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High-performance real-world optical computing
trained by in situ gradient-based model-free
optimization

Guangyuan Zhao, Student Member, IEEE, Xin Shu, Member, IEEE, and Renjie Zhou, Member, IEEE

Abstract—Optical computing systems provide high-speed and low-energy data processing but face deficiencies in computationally
demanding training and simulation-to-reality gaps. We propose a gradient-based model-free optimization (G-MFO) method based on a
Monte Carlo gradient estimation algorithm for computationally efficient in situ training of optical computing systems. This approach
treats an optical computing system as a black box and back-propagates the loss directly to the optical computing weights’ probability
distributions, circumventing the need for a computationally heavy and biased system simulation. Our experiments on diffractive optical
computing systems show that G-MFO outperforms hybrid training on the MNIST and FMNIST datasets. Furthermore, we demonstrate
image-free and high-speed classification of cells from their marker-free phase maps. Our method’s model-free and high-performance
nature, combined with its low demand for computational resources, paves the way for accelerating the transition of optical computing

from laboratory demonstrations to practical, real-world applications.

Index Terms—Computational Optics; Optical Neural Network; Model-free Optimization;

1 INTRODUCTION

PTICAL computing leverages the properties of light

waves to facilitate high-speed data processing while
reducing the energy cost [1], [2], [3]], [4], [5], [6], [7]. Recent
advances in automatic differentiation have enabled in silico
training of large-scale optical computing weights, giving
rise to the realizations of diffractive neural networks [8],
[9], optical reservoir computing [10], [11], and coherent
nanophotonic circuits [12].

Problem Statement. Training optical computing systems
presents two challenges: an intensive computational pro-
cess and a performance disparity between simulation and
reality when implementing pre-trained weights onto real-
world systems [9], [13], [14]. Typically, the optical com-
puting systems are trained in silico using differentiable
simulators rooted in the first principle of optics, an approach
known as simulator-based training (SBT). While SBT has
proven effective within the confines of the simulator, the
performance in real systems is largely contingent upon
the simulator’s fidelity. Factors such as misalignment and
aberration, often omitted in simulations, cause significant
performance degradation when optical computing weights
trained exclusively within the simulator are applied to real-
world systems.

To bridge the reality gap between simulation and exper-
iments, physics-aware training (PAT) and hybrid training

o This work is supported in part by Hong Kong General Research Fund
14209521, in part by Hong Kong Innovation and Technology Fund
ITS/178/20FP & ITS/148/20 and in part by Croucher Foundation
CM/CT/CF/CIA/0688/19ay. (G. Zhao and X. Shu contributed equally to
this work.) (Corresponding author: Guangyuan Zhao.)

o G. Zhao, X. Shu and R. Zhou are with the Department
of Biomedical Engineering, the Chinese University of Hong
Kong, Hong Kong, China (email: zhaoguangyuan@link.cuhk.edu.hk,
shuxin@link.cuhk.edu.hk, rjzhou@cuhk.edu.hk).

o This article has supplementary material available at xxx, provided by the
authors.

(HBT) have been introduced [15], [16] recently. Both train-
ing strategies include conducting the forward pass in the
real-world system and back-propagating the loss from the
system to its weights through the simulator. These in situ
approaches allow the training process to access the optical
computing system during the forward pass, which leads to
more accurate weight updates than in silico training [13].

Despite these recent advances, there is a continued
reliance on a physics-based simulator during the back-
propagation process in current in situ training methods.
Such a setting brings three drawbacks: (1) the bias between
the simulator and real system prohibits the above training
process from achieving optimal results; (2) the in silico sim-
ulation requires large memory and computation, limiting
the aforementioned methods from in situ training in edge
devices with limited computing resources [17]; and (3) the
model-based training strategies need high-fidelity images
of the input object, which are costly to acquire in terms of
instruments, time and storage memory. Hence, developing
a memory- and computation-efficient algorithm to train the
optical computing system efficiently is an open problem we
address in this paper.

Proposed Solution. Here, we propose an in situ model-
free optimization method that does not require back-
propagating errors through the simulator. Instead, we use
a score gradient estimation algorithm [18]], [19] to solely use
the forward outputs from the real system to get gradients
for updating the weights of the optical computing system.
As shown in Fig. |1} our method treats the optical system as
a black box and back-propagates task-specific negative-loss
as rewards to the source weight distributions (Fig. [Th). This
process only requires knowledge of the weights and forward
outputs of the optical computing system, unlike the SBT and
HBT methods that require a simulator and the images of the

input objects (Fig. [Ip).
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Fig. 1: Gradient-based model-free optimization based
training of the optical computing system. (a) The brown
highlights show that our gradient-based model-free training
strategy back-propagates the error of training to the distri-
bution parameter § and bypasses the reliance on correct dif-
ferentiable modeling of the optical system fs,s and knowl-
edge on input {z;}Y ;. (b) The blue highlights show that
the conventional training of the optical computing system
relies on a physics-based simulator fsys, which substitutes
the inaccessible f,,, corresponding to the real system. The
training process back-propagates the loss through simulator
fsys to update the weight w. This is the basis of SBT and
HBT methods.

Contributions. We make the following contributions:

o We introduce a score-gradient estimation method to
train the optical computing system in a model-free
manner, providing a computation- and memory-
efficient way to mitigate the reality gap to training
the real optical computing system (Sec. [3).

o We validate our method on a diffractive optical com-
puting system. Experimental results show that G-
MFO outperforms hybrid training on the commonly
used MNIST and FMNIST datasets [9], [15], [16]
(Sec.[4.7).

o We show the G-MFO training process only con-
sumes ~ 0.1% of the GPU time and memory com-
pared with the HBT in situ method by avoiding the
computation-intensive modeling of the wave propa-
gation process (Sec. [4.2).

e Application scenario: We demonstrate, as a proof-of-
concept, that our G-MFO-trained optical computing
system’s effectiveness on classifying four types of
white blood cells from their phase maps in a marker-
freeﬂ manner with a testing accuracy of 73.8%, mak-
ing it a promising approach for image-free, marker-
free, and high-speed cell analysis (Sec. [4.4).

Open source. Our code will be available at repository
Model-free-Computational-Optics  to facilitate further re-
search and applications on computational optics and train-

1. Herein, we use “marker-free” but not “label-free” to avoid confu-
sion. This is because “label-free” has different meanings in biomedical
research and high-level vision.

2

ing of optical computing systems. We hope to promote
the reproducibility and follow-ups for this hardware-centric
research direction.

2 RELATED WORK

We discuss the following work related to our contributions.

2.1 In situ training strategies to optimize the optical
computing system

Most research into optical computing system training has
historically relied on in silico training. This process involves
forward and backward propagation calculations on an ex-
ternal computer that simulates the physical system through
a digital twin [9]], [12]. However, this technique can lead to
discrepancies between the simulation and actual reality due
to inaccuracies in the physical system’s representation.

In recent years, progress has been made in developing
in situ training strategies that use data gathered from real-
world optical computing systems to mitigate the reality
gap and improve experimental performance. As a first
attempt, we categorize previous and our in-situ training
methods into two genres: model-based optimization (MBO)
and model-free optimization (MFO) methods. We differ-
entiate these two genres by whether they use the optical
computing system emulator models during the parameter
updating process. A tabular comparison of the previous and
our methods is in Tab. [l Details of the illustrations and
comparisons are below.

MBO methods. Physics-aware training (PAT) [15], hybrid
training (HBT) [16] or adaptive training (AT) [20] (H-MBO)
are one type of the MBO methods that conduct forward
pass in a real system and back-propagate the gradients with
the aid of a physics-based simulator. Backpropagation through
learned model (L-MBO) is another method that gathers the
real data from the optical computing system to train a
neural proxy of the optical computing system [21], [22]. With
such a learned proxy rather than the physics-based model
utilized in H-MBO, the backward parameter update process
can reduce the bias from the model mismatch between the
simulator and the real system in L-MBO. During training,
one has to optimize both the task’s and proxy’s parameters
to optimize the task performance and improve the fidelity of
the simulator. The task performance for the MBO, especially
the L-MBO, is high while back-propagating with the digital
twin also burdens the training process. The L-MBO methods
implemented in optical computing are referred as hardware
(camera)-in-the-loop methods. These methods have recently
been used in computational display [31], [32] and camera
ISP [33]. They are also known as real2sim in photolithogra-
phy for solving computational lithography tasks [34], [35].
Despite the computational burden introduced by the emula-
tion process from the digital twin, another disadvantage of
the MBO methods is that all the MBO approaches require
images of input objects during training, adding further
burden to the overall process.

MFO methods. Unlike the aforementioned MBO meth-
ods, MFO methods do not require constructing a digital
twin of the optical computing system; they directly use
the real system’s output or intermediate measurements to
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| Conventional | MBO | MFO
SBT [9], [12] | H-MBO L-MBO IMOB FFT [26], | Trial and | GA [30] G-MFO
115, [16], | [21], [22] 23], [24], | [27] Error [28], (ours)
[20] [25] [29]
In situ No Yes Yes Yes Yes Yes Yes Yes
Computation overhead High High High Low Low Low Low Low
Input image free No No No Yes No Yes Yes Yes
In silico training time High High High Low Low Low Low Low
Dimensionality High High High High High Low Low Medium
Intermediate measurement No No No Yes Yes No No No
Gradient Yes Yes Yes Yes No No No Yes

TABLE 1: Comparison of strategies on training optical computing systems along the axes of in situ training capability
(in situ), in silico computation overhead (computation overhead), the requirement on the recording of the input object to
the task (input image free), required in silico training time, the dimensionality of trainable parameters (dimensionality),
requirements on intermediate measurement and whether or not use gradient-based update that is more efficient (gradient).
Simulator-based training (SBT), Hybrid model-based training (H-MBO), Learned model-based training (L-MBO), Interme-
diate measurement optical backpropagation (IMOB), Forward-forward training (FFT), Trial and error, Genetic algorithm

(GA), Gradient-based model-free optimization (G-MFO).

update its parameters. Population-based algorithms such as
genetic algorithm (GA) methods [30] use the output from
the optical computing system to optimize parameters by
simulating the process of natural selection. Still, the genetic
algorithm’s performance scales poorly to the dimensionality
of parameters [36]. Forward-forward training (FFT) is a greedy
multi-layer learning procedure for mortal computation [37]
and it has been applied to train optical computing systems
recently [26], [27]. However, labels must be added to each
input sample during the training and testing. As a result,
such training strategies require masking the input, which
might be unrealistic in many scenarios, and the testing
process of forward-forward training is prolonged. In Trail
and error, perturbed parameters that enhance performance
are retained, while those that do not are discarded, reverting
to the previous state [28], [29]. This method, however, does
not scale well with the dimensionality of parameters. Inter-
mediate measurement optical backpropagation (IMOB) proposed
using the adjoint variable method or direct feedback align-
ment, etc., to calculate gradients [23], [24], [25]. However,
such methods require intermediate system measurements
for every layer’s output, which might be infeasible or re-
quire additional measurement setups.

We propose the gradient-based MFO (G-MFO) training
method using Monte Carlo gradient estimation to update
the optical computing system parameters automatically.
Our work shares similarities with Zhang et al., which uses
the genetic algorithm for weight update [30], as our and
their methods both generate a batch of sampled param-
eters during the training process. The difference is that
our parameter updating process is more efficient owing
to a score gradient estimator rather than their heuristic
hill-climbing type algorithm. Moreover, our method does
not need specific conditions, such as changing the system
or manipulating the input object, which are more or less
required in other MBO and MFO methods.

2.2 Zeroth-Order Optimization and Its Applications to
Computational Optics

The zeroth-order (ZO) optimization uses finite differences
from forward evaluations instead of the first-order path-
wise gradient to calculate the gradient for updating the

parameters of interest [38], [39]. ZO has been utilized in
many areas, such as differentiating through discontinuities
in computer graphics [40], optimizing contact dynamics
in robotics [41]], [42], and policy learning in reinforcement
learning [19]. ZO optimization has been implemented with
both full-point estimation [43]], and stochastic two-point esti-
mation [44]. A significant advancement in ZO is to estimate
the descent direction using multiple stochastic finite differ-
ences [45] where Monte Carlo approximation is used in the
process, also called evolutionary strategies [46]. Moreover,
techniques such as antithetic sampling, control variates [47],
or more advanced methods to reduce variance [48], [49] in
the Monte Carlo approximation process are used in multiple
stochastic finite differences. Our work employs Monte Carlo
gradient estimation [38], which resembles multiple stochas-
tic finite differences.

Applications of ZO Methods to Computational Optics have
been relatively sparse compared to first-order methods.
In the past, there have been demonstrations in computa-
tional optics tasks such as lens design [50], auto-tuning
structured light for depth estimation [51], and computer-
generated holography [52]. Using only forward evalua-
tions for gradient updates makes it beneficial for optical
computing-related tasks, such as what was mentioned as
optical stochastic gradient descent (SGD) in the auto-tuning
structured light work [51]]. The reason is that forward evalu-
ation in optical computing is inexpensive while finding the
first-order gradient is computationally costly and prone to
errors. Our work highlights the advantages of using zeroth-
order optimization for optimizing more complex systems,
such as optical computing, and the efficacy of using Monte
Carlo gradient estimation for efficient optimization.

2.3 Application side of optical computing

Optical computing, outperforming electrical computing in
parallelism and processing speed, is pivotal for Al progress
via optical neural networks (ONN) development [5]. ONNs
encode inputs using light’s spatial, temporal, and spectral
characteristics to enable applications such as image clas-
sification, motion detection, and medical diagnosis [29],
[53], [54]. Furthermore, optical computing functions as an
advanced neural network platform and directly processes
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optical signals, facilitating applications like phase recon-
struction [55], denoising [56], edge detection [57], and uni-
directional imaging [58].

As a secondary contribution, our work showcases the
application of optical computing for marker-free cell clas-
sification. Particularly relevant to our research is the study
by Wang et al. [59], which demonstrates the classification of
fluorescent-labeled cells using an optical computing system.
In contrast, our approach shows cell-classification based on
their phase maps, instead of relying on fluorescent markers.
This illustrates that optical computing can facilitate low-
storage, high-speed, and marker-free cell analysis.

3 METHODOLOGY

In what follows, we mathematically detail the problem
setup on training the optical computing system and our
solution. We introduce problem formation in Subsec.[3.T]and
the conventional solution of using simulator-based training
(SBT) in Subsec. We then illustrate our solution to the
problem, the gradient-based model-free optimization (G-
MFO) for training the optical computing system in Sub-
sec. Finally, we illustrate the optical computing system
and the related simulators in Subsec. which we will use
to demonstrate the performance of our method.

3.1 Problem setup

We are interested in learning the optimal weight w € RY
for the optical computing system on a desired task with
a training dataset D = {z;,v;}Y,, where N is the size
of the dataset, H is the number of trainable parameters
in w, and  and y denote the input and target of interest,
respectively. A function fyys(-,w) maps x — y through this
optical computing system with w. Specifically, in the image
classification task based on the diffractive optical computing
system we work on, f,,, denotes the optical mapping from
the input image x to the output label y, and w is the optical
computing weight in the form of phase value modulation.

During training, one can minimize the cost function
J(w) as the mean task-specific loss across the entire training
data set D :

argmin J(w) : = E[L(D,w)],

w

(1a)

N
= % Y L(fsys(@iw),y:),  (1b)
=1

where £ is the task-specific loss function, we use cross-

entropy loss [60] since we deal with image classification
tasks throughout this paper.

We use gradient descent-based search to find the optimal

w to minimize the objective function .J(w):

w=w—aVyJ(w), 2

where V,, represents the gradient operator that collects all

the partial derivatives of a function concerning parameters
in w, and « is the learning rate.

4

It is straightforward to use the backpropagation
method [14] to take the gradient through f,,, and finds the
gradient V,,J(w) as:

N
Vud () = 1 3 Vul(Fslanw) ), O
i=1
when we have an accurate and differentiable fs,; model-
ing. However, this is the case for training digital neural
networks [14], but not when we train a real-world optical
computing system. Thus, this paper’s critical aim is finding
an accurate gradient estimation of V,J(w) to update
optical computing weight w in a real-world optical system.
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Fig. 2: System misalignment in a real optical comput-
ing system degenerates the performance of the optical
computing system trained solely with a physics-based
simulator. (a) Testing accuracy drops to 36.4% from 82.2%
when having a misaligned rotation angle A¢; = 0.01°. (b)
Testing accuracy drops to 51.0% from 82.2% when the x’-
axis misalignment of the optical computing layer Ad. is
41.1 pm. (c) Testing accuracy decreases to 50.9% from 82.2%
when the y’-axis misalignment of the output layer Ad, is
62.4 pm.

3.2

Back-propagation through the simulator fsys. In a real-
world optical computing system, since we do not have
an exact functional expression of f,,,, the simulator-based
training (SBT) builds a simulator fsys as the differentiable
approximation of fs,s (Fig.[lp). A naive training strategy
is substituting fsys in Eq. 3| with the simulator fsys and
applying in silico training on the simulator:

In silico simulator-based training (SBT)

N
V() = 5 3 VallFuslaw) ). @)
i=1

The resulting V,,J(w) is used in Eq. 2| to update w. After
training, the optimized w is uploaded to the real optical
computing system fs, to test the performance.

Simulation-to-reality = gap. The aforementioned
simulator-based training is based on backpropagation
through the simulator fsys. The ”sim2real” gap is low
(i.e., the gradient V,J(w) is an accurate estimation)
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when the simulator fsys is similar to f,,. However,
this assumption does not hold in many prototypes of
optical computing systems where inadequate modeling
and misalignment between the optical elements decay the
performance of the SBT during the “sim2real” transfer.
We use a simulator described in Subsec. 3.4 to assess the
adverse effect of misalignment on the image classification
results. We impose various misalignments to a well-trained
ideal optical computing system and measure drops in
classification accuracy. For instance, we show in Fig. [2| that
slightly laterally misaligning the optical computing layer
by 41.1 um reduces the classification accuracy by 31.2%.

3.3 In situ G-MFO

Our solution for solving the aforementioned “sim2real” gap
issue in Subsec. [3.2|is in situ learning the optical computing
weight w with the gradient-based model-free optimization
(G-MFO). In situ learning enables us to access the output of
fsys and is feasible on the hardware side because we can
use programmable devices such as spatial light modulators
to update w. The challenging part is designing a training
strategy that efficiently uses the output of actual system f, s
to construct an unbiased gradient estimator. Here, we use
the score gradient estimator to calculate the gradient [38],
[61] for the backward update of parameters in w while cir-
cumventing the construction of f,,, a biased and resource-
intensive numerical modeling of fgys.

Back-propagation through the weights distribution p.
In our score gradient estimator for model-free optimization,
we model optical computing weight w as a random variable
that follows a probability distribution: w ~ p(w|d) and
rewrite the cost function J(w) in Eq. [lb| as a probability
cost function J(6):

argeman fays (xu )7yi)]a (Sa)

N ZEP(WW
-+ _z / D(wIB)L(fays (i, w), i) dw

(5b)

where the probability distribution p(w|f) is continuous
in its domain and differentiable concerning its distribution
parameter 0. Accordingly, the original goal of optimizing w
is reformulated as finding a most likely distribution p(w|0)
that minimizes the cost function J(6) in Eq. 5| Specifi-
cally, we model the distribution p as a multivariate normal
distribution with § = {u,0?} and p(w|f) = N(w;u,o?)
for optimizing the continuous phase-valued weight to be
uploaded onto the SLM in our work.
To update distribution parameter 6 with the gradient
descent Eq. P} we take the gradient of the cost function .J(f)

in Eq. 5}
VoJ (6 VG*Z/ (w]0)L fsyS(xm w),y;) dw, (6a)

- NZ/ﬁ(fsyS(xi’w)vyi)vep(wW) dw. (6b)
i=1

Applying the log derivative trick, we have:

N
Vo (0) = 3 3 [ UwIO)E(fuye i), 5) Vo log pluw) v
i=1
)
Then we apply Monte Carlo integration to approximate the
integral value in Eq. []] by first drawing M independent
samples {w;}}L, from the distribution p(w|f) and then
computing the average function value evaluated in these
samples:

M
VHJ( Z fsys xz;wj) yl)ve Ing(wJ‘g)

(8a)

2\
an

£(f8y8(xi’wj>7yi)]v9 1ng(wj‘9)v

(8b)
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Here we define r(w;) = + SN L(feys(xi,w;5),y:) as the
negative reward corresponding to each weight w;. We use
Equation as the score gradient estimator for G-MFO,
where the score function is Vg log p(w;|6), which has been
widely used in other areas, such as policy gradient algo-
rithms in reinforcement learning [19] and diffusion mod-
els [62].

Variance reduction. The main risk of using the score gradi-
ent estimator is the high variance that comes from the Monte
Carlo integration step that transits Eq. [/ to Eq. [8al Such a
sampling-based integration step has high variance because
different sets of random samples may lead to significantly
different integral estimates. We reduce the variance by sub-
tracting the r(w;) with baseline value 7 = 4; ZJM:1 r(w;)
while keeping the bias of gradient unchanged [63]:

1 M

VoJ(0) = r(w;) — )V logp(w;ld).  (9)

J:1

Training recipe of G-MFO. We perform the following
steps in each training epoch (see Fig. [3): 1. Sample a group
of phase-valued optical computing weights {wj}M 1 from
the distribution w; ~ p(w|f) and upload them to the optical
computing layer. Upload classification data D = {x;,y; } Y,
to the input layer; 2. Collect the optical computing system’s
output { feys(zi, wj)}fv:’yj:l for each pair of input and
weight; 3. Update the distribution parameter 6 in silico
using Egs. [2|and (9} 4. Sample a new group of {w;} ;Vil from
the updated distribution w; ~ p(w|@), which is ready to be
uploaded to the optical computing layer in the next epoch.
The algorithm iterates these steps until convergence.

After minimizing the objective function Eq.[5 we export
w; with the smallest r(w;) as the output weight w*. This
performs better than setting w* as the sampled mean p. An
algorithmic overview of the above training recipe is shown
in Algorithm
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Algorithm 1 Algorithmic overview of G-MFO.

1: Input: Classification dataset D = {z;,;}¥ ,, learning
rate o, number of sampled weights M, optical comput-
ing system f,;, distribution parameter 6 = {y, 02}, loss
function £, epochs K.

2: Output: Optimized optical computing weight w*.

3: for k in range K do

4: Sample {w;}}2, from distribution p(w|6).
5: > in situ evaluate {w; } ;.
6: for j in range M do
7

N
8: T(wj) — %Zi:l ['(fsys(xhwj)ayi)'
9: end for

10: > in silico update 0.

11:  Calculate Vy.J(6) via Eq. [

122 0+ 0—aVeJ(h).

13: end for

14: w* + w; with the smallest r(w;).

N.M
i=1,j=1

{fsys(xil Wj)}

. Output Layer
3 (camera)

In silico
update 6

.

Fig. 3: A visual illustration of the training process for the
G-MFO experiment on the real system.

3.4 Experiment and Simulation Details of Our Diffrac-
tive Optical Computing System

We validate the effectiveness of the proposed G-MFO-based
training strategy on a single-layer optical computing system
and a two-layer diffractive optical computing system. Our
work focuses on the training strategy rather than the de-
sign or adavantage of a specific optical computing system.
Therefore, we do not consider nonlinearity in constructing
our optical computing system, which has recently been
implemented using saturation effects [20], [59]], [64]. The
validity of using a multi-layer versus a single-layer system
without nonlinearity has been analyzed empirically in [65],
where the authors attribute the improvement to increased
energy resulting from the multi-layer settings. Details on
the experimental setups (fsys—1—iayer, fsys—2—iayer) and the
corresponding simulators ( fsys,l,layer, fsys,g,layer) are in
the Supplement Sec. S.1.

4 RESULTS

We aim to answer the following research questions in this
section:

6

e How does G-MFO perform in the numerical simula-
tions and experiments?

o What are the advantages and limitations of G-MFO?

o How is G-MFO'’s applicability on the marker-free cell
classification task?

Thus, we numerically and experimentally evaluate the
general performance of our G-MFO method on the open-
source MNIST and FMNIST datasets (Subsec. [4.1). We then
illustrate G-MFQO'’s advantage of memory- and computation-
efficient training in Subsec. Moreover, we analyze the
limitation of our method in Subsec Lastly, we demon-
strate the G-MFO method on a novel application of marker-
free classifying white blood cells in Subsec. &4}

We compare our method with the following baselines:

e Ideal: The in silico simulation results without intro-
ducing any artificial misalignment during the simu-
lation. This corresponds to the best achievable result
for an optical computing system.

e SBT: Simulator-based training with digitally aligned
simulator.

e HBT: The hybrid training strategies with a physics-
based simulator.

e L-MBO: We pre-train a proxy using the task dataset
to emulate the real system and then optimize the op-
tical computing task based on the pre-trained proxy.

e Zeroth-order optimization baselines: Including
two-point estimation on a random direction and

full-point estimation [43], [51].

The training details for simulations and experiments are
in Supplement Sec. S.3. Supplement Sec. S.6 provides a
detailed description of our implementation of the HBT
baseline. Supplement Sec. S.7 discusses and compares L-
MBO.

4.1 General performance evaluation on the MNIST and
FMNIST dataset

4.1.1 Simulation comparison between G-MFO and other
zeroth-order optimization methods in simulation on a small
dataset

We use a single-layer optical computing simulator to
compare our method with two zeroth-order (ZO) baselines:
the full-point ZO method [43]), and the two-point ZO
method [44]. This comparison mainly evaluates the train-
ing performance, including accuracy, execution, and con-
vergence speed. Therefore, we use a small dataset of 100
training, 100 validation, and 100 testing samples.

We present the simulation results and training time per
epoch in Table 2} and the curves of training accuracy in
Fig. B} The results show that sufficient samples are neces-
sary for successful optimization. Specifically, the two-point
method, with two samples per epoch, only achieves a train-
ing accuracy of 22%, whereas both the full-point method,
using 128 x 128 samples per epoch, and the G-MFO method,
using 128 samples per epoch, achieve a training accuracy of
99%. Additionally, G-MFO has improved sample efficiency
than the full-point optimization method, requiring only 4%
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Fig. 4: Visualization of the optical computing system’s experimental outputs and confusion matrices trained with G-
MEFO. (a) An input phase object digit 2" from the MNIST dataset is modulated by the optical computing layer with weight
w trained using G-MFO. The system correctly predicts the input as digit ‘2’, as the output image has the largest intensity
at the region corresponding to digit 2’. (b) Confusion matrix on the MNIST dataset with a training accuracy of 83.1%. (c)
An example of a ‘pullover’ from the FMNIST dataset is correctly predicted. (d) Confusion matrix on the FMNIST dataset
with a training accuracy of 74.0%.
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Fig. 5: G-MFO balances sample efficiency and task per-
formance for the optimization process. We compare the
training curves of the two-point zeroth-order (ZO) method
(green), the full-point ZO method (blue), and our G-MFO
(orange) method. The full-point ZO method and G-MFO
achieve 99% training accuracy on the small dataset. Notably,
the total number of samples of G-MFO is only approxi-
mately 4% of that required by the full-point ZO method to
achieve an accuracy of 99%. Additionally, the two-point ZO
method fails to optimize effectively. The right panel presents
an enlarged view of the selected region from the left panel.

of the samples to achieve an accuracy of 99% compared to

TABLE 2: Numerical comparison of G-MFO and other
zeroth-order (ZO) optimization methods on FMNIST
dataset on a simulated single-layer diffractive optical
computing system. We show results from the full-point
Z0 method, the two-point ZO method, and G-MFO.

the full-point optimization method.

4.1.2  Simulation results on the two-layer optical computing
SyStem fsysf2flayer-

We evaluate our method’s accuracy by conducting per-
formance tests on a two-layer optical computing simu-
lator fsys,g,layer utilizing two classical image classifica-
tion datasets: MNIST [66] and FMNIST [67]. Each optical
computing layer contains 128 x 128 = 16,384 trainable
parameter, and the system contains 128 x 128 x 2 = 32,768

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOl 10.1109/TPAMI.2024.3466853

MNIST FMNIST
Train ‘ Val ‘ Test Train‘ Val ‘ Test
Ideal 90.0%| 89.3%| 89.5%| 82.2%| 81.2%| 80.5%
HBT 78.0% | 78.7%| 78.4%| 61.6%| 61.4%| 59.8%
G-MFO | g6 501, | 86.2% | 87.0% | 75.4% | 75.4% | 74.1%
(Ours)

TABLE 3: Numerical performance comparison on MNIST
and FMNIST datasets on two-layer diffractive optical
computing system.

parameters. Furthermore, to assess the robustness of the G-
MFO method against system misalignment, we intention-
ally introduce a slight misalignment on the positive x’-axis
direction, amounting to 40um (equivalent to 5 pixels on
SLM1) on the optical computing layerl, and 18.7pm (cor-
responding to 5 pixels on SLM2), on the optical computing
layer2. We use 10, 000 data to train, 10, 000 data to validate,
and 10, 000 data to test.

The simulation outcomes for the MNIST and FMNIST
datasets are in Tab. 3| The ideal testing accuracy reaches
89.5% on MNIST and 80.5% on FMNIST. However, the
presence of misalignment reduces the accuracy to 78.4%
and 59.8% using HBT, a decrease of approximately 10%
and 20%. In contrast, the G-MFO method hits an accuracy
of 87.0% and 74.1%, effectively mitigating the detrimental
impact of system misalignment.

MNIST FMNIST

Train ‘ Val ‘ Test Train ‘ Val ‘ Test

Ideal ‘ 92.7% ‘ 84.3% ‘ 82.2% ‘ 85.6% ‘ 79.9% ‘ 76.4%

SBT 81.9%| 74.4%| 69.3%| 68.3%| 64.1%| 60.9%

HBT 81.9%| 75.5%| 72.8%| 68.3%| 68.7%| 65.8%

G-MFO | 310, | 77.8% | 73.6% | 74.0% | 71.1% | 70.4%
(Ours)
HBT+G-

MFO 87.0% | 80.2% | 77.7% | 75.0% | 71.7% | 70.2%
(Ours)

TABLE 4: Experimental performance comparison on
MNIST and FMNIST datasets on the single-layer optical
computing system. Results of the ideal mode are from the
simulator, whose parameters are determined from experi-
ments while we impose no misalignment on the simulator.
The lower four rows are experimental results from SBT,
HBT, G-MFO, and HBT+G-MFO (G-MFO fine-tuning upon
the result from HBT). Our method outperforms the SBT and
HBT methods on the MNIST and FMNIST datasets.

4.1.3 G-MFO outperforms hybrid training (HBT) exper-
imentally on a single-layer optical computing system
fsys—l—layer-

We conduct experiments on a real single-layer optical com-
puting system fqys—1—jayer on the MNIST and FMNIST
datasets. We include in silico SBT and in situ HBT methods
utilizing digitally aligned simulators as the comparison
baselines. The training, validation, and testing phases each
utilize a dataset of 1,000 samples.

8

Tab. {4] quantitatively shows that our method achieves
higher classification accuracy than the HBT and SBT meth-
ods on both datasets in the experiments. The SBT method
performs poorly due to the reality gap between the simula-
tor and the real system. The HBT method suffers from the
bias between fs,s and f,y, in the backward process, while
the G-MFO bypasses the bias-sensitive modeling and up-
dates gradients solely with fs,s. We further show G-MFO’s
capability to fine-tune the HBT result. The last row of Tab. 4]
shows that the unbiased G-MFO method further improves
the results of HBT. Moreover, we also empirically find that
fine-tuning outperforms G-MFO only. Fig. 4 visualizes some
experimental outputs and confusion matrices using the G-
MFO method.

4.1.4 Experimental results on the two-layer optical comput-
ing system fsys_2_1ayer-

We also perform experiments on training a real two-
layer optical computing system fsys—2_iayer ON the MNIST
dataset. For this experiment, we utilize a dataset comprising
10,000 instances for training, another 10,000 for validation,
and a separate set of 10,000 for testing. The training, vali-
dation, and testing accuracy are 80.43%, 81.1%, and 80.3%,
respectively.

Compared with the simulated G-MFO outcomes pre-
sented in Tab. 3} the experimental accuracy is lower. We
hypothesize that this discrepancy is attributed, in part, to
mechanical disturbances encountered during the multi-day
span of the experiment. Moreover, the training accuracy
from a two-layer system is lower than that of a single-layer
system, while the validation and testing accuracy is higher.
This is because we use more samples when training a two-
layer system, alleviating overfitting.

4.2 Advantage: memory- and computation-efficient
training enabled by G-MFO

In addition to the predicting accuracy discussed in the previ-
ous subsection, our G-MFO method has an advantage over
other training algorithms regarding GPU time and memory
efficiency. The SBT and HBT methods compute fq,(,w)
and V,, féys (Fig. ) for each input z in silico, which
requires a lot of in silico computation resources. In contrast,
our G-MFO method executes the calculation of fy,s(x, w)
in the light-speed real optical computing system, but not in
the computation- and memory-heavy simulator fsys(x, w).
The only step of our G-MFO method that consumes in silico
computational resources is the one described in Eq.[9) where
we calculate the score gradient. The in silico computational
resources consumption in this step is low because it only
scales with the dimension of w and has no relation to the
complexity of the system’s light transport fsys.

We compare our G-MFO method with HBT in GPU
memory and time usage during experiments on a single-
layer optical computing system in Fig. [/} Our G-MFO
method requires far less GPU time and memory than the
HBT method during the training.

4.3 Limitation: G-MFO exhibits the curse of dimension-
ality

Our method is not without its limits. Our G-MFO training
relies on Monte Carlo integration. It thus inherits the curse of
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Fig. 6: All optical marker-free cell classification enabled by G-MFO training. (a) Our trained optical computing system
classifies four WBC subtypes, including B cell (red), T cell (green), monocyte (blue), and granulocyte (purple), in a marker-
free manner. The system uses the (i) marker-free phase information of the WBCs to (ii) perform optical classification. The
output plane of the system has different regions corresponding to different classes. We (iii) measure the intensity values
in these regions and (iv) choose the class with the highest intensity as the prediction. (b) shows that non-morphological
features, including size and dry mass, cannot divide the four subtypes well. In contrast, (c)(i) shows the optical computing
system trained with our G-MFO method can classify the WBC subtypes with a training/validation/testing accuracy of
72.1%/73.3%/73.8%, which is higher than that of the HBT method. (c)(ii) shows the confusion matrix of G-MFO results
on the training set. (d) The optical computing system produces its output at the speed of light (1.4 ns). This is faster than
the electronic computing with ResNet10 [68], [69]], which has an inference time of 1.7 ms.

(a) GPU memory usage (b) GPU time usage
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Fig. 7: Advantage: G-MFO saves in silico computing re-
sources during training. We compare the GPU (a) memory
and (b) time consumption of HBT and G-MFO methods for
training one batch of inputs with batch sizes of B = 4 and
B = 32. G-MFO is more efficient than HBT during the in
situ training process in memory and time. Moreover, G-
MFO'’s resource consumption does not increase as the batch
size increases, unlike HBT.

dimensionality from the Monte Carlo integration [70]. That is,
the number of samples M needed to estimate the integration
in Eq. |[/|with a given level of accuracy grows exponentially
concerning the H, the number of trainable parameters (i.e.,

dimensionality) of the function. This is also discussed and
alleviated with wvariance reduction in the previous Sec.
However, the G-MFO strategy presented in this paper is still
sample-inefficient, though unbiased and memory-efficient.
We need to either limit the number of trainable parameters
H, or sample a large number of varied optical computing
weights {w}}L, from distribution p(w|f) in every iteration
to make G- MFO’s gradient less noisy. The former limits
our method’s design space, while the latter requires more
executions on the real system, which prolongs the training
time.

We quantitatively investigate the influence of this limi-
tation in Fig. [§] through simulations on a one-layer optical
computing system f;ys_l_layer, employing 1,000 training
samples from the MNIST dataset. The figure demonstrates
how M and H impact the training performance of G-MFO.

Shown in Fig. [§(a), G-MFO requires a M >= 128 to achieve
a training accuracy of > 90% given H = 1287. Moreover,

in Fig. B(b), our G-MFO method fails when increasing H
beyond 1282 while keeping the sampling size M fixed to
128.
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Fig. 8: Limitation: G-MFO exhibits the curse of dimen-
sionality. (a) When the sampling size of optical computing
weights M rises from 25 = 32 to 27 = 128, the training
accuracy increases by 2.2%. However, increasing M from
27 = 128 to 2 = 256 only improves 0.5%. Here, we fix the
H as 1282. (b) G-MFO achieves the highest accuracy when
H = 128% under a sampling size M = 128 while further
enlarging H fails the result.

4.4 Application: all-optical classification on marker-
free cellular dataset

For the first time, we demonstrate the capability of an opti-
cal computing system for marker-free cell analysis, trained
by our G-MFO algorithm (Fig. [6). We work on the white
blood cells (WBC), whose abnormal subtype percentages
indicate the immune system’s malfunction or infectious
disease [71], [72]. We include details of the WBC phase
map dataset in Supplement Sec. S.2. Previously, researchers
used machine learning methods to classify WBC subtypes,
including monocyte, granulocyte, B cell, and T cell, by
their morphology in a marker-free way [68], [73]]. However,
the analysis process is computationally heavy and time-
consuming.

Here, we accelerate the marker-free cell analysis pro-
cess via computing with light. Our G-MFO method
strikes a training/validation/testing classification accuracy
of 72.1%/73.3%/73.8% when classifying 4 types of WBC
using a one-layer optical computing system, exceeding that
of the HBT method (Fig. [k). Furthermore, Fig. [6d shows
that the inference enabled by optical computing is almost
instantaneous (W = 1.4 ns, where c is the speed of
light), compared to the 1.7 ms of ResNet10, the electronic
machine learning model used in [68]. We need 1 more
milliseconds of in silico computing of region intensities
corresponding to different classes to obtain the predic-
tion. Such a step can be skipped if we use single-photon
avalanche diode (SPAD) [74] point detectors to count the
corresponding regions’ cumulative signals. Though for now,
the performance of our single-layer linear optical computing
system is not on par with the electronic neural network,
which hits a testing classification accuracy of 90.5% [68], the
potential of having ultra-high inference speed and > 70%
classification accuracy here point out an exciting direction
on further increasing the complexity of our optical comput-
ing system to improve the absolute classification accuracy
on classifying cells.
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5 DiscUSSION
5.1 Future directions

5.1.1 Further apply G-MFO to more complex optical com-
puting systems.

Exploring the scalability of the optical computing system
to more complex optical structures, along with integrating
more layers and non-linear activation functions, could po-
tentially enhance absolute performance.

5.1.2 Further improve the performance of G-MFO.

Future research could also consider employing more ad-
vanced techniques related to Monte Carlo integration to
reduce the training variance discussed in the previous Sub-
sec. which we anticipate could substantially broaden
the viable search space, thus further empowering the G-
MFO approach. These include using more advanced sam-
pling strategies [75] or integrating G-MFO with the SBT
methods [48] or adding critic function [76]. The latter two
methods trade off the introduced bias and sampling vari-
ance.

5.1.3 Expanding the application of G-MFO to additional
computational optics tasks.

The concept of G-MFO presents promising avenues for
application in other areas of computational optics, such as
computer-generated holography [52] and lens design [77].
The inherent model-free and resource-efficient characteris-
tics of G-MFO position it as a viable alternative to prevalent
model-based methods [77], [78]. Future research could focus
on leveraging G-MFO to these domains, potentially enhanc-
ing computational efficiency and performance.

5.2 Conclusion

To conclude, our study underscores the effectiveness of a
model-free strategy in training optical computing systems in
situ, manifesting considerable potential in computational ef-
ficiency and reducing the simulation-to-reality performance
gap. Although the study does not focus entirely on absolute
image classification accuracy as it is based on a simple single
or double diffractive optical computing system without non-
linearity, it shows relative improvements compared to the
existing training strategies, indicating that our strategy is
a potentially valuable approach. The model-agnostic na-
ture of our technique may become even more beneficial
when implemented in intricate optical systems, representing
a robust and versatile alternative to current strategies. It
promises a strong foundation for exploring and practically
implementing optical computing in real-world applications
such as high-speed marker-free cell analysis.
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