Under review as a conference paper at ICLR 2025

THEORETICAL INSIGHTS INTO FINE-TUNING ATTEN-
TION MECHANISM: GENERALIZATION AND OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs), built on Transformer architectures, exhibit re-
markable generalization across a wide range of tasks. However, fine-tuning these
models for specific tasks remains resource-intensive due to their extensive param-
eterization. In this paper, we investigate two remarkable phenomena related to
the attention mechanism during the fine-tuning of LLMs. The first phenomenon,
termed “Unequal Importance of Attention Matrices,” highlights the impact of fine-
tuning different weight matrices. It shows that optimizing the W, matrix yields
significantly better performance than optimizing the W, matrix. Fine-tuning only
the W, and W, matrices is computationally efficient while delivering results
comparable to, or even better than fine-tuning all three matrices (W,, Wy, and
W,). The second phenomenon, “Attention Matrices with Customized Learning
Rate Leads to Better Convergence,” emphasizes the importance of assigning dis-
tinct learning rates to these matrices. Specifically, a higher learning rate for the
W, matrix compared to W, and W, accelerates convergence and improves per-
formance. Building on these insights, we propose a new strategy that improves
fine-tuning efficiency in terms of both storage and time. Experimental results on
benchmark datasets validate the effectiveness of this approach, supporting our the-
oretical findings. Our analysis lays the theoretical groundwork for configuring and
improving lightweight algorithms in LLMs fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) are often built on Transformer architectures [43] and possess a
large number of parameters, enabling them to generalize across a broad range of general tasks [43,
27, 42, 8, 31]. However, achieving optimal performance on specific tasks typically necessitates
fine-tuning these pre-trained models. Despite the formidable capabilities of LL.Ms, the fine-tuning
process is resource-intensive, requiring significant computational power, storage, and time due to
the large scale of model parameters involved. Fine-tuning all the parameters of a large language
model, known as full fine-tuning, is highly computationally expensive. To reduce the computational
cost, various parameter-efficient fine-tuning (PEFT) methods have been proposed [7, 19, 23, 24, 20],
which only fine-tune a small number of (extra) model parameters.

A fundamental component of transformers is the attention mechanism, particularly the interactions
among the query matrix W, the key matrix Wy, and the value matrix W,,. During the fine-tuning
of LLMs involving the attention mechanism, two interesting phenomena have been observed: (1)
Unequal Importance of Attention Matrices—optimizing the W, matrix is pivotal for enhancing per-
formance, significantly more so than adjustments to the W, matrix, which exhibit limited impact
on the outcomes. Additionally, fine-tuning only the W, and W, matrices often yields results that
are comparable to or surpass those achieved by fine-tuning all three matrices W, Wy, and W,
which also reduces the number of tunable parameters by approximately 1/3, offering computational
benefits (Section 3). (2) Attention Matrices with Customized Learning Rate Leads to Better Conver-
gence—using the same learning rate for W,& W, and W, is not optimal for efficient convergence.
In fact, it is essential to apply distinct learning rates for the W, Wy, and W, components to ensure
optimal fine-tuning performance. Specifically, the learning rate for W, should generally be higher
than that for W, and W, to facilitate efficient convergence (Section 4).

Under review as a conference paper at ICLR 2025

While certain empirical guidelines, such as the original Low-Rank Adaptation (LoRA) [20], explore
which weight matrices in transformers are suitable for the application of LoRA, comprehensive the-
oretical analyses of these phenomena are still limited. This includes aspects such as selecting appro-
priate weight types for fine-tuning and optimizing learning rate settings. Reflecting on the attention
equation itself (Section 2): (1) In linear algebra, two matrices multiplied without an intermediate
activation can be equivalent to a single matrix. Some studies [33, 40, 4] often treat W, and W, as
a single unit (W, = WQW,{), however, the benefits of fine-tuning W& W, alone have yet to be
further clarified. (2) Cosidering the scenario where the values of W, Wy, and W, approach zero,
the gradients of W & W, tend to diminish towards zero. In contrast, the gradient of W, remains
non-zero due to the influence of softmax normalization. Driven by the above motivations, this paper
delves into the issue from the following two perspectives.

* Generalization: advantages of fine-tuning W ,&W, over W,, W, W, together. We
perform a thorough theoretical analysis to demonstrate the advantages. To be more specific,
we employ information-theoretic approaches [46, 34, 45, 53] to establish the generalization
bounds of fine-tuning pre-trained models with attention mechanism (See Theorem 1 for
details). This indicates that fine-tuning W ,&W,, instead of W,, W, W, reduces the
number of parameters, while improving generalization bounds and potentially providing
memory benefits.

¢ Optimization: convergence analysis of attention mechanism with varying learning
rate settings. To further investigate the aforementioned phenomena, we examine the op-
timization process of the attention mechanism. First, we discuss the learning dynamics in
transformers in Case 1, suggest that W, may experience instances of inefficient learning
during fine-tuning process for downstream tasks. This naturally leads to the hypothesis
that accelerating the learning of W, in the early stages could potentially induce Wy, and
‘W, to begin learning earlier. Additionally, by using scaling arguments for large width-n
networks [49, 13], we illustrate (Theorem 2) that the feature learning of attention mecha-
nism is efficient when the learning rate for W, should be generally much larger than that
of W & W, in fine-tuning.

Building on our experimental and theoretical insights, one can develop new algorithms to improve
the effectiveness (e.g., storage, and time) of fine-tuning. Experimental results for our strategy (in
Section 5) on benchmark datasets [44] and open source pre-trained models [29, 2] verify that the
method can visibly influence fine-tuning efficiency'. We do not make direct comparisons with var-
ious parameter-efficient fine-tuning methods, as our strategy is primarily intended to demonstrate
how theoretical analysis can effectively guide experimental procedures.

2 PRELIMINARIES AND BACKGROUND

In this section, we first describe the core components of our study by reviewing some basic notations.
The transformer model [43] serves as the backbone of most state-of-the-art pre-trained models. For
clarity, we briefly outline its key equations, focusing on the self-attention function, as follows.

Self-attention. Given a sequence of m vectors C € R™*%in over which we would like to perform
attention and a query vector x € R%~ that is, the input is [C, x] € R("+1)Xdin The conventional
attention function can be expressed as’:

xW, W7 CT
Vv dout

where W, W, W, ¢ Rdin*dout are query, key and value (projection) matrices.

Attn(xW,, CW;,, CW,) = softmax < > CW,, (D

A unified framework for parameter-efficient fine-tuning. Building on the work of [16], we con-
sider a unified framework that establishes connections among various parameter-efficient fine-tuning
methods. Specifically, we reinterpret these methods as modifications applied to specific hidden states

!Code is anonymized at https://anonymous . 4open.science/r/LightweightAtt-6899/
2For simplicity, we focus on the last vector of input in a single-head self-attention. Our analysis is readily
generalizable to multi-head self-attention.

https://anonymous.4open.science/r/LightweightAtt-6899/

Under review as a conference paper at ICLR 2025

within pre-trained models, the composition function:
h < i1h + [,bAh, (2)

where 1, [are coefficients, h is denoted as the hidden representation to be directly modified and
Ah is a modification vector. Additionally, h and x can represent the attention output and input
respectively. Here, we will present two special cases:

* LoRA. LoRA [20] injects trainable low-rank matrices into transformer layers to approx-
imate the weight updates. Instead of directly adjusting the full weight matrix W €
R%n*dout T oRA represents its update with a low-rank decomposition W + AW =
W + AB, where A € R%*" B € R"*%ut are tunable parameters. For a specific
input x, LoRA modifies the projection output h as (where s > 1 is a tunable scalar hyper-
parameter):

h < h+sAh, Ah:=xAB. 3)

* Prefix tuning. Prefix tuning [24] prepends r tunable prefix vectors to the keys and values
of the attention mechanism at every layer. Specifically, two sets of prefix vectors P, P, €
R7*dout gre concatenated with the original key CW, and value CW,,, attention is then
applied to the prefixed keys and values as’:

h < (1 — A(x)h + A\(x)Ah, Ah := softmax(xW,P})P, £ softmax(xA)B, (4)

_ >, exp(xW,PT);
where A(X) = s rw Bl 15, e (xW, WTCT);

normalized attention weights on the prefixes. We derive a detailed equivalent form of Prefix
tuning to establish its connection with LoRA in Appendix B.1.

Remark 1. By defining A = Wng, B = P, in Eq.(4), we can establish a connection with
LoRA in Eq.(3). Notably, if we replace the softmax attention with linear attention here, the two
are equivalent to some extent. Intuitively, in the attention mechanism, A (Wng) is responsible
for generating attention scores, while B (P,,) utilizes these attention scores to produce the target
content. Therefore, during fine-tuning, query, key, and value are likely to exhibit varying degrees of
importance. This may also provide theoretical insights for recent works [53, 12], which empirically
observed an asymmetry where the project-down matrix A is responsible for extracting features from
the input, while the project-up matrix B utilizes these features to generate the desired output in
LoRA fine-tuning.

is a scalar that represents the sum of

O Notation. For the convergence analysis, we adopt the following notation to describe the asymp-
totic behavior as the width n increases, similar to those in [49, 13]. Given sequences ¢, € R and
d, € RT, we write ¢, = O(d,,) and ¢, = §2(d,) to mean ¢,, < kd, or ¢, > kd,, respectively,
for some constant £ > 0. We denote ¢,, = ©(d,,) when both ¢,, = O(d,,) and ¢,, = Q(d,,) hold,
implying that c,, and d,, grow at comparable rates. For vector sequences ¢, = (¢!)1<i<ix € R*
(for some k > 0), we write ¢,, = O(d,,) when ¢, = O(d?) for all i € [k], and analogous notation
applies for other asymptotic bounds. Finally, when the sequence ¢, is a vector of random variables,
convergence is understood to refer to convergence in the second moment (i.e., Lo norm).

3 ADVANTAGES AND GENERALIZATION ANALYSIS

This section, we show our first interesting observation (Unequal Importance of Attention Matrices)
in fine-tuning the attention mechanism and the storage benefit of fine-tuning only W, and W, in
Section 3.1. Afterwards, we give a mutual information based generalization bounds of fine-tuning
only W, and W, in Section 3.2, which provide a better generalization error.

3.1 EMPIRICAL ADVANTAGES OF FINE-TUNING ONLY QUERY, VALUE MATRICES

To explore the Unequal Importance of Attention Matrices, we focus our study on adapting only
the attention weights for downstream tasks, while freezing the other modules to ensure simplicity

3Without loss of generalization, we ignore the softmax scaling factor for ease of notation.

Under review as a conference paper at ICLR 2025

and parameter efficiency. Furthermore, we investigate the impact of adapting different types of
attention weight matrices in a Transformer, as outlined below. We present our empirical results
using LoRA to fine-tune a set of language models (Roberta-base [29] and Llama3.1-8b [2]) across
various benchmarks [44]. Further details on the experimental setup and additional empirical results
can be found in Appendix C.1.

Table 1 provides a detailed comparison of the impact of fine-tuning different weight matrices
(W,, Wy, W,) across various rank values r and weight update strategies in LoRA fine-tuning on
tasks like SST2, QNLI, QQP, and MNLI. As seen in the table, we can see a clear trend where solely
updating the W, matrix outperforms just learning the W, W, matrix. Interestingly, the combina-
tion of fine-tuning both W, and W, often leads to performance that matches or even exceeds that
achieved by fine-tuning all three matrices W, Wy, and W,,. This pattern is consistently observed
across various tasks and rank values, further emphasizing the importance of these two matrices over
‘W, during fine-tuning.

Computational benefits. Here, we show that the reduced amount of adapted parameters by
(roughly) 1/3 provides computational gains. The key benefit of parameter-efficient method is to
save memory during training, storage and communication [26]. Fine-tuning W ;& W, alone as op-
posed to both W, &W,, and W, reduces the number of parameters by 1/3, when the dimensions
of Wy, Wy, and W, are the same.

Table 1: Performance comparison across different r values and weight types. To enable a fair
comparison, we initialize the weights for all tasks with the original pretrained weights. Test accuracy
of Roberta-base (R) and Llama3.1-8b (L) fine-tuning on SST2, QNLI, QQP, MNLI, with sequence
length T = 128 and half precision (FP16). All values are averaged over 3 random seeds. The best
result is shown in bold, the second best result is shown in underline, and the third best result is
shown with double underlines.

Weight Type W, W, W, W,W, W, W, W,W,W,

r=4 0.904 0.902 0.913 0.919 0.920 0.920
SST2(R) r=38 0.914 0.906 0.918 0.915 0.919 0.922
r=16 0.907 0.905 0.916 0.917 0.921 0.923
r=4 0.854 0.835 0.878 0.866 0.888 0.887
ONLIR) =8 0.857 0.841 0.875 0.866 0.889 0.895
r=16 0.854 0.840 0.875 0.867 0.890 0.890
r=4 0.812 0.804 0.828 0.823 0.838 0.843
QQP(R) r=238 0.812 0.806 0.828 0.823 0.840 0.844
r=16 0.812 0.804 0.831 0.823 0.839 0.844
QOP(L) r=28 0.864 0.845 0.865 0.866 0.874 0.874
r=16 0.864 0.845 0.869 0.867 0.874 0.874
r=4 0.748 0.733 0.807 0.772 0.820 0.828
MNLIR) r=38 0.749 0.733 0.809 0.778 0.820 0.827
r=16 0.750 0.734 0.810 0.780 0.824 0.828
r=28 0.802 0.660 0.862 0.814 0.871 0.871
MNLI(L) r=16 0.803 0.663 0.863 0.815 0.871 0.871

Why fine-tune W & W, instead of W& W ,,. In Eq.(1), the conventional attention function in-
cludes a term XWqu. (1) In linear algebra, two matrices multiplied without an intermediate
activation can be equivalent to a single matrix. Therefore, the effects of fine-tuning W & W, and
W . &W,, are theoretically expected to yield similar outcomes (See the supplementary experimen-
tal results provided in Appendix x). (2) W, operates only on the transformed representation matrix
x W, produced by the preceding transformation. Consequently, it loses direct access to the original
representation information. This observation is consistent with the findings in [35]: the information

Under review as a conference paper at ICLR 2025

representation in LoRA also exhibits significant limitations, as in Ah = xAB, where B similarly
lacks access to the original representation information.

3.2 INFORMATION-THEORETIC GENERALIZATION BOUNDS

In the previous part, we establish that the Unequal Importance of Attention Matrices among W,
W;., and W, during fine-tuning. Some studies [33, 40, 4] often treat W, and W, as a single unit
Wy = qug), however, the benefits of fine-tuning W,& W, alone, rather than fine-tuning
W, &W,,, and W, together, have yet to be further clarified. Therefore, we will further analyze this
issue from an information-theoretic generalization perspective.

Recently, information-theoretic generalization bounds [46, 37, 39, 45] have been introduced to ana-
lyze the expected generalization error of learning algorithms. A key benefit of these bounds is that
they depend not only on the data distribution but also on the specific algorithm, making them an
ideal tool for studying the generalization behavior of models trained using particular algorithms.

Generalization error. We let Z = X’ x) be the instance space and p be an unknown distribution
on Z, specifying random variable Z. Here, X denotes the feature space and) is the label space.
Suppose one observes a training set Sy = (Zy,...,Zy) € Z~, with N i.i.d. training examples
drawn from . In the information-theoretic analysis framework, we let WV be the space of hypotheses
related to the model, and a stochastic learning algorithm A which takes the training examples Sy
as its input and outputs a hypothesis W € W according to some conditional distribution Qy|s -
Given a loss function £ : W x Z — R™, where £(w, Z) measures the “unfitness” or “error” of any
Z € Z with respect to a hypothesis w € V. We take ¢ as a continuous function and assume that ¢
is differentiable almost everywhere with respect to w. The goal of learning is to find a hypothesis w
that minimizes the population risk, and for any w € W, the population risk is defined as L, (w) =
Ez-u[l(w, Z)]. However, since only can partially observe y via the sample Sy, we instead turn to
use the empirical risk, defined as Lg, (w) £ & Ef\il ¢(w, Z;). Then the expected generalization
error of A is defined as

error(A) £ Ew, sy [L, (W) — Lg, (W)],
where the expectation is taken over (Sy, W) ~ p¥ ® Qw|sy-

Consider the following variations of fine-tuning algorithms: tuning both W, and W ;& W, matrices
(as in classic attention mechanism in fine-tuning), tuning only W ;& W ,,:

Definition 1 (Fine-tuning algorithms). Recalling A unified framework for parameter-efficient fine-
tuning, we can model the fine-tuning process of the attention mechanism as h+Ah = xXW+xAW.,
Let W = {W,}L_| be a set of abstract parameter matrices related to a pretrained model, where
each W is associated with the parameters Wfl, W};, W, The indices 1, ..., L represent the layers
of the model where these parameters are to be fine-tuned. Let T C {1, ..., L} denote the subset of
layers selected for fine-tuning. Given a fine-tuning training set Sy, let v denote the chosen lora-
rank, and assume each tuned parameter is quantized to q bits. Define the following algorithmic
frameworks for selecting an adaptation AW = {AW, }£_| (with other details left open to choice).
(1) Agkv: Foreach i € I, optimize {Wfl, Wi, Wi}icr to fit the data Si.

(2) Agv: For each i € I, optimize {Wf], W}t to fit the data Sy.

Then we have the following theorem to bound the generalization error using the information-
theoretic generalization framework.

Theorem 1 (Generalization bounds on adapting W ;& W, and/or Wy,). Consider the algorithms of
Definition 1. Assume the loss (W, Z) is R-subGaussian under (AW, Z) ~ Paxww X p. Then,

i€l

e Agy) < | [0 g S (o + dowe)
error(Aqv) < [QTZ in T Qout),

6 R?
Tqr Z(din + dout)7
i€L

m(.AQKv) <

where Wi, Wi, Wi € R%»*dout_ See Appendix B.2 for a proof.

Under review as a conference paper at ICLR 2025

Remark 2 (Discussion of the advantages). We can evaluate the empirical risk (Lg,) by observing
the model’s performance on the dataset we have. If the generalization error (Theorem 1) is de-
termined, it is at least possible to estimate the population risk (L,). This generalization bound
increases with the number of parameters being tuned, which grows as a function of r and the
dimensions of the parameter matrices. In Table I, we know that with the same r value, fine-
tuning W (& W, consistently achieves results comparable to or even surpassing those of fine-tuning
W, Wi, W,. This reduces the number of parameters for the same r, while improving generaliza-
tion bounds and potentially providing memory benefits.

4 CONVERGENCE ANALYSIS IN OPTIMIZATION

In Section 3, we have already demonstrated the generalization performance of the attention mecha-
nism during fine-tuning. Our focus will now shift toward optimizing convergence efficiency. Some
optimization observations have also been reported in previous works [20, 25, 15], such as: Li et al.
[25] provide theoretical analyses of learning dynamics in transformers and observes a roughly two-
stage process of self-attention. Meanwhile, He et al. [15] empirically show that the attention mech-
anism, particularly the value vector, stores the largest amount of memories and has the greatest
influence during fine-tuning. However, there is not yet a satisfactory explanation for why this phe-
nomenon occurs or how it can be effectively leveraged. In this section, we will explore these ques-
tions in more depth.

4.1 AN INSIGHT INTO INEFFICIENT LEARNING FOR VALUE MATRIX

We first discuss the optimization process of attention mechanism in the following simple case.
Case 1. Omitting the scale factor for qualitative analysis in Eq.(1), we obtain:

Attn(xW,, CW,, CW,)) = softmax (xW,W] C") CW,,.

Intuitively, if W ,, Wy, W, are initialized as random matrices close to zero and trained simultane-
ously, then in the initial step, Vw, L(Vw, L) contains the term W (W), which is close to 0. By
contrast, Vw L contains the softmax-normalized attention weights. Therefore, during the initial
steps (in training), W, intuitively grows at a much faster rate than W (W).

The work of [25] empirically exhibits Case 1 with an approximately two-stage phenomenon: (1) In
stage 1 (initial steps), the norms of W and W, remain close to zero across all layers, while the
norm of W, increases significantly, accompanied by rapid changes in its orientation. (2) In stage
2, the norms of W}, and W, begin to grow significantly, though much later than the W, matrices.
Briefly, in this case, W, reaches a certain level of learning during training before W, and W,
begin to learn. This suggests that when fine-tuning the model for downstream tasks, there may also
be instances of inefficient learning in W,,. Additionally, is there a fine-tuning strategy that could
facilitate more effective learning for downstream tasks? For instance, accelerating the learning of
W, in the early stages could potentially induce earlier learning in W, and W .

Next, we present the second interesting phenomenon Attention Matrices with Customized Learning
Rate Leads to Better Convergence. We use the General Language Understanding Evaluation (GLUE,
[44]) to evaluate the fine-tuning performance of different fine-tuning strategies, which consists of
several language tasks that evaluate the understanding capabilities of language models. Using LoRA,
we fine-tune Roberta-base from the RoBERTa family [29] and Llama3.1-8b [2] on MNLI, QQP,
QNLLI, and SST2 tasks with varying learning rates (ngx, nv) to identify the optimal combination.
Other empirical details are provided in Appendix C.1 and we evaluate the LLaMA3.1-8B model
on more complex benchmarks in Appendix C.2.5. We present our empirical results using LoRA to
fine-tune language models, as visualized in the heatmaps (Figure 1 and Figure 2).

In Figure 1 and Figure 2, we observe that (1) test accuracy consistently reaches its maximum for
certain sets of learning rates where ngx < nv, outperforming the standard practice of setting 7gx
and 7y equal. (2) More interestingly, the gap between the optimal choice of learning rates overall
and the optimal choice when ngx = 7y varies across different tasks. This is probably due to the
fact that harder task (like MNLI) requires more efficient feature learning. Additionally, we compare
two optimal learning rate (n¢gx, v) settings in Figure 2 (Left), the iy >> ngx setting has a better
convergence than 7y = gk setting in Figure 2 (Right).

Under review as a conference paper at ICLR 2025

QNLI . SST2

-87.0
-86.5
86.0
85.5

84.5
84.0
835
83.0

Figure 1: The test accuracy of RoBERTa-base fine-tuning was evaluated over 3 epochs for MNLI,
QQP, and QNLI, and 6 epochs for SST-2, with a sequence length 7" = 128 and using half-precision
(FP16). The LoRA hyperparameters were set to « = r = 8. All reported values represent the
average results across 3 random seeds. We highlight (1) the best overall accuracy and (2) the values
where 1y /nox = 1. These values are shown in red. For better visualization, when accuracy is
lower than a fixed threshold, we set it to threshold.

MNLI&LIama3.1 MNLI&LIama3.1
4e-4 - 91.0 N
2e-4 - 91.0
le-4 - 90.5 88

& 5e-5 -

le-5
5e-6
le-6

-0 ny=1le 4 nok=1le
@ nv=2e"%nox=>5e"°

=
(S}
L

=
o
!

Training Loss

o
U
.

Figure 2: Left: The test accuracy of Llama3.1-8b fine-tuning was evaluated over 800 steps for
MNLI. Key values like Figure 1 are also shown in red. Right: The training loss over 800 steps
for MNLI fine-tuning on Llama3.1-8b, showing comparison between two optimal learning rate

(ngk, nv) settings in Left: (1) with ny = nox (2) with ny >> nok.

It is also important to note that due to limited computational resources in our experiments, we use
a sequence length of 7' = 128 and fine-tune for only 3 epochs on MNLI and QQP. Therefore, it
is expected that our test accuracies may be lower than those reported by Hu et al. [20], where the
authors fine-tune RoOBERTa-base with a sequence length of 7' = 512 (for MNLI) and for more
epochs (30 for MNLI). We do not include confidence intervals for clearer visualization, however,
the fluctuations remain within acceptable limits. See Figure 2 (Right) for instance. In Appendix C.2,
we provide additional results including the training loss.

4.2 CONVERGENCE ANALYSIS FOR LEARNING RATE

It naturally raises the question of why ngx and 1y should be set differently. In practice, most state-
of-the-art models have a large width (embedding dimension), making it worthwhile to examine the
training dynamics as the width approaches infinity.

Starting with a Toy setting. Revisiting Definition 1, we have Ah = softmax(xA)B. In the case
of a linear attention mechanism, we instead have Ah = xAB. Then consider the following toy
setting

f(@) = 2(W* +a"b),

where W* € R"™*! are the fixed* pre-trained weights, b € R,a € R'*™ are adaptation weights,
x € R" is the model input (This corresponds to = 1 in Definition 1). The training goal is to

*Here, we primarily focus on the case of AW to provide insightful theoretical results.

Under review as a conference paper at ICLR 2025

minimize the loss £(6) = % (f(z) — y)? where 6 = (a,b) and (z, y) is an input-output datapoint’.
Similar to LoRA, we generally aim to initialize the product a”b to zero, ensuring that fine-tuning
starts from the pre-trained model. This requires at least one of the weights, a (related toW ;&Wy,)
or b (related toW,,), to be initialized to zero. If both are initialized to zero, W,& W, learning
cannot occur efficiently in init steps, as discussed in Section 4.1 (More detailed initialization settings

are shown in Appendix B.3).

And we assume that z = ©(1), meaning that the input coordinates remain of the same order as the
width increases. In the subsequent analysis, we examine how the fine-tuning dynamics evolve as the
model width n increases.

To streamline the analysis, we assume W* = 0, a common simplification that can be applied without
loss of generality. This assumption is implemented by setting § = y — xW*. We denote the fine-

tuning step by using subscript ¢. Let Uy = f;(z) — y, the gradients are then computed as:
oL oL
= U, 2=
Da, Y by

And at step ¢ with learning rate n,, 7, > 0, we have

Af £ fe(z) = fio1(z)
= — Nl |Z|[PUs—1b7 1 — mp(zai 1) Us—y + nanpl| x| |* (wai_)) U7 1be—1 .

= zal U;.

3 52 o2

Remark 3. The output update is influenced by three key terms. The first two items 5}, 57 (order
one in 1, /ny) represent linear contributions to the update, meaning they result from changes in the
model output when either a is updated with b held constant, or vice versa. The last item & (order
two in n,Mp) corresponds to a multiplicative update that captures the combined effects of changes
in both a and b. As we scale the width®, the desirable feature updates are such that Af, = O(1),
ensuring they remain unaffected by this scaling (the updates do not explode with width, see x for
more details). Ideally, we aim for both &} and 67 to be ©(1). If this condition isn’t met, it indicates
that either a or b is not being updated efficiently. For example, if 5} = o(1), it suggests that as
n — oo, the model behaves as if a is essentially fixed, with only b being trained. We say that the
feature learning in the attention mechanism is efficient when §; = O(1) for i € {1,2} and all
t > 1, it means that both a and b parameter updates significantly contribute to the change in fi(x).
We will see that when both §} and 62 are O(1), the term &3 is also ©(1).

Let us assume that we train the model with gradient descent with learning rate n, = O(n),n, =
O(ne) for some c,, ¢, € R. In the study by Yang et al. [49], it is noted that the training dynamics
primarily involve operations such as matrix-vector products and the summation of vectors or scalars.
Given the nature of these operations, it is easy to see that any quantity in the training dynamics should
be of order n” for some v € R. We write v = O(n? [v]), for any quantity v in the training dynamics.
When v is a vector, we use the same notation when all entries of v are ©(n”[*!) (See Appendix B.4
for the formal definition of 7).

With reference to the method of Hayou et al. [13], we start from the initialization in Starting with
a Toy setting, we have fo(x) = 0. Feature learning of attention mechanism is efficient when
57 =0(1) fori € {1,2} and all ¢ > 1, and f;(x) = O(1) for t > 1. This can be interpreted as:

Ca+1+29[bi1] =0 (6 =O(1))

e +21[wal] =0 (52 = (1))

Ywa 4] +7bi-1] =0 (ficr(z) =O(1)),
which, after simple calculations, implies that ¢, + ¢, = —1. Notice that the above also leads to
the ¢, + ¢y + 1+ y[za] ;] + y[bi—1] = 0 (6} = ©(1)). This is only a necessary condition. In
the following section, we will provide theoretical conclusions in the toy model setting that offer
guidance for real-world experiments.

3To simplify the analysis, we assume that the fine-tuning dataset consists of a single sample, though our
analysis can be easily generalized to multiple samples. All conclusions remain essentially valid when (a, b) are
matrices.

SThis property is generally satisfied in practice when the model width is large (e.g., n ~ 800 for Roberta-
base and n ~ 4000 for Llama3.1-8b).

Under review as a conference paper at ICLR 2025

Theorem 2 (Efficient fine-tuning in attention mechanism (Informal)). In the case of Starting with
a Toy setting, with , = ©(n~') and n, = O(1), we have for all t > 1, i € {1,2,3},6; =
O(1). In other words, the feature learning of attention mechanism is efficient when 1ng i (n,) =
O(n=1Y),nv(m) = O(1). We denote nv /nqx as \. We refer the reader to Appendix B.5 for more
details on the proof.

Remark 4. In practice, Theorem 2 implies that the learning rate for W, should be generally much
larger than that of W ,&W, in fine-tuning. We verify that this scaling is valid for general neural
network models in Section 4.1. Naturally, the optimal ratio \ depends on the architecture and the
fine-tuning task through the constants in ‘©’. This represents a limitation of the asymptotic results,
as they do not provide insights into how the task and neural architecture influence these constants.
We will further address this issue in our future work.

A summary of the main theoretical analyses. According to the traditional statistical learning view-
point, performance can be defined by the sum of optimization error and generalization error. Our
theoretical analyses in Sections 3 and 4 correspond to generalization and optimization, respectively.
In Section 3 (generalization, storage-friendly), we give Theorem 1 (Information-theoretic genral-
ization bounds), showing that with the same r value, fine-tuning W,& W, consistently achieves
results comparable to or even surpassing those of fine-tuning W, Wy, W,,. This reduces the num-
ber of parameters for the same r, while improving generalization bounds and potentially providing
memory benefits. In Section 4 (optimization, time-friendly), we discuss the learning dynamics in
fine-tuning attention mechanism, and we illustrate (Theorem 2) that the feature learning of attention
mechanism is efficient when the learning rate for W, should be generally much larger than that of
W,&W), in fine-tuning. Building on our experimental and theoretical insights, one can develop
new algorithms to improve the effectiveness (e.g., storage, and time) of fine-tuning (Example in
Section 5).

5 AN EXAMPLE OF IMPROVING FINE-TUNING METHODS

Based on all our exciting insights, it becomes intuitive to design lightweight attention-based fine-
tuning improvements, particularly for downstream tasks. To illustrate how theoretical analysis ef-
fectively guides experimental procedures, we propose an example method where we freeze the Wy,
and fine-tuning the W ,&W,, using different learning rates. This procedure is reported in Figure 5.

How to set the ratio A\? Naturally, as discussed in Remark 4, the optimal ratio A depends on the
architecture and the fine-tuning task via the constants in © in Theorem 2. This is a limitation of
these asymptotic results since they do not offer any insights on how the constants are affected by the
task and the neural architecture. However, we can still employ some heuristic methods, such as: we
can select an appropriate range by conducting a certain amount of experiments, as shown in Figure
1, it seems that a ratio of order 2' — 24 is optimal. Moreover, A should not be too large; otherwise,
as shown in the MNLI subplot in Figure 1, the model’s performance will collapse.

Experimental setup. We conduct experiments on widely adopted benchmark datasets [44] and
Roberta-base model [29]. We selected two mainstream baselines: Full Fine-tuning, LoRA [20] and
DoRA [28]. Additionally, we adapt only the attention weights for downstream tasks, keeping the
other modules frozen to maintain simplicity and validate the theoretical guidance through experi-
ments. In our experiments, we evaluated the performance for A values of 2, 4, and 8 (one can also
determine a general optimal ratio through experiments, and even apply different settings across dif-
ferent layers of the model). We report the average results based on 3 random seeds, as shown in
Table 2. The hyperparameter settings for the experiments can be found in Appendix C.1.2 and the
base model performance for each task can be seen in Table 2 and Appendix C.2.2. We also have
added ablation experiments on different models (Mistral-7B [3]) in Appendix C.2.4.

Results. We leverage our theoretical results (Theorem 1 and Theorem 2) to enhance the effi-
ciency of existing fine-tuning methods, such as Full Fine-tune and LoRA, on downstream tasks. As
shown in Table 2, the improved fine-tuning approach not only outperforms the original version but
also significantly reduces the number of parameters. For instance, on the MRPC task, LoRA (QV)
r = 16, A\ = 8 (1.77M) achieves better performance compared to Full Fine-tune (QKV) (21.85M)
and LoRA (QKV) r = 16 (2.07M). This series of experiments clearly demonstrates that our theo-
retical insights effectively enhance fine-tuning algorithms, particularly in terms of memory usage

Under review as a conference paper at ICLR 2025

Table 2: Comparison of fine-tuning methods across GLUE benchmark. We report results on devel-
opment set, Pearson correlation for STS-B, Matthew’s correlation for CoLA, average accuracy for
MNLI (matched and mismatched), and accuracy for other tasks. The best results on each dataset are
shown in bold and the second best results are shown in underline. The QKV(QV) setting refers to
fine-tuning W, Wy, W, (W, W,,). It is noted that the total number of parameters in the Roberta-
base model is 124.65M. A means 7y = Anq and r is the LoRA rank, and a larger A does not
necessarily lead to better performance.

Method Trainable #Param (M) RTE STS-B MRPC CoLA MNLI SST-2 QQP QNLI
Before Fine-tune 0 45.12 -3.18 66.66 1.09 3295 4931 4472 50.81
Full Fine-tune (QKV) 21.85 73.64 90.49 84.55 60.34 86.68 9323 90.48 92.37
LoRA (QKV) r =8 1.62 70.76 90.25 85.04 5803 8670 9392 89.15 92.17
LoRA (QKV) r =16 2.07 70.39 90.25 86.03 58.04 8678 9392 89.26 92.18
DoRA (QKV) r =8 1.06 70.75 90.39 85.78 56.79 86.73 9358 89.34 9222
DoRA (QKV) r = 16 1.51 70.40 90.31 86.03 57.81 86.77 9392 8930 9248
Full Fine-tune (QV) A = 2 14.76 73.53 9101 86.02 60.57 6203 93.11 90.56 91.96
Full Fine-tune (QV) A = 4 14.76 72.29 90.56 87.01 61.88 3544 91.05 89.81 88.85
Full Fine-tune (QV) A =8 14.76 7229 90.02 88.97 61.86 3544 8475 8593 50.54
LoRA(QV)r =8\ =2 1.48 71.84 90.37 86.02 5854 86.85 94.03 8947 9233
LoRA(QV)r =8\ =4 1.48 75.09 90.83 87.01 59.56 8695 94.04 90.09 92.86
LoRA (QV)r=8,1=8 1.48 76.13 90.75 88.97 61.88 86.93 9346 90.01 92.34
LoRA (QV)r =16,A =2 1.77 7039 90.46 86.03 5855 86.83 9438 89.77 9233
LoRA (QV)r =16,A =4 1.77 76.17 91.05 87.99 60.06 87.19 9403 9030 92.73
LoRA (QV)r =16,A =8 1.77 7292 90.96 89.95 5931 8731 9392 9043 9295
DoRA (QV)r =8,A=2 0.90 71.12 90.29 87.01 5854 87.08 9396 89.60 92.60
DoRA (QV)r =8,A=4 0.90 75.45 90.82 86.76 60.32 86.98 93.81 90.33 92.97
DoRA (QV)r =8,A=8 0.90 70.76 90.38 87.75 57.01 87.12 9415 9045 9248
DoRA (QV)r =16,A =2 1.20 69.68 90.53 87.75 5931 87.09 9392 89.68 92.70
DoRA (QV)r =16, =4 1.20 76.16 90.77 88.48 60.84 86.96 94.15 90.34 93.01
DoRA (QV)r =16,A =8 1.20 77.26 90.83 88.96 6032 87.10 94.17 9046 92.80

and optimization efficiency. Moreover, these theoretical results can guide the improvement of other
fine-tuning algorithms and even aid in the design of more efficient ones.

6 CONCLUSION AND LIMITATION

In this paper, we present our key findings in fine-tuning attention mechanism: Unequal Importance
of Attention Matrices—optimizing the W, matrix significantly improves performance compared to
the W, matrix. Fine-tuning only the W, and W, matrices is computationally efficient and can
yield results that match or surpass fine-tuning all three matrices W, Wy, and W ,,. Attention Ma-
trices with Customized Learning Rate Leads to Better Convergence—using distinct learning rates
for these matrices is essential for optimal performance, with a higher learning rate for W, speed-
ing up convergence. While theoretical analysis of these phenomena is limited, this paper provides
insights from two angles: Generalization—fine-tuning only W, and W, improves generalization
and memory efficiency, and Optimization—using different learning rates enhances the efficiency of
feature learning in the attention mechanism, leading to more effective fine-tuning. Our analysis pro-
vides a theoretical foundation for the configuration and improvement of lightweight algorithms in
LLMs fine-tuning. However, further studies are required on (i) how the task and neural architecture
influence the optimal ratio A and (ii) whether the results about attention hold true for tasks beyond
natural language processing. These studies will further deepen our understanding of attention-based
fine-tuning in LLMs.

REFERENCES

[1] Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to im-
plement preconditioned gradient descent for in-context learning. In Advances in Neural Infor-
mation Processing Systems (37th edition), pp. 45614-45650, 2023.

[2] Al@Meta. Llama 3.1 model card, 2024. URL https://github.com/meta—-1lama/
llama-models/blob/main/models/llama3_1/MODEL_CARD.md. Model Re-
lease Date: July 23, 2024.

10

https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md

Under review as a conference paper at ICLR 2025

[3] Al@Mistral. Mistral 7b model, 2023. URL https://mistral.ai/news/
announcing-mistral-"7b/. Model Release Date: September 27, 2023.

[4] Han Bao, Ryuichiro Hataya, and Ryo Karakida. Self-attention networks localize when gk-
eigenspectrum concentrates. In International Conference on Machine Learning, 2024.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Advances in neural information processing systems (34th edition), pp. 1877—-1901,
2020.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[7] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intelligence, 5(3):220-235, 2023.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. In Inter-
national Conference on Learning Representations, 2021.

[9] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2014.

[10] Soufiane Hayou. On the infinite-depth limit of finite-width neural networks. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=RbLsYz1Az9.

[11] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function
on deep neural networks training. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2672-2680,
2019.

[12] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning
dynamics. arXiv preprint arXiv:2406.08447, 2024.

[13] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large
models. In International Conference on Machine Learning, 2024.

[14] Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L
Smith, and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for
faithful signal propagation. In International Conference on Learning Representations, 2023.

[15] Haoze He, Juncheng Billy Li, Xuan Jiang, and Heather Miller. Sparse matrix in large language
model fine-tuning. arXiv preprint arXiv:2405.15525, 2024.

[16] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. In International Conference on
Learning Representations, 2022.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 770-778, 2016.

[18] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022.

11

https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://openreview.net/forum?id=RbLsYz1Az9
https://openreview.net/forum?id=RbLsYz1Az9

Under review as a conference paper at ICLR 2025

[19] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pp. 2790-2799, 2019.

[20] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In In-
ternational Conference on Learning Representations, 2022.

[21] Eugene Kharitonov and Rahma Chaabouni. What they do when in doubt: a study of inductive
biases in seq2seq learners. In International Conference on Learning Representations, 2021.

[22] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9-50. Springer, 2002.

[23] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Conference on Empirical Methods in Natural Language Processing, 2021.
URL https://api.semanticscholar.org/CorpusID:233296808.

[24] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In In Proceedings of Association for Computational Linguistics, 2021.

[25] Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: To-
wards a mechanistic understanding. In International Conference on Machine Learning, pp.

19689-19729, 2023.

[26] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

[27] Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, and Ronan Collobert.
slimipl: Language-model-free iterative pseudo-labeling. In Proc. Interspeech 2021, pp. 741—
745, 2021.

[28] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
In International Conference on Machine Learning, 2024.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[30] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In Advances in neural information processing systems (36th edition), pp.
17359—-17372, 2022.

[31] Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Noisy channel language
model prompting for few-shot text classification. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5316-5330,
2022.

[32] Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D. Manning. Grokking of
hierarchical structure in vanilla transformers. In Proceedings of the 61st Annual Meeting of the
Asso- ciation for Computational Linguistics (Volume 2: Short Papers), pp. 439—-448, 2023.

[33] Lorenzo Noci, Stefanos Anagnostidis, Luigi Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role

of rank collapse. In Advances in neural information processing systems (36th edition), pp.
27198-27211, 2022.

[34] Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for
6.441 (MIT), ECE 563 (UIUC), STAT 364 (Yale), 2019.

[35] Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo,
Xianglong Liu, and Michele Magno. Accurate lora-finetuning quantization of llms via infor-
mation retention. In International Conference on Machine Learning, 2024.

[36] Ruifeng Ren and Yong Liu. In-context learning with transformer is really equivalent to a
contrastive learning pattern. arXiv preprint arXiv:2310.13220, 2023.

[37] Daniel Russo and James Zou. How much does your data exploration overfit? controlling bias
via information usage. IEEE Transactions on Information Theory, 66(1):302-323, 2019.

12

https://api.semanticscholar.org/CorpusID:233296808

Under review as a conference paper at ICLR 2025

[38] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. In International Conference on Learning Representations, 2017.

[39] Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mu-
tual information. In Conference on Learning Theory, 2020.

[40] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin
token selection in attention mechanism. In Advances in neural information processing systems
(37th edition), 2023.

[41] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding
training dynamics and token composition in 1-layer transformer. In Advances in neural infor-
mation processing systems (37th edition), 2023.

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347-10357, 2021.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa-
tion processing systems (31th edition), 2017.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2018. URL http://dx.doi.org/10.18653/v1/W18-5446.

[45] Zigiao Wang and Yongyi Mao. Two facets of sde under an information-theoretic lens: General-
ization of sgd via training trajectories and via terminal states. arXiv preprint arXiv:2211.10691,
2022.

[46] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
learning algorithms. In Advances in Neural Information Processing Systems (31th edition), pp.
2524-2533, 2017.

[47] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2020.

[48] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pp. 11727-11737, 2021.

[49] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large
neural networks via zero-shot hyperparameter transfer. In Advances in neural information
processing systems (36th edition), 2022.

[50] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning
in infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

[51] Xinhao Yao, Xiaolin Hu, Shenzhi Yang, and Yong Liu. Enhancing in-context learning perfor-
mance with just svd-based weight pruning: A theoretical perspective. In Advances in Neural
Information Processing Systems (38th edition), 2024.

[52] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In International Conference on Learning Representa-
tions, 2024.

[53] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sdez de Océriz Borde,
Rickard Briiel Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and
Justin Solomon. Asymmetry in low-rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024.

13

http://dx.doi.org/10.18653/v1/W18-5446

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

Attention mechanism analysis. A key component of transformers is the attention mechanism,
which dates back to [9]. Initially designed to capture long-range signals in sequential inputs by mix-
ing individual tokens, it has also been utilized to capture general structures in input data. After the
fully-attention-based language model has appeared [43, 5], the research community gets interested
in the functionality and benefits of the attention. For instance, transformers implicitly favor hierar-
chical interpretations of input sequences [21], the computational graphs tend to be tree-structured
[30, 32]. Theoretical analysis of training dynamics sheds light on how to identify key tokens [41],
select a few relevant tokens only (which is called localized attention) or select many tokens uni-
formly [4], and learn topic structure [25]. Besides, considerable works [36, 1, 51] try to understand
in-context learning capabilities from the perspective of gradient descent with attention.

Scaling for neural networks. Scaling refers to the process of enlarging a specific ingredient of a
model to enhance its overall performance [18]. The method is straightforward: extend the width or
depth of a neural network towards infinity, analyze how this limit is influenced by hyperparameters
like the learning rate and initialization variance during training, and then establish well-founded
choices for these hyperparameters to achieve a specific objective [17, 38, 11, 47, 49, 14, 10, 50, 13].
In the theory of scaling of neural networks, one usually tracks the asymptotic behaviour of key
quantities as we scale some model ingredient, it is a standard approach used to derive scaling rules
for initialization [38], activation function [11], network parametrization [50]. In this paper, we are
interested in scaling model capacity via the width n for the fact that most state-of-the-art pre-trained
models have large width. Examples of the infinite-width limit can be found in studies focused on
initialization methods [17, 47], or more comprehensive approaches to network parameterization.
For instance, Yang et al. [49] introduced pP, a parameterization technique for neural networks that
guarantees feature learning in the infinite-width limit, providing specific scaling rules for both ar-
chitecture and learning rates to optimize feature learning [48, 49].

Parameter-efficient fine-tuning. Fine-tuning all the parameters of a large language models, known
as full fine-tuning, is highly computationally expensive. To reduce the computational cost, various
parameter-efficient fine-tuning (PEFT) methods have been proposed [7], which only fine-tune a
small number of (extra) model parameters. PEFT methods can be divided into two categories from
the perspective of whether extra parameters are involved: (1) extra-parameter methods, freeze all of
the original parameters of an LLM and insert a set of learnable parameters to optimize the model
input or model layers suach as adapter tuning [19] , prompt tuning [23] and prefix tuning [24]; (2)
intra-parameter methods freeze most of the original parameters of an LLM and only tune a small
number of parameters of the LLM such as LoRA [20]. Furthermore, He et al. [16] present a unified
framework that establishes connections between PEFT methods and Zhu et al. [53] formally identify
and investigate asymmetry in the roles of low-rank adapter matrices in LORA fine-tuning.

B OMITTED PROOFS AND ADDITIONAL RESULTS

B.1 THE CONNECTION BETWEEN PREFIX TUNING AND LORA.

Here, we provide an alternative view of Prefix tuning (without loss of generalization, we ignore the
softmax scaling factor for ease of notation):

Attn(xW ,, concat(Py, CWy), concat(P,, CW,)

P,
= softmax(xW concat(Py, CW)T) (CWU>
= (1 — A(x))softmax(xW, W7 CT)CW,, + \(x)softmax(xW,P7)P,
standard attention independent of C

= (1 — A(x)) Attn(xW,, CW, CW,,) +A(x) Attn(xW,, Py, P,),

_ >, ewp(xW,PT),
where A(X) = G BT b, exp(xW,WIGTT,
ized attention weights on the prefixes. Notice that the first term in blue represents the original
attention mechanism without prefixes, while the second term in green introduces a position-wise ad-

is a scalar that represents the sum of normal-

14

Under review as a conference paper at ICLR 2025

justment independent of C. It provides an alternative perspective on Prefix tuning, where a position-
wise modification is applied to the original attention output h via linear interpolation:

h + (1 — A(x)h + A(x)Ah, Ah := softmax(xW P})P, £ softmax(xA)B.

B.2 PROOF OF THEOREM 1

The origin form of the mutual information based bound is predicated on a sample-specific MI, which
quantifies the shared information between the output variable W and the input sample set S. The
following lemma shows the result:
Lemma 1. (Xu and Raginsky [46, Theorem 1.]). Assume the loss (W, Z) is R-subGaussian for
any W € W, then

— 2R?

error(A) < TI(W; SN,
where I(W;Sn) = Dr(Qw sy ||@Qw @ Qs) is the mutual information and D 1, denotes the
KL divergence.

Unroll the terminal parameters’ mutual information I(W; Sy) to the full trajectories’ mutual infor-
mation will get:

Lemma 2. Let Definition 1 hold, then (W + AW; Sy|A) < I(AW; Sy|A, W).

Proof.
I(W + AW; Sy |A)
< I(W,AW; Sy|A) (*)
=I(W;Sn|A) + I(AW; Sy|A, W) (¥%)

= I(AW; Sy|A, W).

where Eq. (*) is by the data processing inequality (e.g., Z — (X,Y) — (X 4+ Y) form a Markov
chainthen I(X +Y,Z) < I(X,Y; Z)), Eq. (**) is by the chain rule of the mutual information, and
I(W; Sy) = 0 for W is independent of Sy . O

Then combine Lemma 1 and Lemma 2 , we can get: error(A) < %I (AW; Sy| A, W).
We consider the case of tuning W ,&W,, only first. Applying the above results, note that here

I(AW; Sy | Ay, W) = I{W., Wi }icz; Sy | Agv, W),

where we have used the data processing inequality (DPI), noting that the W are here considered
fixed constant matrices as they are not trained.

We can now bound this expression as

I({Wév W;}iGI; SN‘AQVv W) < H({Wfp Wz}iGI) <2gr Z(dl + kl)»
s
where Wi Wi ‘W € Rén*dout _and we have noted that mutual information is upper bounded by
discrete entropy, and entropy in turn is upper bounded by the uniform distribution over its possible
support set (q bits in each of r > i ez(din + dout) dimensions). The bounds for the other algorithms
are similar.

B.3 INITIALIZATION DISCUSSION

Following standard initialization schemes (e.g., LeCun Init and He Init [22, 17]), one generally con-
sider a Gaussian initialization of the weights as follows: a; ~ N(0,02), b ~ N(0,07) (The
Gaussian distribution can be substituted with any other distribution that has finite variance). Revis-
iting Starting with a Toy setting, « € R'*" b € R. Thus, one should set 02 = O(n1),02 = 0
to ensure za® does not explode with width (za® = ©(1)), for a non-zero initialization for a. This
is justified by the Central Limit Theorem (See [49] for more technical details). And if we choose a
non-zero initialization for b, one should make sure that o7 = ©(1),02 = 0. And we will consider
these two initialization schemes to show our theoretical understanding.

15

Under review as a conference paper at ICLR 2025

B.4 GAMMA FUNCTION

Why introduce the Gamma function?

In Section 4.2, the learning rate n, = ©(nc),n, = O(n®) for some ¢4, € R. And in
Appendix B.3 we assume that the init weights are also scale polynomially with n, it is evident that
preactivations, gradients, and weight updates all exhibit asymptotic polynomial growth in n.
Operations.

We write v = O([v]) to capture it, and some elementary operations (Given two real-valued
variables vy, vo):

 Multiplication. y[v; X vo] = y[v1] + y[va].

* Addition. Generally, we have y[v; + v2] = max(y[v1],y[v2]). The only instance where
this does not hold is when v; = —wq. This is typically a zero-probability event if the two
variables are random variables that are not perfectly correlated, which is the case in most
scenarios where we apply this formula (Appendix B.5).

B.5 PROOF OF THEOREM 2

Theorem 2.[Efficient fine-tuning in attention mechanism (Informal)]

In the case of Starting with a Toy setting, with n, = ©(n~1) and 1, = ©(1), we have for all
t > 1,4 € {1,2,3},6; = ©(1). In other words, the feature learning of attention mechanism is
efficient when gk (n.) = O(n™1), nv () = O(1).

Proof. In Section 3, we say that the feature learning of attention mechanism is efficient when §; =
O(1) for all ¢, € {1,2,3}. Using the elementary formulas from Appendix B.4, we can get (for all
t):

Y] + 14+29[bi1] =0 (6 = O(1))
Y] + 2y[zal] =0 (67 = ©(1))
Ynal +] + 1+ 7lza_] +~bia] =0 (67 =O(1)).

Simple calculations yield v[n,] + y[n»] = —1. Further consider the gradient update from ¢t — 1 to ¢,
the recursive formulas are given by:

{ Ylza,] = max (y[zal], v[na] + 1+ y[bi-1])
y[be] = max (y[be—1],v[m] + v[za, ,])

Starting from ¢ 1. In both initialization schemes discussed in Appendix B.3, we have to set

y[m,] = 0 and 7[n,] = —1 to ensure that y[f;] = v[za]] + v[bt] =0

(1) o7 = O(n~1),07 = 0. We have y[za{]| = y[zaf] = 0, y[b] Y (zag)yl = ylm].
Therefore, for t = 2, y[zal] = max(0,v[n.] + 1 + v[m]) = max(0,0) = 0, y[b] =
max(2 Y] [b] + 0) = ~y[ns], this holds for ¢ > 1 by induction.

@) 02 = 0,07 = ©(1). We have 1[br] = ~fbo] = 0, vlzal] = Y[1al 2]PTob3] = Alna] + 1.
Therefore, for t = 2, v[ba] = max(0,y[n] + V[na] + 1) = max(0,0),y[zal] = max(y[n.] +
1,79[na] + 1 4 0) = 7[ne] + 1,this holds for ¢ > 1 by induction.

To sum up, setting 7ok (n.) = O(n~1),nv (m) = O(1) ensures efficient fine-tuning in attention
mechanism. O

C EXTENSION TO EXPERIMENTS

C.1 EMPIRICAL DETAILS
C.1.1 GLUE TAsks wiTH ROBERTA

For our experiments with Roberta-base models, finetuned on GLUE tasks, we use the following
setup:

Tasks. MNLI, QQP, SST2, QNLI

16

Under review as a conference paper at ICLR 2025

Training Algorithm. AdamW with 5; = 0.9, 52 = 0.99, ¢ = 1le — 8, linear schedule, no warmup.
Targert Modules for Fine-tuning. ‘query’, ‘key’ and ‘value’.

Learning rate.

(1) For Table 1, ngx = nv = 5e~5.

(2) For Figure 1,

nox = {2e75,5e7%,1e74,2e74 4e74, 8¢},
ny = {le % 2e7* de™4 8e7%, 1e73,2¢73}

GPUs. Nvidia A800.

Other Hyperparameters. Sequence length 7' = 128, train batch size batchsize = 32, number of
train , number of random seeds s = 3.

(1) For Table 1, epochs E = 6 (E = 10 for SST2).

(2) For Figure 1, epochs E =3 (E = 6 for SST2).

C.1.2 TRAINING HYPERPARAMETERS

Training hyperparameters.

Corpus length learning rate batchsize epochs

RTE 128 le-04 32 20
MRPC 128 le-04 32 20
STS-B 128 le-04 32 20
CoLA 128 le-04 32 20
SST-2 128 le-04 32 10
QNLI 128 le-04 32 10
QQP 128 le-04 32 10
MNLI 128 le-04 32 10

Table 3: Training hyperparameters for different datasets. More details can be seen in our code.

* For Full Fine-tune (QKV) and LoRA (QKV), we use g = ng = nv = le-04.
* For the improved methods, we use g = 1e-04, ny = X x le-04.

The hyperparameter settings here differ from those in Table 1 and Figure 1, so the results may show
slight variations.

C.1.3 MNLI TASK WITH LLAMA3.1-8B

For our experiments with Llama3.1-8b models, finetuned on MNLI, we use the following setup:
Training Algorithm. AdamW with 8; = 0.9, 85 = 0.999, ¢ = 1e — 6, constant schedule.
Targert Modules for Fine-tuning. ‘q_proj, k_proj, v_proj’.

Learning rate grid.

For Table 1, nox = nv = le .

Else:

nox = {1le75,5e76,1e75,5e 75, 1e~ 1},

ny = {1le7% 5e76 175 5e75, 1e4 274 4~}

Hyperparameters. LoRA rank = 16, a = 16, and dropout 0.1. Precision FP16. Sequence length
T = 128, train batch size batchsize = 128.

GPUs. Nvidia A800.
Before fine-tuning model performance. QQP: 55.08 , MNLI: 33.34

17

Under review as a conference paper at ICLR 2025

C.2 EMPIRICAL RESULTS

C.2.1 GLUE TAsks TRAIN LoOSS

MNLI-Loss o0 QQP-Loss 035 QNLI-Loss
0.65
le-3- 0.42 le-3 033
0.60
. 8e-4- 0.43 . 8e-4 0.280.29 [032
< 4e-4 - 0.43 S 4e-4 0.29 031
: 0.50 :
2e-4 0.45 2e-4 030
-0.45 -0.29
le-4 le-4
U U -0.40 -0.28
D 9 M N oo X D 9 > N X X
N @AZNZ WP WP RZZ e 9 5 X X MM
nNok Nox W2 AZAZ W P

Figure 3: The train loss of RoOBERTa-base fine-tuning. Other settings are same to Figure 1.

C.2.2 MNLILLAMA3.1-8B

MNLI&LIama3.1&Loss

4e-4 - 0.35

2e-4 - 0.36

le-4 - 0.37
& 5e-5

le-5 I

5e-6

le-6

o b H H
NPT 2N PE 2N
Nok

Figure 4: The train loss of Llama3.1-8b fine-tuning. Other settings are same to Figure 2.

C.2.3 ALGORITHM FRAMEWORK

1.0

0.8

0.6

-04

SST2-Loss

L I R
A

Nok

K Hidden States
i

Figure 5: A brief diagram outlining how our theoretical insights guide the experiments.

/ [Attention]
. ! L ’
Q X A 4
CLorA | l r_f_ ze | W r-LoR: b
Wq[| tora | Wi [freeze | v| | LoRA |

Under review as a conference paper at ICLR 2025

C.2.4 ABLATION EXPERIMENTS ON MISTRAL-7B

In alignment with the experimental setup (hyperparameter setting for Llama3.1-8b) described in our
Section 4.1, Figure 2, we have evaluated the RTE and MNLI task performances of our approach on
Mistral-7B:

Method Hyperparameter RTE MNLI

LoRA (QKV) r=16,A=1 8128 87.80
LoRA (QV) r=16,A=1 8051 88.87

LoRA (QV) r=16,A=2 81.59 89.04
LoRA (QV) r=16,A=4 80.87 88.64
LoRA (QV) r=16,A=8 8375 88.78

C.2.5 MORE CHALLENGING EVALUATION

Evaluating the model on more challenging benchmarks is essential for a comprehensive understand-
ing of its capabilities. To address this, we follow [52] to fine-tune the LLaMA3.1-8B model on
the MetaMathQA [52] dataset (the training set consists of the first 10K samples selected from the
150K MetaMathQA dataset.) and evaluate the performance on the GSM8K [6] (a benchmark for
mathematical problem-solving).

Method GSMSK (100%)
Before fine-tune 25.55
LoRA (QKV)r =16, A =1 57.70
LoRA (QV)r =16,\ =2 59.15
LoRA (QV)r =16, =4 58.23

C.2.6 FINE-TUNING K,V

We fine-tune only W, and W,, of Roberta-base, others are the same to Table 1.

Weight Type W, W, W, W, W, W, W,

swo L b b o
QNLIR) TR 0T oo 0800
QPR T gk osm osi
MNLIR) TR 0 okt osos

19

Under review as a conference paper at ICLR 2025

C.2.7 DIRECTLY FINE-TUNING Q,K,V WITH LAMBDA

We fine-tuning W, Wy, W, with A directly with the same settings in Table 2 for easy comparison,
supporting one of our major claims in Theorem 2.

Method Trainable #Param (M) RTE STS-B MRPC CoLA
Before Fine-tune 0 45.12 -3.18 66.66 1.09

LoRA (QKV)r =8, =1 1.62 70.76 90.25 85.04 58.03
LoRA (QKV)r =8, A =2 1.62 72.92 90.54 86.76 58.28
LoRA (QKV)r =8,A =14 1.62 73.64 90.84 87.74 60.66
LoRA (QKV)r =8,A =8 1.62 76.10 91.00 88.48 60.59
LoRA (QKV)r =16,A =1 2.07 70.39 90.25 86.03 58.04
LoRA (QKV)r =16,\ =2 2.07 72.56 90.36 86.27 59.81
LoRA (QKV)r =16,\ =4 2.07 74.00 90.84 86.76 60.07
LoRA (QKV)r =16,\ =8 2.07 76.97 90.81 87.74 60.34

20

	Introduction
	Preliminaries and Background
	Advantages and Generalization Analysis
	Empirical Advantages of Fine-Tuning only Query,Value Matrices
	Information-Theoretic Generalization Bounds

	Convergence Analysis in Optimization
	An Insight into Inefficient Learning for Value Matrix
	Convergence Analysis for Learning Rate

	An Example of Improving Fine-tuning Methods
	Conclusion and Limitation
	More Related Works
	Omitted Proofs and Additional Results
	The connection between Prefix tuning and LoRA.
	Proof of Theorem 1
	Initialization Discussion
	Gamma Function
	Proof of Theorem 2

	Extension to Experiments
	Empirical Details
	GLUE Tasks with RoBERTa
	Training Hyperparameters
	MNLI Task with Llama3.1-8b

	Empirical Results
	GLUE Tasks Train Loss
	MNLI Llama3.1-8b
	Algorithm Framework
	Ablation Experiments on Mistral-7B
	More Challenging Evaluation
	Fine-tuning K,V
	Directly fine-tuning Q,K,V with lambda

