

the test set for MNIST, F-MINST, EMNIST, and CIFAR-100

respectively.

Fig. 9: Accuracy variation after smoothing for ε = 0.1 MNIST

1→ 7 setting.

(a) MNIST test accuracy with IID data.

(b) MNIST test accuracy with Non-IID data.

Fig. 10: CNN averaged testing accuracy for MNIST.



(a) F-MNIST test accuracy with IID data. (b) F-MNIST test accuracy with Non-IID data.

Fig. 11: CNN averaged testing accuracy for F-MNIST.

(a) EMNIST test accuracy with IID data. (b) EMNIST test accuracy with Non-IID data.

Fig. 12: CNN averaged testing accuracy for EMNIST.

(a) CIFAR-100 test accuracy with IID data. (b) CIFAR-100 test accuracy with IID data.

Fig. 13: VGG11 with BN averaged testing accuracy for CIFAR-100.


