
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THEORETICAL INSIGHTS INTO FINE-TUNING ATTEN-
TION MECHANISM: GENERALIZATION AND OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs), built on Transformer architectures, exhibit re-
markable generalization across a wide range of tasks. However, fine-tuning these
models for specific tasks remains resource-intensive due to their extensive param-
eterization. In this paper, we investigate two remarkable phenomena related to
the attention mechanism during the fine-tuning of LLMs. The first phenomenon,
termed “Unequal Importance of Attention Matrices,” highlights the impact of fine-
tuning different weight matrices. It shows that optimizing the Wv matrix yields
significantly better performance than optimizing the Wk matrix. Fine-tuning only
the Wq and Wv matrices is computationally efficient while delivering results
comparable to, or even better than fine-tuning all three matrices (Wq , Wk, and
Wv). The second phenomenon, “Attention Matrices with Customized Learning
Rate Leads to Better Convergence,” emphasizes the importance of assigning dis-
tinct learning rates to these matrices. Specifically, a higher learning rate for the
Wv matrix compared to Wq and Wk accelerates convergence and improves per-
formance. Building on these insights, we propose a new strategy that improves
fine-tuning efficiency in terms of both storage and time. Experimental results on
benchmark datasets validate the effectiveness of this approach, supporting our the-
oretical findings. Our analysis lays the theoretical groundwork for configuring and
improving lightweight algorithms in LLMs fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) are often built on Transformer architectures [43] and possess a
large number of parameters, enabling them to generalize across a broad range of general tasks [43,
27, 42, 8, 31]. However, achieving optimal performance on specific tasks typically necessitates
fine-tuning these pre-trained models. Despite the formidable capabilities of LLMs, the fine-tuning
process is resource-intensive, requiring significant computational power, storage, and time due to
the large scale of model parameters involved. Fine-tuning all the parameters of a large language
model, known as full fine-tuning, is highly computationally expensive. To reduce the computational
cost, various parameter-efficient fine-tuning (PEFT) methods have been proposed [7, 19, 23, 24, 20],
which only fine-tune a small number of (extra) model parameters.

A fundamental component of transformers is the attention mechanism, particularly the interactions
among the query matrix Wq , the key matrix Wk, and the value matrix Wv . During the fine-tuning
of LLMs involving the attention mechanism, two interesting phenomena have been observed: (1)
Unequal Importance of Attention Matrices—optimizing the Wv matrix is pivotal for enhancing per-
formance, significantly more so than adjustments to the Wk matrix, which exhibit limited impact
on the outcomes. Additionally, fine-tuning only the Wq and Wv matrices often yields results that
are comparable to or surpass those achieved by fine-tuning all three matrices Wq , Wk, and Wv ,
which also reduces the number of tunable parameters by approximately 1/3, offering computational
benefits (Section 3). (2) Attention Matrices with Customized Learning Rate Leads to Better Conver-
gence—using the same learning rate for Wq&Wk and Wv is not optimal for efficient convergence.
In fact, it is essential to apply distinct learning rates for the Wq , Wk, and Wv components to ensure
optimal fine-tuning performance. Specifically, the learning rate for Wv should generally be higher
than that for Wq and Wk to facilitate efficient convergence (Section 4).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While certain empirical guidelines, such as the original Low-Rank Adaptation (LoRA) [20], explore
which weight matrices in transformers are suitable for the application of LoRA, comprehensive the-
oretical analyses of these phenomena are still limited. This includes aspects such as selecting appro-
priate weight types for fine-tuning and optimizing learning rate settings. Reflecting on the attention
equation itself (Section 2): (1) In linear algebra, two matrices multiplied without an intermediate
activation can be equivalent to a single matrix. Some studies [33, 40, 4] often treat Wq and Wk as
a single unit (Wqk = WqW

T
k), however, the benefits of fine-tuning Wq&Wv alone have yet to be

further clarified. (2) Cosidering the scenario where the values of Wq , Wk, and Wv approach zero,
the gradients of Wq&Wk tend to diminish towards zero. In contrast, the gradient of Wv remains
non-zero due to the influence of softmax normalization. Driven by the above motivations, this paper
delves into the issue from the following two perspectives.

• Generalization: advantages of fine-tuning Wq&Wv over Wq,Wk,Wv together. We
perform a thorough theoretical analysis to demonstrate the advantages. To be more specific,
we employ information-theoretic approaches [46, 34, 45, 53] to establish the generalization
bounds of fine-tuning pre-trained models with attention mechanism (See Theorem 1 for
details). This indicates that fine-tuning Wq&Wv instead of Wq,Wk,Wv reduces the
number of parameters, while improving generalization bounds and potentially providing
memory benefits.

• Optimization: convergence analysis of attention mechanism with varying learning
rate settings. To further investigate the aforementioned phenomena, we examine the op-
timization process of the attention mechanism. First, we discuss the learning dynamics in
transformers in Case 1, suggest that Wv may experience instances of inefficient learning
during fine-tuning process for downstream tasks. This naturally leads to the hypothesis
that accelerating the learning of Wv in the early stages could potentially induce Wk and
Wq to begin learning earlier. Additionally, by using scaling arguments for large width-n
networks [49, 13], we illustrate (Theorem 2) that the feature learning of attention mecha-
nism is efficient when the learning rate for Wv should be generally much larger than that
of Wq&Wk in fine-tuning.

Building on our experimental and theoretical insights, one can develop new algorithms to improve
the effectiveness (e.g., storage, and time) of fine-tuning. Experimental results for our strategy (in
Section 5) on benchmark datasets [44] and open source pre-trained models [29, 2] verify that the
method can visibly influence fine-tuning efficiency1. We do not make direct comparisons with var-
ious parameter-efficient fine-tuning methods, as our strategy is primarily intended to demonstrate
how theoretical analysis can effectively guide experimental procedures.

2 PRELIMINARIES AND BACKGROUND

In this section, we first describe the core components of our study by reviewing some basic notations.
The transformer model [43] serves as the backbone of most state-of-the-art pre-trained models. For
clarity, we briefly outline its key equations, focusing on the self-attention function, as follows.

Self-attention. Given a sequence of m vectors C ∈ Rm×din over which we would like to perform
attention and a query vector x ∈ Rdin , that is, the input is [C,x] ∈ R(m+1)×din . The conventional
attention function can be expressed as2:

Attn(xWq,CWk,CWv) = softmax
(
xWqW

T
k C

T

√
dout

)
CWv, (1)

where Wq ,Wk,Wv ∈ Rdin×dout are query, key and value (projection) matrices.

A unified framework for parameter-efficient fine-tuning. Building on the work of [16], we con-
sider a unified framework that establishes connections among various parameter-efficient fine-tuning
methods. Specifically, we reinterpret these methods as modifications applied to specific hidden states

1Code is anonymized at https://anonymous.4open.science/r/LightweightAtt-6899/
2For simplicity, we focus on the last vector of input in a single-head self-attention. Our analysis is readily

generalizable to multi-head self-attention.

2

https://anonymous.4open.science/r/LightweightAtt-6899/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

within pre-trained models, the composition function:

h← l1h+ l2∆h, (2)

where l1, l2 are coefficients, h is denoted as the hidden representation to be directly modified and
∆h is a modification vector. Additionally, h and x can represent the attention output and input
respectively. Here, we will present two special cases:

• LoRA. LoRA [20] injects trainable low-rank matrices into transformer layers to approx-
imate the weight updates. Instead of directly adjusting the full weight matrix W ∈
Rdin×dout , LoRA represents its update with a low-rank decomposition W + ∆W =
W + AB, where A ∈ Rdin×r,B ∈ Rr×dout are tunable parameters. For a specific
input x, LoRA modifies the projection output h as (where s ≥ 1 is a tunable scalar hyper-
parameter):

h← h+ s∆h, ∆h := xAB. (3)

• Prefix tuning. Prefix tuning [24] prepends r tunable prefix vectors to the keys and values
of the attention mechanism at every layer. Specifically, two sets of prefix vectors Pk,Pv ∈
Rr×dout are concatenated with the original key CWk and value CWv , attention is then
applied to the prefixed keys and values as3:

h← (1− λ(x)h+ λ(x)∆h, ∆h := softmax(xWqP
T
k)Pv ≜ softmax(xA)B, (4)

where λ(x) =
∑

i exp(xWqP
T
k)i∑

i exp(xWqPT
k)i+

∑
j exp(xWqWT

k CT)j
is a scalar that represents the sum of

normalized attention weights on the prefixes. We derive a detailed equivalent form of Prefix
tuning to establish its connection with LoRA in Appendix B.1.

Remark 1. By defining A = WqP
T
k ,B = Pv in Eq.(4), we can establish a connection with

LoRA in Eq.(3). Notably, if we replace the softmax attention with linear attention here, the two
are equivalent to some extent. Intuitively, in the attention mechanism, A (WqP

T
k) is responsible

for generating attention scores, while B (Pv) utilizes these attention scores to produce the target
content. Therefore, during fine-tuning, query, key, and value are likely to exhibit varying degrees of
importance. This may also provide theoretical insights for recent works [53, 12], which empirically
observed an asymmetry where the project-down matrix A is responsible for extracting features from
the input, while the project-up matrix B utilizes these features to generate the desired output in
LoRA fine-tuning.

Θ Notation. For the convergence analysis, we adopt the following notation to describe the asymp-
totic behavior as the width n increases, similar to those in [49, 13]. Given sequences cn ∈ R and
dn ∈ R+, we write cn = O(dn) and cn = Ω(dn) to mean cn < κdn or cn > κdn, respectively,
for some constant κ > 0. We denote cn = Θ(dn) when both cn = O(dn) and cn = Ω(dn) hold,
implying that cn and dn grow at comparable rates. For vector sequences cn = (cin)1≤i≤k ∈ Rk

(for some k > 0), we write cn = O(dn) when cin = O(din) for all i ∈ [k], and analogous notation
applies for other asymptotic bounds. Finally, when the sequence cn is a vector of random variables,
convergence is understood to refer to convergence in the second moment (i.e., L2 norm).

3 ADVANTAGES AND GENERALIZATION ANALYSIS

This section, we show our first interesting observation (Unequal Importance of Attention Matrices)
in fine-tuning the attention mechanism and the storage benefit of fine-tuning only Wq and Wv in
Section 3.1. Afterwards, we give a mutual information based generalization bounds of fine-tuning
only Wq and Wv in Section 3.2, which provide a better generalization error.

3.1 EMPIRICAL ADVANTAGES OF FINE-TUNING ONLY QUERY,VALUE MATRICES

To explore the Unequal Importance of Attention Matrices, we focus our study on adapting only
the attention weights for downstream tasks, while freezing the other modules to ensure simplicity

3Without loss of generalization, we ignore the softmax scaling factor for ease of notation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and parameter efficiency. Furthermore, we investigate the impact of adapting different types of
attention weight matrices in a Transformer, as outlined below. We present our empirical results
using LoRA to fine-tune a set of language models (Roberta-base [29] and Llama3.1-8b [2]) across
various benchmarks [44]. Further details on the experimental setup and additional empirical results
can be found in Appendix C.1.

Table 1 provides a detailed comparison of the impact of fine-tuning different weight matrices
(Wq,Wk,Wv) across various rank values r and weight update strategies in LoRA fine-tuning on
tasks like SST2, QNLI, QQP, and MNLI. As seen in the table, we can see a clear trend where solely
updating the Wv matrix outperforms just learning the Wq,Wk matrix. Interestingly, the combina-
tion of fine-tuning both Wq and Wv often leads to performance that matches or even exceeds that
achieved by fine-tuning all three matrices Wq,Wk, and Wv . This pattern is consistently observed
across various tasks and rank values, further emphasizing the importance of these two matrices over
Wk during fine-tuning.

Computational benefits. Here, we show that the reduced amount of adapted parameters by
(roughly) 1/3 provides computational gains. The key benefit of parameter-efficient method is to
save memory during training, storage and communication [26]. Fine-tuning Wq&Wv alone as op-
posed to both Wq&Wv and Wk reduces the number of parameters by 1/3, when the dimensions
of Wq , Wk, and Wv are the same.

Table 1: Performance comparison across different r values and weight types. To enable a fair
comparison, we initialize the weights for all tasks with the original pretrained weights. Test accuracy
of Roberta-base (R) and Llama3.1-8b (L) fine-tuning on SST2, QNLI, QQP, MNLI, with sequence
length T = 128 and half precision (FP16). All values are averaged over 3 random seeds. The best
result is shown in bold, the second best result is shown in underline, and the third best result is
shown with double underlines.

Weight Type Wq Wk Wv Wq,Wk Wq,Wv Wq,Wk,Wv

SST2(R)
r = 4 0.904 0.902 0.913 0.919 0.920 0.920
r = 8 0.914 0.906 0.918 0.915 0.919 0.922
r = 16 0.907 0.905 0.916 0.917 0.921 0.923

QNLI(R)
r = 4 0.854 0.835 0.878 0.866 0.888 0.887
r = 8 0.857 0.841 0.875 0.866 0.889 0.895
r = 16 0.854 0.840 0.875 0.867 0.890 0.890

QQP(R)
r = 4 0.812 0.804 0.828 0.823 0.838 0.843
r = 8 0.812 0.806 0.828 0.823 0.840 0.844
r = 16 0.812 0.804 0.831 0.823 0.839 0.844

QQP(L) r = 8 0.864 0.845 0.865 0.866 0.874 0.874
r = 16 0.864 0.845 0.869 0.867 0.874 0.874

MNLI(R)
r = 4 0.748 0.733 0.807 0.772 0.820 0.828
r = 8 0.749 0.733 0.809 0.778 0.820 0.827
r = 16 0.750 0.734 0.810 0.780 0.824 0.828

MNLI(L) r = 8 0.802 0.660 0.862 0.814 0.871 0.871
r = 16 0.803 0.663 0.863 0.815 0.871 0.871

Why fine-tune Wq&Wv instead of Wk&Wv . In Eq.(1), the conventional attention function in-
cludes a term xWqW

T
k . (1) In linear algebra, two matrices multiplied without an intermediate

activation can be equivalent to a single matrix. Therefore, the effects of fine-tuning Wq&Wv and
Wk&Wv are theoretically expected to yield similar outcomes (See the supplementary experimen-
tal results provided in Appendix x). (2) Wk operates only on the transformed representation matrix
xWq produced by the preceding transformation. Consequently, it loses direct access to the original
representation information. This observation is consistent with the findings in [35]: the information

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

representation in LoRA also exhibits significant limitations, as in ∆h = xAB, where B similarly
lacks access to the original representation information.

3.2 INFORMATION-THEORETIC GENERALIZATION BOUNDS

In the previous part, we establish that the Unequal Importance of Attention Matrices among Wq ,
Wk, and Wv during fine-tuning. Some studies [33, 40, 4] often treat Wq and Wk as a single unit
(Wqk = WqW

T
k), however, the benefits of fine-tuning Wq&Wv alone, rather than fine-tuning

Wq&Wv , and Wk together, have yet to be further clarified. Therefore, we will further analyze this
issue from an information-theoretic generalization perspective.

Recently, information-theoretic generalization bounds [46, 37, 39, 45] have been introduced to ana-
lyze the expected generalization error of learning algorithms. A key benefit of these bounds is that
they depend not only on the data distribution but also on the specific algorithm, making them an
ideal tool for studying the generalization behavior of models trained using particular algorithms.

Generalization error. We let Z = X × Y be the instance space and µ be an unknown distribution
on Z , specifying random variable Z. Here, X denotes the feature space and Y is the label space.
Suppose one observes a training set SN ≜ (Z1, ..., ZN) ∈ ZN , with N i.i.d. training examples
drawn from µ. In the information-theoretic analysis framework, we letW be the space of hypotheses
related to the model, and a stochastic learning algorithm A which takes the training examples SN

as its input and outputs a hypothesis W ∈ W according to some conditional distribution QW |SN
.

Given a loss function ℓ : W ×Z → R+, where ℓ(w,Z) measures the “unfitness” or “error” of any
Z ∈ Z with respect to a hypothesis w ∈ W . We take ℓ as a continuous function and assume that ℓ
is differentiable almost everywhere with respect to w. The goal of learning is to find a hypothesis w
that minimizes the population risk, and for any w ∈ W , the population risk is defined as Lµ(w) ≜
EZ∼µ[ℓ(w,Z)]. However, since only can partially observe µ via the sample SN , we instead turn to
use the empirical risk, defined as LSN

(w) ≜ 1
N

∑N
i=1 ℓ(w,Zi). Then the expected generalization

error of A is defined as
ẽrror(A) ≜ EW,SN

[Lµ(W)− LSN
(W)],

where the expectation is taken over (SN ,W) ∼ µN ⊗QW |SN
.

Consider the following variations of fine-tuning algorithms: tuning both Wk and Wq&Wv matrices
(as in classic attention mechanism in fine-tuning), tuning only Wq&Wv:

Definition 1 (Fine-tuning algorithms). Recalling A unified framework for parameter-efficient fine-
tuning, we can model the fine-tuning process of the attention mechanism as h+∆h = xW+x∆W.
Let W = {Wi}Li=1 be a set of abstract parameter matrices related to a pretrained model, where
each Wi is associated with the parameters Wi

q,W
i
k,W

i
v . The indices 1, ..., L represent the layers

of the model where these parameters are to be fine-tuned. Let I ⊆ {1, ..., L} denote the subset of
layers selected for fine-tuning. Given a fine-tuning training set SN , let r denote the chosen lora-
rank, and assume each tuned parameter is quantized to q bits. Define the following algorithmic
frameworks for selecting an adaptation ∆W = {∆Wi}Li=1 (with other details left open to choice).
(1) AQKV : For each i ∈ I, optimize {Wi

q,W
i
k,W

i
v}i∈I to fit the data SN .

(2) AQV : For each i ∈ I, optimize {Wi
q,W

i
v}i∈I to fit the data SN .

Then we have the following theorem to bound the generalization error using the information-
theoretic generalization framework.

Theorem 1 (Generalization bounds on adapting Wq&Wv and/or Wk). Consider the algorithms of
Definition 1. Assume the loss ℓ(W, Z) is R-subGaussian under (∆W, Z) ∼ P∆W|W × µ. Then,

ẽrror(AQV) ≤
√

4R2

N
qr

∑
i∈I

(din + dout),

ẽrror(AQKV) ≤
√

6R2

N
qr

∑
i∈I

(din + dout),

where Wi
q,W

i
k,W

i
v ∈ Rdin×dout . See Appendix B.2 for a proof.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Remark 2 (Discussion of the advantages). We can evaluate the empirical risk (LSN
) by observing

the model’s performance on the dataset we have. If the generalization error (Theorem 1) is de-
termined, it is at least possible to estimate the population risk (Lµ). This generalization bound
increases with the number of parameters being tuned, which grows as a function of r and the
dimensions of the parameter matrices. In Table 1, we know that with the same r value, fine-
tuning Wq&Wv consistently achieves results comparable to or even surpassing those of fine-tuning
Wq,Wk,Wv . This reduces the number of parameters for the same r, while improving generaliza-
tion bounds and potentially providing memory benefits.

4 CONVERGENCE ANALYSIS IN OPTIMIZATION

In Section 3, we have already demonstrated the generalization performance of the attention mecha-
nism during fine-tuning. Our focus will now shift toward optimizing convergence efficiency. Some
optimization observations have also been reported in previous works [20, 25, 15], such as: Li et al.
[25] provide theoretical analyses of learning dynamics in transformers and observes a roughly two-
stage process of self-attention. Meanwhile, He et al. [15] empirically show that the attention mech-
anism, particularly the value vector, stores the largest amount of memories and has the greatest
influence during fine-tuning. However, there is not yet a satisfactory explanation for why this phe-
nomenon occurs or how it can be effectively leveraged. In this section, we will explore these ques-
tions in more depth.

4.1 AN INSIGHT INTO INEFFICIENT LEARNING FOR VALUE MATRIX

We first discuss the optimization process of attention mechanism in the following simple case.
Case 1. Omitting the scale factor for qualitative analysis in Eq.(1), we obtain:

Attn(xWq,CWk,CWv) = softmax
(
xWqW

T
k C

T
)
CWv.

Intuitively, if Wq,Wk,Wv are initialized as random matrices close to zero and trained simultane-
ously, then in the initial step, ∇Wk

L(∇Wq
L) contains the term Wq(Wk), which is close to 0. By

contrast, ∇Wv
L contains the softmax-normalized attention weights. Therefore, during the initial

steps (in training), Wv intuitively grows at a much faster rate than Wk(Wq).

The work of [25] empirically exhibits Case 1 with an approximately two-stage phenomenon: (1) In
stage 1 (initial steps), the norms of Wk and Wq remain close to zero across all layers, while the
norm of Wv increases significantly, accompanied by rapid changes in its orientation. (2) In stage
2, the norms of Wk and Wq begin to grow significantly, though much later than the Wv matrices.
Briefly, in this case, Wv reaches a certain level of learning during training before Wk and Wq

begin to learn. This suggests that when fine-tuning the model for downstream tasks, there may also
be instances of inefficient learning in Wv . Additionally, is there a fine-tuning strategy that could
facilitate more effective learning for downstream tasks? For instance, accelerating the learning of
Wv in the early stages could potentially induce earlier learning in Wk and Wq .

Next, we present the second interesting phenomenon Attention Matrices with Customized Learning
Rate Leads to Better Convergence. We use the General Language Understanding Evaluation (GLUE,
[44]) to evaluate the fine-tuning performance of different fine-tuning strategies, which consists of
several language tasks that evaluate the understanding capabilities of language models. Using LoRA,
we fine-tune Roberta-base from the RoBERTa family [29] and Llama3.1-8b [2] on MNLI, QQP,
QNLI, and SST2 tasks with varying learning rates (ηQK , ηV) to identify the optimal combination.
Other empirical details are provided in Appendix C.1 and we evaluate the LLaMA3.1-8B model
on more complex benchmarks in Appendix C.2.5. We present our empirical results using LoRA to
fine-tune language models, as visualized in the heatmaps (Figure 1 and Figure 2).

In Figure 1 and Figure 2, we observe that (1) test accuracy consistently reaches its maximum for
certain sets of learning rates where ηQK < ηV , outperforming the standard practice of setting ηQK

and ηV equal. (2) More interestingly, the gap between the optimal choice of learning rates overall
and the optimal choice when ηQK = ηV varies across different tasks. This is probably due to the
fact that harder task (like MNLI) requires more efficient feature learning. Additionally, we compare
two optimal learning rate (ηQK , ηV) settings in Figure 2 (Left), the ηV >> ηQK setting has a better
convergence than ηV = ηQK setting in Figure 2 (Right).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

85.1

86.1

86.8

86.6

87.1

MNLI

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

87.0

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

87.5

88.2

89.1

89.389.5

QQP

86.0

86.5

87.0

87.5

88.0

88.5

89.0

89.5

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

90.3

91.4

92.0

92.3

92.5

QNLI

90.0

90.5

91.0

91.5

92.0

92.5

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

93.8

93.9

94.3

93.894.6

SST2

93.0

93.2

93.4

93.6

93.8

94.0

94.2

94.4

94.6

Figure 1: The test accuracy of RoBERTa-base fine-tuning was evaluated over 3 epochs for MNLI,
QQP, and QNLI, and 6 epochs for SST-2, with a sequence length T = 128 and using half-precision
(FP16). The LoRA hyperparameters were set to α = r = 8. All reported values represent the
average results across 3 random seeds. We highlight (1) the best overall accuracy and (2) the values
where ηV /ηQK = 1. These values are shown in red. For better visualization, when accuracy is
lower than a fixed threshold, we set it to threshold.

1e
-6

5e
-6

1e
-5

5e
-5

1e
-4

QK

4e-4
2e-4
1e-4
5e-5
1e-5
5e-6
1e-6

V

37.4
82.7

87.8
90.0

90.5
91.0

91.0
MNLI&Llama3.1

84

86

88

90

0
10

0
20

0
30

0

Step

0.5

1.0

1.5
Tr

ai
ni

ng
 L

os
s

MNLI&Llama3.1

V = 1e 4, QK = 1e 4

V = 2e 4, QK = 5e 6

Figure 2: Left: The test accuracy of Llama3.1-8b fine-tuning was evaluated over 800 steps for
MNLI. Key values like Figure 1 are also shown in red. Right: The training loss over 800 steps
for MNLI fine-tuning on Llama3.1-8b, showing comparison between two optimal learning rate
(ηQK , ηV) settings in Left: (1) with ηV = ηQK (2) with ηV >> ηQK .

It is also important to note that due to limited computational resources in our experiments, we use
a sequence length of T = 128 and fine-tune for only 3 epochs on MNLI and QQP. Therefore, it
is expected that our test accuracies may be lower than those reported by Hu et al. [20], where the
authors fine-tune RoBERTa-base with a sequence length of T = 512 (for MNLI) and for more
epochs (30 for MNLI). We do not include confidence intervals for clearer visualization, however,
the fluctuations remain within acceptable limits. See Figure 2 (Right) for instance. In Appendix C.2,
we provide additional results including the training loss.

4.2 CONVERGENCE ANALYSIS FOR LEARNING RATE

It naturally raises the question of why ηQK and ηV should be set differently. In practice, most state-
of-the-art models have a large width (embedding dimension), making it worthwhile to examine the
training dynamics as the width approaches infinity.

Starting with a Toy setting. Revisiting Definition 1, we have ∆h = softmax(xA)B. In the case
of a linear attention mechanism, we instead have ∆h = xAB. Then consider the following toy
setting

f(x) = x(W ∗ + aT b),

where W ∗ ∈ Rn×1 are the fixed4 pre-trained weights, b ∈ R, a ∈ R1×n are adaptation weights,
x ∈ Rn is the model input (This corresponds to r = 1 in Definition 1). The training goal is to

4Here, we primarily focus on the case of ∆W to provide insightful theoretical results.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

minimize the loss L(θ) = 1
2 (f(x) − y)2 where θ = (a, b) and (x, y) is an input-output datapoint5.

Similar to LoRA, we generally aim to initialize the product aT b to zero, ensuring that fine-tuning
starts from the pre-trained model. This requires at least one of the weights, a (related toWq&Wk)
or b (related toWv), to be initialized to zero. If both are initialized to zero, Wq&Wk learning
cannot occur efficiently in init steps, as discussed in Section 4.1 (More detailed initialization settings
are shown in Appendix B.3).

And we assume that x = Θ(1), meaning that the input coordinates remain of the same order as the
width increases. In the subsequent analysis, we examine how the fine-tuning dynamics evolve as the
model width n increases.

To streamline the analysis, we assume W ∗ = 0, a common simplification that can be applied without
loss of generality. This assumption is implemented by setting ŷ = y − xW ∗. We denote the fine-
tuning step by using subscript t. Let Ut = ft(x)− y, the gradients are then computed as:

∂L
∂at

= xUtbt,
∂L
∂bt

= xaTt Ut.

And at step t with learning rate ηa, ηb > 0, we have

∆ft ≜ ft(x)− ft−1(x)

= − ηa||x||2Ut−1b
2
t−1︸ ︷︷ ︸

δ1t

− ηb(xa
T
t−1)

2Ut−1︸ ︷︷ ︸
δ2t

+ ηaηb||x||2(xaTt−1)U
2
t−1bt−1︸ ︷︷ ︸

δ3t

.

Remark 3. The output update is influenced by three key terms. The first two items δ1t , δ
2
t (order

one in ηa/ηb) represent linear contributions to the update, meaning they result from changes in the
model output when either a is updated with b held constant, or vice versa. The last item δ3t (order
two in ηaηb) corresponds to a multiplicative update that captures the combined effects of changes
in both a and b. As we scale the width6, the desirable feature updates are such that ∆ft = Θ(1),
ensuring they remain unaffected by this scaling (the updates do not explode with width, see x for
more details). Ideally, we aim for both δ1t and δ2t to be Θ(1). If this condition isn’t met, it indicates
that either a or b is not being updated efficiently. For example, if δ1t = o(1), it suggests that as
n → ∞, the model behaves as if a is essentially fixed, with only b being trained. We say that the
feature learning in the attention mechanism is efficient when δit = Θ(1) for i ∈ {1, 2} and all
t > 1, it means that both a and b parameter updates significantly contribute to the change in ft(x).
We will see that when both δ1t and δ2t are Θ(1), the term δ3t is also Θ(1).

Let us assume that we train the model with gradient descent with learning rate ηa = Θ(nca), ηb =
Θ(ncb) for some ca, cb ∈ R. In the study by Yang et al. [49], it is noted that the training dynamics
primarily involve operations such as matrix-vector products and the summation of vectors or scalars.
Given the nature of these operations, it is easy to see that any quantity in the training dynamics should
be of order nγ for some γ ∈ R. We write v = Θ(nγ[v]), for any quantity v in the training dynamics.
When v is a vector, we use the same notation when all entries of v are Θ(nγ[v]) (See Appendix B.4
for the formal definition of γ).

With reference to the method of Hayou et al. [13], we start from the initialization in Starting with
a Toy setting, we have f0(x) = 0. Feature learning of attention mechanism is efficient when
δit = Θ(1) for i ∈ {1, 2} and all t > 1, and ft(x) = Θ(1) for t > 1. This can be interpreted as: ca + 1 + 2γ[bt−1] = 0

(
δ1t = Θ(1)

)
cb + 2γ[xa⊤t−1] = 0

(
δ2t = Θ(1)

)
γ[xa⊤t−1] + γ[bt−1] = 0 (ft−1(x) = Θ(1)) ,

which, after simple calculations, implies that ca + cb = −1. Notice that the above also leads to
the ca + cb + 1 + γ[xa⊤t−1] + γ[bt−1] = 0 (δ3t = Θ(1)). This is only a necessary condition. In
the following section, we will provide theoretical conclusions in the toy model setting that offer
guidance for real-world experiments.

5To simplify the analysis, we assume that the fine-tuning dataset consists of a single sample, though our
analysis can be easily generalized to multiple samples. All conclusions remain essentially valid when (a, b) are
matrices.

6This property is generally satisfied in practice when the model width is large (e.g., n ≈ 800 for Roberta-
base and n ≈ 4000 for Llama3.1-8b).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 2 (Efficient fine-tuning in attention mechanism (Informal)). In the case of Starting with
a Toy setting, with ηa = Θ(n−1) and ηb = Θ(1), we have for all t > 1, i ∈ {1, 2, 3},δit =
Θ(1). In other words, the feature learning of attention mechanism is efficient when ηQK(ηa) =
Θ(n−1), ηV (ηb) = Θ(1). We denote ηV /ηQK as λ. We refer the reader to Appendix B.5 for more
details on the proof.

Remark 4. In practice, Theorem 2 implies that the learning rate for Wv should be generally much
larger than that of Wq&Wk in fine-tuning. We verify that this scaling is valid for general neural
network models in Section 4.1. Naturally, the optimal ratio λ depends on the architecture and the
fine-tuning task through the constants in ‘Θ’. This represents a limitation of the asymptotic results,
as they do not provide insights into how the task and neural architecture influence these constants.
We will further address this issue in our future work.

A summary of the main theoretical analyses. According to the traditional statistical learning view-
point, performance can be defined by the sum of optimization error and generalization error. Our
theoretical analyses in Sections 3 and 4 correspond to generalization and optimization, respectively.
In Section 3 (generalization, storage-friendly), we give Theorem 1 (Information-theoretic genral-
ization bounds), showing that with the same r value, fine-tuning Wq&Wv consistently achieves
results comparable to or even surpassing those of fine-tuning Wq,Wk,Wv . This reduces the num-
ber of parameters for the same r, while improving generalization bounds and potentially providing
memory benefits. In Section 4 (optimization, time-friendly), we discuss the learning dynamics in
fine-tuning attention mechanism, and we illustrate (Theorem 2) that the feature learning of attention
mechanism is efficient when the learning rate for Wv should be generally much larger than that of
Wq&Wk in fine-tuning. Building on our experimental and theoretical insights, one can develop
new algorithms to improve the effectiveness (e.g., storage, and time) of fine-tuning (Example in
Section 5).

5 AN EXAMPLE OF IMPROVING FINE-TUNING METHODS

Based on all our exciting insights, it becomes intuitive to design lightweight attention-based fine-
tuning improvements, particularly for downstream tasks. To illustrate how theoretical analysis ef-
fectively guides experimental procedures, we propose an example method where we freeze the Wk

and fine-tuning the Wq&Wv using different learning rates. This procedure is reported in Figure 5.

How to set the ratio λ? Naturally, as discussed in Remark 4, the optimal ratio λ depends on the
architecture and the fine-tuning task via the constants in Θ in Theorem 2. This is a limitation of
these asymptotic results since they do not offer any insights on how the constants are affected by the
task and the neural architecture. However, we can still employ some heuristic methods, such as: we
can select an appropriate range by conducting a certain amount of experiments, as shown in Figure
1, it seems that a ratio of order 21 − 24 is optimal. Moreover, λ should not be too large; otherwise,
as shown in the MNLI subplot in Figure 1, the model’s performance will collapse.

Experimental setup. We conduct experiments on widely adopted benchmark datasets [44] and
Roberta-base model [29]. We selected two mainstream baselines: Full Fine-tuning, LoRA [20] and
DoRA [28]. Additionally, we adapt only the attention weights for downstream tasks, keeping the
other modules frozen to maintain simplicity and validate the theoretical guidance through experi-
ments. In our experiments, we evaluated the performance for λ values of 2, 4, and 8 (one can also
determine a general optimal ratio through experiments, and even apply different settings across dif-
ferent layers of the model). We report the average results based on 3 random seeds, as shown in
Table 2. The hyperparameter settings for the experiments can be found in Appendix C.1.2 and the
base model performance for each task can be seen in Table 2 and Appendix C.2.2. We also have
added ablation experiments on different models (Mistral-7B [3]) in Appendix C.2.4.

Results. We leverage our theoretical results (Theorem 1 and Theorem 2) to enhance the effi-
ciency of existing fine-tuning methods, such as Full Fine-tune and LoRA, on downstream tasks. As
shown in Table 2, the improved fine-tuning approach not only outperforms the original version but
also significantly reduces the number of parameters. For instance, on the MRPC task, LoRA (QV)
r = 16, λ = 8 (1.77M) achieves better performance compared to Full Fine-tune (QKV) (21.85M)
and LoRA (QKV) r = 16 (2.07M). This series of experiments clearly demonstrates that our theo-
retical insights effectively enhance fine-tuning algorithms, particularly in terms of memory usage

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Comparison of fine-tuning methods across GLUE benchmark. We report results on devel-
opment set, Pearson correlation for STS-B, Matthew’s correlation for CoLA, average accuracy for
MNLI (matched and mismatched), and accuracy for other tasks. The best results on each dataset are
shown in bold and the second best results are shown in underline. The QKV(QV) setting refers to
fine-tuning Wq,Wk,Wv(Wq,Wv). It is noted that the total number of parameters in the Roberta-
base model is 124.65M. λ means ηV = ληQ and r is the LoRA rank, and a larger λ does not
necessarily lead to better performance.

Method Trainable #Param (M) RTE STS-B MRPC CoLA MNLI SST-2 QQP QNLI
Before Fine-tune 0 45.12 -3.18 66.66 1.09 32.95 49.31 44.72 50.81
Full Fine-tune (QKV) 21.85 73.64 90.49 84.55 60.34 86.68 93.23 90.48 92.37
LoRA (QKV) r = 8 1.62 70.76 90.25 85.04 58.03 86.70 93.92 89.15 92.17
LoRA (QKV) r = 16 2.07 70.39 90.25 86.03 58.04 86.78 93.92 89.26 92.18
DoRA (QKV) r = 8 1.06 70.75 90.39 85.78 56.79 86.73 93.58 89.34 92.22
DoRA (QKV) r = 16 1.51 70.40 90.31 86.03 57.81 86.77 93.92 89.30 92.48

Full Fine-tune (QV) λ = 2 14.76 73.53 91.01 86.02 60.57 62.03 93.11 90.56 91.96
Full Fine-tune (QV) λ = 4 14.76 72.29 90.56 87.01 61.88 35.44 91.05 89.81 88.85
Full Fine-tune (QV) λ = 8 14.76 72.29 90.02 88.97 61.86 35.44 84.75 85.93 50.54

LoRA (QV) r = 8, λ = 2 1.48 71.84 90.37 86.02 58.54 86.85 94.03 89.47 92.33
LoRA (QV) r = 8, λ = 4 1.48 75.09 90.83 87.01 59.56 86.95 94.04 90.09 92.86
LoRA (QV) r = 8, λ = 8 1.48 76.13 90.75 88.97 61.88 86.93 93.46 90.01 92.34

LoRA (QV) r = 16, λ = 2 1.77 70.39 90.46 86.03 58.55 86.83 94.38 89.77 92.33
LoRA (QV) r = 16, λ = 4 1.77 76.17 91.05 87.99 60.06 87.19 94.03 90.30 92.73
LoRA (QV) r = 16, λ = 8 1.77 72.92 90.96 89.95 59.31 87.31 93.92 90.43 92.95

DoRA (QV) r = 8, λ = 2 0.90 71.12 90.29 87.01 58.54 87.08 93.96 89.60 92.60
DoRA (QV) r = 8, λ = 4 0.90 75.45 90.82 86.76 60.32 86.98 93.81 90.33 92.97
DoRA (QV) r = 8, λ = 8 0.90 70.76 90.38 87.75 57.01 87.12 94.15 90.45 92.48

DoRA (QV) r = 16, λ = 2 1.20 69.68 90.53 87.75 59.31 87.09 93.92 89.68 92.70
DoRA (QV) r = 16, λ = 4 1.20 76.16 90.77 88.48 60.84 86.96 94.15 90.34 93.01
DoRA (QV) r = 16, λ = 8 1.20 77.26 90.83 88.96 60.32 87.10 94.17 90.46 92.80

and optimization efficiency. Moreover, these theoretical results can guide the improvement of other
fine-tuning algorithms and even aid in the design of more efficient ones.

6 CONCLUSION AND LIMITATION

In this paper, we present our key findings in fine-tuning attention mechanism: Unequal Importance
of Attention Matrices—optimizing the Wv matrix significantly improves performance compared to
the Wk matrix. Fine-tuning only the Wq and Wv matrices is computationally efficient and can
yield results that match or surpass fine-tuning all three matrices Wq , Wk, and Wv . Attention Ma-
trices with Customized Learning Rate Leads to Better Convergence—using distinct learning rates
for these matrices is essential for optimal performance, with a higher learning rate for Wv speed-
ing up convergence. While theoretical analysis of these phenomena is limited, this paper provides
insights from two angles: Generalization—fine-tuning only Wq and Wv improves generalization
and memory efficiency, and Optimization—using different learning rates enhances the efficiency of
feature learning in the attention mechanism, leading to more effective fine-tuning. Our analysis pro-
vides a theoretical foundation for the configuration and improvement of lightweight algorithms in
LLMs fine-tuning. However, further studies are required on (i) how the task and neural architecture
influence the optimal ratio λ and (ii) whether the results about attention hold true for tasks beyond
natural language processing. These studies will further deepen our understanding of attention-based
fine-tuning in LLMs.

REFERENCES

[1] Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to im-
plement preconditioned gradient descent for in-context learning. In Advances in Neural Infor-
mation Processing Systems (37th edition), pp. 45614–45650, 2023.

[2] AI@Meta. Llama 3.1 model card, 2024. URL https://github.com/meta-llama/
llama-models/blob/main/models/llama3_1/MODEL_CARD.md. Model Re-
lease Date: July 23, 2024.

10

https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

[3] AI@Mistral. Mistral 7b model, 2023. URL https://mistral.ai/news/
announcing-mistral-7b/. Model Release Date: September 27, 2023.

[4] Han Bao, Ryuichiro Hataya, and Ryo Karakida. Self-attention networks localize when qk-
eigenspectrum concentrates. In International Conference on Machine Learning, 2024.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Advances in neural information processing systems (34th edition), pp. 1877—-1901,
2020.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[7] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intelligence, 5(3):220–235, 2023.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Inter-
national Conference on Learning Representations, 2021.

[9] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2014.

[10] Soufiane Hayou. On the infinite-depth limit of finite-width neural networks. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=RbLsYz1Az9.

[11] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function
on deep neural networks training. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2672–2680,
2019.

[12] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning
dynamics. arXiv preprint arXiv:2406.08447, 2024.

[13] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. In International Conference on Machine Learning, 2024.

[14] Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L
Smith, and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for
faithful signal propagation. In International Conference on Learning Representations, 2023.

[15] Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. Sparse matrix in large language
model fine-tuning. arXiv preprint arXiv:2405.15525, 2024.

[16] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. In International Conference on
Learning Representations, 2022.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 770–778, 2016.

[18] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022.

11

https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://openreview.net/forum?id=RbLsYz1Az9
https://openreview.net/forum?id=RbLsYz1Az9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pp. 2790–2799, 2019.

[20] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In In-
ternational Conference on Learning Representations, 2022.

[21] Eugene Kharitonov and Rahma Chaabouni. What they do when in doubt: a study of inductive
biases in seq2seq learners. In International Conference on Learning Representations, 2021.

[22] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

[23] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Conference on Empirical Methods in Natural Language Processing, 2021.
URL https://api.semanticscholar.org/CorpusID:233296808.

[24] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In In Proceedings of Association for Computational Linguistics, 2021.

[25] Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: To-
wards a mechanistic understanding. In International Conference on Machine Learning, pp.
19689–19729, 2023.

[26] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

[27] Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, and Ronan Collobert.
slimipl: Language-model-free iterative pseudo-labeling. In Proc. Interspeech 2021, pp. 741–
745, 2021.

[28] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
In International Conference on Machine Learning, 2024.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[30] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in neural information processing systems (36th edition), pp.
17359—-17372, 2022.

[31] Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Noisy channel language
model prompting for few-shot text classification. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5316–5330,
2022.

[32] Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D. Manning. Grokking of
hierarchical structure in vanilla transformers. In Proceedings of the 61st Annual Meeting of the
Asso- ciation for Computational Linguistics (Volume 2: Short Papers), pp. 439—-448, 2023.

[33] Lorenzo Noci, Stefanos Anagnostidis, Luigi Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role
of rank collapse. In Advances in neural information processing systems (36th edition), pp.
27198–27211, 2022.

[34] Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for
6.441 (MIT), ECE 563 (UIUC), STAT 364 (Yale), 2019.

[35] Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo,
Xianglong Liu, and Michele Magno. Accurate lora-finetuning quantization of llms via infor-
mation retention. In International Conference on Machine Learning, 2024.

[36] Ruifeng Ren and Yong Liu. In-context learning with transformer is really equivalent to a
contrastive learning pattern. arXiv preprint arXiv:2310.13220, 2023.

[37] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. IEEE Transactions on Information Theory, 66(1):302–323, 2019.

12

https://api.semanticscholar.org/CorpusID:233296808

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[38] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. In International Conference on Learning Representations, 2017.

[39] Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mu-
tual information. In Conference on Learning Theory, 2020.

[40] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin
token selection in attention mechanism. In Advances in neural information processing systems
(37th edition), 2023.

[41] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. In Advances in neural infor-
mation processing systems (37th edition), 2023.

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357, 2021.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems (31th edition), 2017.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2018. URL http://dx.doi.org/10.18653/v1/W18-5446.

[45] Ziqiao Wang and Yongyi Mao. Two facets of sde under an information-theoretic lens: General-
ization of sgd via training trajectories and via terminal states. arXiv preprint arXiv:2211.10691,
2022.

[46] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. In Advances in Neural Information Processing Systems (31th edition), pp.
2524–2533, 2017.

[47] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2020.

[48] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pp. 11727–11737, 2021.

[49] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. In Advances in neural information
processing systems (36th edition), 2022.

[50] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning
in infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

[51] Xinhao Yao, Xiaolin Hu, Shenzhi Yang, and Yong Liu. Enhancing in-context learning perfor-
mance with just svd-based weight pruning: A theoretical perspective. In Advances in Neural
Information Processing Systems (38th edition), 2024.

[52] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representa-
tions, 2024.

[53] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde,
Rickard Brüel Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and
Justin Solomon. Asymmetry in low-rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024.

13

http://dx.doi.org/10.18653/v1/W18-5446

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

Attention mechanism analysis. A key component of transformers is the attention mechanism,
which dates back to [9]. Initially designed to capture long-range signals in sequential inputs by mix-
ing individual tokens, it has also been utilized to capture general structures in input data. After the
fully-attention-based language model has appeared [43, 5], the research community gets interested
in the functionality and benefits of the attention. For instance, transformers implicitly favor hierar-
chical interpretations of input sequences [21], the computational graphs tend to be tree-structured
[30, 32]. Theoretical analysis of training dynamics sheds light on how to identify key tokens [41],
select a few relevant tokens only (which is called localized attention) or select many tokens uni-
formly [4], and learn topic structure [25]. Besides, considerable works [36, 1, 51] try to understand
in-context learning capabilities from the perspective of gradient descent with attention.

Scaling for neural networks. Scaling refers to the process of enlarging a specific ingredient of a
model to enhance its overall performance [18]. The method is straightforward: extend the width or
depth of a neural network towards infinity, analyze how this limit is influenced by hyperparameters
like the learning rate and initialization variance during training, and then establish well-founded
choices for these hyperparameters to achieve a specific objective [17, 38, 11, 47, 49, 14, 10, 50, 13].
In the theory of scaling of neural networks, one usually tracks the asymptotic behaviour of key
quantities as we scale some model ingredient, it is a standard approach used to derive scaling rules
for initialization [38], activation function [11], network parametrization [50]. In this paper, we are
interested in scaling model capacity via the width n for the fact that most state-of-the-art pre-trained
models have large width. Examples of the infinite-width limit can be found in studies focused on
initialization methods [17, 47], or more comprehensive approaches to network parameterization.
For instance, Yang et al. [49] introduced µP, a parameterization technique for neural networks that
guarantees feature learning in the infinite-width limit, providing specific scaling rules for both ar-
chitecture and learning rates to optimize feature learning [48, 49].

Parameter-efficient fine-tuning. Fine-tuning all the parameters of a large language models, known
as full fine-tuning, is highly computationally expensive. To reduce the computational cost, various
parameter-efficient fine-tuning (PEFT) methods have been proposed [7], which only fine-tune a
small number of (extra) model parameters. PEFT methods can be divided into two categories from
the perspective of whether extra parameters are involved: (1) extra-parameter methods, freeze all of
the original parameters of an LLM and insert a set of learnable parameters to optimize the model
input or model layers suach as adapter tuning [19] , prompt tuning [23] and prefix tuning [24]; (2)
intra-parameter methods freeze most of the original parameters of an LLM and only tune a small
number of parameters of the LLM such as LoRA [20]. Furthermore, He et al. [16] present a unified
framework that establishes connections between PEFT methods and Zhu et al. [53] formally identify
and investigate asymmetry in the roles of low-rank adapter matrices in LoRA fine-tuning.

B OMITTED PROOFS AND ADDITIONAL RESULTS

B.1 THE CONNECTION BETWEEN PREFIX TUNING AND LORA.

Here, we provide an alternative view of Prefix tuning (without loss of generalization, we ignore the
softmax scaling factor for ease of notation):

Attn(xWq, concat(Pk,CWk), concat(Pv,CWv)

= softmax(xWqconcat(Pk,CWk)
T)

(
Pv

CWv

)
= (1− λ(x))softmax(xWqW

T
k C

T)CWv + λ(x)softmax(xWqP
T
k)Pv

= (1− λ(x))

standard attention︷ ︸︸ ︷
Attn(xWq,CWk,CWv)+λ(x)

independent of C︷ ︸︸ ︷
Attn(xWq,Pk,Pv),

where λ(x) =
∑

i exp(xWqP
T
k)i∑

i exp(xWqPT
k)i+

∑
j exp(xWqWT

k CT)j
is a scalar that represents the sum of normal-

ized attention weights on the prefixes. Notice that the first term in blue represents the original
attention mechanism without prefixes, while the second term in green introduces a position-wise ad-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

justment independent of C. It provides an alternative perspective on Prefix tuning, where a position-
wise modification is applied to the original attention output h via linear interpolation:

h← (1− λ(x)h+ λ(x)∆h, ∆h := softmax(xWqP
T
k)Pv ≜ softmax(xA)B.

B.2 PROOF OF THEOREM 1

The origin form of the mutual information based bound is predicated on a sample-specific MI, which
quantifies the shared information between the output variable W and the input sample set SN . The
following lemma shows the result:
Lemma 1. (Xu and Raginsky [46, Theorem 1.]). Assume the loss ℓ(W, Z) is R-subGaussian for
any W ∈ W , then

ẽrror(A) ≤
√

2R2

N
I(W;SN),

where I(W;SN) = DKL(QW,SN
∥QW ⊗ QSN

) is the mutual information and DKL denotes the
KL divergence.

Unroll the terminal parameters’ mutual information I(W;SN) to the full trajectories’ mutual infor-
mation will get:
Lemma 2. Let Definition 1 hold, then I(W +∆W;SN |A) ≤ I(∆W;SN |A,W).

Proof.

I(W +∆W;SN |A)
≤ I(W,∆W;SN |A) (*)
= I(W;SN |A) + I(∆W;SN |A,W) (**)
= I(∆W;SN |A,W).

where Eq. (*) is by the data processing inequality (e.g., Z − (X,Y) − (X + Y) form a Markov
chain then I(X +Y,Z) ≤ I(X,Y ;Z)), Eq. (**) is by the chain rule of the mutual information, and
I(W;SN) = 0 for W is independent of SN .

Then combine Lemma 1 and Lemma 2 , we can get: ẽrror(A) ≤
√

2R2

N I(∆W;SN |A,W).

We consider the case of tuning Wq&Wv only first. Applying the above results, note that here

I(∆W;SN |AQV ,W) = I({Wi
q,W

i
v}i∈I ;SN |AQV ,W),

where we have used the data processing inequality (DPI), noting that the Wi
k are here considered

fixed constant matrices as they are not trained.

We can now bound this expression as

I({Wi
q,W

i
v}i∈I ;SN |AQV ,W) ≤ H({Wi

q,W
i
v}i∈I) ≤ 2qr

∑
i∈I

(di + ki),

where Wi
q,W

i
k,W

i
v ∈ Rdin×dout , and we have noted that mutual information is upper bounded by

discrete entropy, and entropy in turn is upper bounded by the uniform distribution over its possible
support set (q bits in each of r

∑
i∈I(din + dout) dimensions). The bounds for the other algorithms

are similar.

B.3 INITIALIZATION DISCUSSION

Following standard initialization schemes (e.g., LeCun Init and He Init [22, 17]), one generally con-
sider a Gaussian initialization of the weights as follows: ai ∼ N (0, σ2

a), b ∼ N (0, σ2
b) (The

Gaussian distribution can be substituted with any other distribution that has finite variance). Revis-
iting Starting with a Toy setting, a ∈ R1×n, b ∈ R. Thus, one should set σ2

a = Θ(n−1), σ2
b = 0

to ensure xaT does not explode with width (xaT = Θ(1)), for a non-zero initialization for a. This
is justified by the Central Limit Theorem (See [49] for more technical details). And if we choose a
non-zero initialization for b, one should make sure that σ2

b = Θ(1), σ2
a = 0. And we will consider

these two initialization schemes to show our theoretical understanding.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.4 GAMMA FUNCTION

Why introduce the Gamma function?
In Section 4.2, the learning rate ηa = Θ(nca), ηb = Θ(ncb) for some ca, cb ∈ R. And in
Appendix B.3 we assume that the init weights are also scale polynomially with n, it is evident that
preactivations, gradients, and weight updates all exhibit asymptotic polynomial growth in n.
Operations.
We write v = Θ(γ[v]) to capture it, and some elementary operations (Given two real-valued
variables v1, v2):

• Multiplication. γ[v1 × v2] = γ[v1] + γ[v2].

• Addition. Generally, we have γ[v1 + v2] = max(γ[v1], γ[v2]). The only instance where
this does not hold is when v1 = −v2. This is typically a zero-probability event if the two
variables are random variables that are not perfectly correlated, which is the case in most
scenarios where we apply this formula (Appendix B.5).

B.5 PROOF OF THEOREM 2

Theorem 2.[Efficient fine-tuning in attention mechanism (Informal)]
In the case of Starting with a Toy setting, with ηa = Θ(n−1) and ηb = Θ(1), we have for all
t > 1, i ∈ {1, 2, 3},δit = Θ(1). In other words, the feature learning of attention mechanism is
efficient when ηQK(ηa) = Θ(n−1), ηV (ηb) = Θ(1).

Proof. In Section 3, we say that the feature learning of attention mechanism is efficient when δit =
Θ(1) for all t, i ∈ {1, 2, 3}. Using the elementary formulas from Appendix B.4, we can get (for all
t): γ[ηa] + 1 + 2γ[bt−1] = 0

(
δ1t = Θ(1)

)
γ[ηb] + 2γ[xa⊤t−1] = 0

(
δ2t = Θ(1)

)
γ[ηa] + γ[ηb] + 1 + γ[xa⊤t−1] + γ[bt−1] = 0

(
δ3t = Θ(1)

)
.

Simple calculations yield γ[ηa] + γ[ηb] = −1. Further consider the gradient update from t− 1 to t,
the recursive formulas are given by:{

γ[xa⊤t] = max
(
γ[xa⊤t−1], γ[ηa] + 1 + γ[bt−1]

)
γ[bt] = max

(
γ[bt−1], γ[ηb] + γ[xa⊤t−1]

)
Starting from t = 1. In both initialization schemes discussed in Appendix B.3, we have to set
γ[ηb] = 0 and γ[ηa] = −1 to ensure that γ[ft] = γ[xaTt] + γ[bt] = 0:
(1) σ2

a = Θ(n−1), σ2
b = 0. We have γ[xaT1] = γ[xaT0] = 0, γ[b1] = γ[ηb(xa

T
0)y] = γ[ηb].

Therefore, for t = 2, γ[xaT2] = max(0, γ[ηa] + 1 + γ[ηb]) = max(0, 0) = 0, γ[b2] =
max(γ[ηb], γ[ηb] + 0) = γ[ηb], this holds for t ≥ 1 by induction.
(2) σ2

a = 0, σ2
b = Θ(1). We have γ[b1] = γ[b0] = 0, γ[xaT1] = γ[ηa||x||2U0b

2
0] = γ[ηa] + 1.

Therefore, for t = 2, γ[b2] = max(0, γ[ηb] + γ[ηa] + 1) = max(0, 0),γ[xaT2] = max(γ[ηa] +
1, γ[ηa] + 1 + 0) = γ[ηa] + 1,this holds for t ≥ 1 by induction.
To sum up, setting ηQK(ηa) = Θ(n−1), ηV (ηb) = Θ(1) ensures efficient fine-tuning in attention
mechanism.

C EXTENSION TO EXPERIMENTS

C.1 EMPIRICAL DETAILS

C.1.1 GLUE TASKS WITH ROBERTA

For our experiments with Roberta-base models, finetuned on GLUE tasks, we use the following
setup:

Tasks. MNLI, QQP, SST2, QNLI

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Training Algorithm. AdamW with β1 = 0.9, β2 = 0.99, ϵ = 1e− 8, linear schedule, no warmup.

Targert Modules for Fine-tuning. ‘query’, ‘key’ and ‘value’.

Learning rate.
(1) For Table 1, ηQK = ηV = 5e−5.
(2) For Figure 1,
ηQK = {2e−5, 5e−5, 1e−4, 2e−4, 4e−4, 8e−4},
ηV = {1e−4, 2e−4, 4e−4, 8e−4, 1e−3, 2e−3}
GPUs. Nvidia A800.

Other Hyperparameters. Sequence length T = 128, train batch size batchsize = 32, number of
train , number of random seeds s = 3.
(1) For Table 1, epochs E = 6 (E = 10 for SST2).
(2) For Figure 1, epochs E = 3 (E = 6 for SST2).

C.1.2 TRAINING HYPERPARAMETERS

Training hyperparameters.

Corpus length learning rate batch size epochs
RTE 128 1e-04 32 20
MRPC 128 1e-04 32 20
STS-B 128 1e-04 32 20
CoLA 128 1e-04 32 20
SST-2 128 1e-04 32 10
QNLI 128 1e-04 32 10
QQP 128 1e-04 32 10
MNLI 128 1e-04 32 10

Table 3: Training hyperparameters for different datasets. More details can be seen in our code.

• For Full Fine-tune (QKV) and LoRA (QKV), we use ηQ = ηK = ηV = 1e-04.
• For the improved methods, we use ηQ = 1e-04, ηV = λ× 1e-04.

The hyperparameter settings here differ from those in Table 1 and Figure 1, so the results may show
slight variations.

C.1.3 MNLI TASK WITH LLAMA3.1-8B

For our experiments with Llama3.1-8b models, finetuned on MNLI, we use the following setup:

Training Algorithm. AdamW with β1 = 0.9, β2 = 0.999, ϵ = 1e− 6, constant schedule.

Targert Modules for Fine-tuning. ‘q proj, k proj, v proj’.

Learning rate grid.
For Table 1, ηQK = ηV = 1e−5.
Else:
ηQK = {1e−6, 5e−6, 1e−5, 5e−5, 1e−4},
ηV = {1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 2e−4, 4e−4}
Hyperparameters. LoRA rank r = 16, α = 16, and dropout 0.1. Precision FP16. Sequence length
T = 128, train batch size batchsize = 128.

GPUs. Nvidia A800.

Before fine-tuning model performance. QQP: 55.08 , MNLI: 33.34

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.2 EMPIRICAL RESULTS

C.2.1 GLUE TASKS TRAIN LOSS

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

0.49

0.45

0.43

0.43

0.42

MNLI-Loss

0.40

0.45

0.50

0.55

0.60

0.65

0.70

2e
-5
5e

-5
1e

-4
2e

-4
4e

-4
8e

-4

QK

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4

V

0.32

0.3

0.29

0.290.28

QQP-Loss

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

2e
-5

5e
-5

1e
-4

2e
-4

4e
-4

8e
-4

2e-3
1e-3
8e-4
4e-4
2e-4
1e-4 0.35

0.32

0.29

0.28

0.28

QNLI-Loss

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

2e
-5

5e
-5

1e
-4

2e
-4

4e
-4

8e
-4

QK

2e-3

1e-3

8e-4

4e-4

2e-4

1e-4

V

0.21

0.18

0.16

0.150.17

SST2-Loss

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

Figure 3: The train loss of RoBERTa-base fine-tuning. Other settings are same to Figure 1.

C.2.2 MNLI LLAMA3.1-8B

1e
-6

5e
-6

1e
-5

5e
-5

1e
-4

QK

4e-4
2e-4
1e-4
5e-5
1e-5
5e-6
1e-6

V

1.62
1.04

0.74
0.42

0.37
0.36

0.35
MNLI&Llama3.1&Loss

0.4

0.6

0.8

1.0

Figure 4: The train loss of Llama3.1-8b fine-tuning. Other settings are same to Figure 2.

C.2.3 ALGORITHM FRAMEWORK

LoRA

Attention

Q K V

Hidden States

freezeLoRA LoRA𝑾𝑣𝑾𝑞 𝑾𝑘

𝜂𝑉 > 𝜂𝑄

Figure 5: A brief diagram outlining how our theoretical insights guide the experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2.4 ABLATION EXPERIMENTS ON MISTRAL-7B

In alignment with the experimental setup (hyperparameter setting for Llama3.1-8b) described in our
Section 4.1, Figure 2, we have evaluated the RTE and MNLI task performances of our approach on
Mistral-7B:

Method Hyperparameter RTE MNLI
LoRA (QKV) r = 16, λ = 1 81.28 87.80
LoRA (QV) r = 16, λ = 1 80.51 88.87
LoRA (QV) r = 16, λ = 2 81.59 89.04
LoRA (QV) r = 16, λ = 4 80.87 88.64
LoRA (QV) r = 16, λ = 8 83.75 88.78

C.2.5 MORE CHALLENGING EVALUATION

Evaluating the model on more challenging benchmarks is essential for a comprehensive understand-
ing of its capabilities. To address this, we follow [52] to fine-tune the LLaMA3.1-8B model on
the MetaMathQA [52] dataset (the training set consists of the first 10K samples selected from the
150K MetaMathQA dataset.) and evaluate the performance on the GSM8K [6] (a benchmark for
mathematical problem-solving).

Method GSM8K (100%)
Before fine-tune 25.55
LoRA (QKV) r = 16, λ = 1 57.70
LoRA (QV) r = 16, λ = 2 59.15
LoRA (QV) r = 16, λ = 4 58.23

C.2.6 FINE-TUNING K,V

We fine-tune only Wk and Wv of Roberta-base, others are the same to Table 1.

Weight Type Wk,Wv Wq,Wv Wq,Wk,Wv

SST2(R) r = 8 0.920 0.919 0.922
r = 16 0.920 0.921 0.923

QNLI(R) r = 8 0.887 0.889 0.895
r = 16 0.888 0.890 0.890

QQP(R) r = 8 0.840 0.840 0.844
r = 16 0.840 0.839 0.844

MNLI(R) r = 8 0.821 0.820 0.827
r = 16 0.822 0.824 0.828

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2.7 DIRECTLY FINE-TUNING Q,K,V WITH LAMBDA

We fine-tuning Wq,Wk,Wv with λ directly with the same settings in Table 2 for easy comparison,
supporting one of our major claims in Theorem 2.

Method Trainable #Param (M) RTE STS-B MRPC CoLA
Before Fine-tune 0 45.12 -3.18 66.66 1.09
LoRA (QKV) r = 8, λ = 1 1.62 70.76 90.25 85.04 58.03
LoRA (QKV) r = 8, λ = 2 1.62 72.92 90.54 86.76 58.28
LoRA (QKV) r = 8, λ = 4 1.62 73.64 90.84 87.74 60.66
LoRA (QKV) r = 8, λ = 8 1.62 76.10 91.00 88.48 60.59

LoRA (QKV) r = 16, λ = 1 2.07 70.39 90.25 86.03 58.04
LoRA (QKV) r = 16, λ = 2 2.07 72.56 90.36 86.27 59.81
LoRA (QKV) r = 16, λ = 4 2.07 74.00 90.84 86.76 60.07
LoRA (QKV) r = 16, λ = 8 2.07 76.97 90.81 87.74 60.34

20

	Introduction
	Preliminaries and Background
	Advantages and Generalization Analysis
	Empirical Advantages of Fine-Tuning only Query,Value Matrices
	Information-Theoretic Generalization Bounds

	Convergence Analysis in Optimization
	An Insight into Inefficient Learning for Value Matrix
	Convergence Analysis for Learning Rate

	An Example of Improving Fine-tuning Methods
	Conclusion and Limitation
	More Related Works
	Omitted Proofs and Additional Results
	The connection between Prefix tuning and LoRA.
	Proof of Theorem 1
	Initialization Discussion
	Gamma Function
	Proof of Theorem 2

	Extension to Experiments
	Empirical Details
	GLUE Tasks with RoBERTa
	Training Hyperparameters
	MNLI Task with Llama3.1-8b

	Empirical Results
	GLUE Tasks Train Loss
	MNLI Llama3.1-8b
	Algorithm Framework
	Ablation Experiments on Mistral-7B
	More Challenging Evaluation
	Fine-tuning K,V
	Directly fine-tuning Q,K,V with lambda

