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ABSTRACT

Transformers are arguably the preferred architecture for language generation. In
this paper, inspired by continued fractions, we introduce a new function class for
generative modeling. The architecture family implementing this function class
is named CoFrGeNets - Continued Fraction Generative Networks. We design
novel architectural components based on this function class that can replace Multi-
head Attention and Feed-Forward Networks in Transformer blocks while requiring
much fewer parameters. We derive custom gradient formulations to optimize
the proposed components more accurately and efficiently than using standard
PyTorch-based gradients. Our components are a plug-in replacement requiring
little change in training or inference procedures that have already been put in place
for Transformer-based models thus making our approach easy to incorporate in
large industrial workflows. We pre-train our models on two public text datasets -
OpenWebText and GneissWeb. Results with our models show that the perplexity
and performance on downstream GLUE tasks are superior or competitive with
Transformer-based architectures, with two thirds to half the parameters and shorter
pre-training time. We believe that future implementations customized to hardware
will further bring out the true potential of our architectures.

1 INTRODUCTION

Since OpenAI’s ChatGPT release at the end of 2022, Large Language Models (LLMs) (Radford et al.,
2019) have been getting increasingly infused into multiple user applications and platforms across the
world. The most prevalent architecture behind these models is the Transformer architecture (Vaswani
et al., 2017), which consists of an (multi-head) Attention block and a Feed Forward Network (FFN)
with single large hidden layer. In this paper, we propose novel architectural components based on a
radically different function class inspired by continued fractions. Taking inspiration from (Puri et al.,
2021), where continued fraction architectures CoFrNets were introduced for the supervised setting,
we build new architectures for the generative setting providing alternatives for attention and FFN in
Transformer blocks.

Given a canonical form for continued fractions a0 + 1
a1+

1
a2+···

(ladder like structure) where, aks are

complex numbers, CoFrNets (Puri et al., 2021) were introduced for supervised learning problems
where in place of the aks, linear functions of the input x ∈ Rp are computed by taking the inner
product of x with weight vector wk ∈ Rp in each layer k (or also referred to as step of the ladder).1
The reciprocal of the function thus far is applied as a nonlinearity in each layer leading to the
following kind of form for a single CoFrNet ladder:

w0x+
1

w1x+ 1
w2x+···

(1)

Here wks are the learnable parameters. Essentially, the input x is passed to each layer which
gets multiplied by the corresponding parameter vectors and the reciprocal of the values of the
previous layer are added to this. This simple architecture was shown to have universal approximation
capabilities when we ensemble enough of these ladders. However, the above contributions were
for the supervised setting and it is not clear if such architectures can also be built for representation

1A constant term is assumed to be absorbed in x.
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learning and sequence generation, where we: i) Need to produce multi-dimensional outputs, ii) learn
richer functions and iii) model sequences causally i.e. learning parameters that depend only on prior
tokens. Moreover, the 1

x non-linearity is inefficient to compute in forward and backward passes
especially when the depth d and number of ladders L is large. This is because one has to compute the
inverse d× L times and it is known that division is many times slower than multiplication in modern
hardware. We address the above challenges in this paper by making the following contributions that
distinguish it significantly from (Puri et al., 2021):

1) We propose novel continued fraction architectures for (causal) attention and FFNs as depicted in
Figure 1. We call our architecture with both components replaced as Continued Fraction Generative
Network (CoFrGeNet). We report results replacing either FFN or attention or both offering the
possibility to the user of replacing only one or both of the components for their application. Even
replacing one component can offer significant parameter and training time savings as seen in our
experiments. 2) We propose an alternative representation for the ladders and derive custom formulas
for the gradients that reduces the number of divisions from d to a constant of just 1 for a d-depth
ladder. This greatly enhances both training and inference efficiency. 3) We propose a custom training
schedule to update CoFrGeNet parameters. This is described in section 5. 4) We pre-train our models
on two public datasets OpenWebText (OWT) (Gokaslan et al., 2019) and GneissWeb (Gohari et al.,
2025) showing that our models are competitive or outperform the corresponding Transformer models.
We compare with Transformers since we are replacing its components making it a fair comparison.
For an apples-to-apples comparison with other model architectures such as Mamba (Gu & Dao, 2024)
one would want to replace its hidden state function with novel (to be designed) CoFrNet components,
which would be a significant independent contribution in itself that we leave for future work.

Figure 1: Above we see a Transformer block consisting of attention and FFN layers. We propose
candidate CoFrNet architectures for Transformer (causal) attention and FFN layers. The circles with
the blue curves denote the 1

x non-linearity in our architectures. The zoomed out image on the far
right shows the mapping between the pictorial representation and the actual equations. Details of the
architectures are discussed in section 4.

2 PRELIMINARIES

We introduce notation and also discuss some of properties of continued fractions. The generalized
form for a continued fraction is a0 + b1

a1+
b2

a2+···
, where aks and bks can be complex numbers. If

none of the ak or bk are zero ∀k ∈ N, then using equivalence transformations (Jones & Thron,
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1980), one can create simpler equivalent forms where either the bk = 1 or the ak = 1 ∀k ∈ N,
with a0 = 0 in the latter form. A more concise way to write these two forms is as follows: i)
a0+

1
a1+

1
a2+···

≡ a0+
1

a1+
1

a2+··· and ii) b1
1+

b2
1+···

≡ b1
1+

b2
1+··· . Form i) is known as the canonical form.

One of the nice properties of continued fractions is that in representing any real number with natural
number parameters ak, bk ∈ N, the rational approximations formed by any of its finite truncations
(termed convergents) are closer to the true value than any other rational number with the same or
smaller denominator. A continued fraction is therefore the best possible rational approximation in
this precise sense (Jones & Thron, 1980; Milton, 2011).

In this work, we consider continued fractions in canonical form, with partial numerators bk = 1 for
k = 1, . . . , d and depth d. We thus view continued fractions as functions f of the partial denominators,
where we separate a0 from the others and use a := (a1, . . . , ad) as a shorthand. Hence we write

f(a0, a) = a0 +
1

a1+

1

a2+
· · · 1

ad−1+

1

ad
= a0 + f̃(a), (2)

where we also define f̃(a) as the “fractional part” of f(a0, a).

Another way of representing a continued fraction is in terms of continuants, which we describe next.
The continued fraction in equation 2 can be expressed as the following ratio of polynomials Kd+1

and Kd,

f(a0, a) =
Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
. (3)

Polynomials Kd, Kd+1 are part of a sequence of polynomials Kk, k = 0, 1, . . . , known as continu-
ants. They satisfy the recursion

K0 = 1, K1(ad) = ad, (4)
Kk(ad−k+1, . . . , ad) = ad−k+1Kk−1(ad−k+2, . . . , ad) +Kk−2(ad−k+3, . . . , ad). (5)

Using equation 5, equation 3 can also be written as

f(a0, a) = a0 +
Kd−1(a2, . . . , ad)

Kd(a1, . . . , ad)
, hence f̃(a) =

Kd−1(a2, . . . , ad)

Kd(a1, . . . , ad)
. (6)

We will exploit the formalism of continuants later for two purposes: first, as a means of computing
continued fractions, and second, to derive closed-form expressions for their gradients. This leads
to benefits in the forward direction, in terms of speeding up inference, and also in the backward
direction, speeding up training, compared to standard backpropagation through the multiple layers of
a continued fraction. While the original CoFrNet work (Puri et al., 2021) used this formalism for
the limited purpose of local feature-based explanations, here we derive new results making them an
integral part in training our architectures.

To construct networks out of continued fractions, we let the partial denominators ak be affine functions
of an input x, ak = wkx, where wk is a row vector and a 1 is prepended to the elements of x so that
the corresponding coefficient wk0 is the intercept or “bias” term. We will often refer to a continued
fraction with ak = wkx as a (CoFrNet) “ladder”, and we will also construct ensembles of such
ladders. Throughout the paper we denote the input or embedding dimension by p, the number of
ladders in an ensemble by L, and sequence length by l, unless specified otherwise.

3 RELATED WORK

A brief historical perspective on artificial neural networks is provided in the appendix. Turning
our focus to language modeling with neural networks, Recurrent Neural Networks (RNNs), a class
of networks with recurrent connections where the output of a neuron at a time step is fed to the
input of the neuron at the next time step, were successful in many tasks such as machine translation
(Sutskever et al., 2014) and language modeling (Jozefowicz et al., 2016). The encoder-decoder
Transformer model proposed in (Vaswani et al., 2017), avoids recurrence and relies on attention
alone to draw dependencies between the input and output, and these models have revolutionized
language modeling. The two early successful transformer architectures that have led to a series of
models include the Generative Pre-trained Transformer (GPT) (Radford et al., 2018) and Bidirectional
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Encoder Representations from Transformers (BERT) (Devlin et al., 2019). These pre-trained models
can be then fine-tuned on relatively small datasets (Raffel et al., 2020; Chung et al., 2024; Wang
et al., 2022) leading to good performance on even unseen tasks. Transformer models, because of
their uncompressed view on the entire sequence, show measurable improvement in performance over
RNNs, but the attention mechanism scales quadratically with sequence length, as opposed to the
linear time generation complexity of RNNs. Given this multiple approximations have been proposed
to model attention in Transformers more efficiently. Works such as Synthesizer (Tay et al., 2021)
and Linformer (Wang et al., 2020) try to make attention linear complexity, while Mixture-of-depths
attention (Gadhikar et al., 2024) and Sliding Window attention (Fu et al., 2025) limit the number of
attended tokens in a sequence. Slim attention (Graef & Wasielewski, 2025) does away with the value
parameter matrix and models it as a function of the key matrix. Multi-query attention (Shazeer, 2019)
and its generalization Grouped Query attention (Joshua et al., 2023) limit the number of distinct keys
thus reducing parameter count and increasing efficiency. Sparse attention approaches (Zaheer et al.,
2024) typically attend to local context and sparsely to further away tokens (a.k.a. global context).

Aside from RNNs and Transformers, State-Space Models (SSMs) have also been quite popular.
Models such as S4 (Gu et al., 2022) and Mamba (Gu & Dao, 2024) are recurrent like RNNs, but can
handle long range dependencies. The latter selectively propagates information based on the current
token making it closer to the modeling power of Transformers, while scaling linearly in sequence
length. More recently, Diffusion Models inspired by non-equilibrium statistical physics (Sohl-
Dickstein et al., 2015) have gained traction. The attractive aspect of these models is that generation
does not have to be auto-regressive and can happen in parallel. In (Sahoo et al., 2024a), the authors
propose a simple Masked Diffusion Language Model (MDLM) using an effective training recipe
that narrows the gap of diffusion and autoregressive methods in language modeling. Nonetheless,
Transformers are still the state-of-the-art in language generation and hence we chose to modify critical
components of this architecture.

4 METHODOLOGY

4.1 ARCHITECTURES

Table 1: Scale of parameters for different architectural components. Here
α >> 1 is expansion factor for FFNs in Transformer blocks. The savings
in parameters when replacing FFNs can be significantly high as low d and
L values are typically sufficient for competitive performance. For attention
replacement the savings can be high if l is similar order of magnitude to p,
which is seen in many architectures (viz. GPT, Llama, etc.).

Attention CAttnU CAttnM FFN Cffn
4p2 l(2d+ l + 1) L(p+ l) + p2 2αp2 2Lp(d+ 1)

We now describe our
novel continued frac-
tion architectures that
can potentially be used
instead of attention
and FFN layers in
Transformer blocks.

4.1.1 REPLACEMENT
FOR ATTENTION

In Figure 2, we see two potential architectures that perform causal token-token mixing. In the
left architecture, we take a transpose of the input tensor relative to the embedding dimension and
sequence length, which has been done in MLP-Mixer type models (Tolstikhin et al., 2021) employed
for supervised problems. However, mixing a dimension across tokens arbitrarily will lead to non-
causal training as the model will get trained assuming access to tokens that follow a given token.
To handle this we have univariate ladders – note an input now is a particular dimension across all
l tokens – where, x1 will get different dimensions of the first token in the sequence, x2 will get
different dimensions of the second token in the sequence and so on. Hence, x1 can affect all tokens,
but x2 can affect all but x1. This is why we have upper triangular linear layer in each ensemble of
the architecture. Note that having p-variate ladders would break the causal transfer even with upper
triangular linear layers as output from each of the ladders would be a function of all tokens. Hence,
we have this restricted structure to maintain the causal information constraints else generations are
incoherent. We then do element wise multiplication to obtain cross-terms in the variables as the
ladders are univariate leading to richer representations. In particular, if depth of the ensembles d = 2,
where w(1)

0 , w(2)
0 are parameter vectors at depth 1 and w

(1)
1 , w(2)

1 are parameter vectors at depth 2 for
the left and right ensembles respectively, then if ⊙ implies element-wise multiplication and ◦ − 1
implies element-wise reciprocal we would get:

4
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Figure 2: Two CoFrNet architectures to simulate attention a.k.a. causal token-token mixing. For
the left architecture (CAttnU) a transpose is taken of the dimension × sequence length part of
the input tensor and the output is transposed back to make it consistent with the later layers. The
transpose makes the tokens mix, while upper triangular connections in the second to last layer
in the architecture as well as the restricted structure of the ladders make sure information is only
shared from previous tokens to following tokens and not bi-directionally (a.k.a. causal sharing). It
consists of two ensembles of univariate CoFrNet ladders each of which then have an upper triangular
linear layer on top. The representations formed are then element wise multiplied to form the final
representation. The element wise multiplication produces interaction terms that otherwise would not
occur, significantly enhancing representation power without compromising the causal information
flow. The right architecture (CAttnM) we do not transpose the input. We use L CoFrNet ladders that
get mapped to a sequence length size embedding which corresponds to attention weights for that
token. To maintain causality attention weights are computed only over the prior tokens. These then
like in standard attention are used to weight the embeddings in the (value) V matrix.

y1 = w
(1)
0 ⊙ x+ (w

(1)
1 ⊙ x)

◦−1
and y2 = w

(2)
0 ⊙ x+ (w

(2)
1 ⊙ x)

◦−1
.

Let U1 and U2 denote upper triangular parameter matrices then, O = U1y1 ⊙ U2y2. O is the
l dimensional output produced per input x. In our case we will get p such outputs. The tensor
containing these p outputs is then transposed back to get a l × p tensor, which later layers expect.

Now considering the right architecture with two ladders (i.e. L = 2) of depth 2, a L × l (full)
parameter matrix F and Csoftmax to denote softmax applied causally (i.e. ith token is a convex
combination of the first i− 1 tokens) with notation from above we have attention weights given by,

A = Csoftmax([y1, y2]F ), where in this case y1 = w
(1)
0

T
x+

(
w

(1)
1

T
x

)−1

and y2 = w
(2)
0

T
x+(

w
(2)
1

T
x

)−1

as no transpose of the input tensor is taken and hence x, w are p dimensional. If

V = XW v denotes a value matrix like in standard attention where W v is a p× p parameter matrix,
then the output O is given by: O = AV , which would be l × p tensor.

4.1.2 REPLACEMENT FOR FFNS

For FFNs we simply require feature mixing so no transpose is taken and all features can mix.
Hence, we create ensembles of p-variate ladders with a linear layer at the end as seen in Figure 3.
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Figure 3: CoFrNet architecture to simulate FFNs
– Cffn – in a transformer block. Here again two
ensembles are used each consisting of specified
number of p-variate ladders. Here no transpose is
taken and hence feature mixing in either direction
does not interfere with causal generation which is
why we have a linear layer above each ensemble.
We also element wise multiply the representations
coming out of the linear layer of each ensemble
for higher expressivity. Again the collapsed imple-
mentation is described in section 4.2.

Note that here one could have an arbitrary num-
ber of ladders in each ensemble and one projects
to p dimensions using the linear layer. We again
multiply the representations coming out of the
linear layers for richer representation learning.
Expressions depicting the scale of parameters of
different architectural components are shown in
Table 1. As can be seen the number of parame-
ters are linear in p as opposed to quadratic.

4.2 ARCHITECTURE
FOR CONTINUED FRACTION ENSEMBLES
AND CONTINUANT-BASED IMPLEMENTATION

The common element in the architectures in Fig-
ures 2 and 3 is a linear combination of an en-
semble of CoFrNet ladders. This subsection de-
scribes how we implement these linear combina-
tions of ladders using the continuants introduced
in Section 2.

Architecture Let us denote by y ∈ Rq the out-
put of a linear combination of L ladders, where
in general q could be different from the input di-
mension p. We use a superscript j to denote the
partial denominators a(j)0 , . . . , a

(j)
d correspond-

ing to the jth ladder, where a
(j)
k = w

(j)
k x. Then

based on equation 2, the ith output component yi is given by

yi =

L∑
j=1

vij

(
a
(j)
0 + f̃

(
a(j)

))
=

L∑
j=1

vijw
(j)
0 x+

L∑
j=1

vij f̃
(
a(j)

)
, (7)

where vij are the coefficients of the linear combination. Since the composition of two linear functions
is also linear, we may simplify the first term on the right-hand side of equation 7 to yield

yi = uix+

L∑
j=1

vij f̃
(
a(j)

)
,

where ui =
∑L

j=1 vijw
(j)
0 is the parameter vector of the overall linear function. Let U be the matrix

with rows ui, i = 1, . . . , q, V the matrix with entries vij , and W (j) the matrix with rows w
(j)
k ,

j = 1, . . . , d. We may then express the overall computation from x to y as

y = Ux+ V z, zj = f̃(a(j)), a(j) = W (j)x, j = 1, . . . , L. (8)
Based on equation 8, we implement a linear combination of ladders using the architecture shown in
Figure 4. At the far left is a linear layer parameterized by U that directly connects input x to output
y. To the right are L ladders, where for each ladder j, a linear layer parameterized by W (j) first
computes the partial denominators a(j) before the continued fraction is computed by the “CF” layer.
The continued fraction outputs zj are fed to a linear layer parameterized by V , whose output is added
to yield y.

Continuant implementation We use the continuants representation from Section 2 to compute
continued fractions in the CF layer. Specifically, continuants K0,K1, . . . ,Kd are first computed
using the recursion in equation 4, equation 5. The continued fraction output f̃(a(j)) is then given by
the ratio of Kd−1 and Kd in equation 6. The following result shows that the gradient of f̃(a(j)) is
also given by ratios of continuants.

Proposition 1. The partial derivatives of continued fraction f̃(a) defined in equation 2 are given by

∂f̃(a)

∂ak
= (−1)k

(
Kd−k(ak+1, . . . , ad)

Kd(a1, . . . , ad)

)2

, k = 1, . . . , d. (9)
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Proof. Using equations equation 2 and equation 3 we get,

∂f̃(a)

∂ak
=

∂

∂ak

(
f(a0, a)− a0

)
=

∂

∂ak

Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
− 0

for k = 1, . . . , d. We then invoke Lemma 2 stated in the appendix.

To take advantage of Proposition 1, we implement the CF layer in Figure 4 as a custom PyTorch
function (torch.autograd.Function). This allows the continuants K0, . . . ,Kd, as well as
the reciprocal 1/Kd, to be computed once during the forward pass and saved for the backward pass.
Then to compute the gradient, it suffices to multiply 1/Kd by other continuants, square the ratios,
and change some signs.

linear
𝑈

linear
𝑊(1)

linear
𝑊(𝐿)

CF
ሚ𝑓 𝑎(1)

𝑎(1) 𝑎(𝐿)

CF
ሚ𝑓 𝑎(𝐿)

input 𝑥

𝑧1 𝑧𝐿

linear
𝑉

output 𝑦

Figure 4: Architecture for implementing a linear
combination of CoFrNet ladders (CF stands for
continued fraction).

Advantages Using continuants to compute each
continued fraction f̃(a(j)) equation 6 and its
gradient equation 9 requires only one division,
by the same quantity Kd. As noted above, the re-
ciprocal 1/Kd can be computed once and then
reused in all ratios of continuants that are re-
quired. As seen from equation 5, all continuants
up to Kd can be computed recursively through
O(d) multiplications and additions. This con-
tinuants approach yields a major improvement
in efficiency over the “literal” approach taken
in the original CoFrNet work (Puri et al., 2021),
which performs one division per layer follow-
ing the standard representation of a continued
fraction equation 1. The reduction from d divi-
sions to 1 is especially significant when ladders
are made deep. It applies to both inference and
training, since backpropagation through a stan-
dard PyTorch implementation of equation 1 also
requires d divisions. It is widely known that divi-
sions are significantly more expensive in current
hardware — typically an order of magnitude slower — than multiplications or additions. Moreover,
having to divide just once can result in better numerical stability.

Avoiding poles and clipping Equation 6 shows that a continued fraction is equivalent to a rational
function, and hence it can suffer from divergence when the denominator Kd goes to zero (these
locations are known as poles in the context of rational functions). We mitigate this issue using a similar
approach as (Puri et al., 2021), namely changing the denominator from Kd to sgn(Kd)max(|Kd|, ϵ)
to ensure that it has absolute value at least ϵ > 0. Importantly however, this modification is done only
once to Kd as opposed to before every one of the d divisions in (Puri et al., 2021). This may result in
less loss of representation power compared to (Puri et al., 2021).

We also maintain the minimum and maximum values that each ladder produces during training.
During testing we project or clip predictions to lie in this range so that outputs far away from those
seen during training are not produced thus guarding against outlier test predictions.

5 EXPERIMENTS

5.1 SETUP

We now perform experiments, where we compare with GPT2-xl (1.5B) first pre-trained on Open-
WebText (OWT) (Gokaslan et al., 2019) and then on the GneissWeb 35B (GW) (Gohari et al., 2025)
datasets. We compare with three variants of ours i) CoFrGeNet-F, where the FFN is replaced by
CoFrNet, ii) CoFrGeNet-A, where the attention is replaced by CoFrNet and iii) CoFrGeNet, where
both FFN and attention are replaced. We report results with the CAttnM architecture when attention
is replaced as it led to slightly better results than CAttnU in many cases. We also compare with Dense
Synthesizer (Synthesizer-D) (Tay et al., 2021) which is closest to our CAttnM architecture and an
established sparse attention approach (Sparse Attn) (Zaheer et al., 2024).

7
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Evaluations: We report perplexity on Penn Tree Bank (PTB) (Marcus et al., 1993), Wikitext2 (Merity
et al., 2017), Wikitext103 (Merity et al., 2017), Lambada (Paperno et al., 2016), AgNews (Zhang
et al., 2015) and One Billion Words (LM1B) (Chelba et al., 2014) datasets. We use a stride of 512
for wikitext2, wikitext103 as recommended in these works. For all the other datasets, we use a
stride of 256. We then fine tune our models on GLUE (Wang et al., 2019) (classification) tasks and
compare accuracies as done in previous works (Sahoo et al., 2024b). We average results over five runs.

Table 2: Downstream task accuracies (best results bolded) on GLUE benchmark after
finetuning. The first column is the pre-training dataset. Standard deviations are reported
in Table 5 in the appendix.

Data Model MNLI QQP QNLI SST2 COLA MRPC RTE WNLI

OWT

GPT2-xl (1.5B) 86.89 88.93 91.35 93.56 81.78 79.83 60.27 58.28
CoFrGeNet-F (985M) 87.26 89.95 91.89 94.16 82.59 80.21 61.35 58.30
CoFrGeNet-A (1.21B) 86.94 89.31 91.74 93.83 81.77 79.89 60.91 58.28
CoFrGeNet (798M) 87.11 89.36 91.79 93.91 81.97 79.93 61.25 58.29
Synthesizer-D (1.2B) 84.93 86.82 90.13 91.34 80.15 77.95 59.83 58.28
Sparse Attn (1.21B) 85.27 86.38 90.93 92.72 80.76 77.42 59.36 58.27

GW

GPT2-xl (1.5B) 78.28 86.83 82.93 91.82 74.18 77.72 60.19 58.33
CoFrGeNet-F (985M) 79.62 87.26 82.73 92.36 74.83 78.01 61.35 58.33
CoFrGeNet-A (1.21B) 78.42 86.17 82.51 91.86 74.15 77.37 60.85 58.33
CoFrGeNet (798M) 79.05 86.98 82.12 92.13 74.38 77.95 61.11 58.33
Synthesizer-D (1.2B) 77.56 86.35 80.38 91.25 73.27 76.73 59.26 58.24
Sparse Attn (1.21B) 77.67 86.41 80.77 91.16 72.83 76.62 59.39 58.28

We also
compare
param-
eter
counts,
train time
and (per-
sample)
inference
time. We
show
how the
contin-
uants
version
leads to better train and inference time when compared with the standard implementation of CoFrNets
with the improvement mainly attributable to the reduced number of divisions. We provide randomly
chosen generations for our variants and GPT2-xl in the appendix.

Table 3: Perplexities of the different models with best results bolded.
Data Model PTB Wikitext2 Lambada AgNews Lm1b Wikitext103

OWT

GPT2-xl (1.5B) 30.12 18.30 8.66 37.13 41.20 17.50
CoFrGeNet-F (985M) 29.89 17.12 8.12 35.72 40.14 16.14
CoFrGeNet-A (1.21B) 30.02 18.22 8.54 37.02 41.03 17.26

CoFrGeNet (798M) 30.03 17.96 8.55 36.47 40.86 17.17
Synthesizer-D (1.2B) 31.47 19.35 9.92 39.84 41.94 18.91
Sparse Attn (1.21B) 31.23 18.78 9.13 38.82 42.05 18.82

GW

GPT2-xl (1.5B) 29.07 19.12 31.78 45.62 52.36 18.93
CoFrGeNet-F (985M) 29.72 18.13 30.52 41.63 46.83 18.11
CoFrGeNet-A (1.21B) 28.89 18.77 30.98 43.91 48.37 18.67

CoFrGeNet (798M) 29.08 18.29 30.71 42.55 48.01 18.42
Synthesizer-D (1.2B) 30.83 19.25 31.92 46.81 52.99 19.03
Sparse Attn (1.21B) 29.36 18.95 31.23 46.38 52.83 19.45

Parameter
Set-
tings:
For
pre-
training
we use
the rec-
om-
mended
set-
tings in
https://github.com/karpathy/nanoGPT where, the learning rate is 6 × 10−4, weight
decay is 0.1, no dropout and maximum iterations is 600K. For sparse attention (Sparse Attn) we set
g = 1, w = 3 and r is set to roughly match the number parameters in our CoFrGeNet-A variant
for a fair comparison. The values of g and w were set based on experiments conducted in (Zaheer
et al., 2024) as those produced the best results. For both Synthesizer-D and Sparse Attn we apply
a lower triangular mask to the attention weights matrix so as to make the models amenable for
auto-regressive generation.

For fine tuning the GPT2-xl model learning rate is 0.25 × 10−4, batch size is 64 and no dropout.
This is the same for the baselines. For our models the learning rate was 0.125 × 10−4 with other
parameters being the same. These learning rates produced the best results for the respective models.

For CoFrNets we set ϵ = 0.01. For Cffn architecture we have two ensembles where we make sure
that they have even-odd depths. That is if the first ensemble has depth d, then the next one has depth
d + 1. We find this gives better results which, may be attributable to the fact that even and odd
convergents typically converge to different parts of the space. This may cover the function space
better. Given this we experiment with d equal to 1, 3, 5, 7 and widths (i.e. number of ladders in each
ensemble) also taking the same values when replacing FFNs. We try the same depths and widths
when replacing attention.

Training Schedule: We employ a dyadic parameter update schedule for our CoFrGeNet components.
More specifically, we update only the linear component starting from iteration one, where parameters
at higher depths are frozen. Then after half the iterations are done we start updating also the first
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layer parameters. Then after 3
4

th the number of iterations we start updating the depth two parameters
and so on. Essentially, depth i parameters are updated for t

2i number of iterations where t is the total
number of iterations. We find that this leads to stable training of our architectures as opposed to
training all parameters from the start.

Hardware: We pre-trained each model using 16 H100 GPUs on a machine with 112 CPUs and 1440
GB of RAM. Fine tuning was done using a single A100 GPU for each model. Also inference times
were computed for all models using a single A100 GPU.

5.2 RESULTS

Table 4: Training time and inference time.
CoFrGeNetB is our basic implementation not us-
ing continuants. As can be seen using the continu-
ants formalism speeds up training and inference.

Data Model Train Time (hrs) Inf. Time (µs)

OWT

GPT2-xl 190 643.93±1.73

CoFrGeNet-F 186 627.48±1.85

CoFrGeNet-A 186 638.26±1.76

CoFrGeNet 178 628.73±1.66

CoFrGeNetB 203 5898.72±3.91

GW

GPT2-xl 413 638.26±2.73

CoFrGeNet-F 397 627.34±1.65

CoFrGeNet-A 396 625.86±1.78

CoFrGeNet 387 619.78±1.49

CoFrGeNetB 424 5877.87±4.52

One of the main ways of evaluating if a gener-
ative model has learnt good representations is
to test it on downstream tasks. In Table 2 we
evaluate how our models perform w.r.t. GPT2-
xl on GLUE tasks. We observe that our models
are much smaller – sizes are mentioned next
to the names in column two – yet are better in
performance in most cases to the original GPT2-
xl model. In fact, they are also better than the
linear attention and sparse attention baselines be-
ing similar or smaller size. For the Sparse Attn
baseline the size reflects the sparsity level or the
number of non-zeros. CoFrGeNet-F seems to
have the best performance amongst all the vari-
ants in most cases. In Table 3, we evaluate how confident the model is in its generations. We see
in Table 3 that again our models are better than GPT2-xl and the efficient attention baselines. Here
again CoFrGeNet-F seems to have the best perplexity in most cases consistent with the fine tuning
performance.

In Table 4, we compare training and inference times of our models and GPT2-xl. Here we add an
additional model CoFrGeNetB which is the same architecture as CoFrGeNet, but implemented as
multi-layer ladders as done in (Puri et al., 2021), without exploiting the continuants formalism. This
means a division operation has to be done at every layer of the ladder while training and inferring. As
can be seen the training for the continuants version is faster, with inference being almost an order of
magnitude faster.

6 DISCUSSION

We have proposed novel continued fraction inspired architectures as replacements for attention and
FFNs in transformer blocks. This new interesting function class can learn accurate, compact models
that are also efficient to train and infer. Our continuant based gradient derivation and implemen-
tation facilitated these benefits over and above optimizing these architectures by backpropagating
through the layers using standard Pytorch functionalities as done previously (Puri et al., 2021). The
custom training schedule for CoFrGeNet specific parameters further helped stabilize and improve
performance. In the future, it would be interesting to experiment with other open architectures such
as Llama as well as Mixture-Of-Experts kind of architectures. Inventing new and better CoFrNet
architectures for attention and FFNs beyond those proposed in this work is another interesting direc-
tion. Also building custom Triton Kernels (Tillet et al., 2019) for our components to further speedup
training and inference might be a worthwhile future effort.

As such we believe we have laid the groundwork for continued fraction inspired generative architec-
tures. This could lead to small, efficient to train and accurate generative models across applications
and industries. In a way this could further democratize AI as entities with fewer resources could also
pre-train good quality models. Of course, there are no implicit safety guards for these models similar
to other architectures and so they are susceptible to hallucinations, adversarial attacks and the likes.
We hope future research exploiting the specific functional form can implicitly address some of these
challenges, which we believe could be very exciting.
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ETHICS AND REPRODUCIBILITY STATEMENTS

We have used standard public datasets to pre-train our models. The risks with our pre-trained models
are similar to other pre-trained models where they could hallucinate and be vulnerable to adversarial
attacks. Guardrails can be implemented to mitigate some of these concerns. Given the inherent
interpretability of the continued fraction components custom safety protocols may be possible to
implement in the future.

With regards to reproducibility we have clearly described our architectural components in the
paper. We have also provided code in the supplement, which can be run in analogous fashion to
https://github.com/karpathy/nanoGPT, which is a heavily used codebase.
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A BRIEF HISTORICAL PERSPECTIVE

One of the starting points of artificial neural networks was in the mathematical model of biological
neurons known as artificial neurons or McColluch-Pitts Neurons proposed in (McCulloch & Pitts,
1943). These artificial neurons were remarkably similar to the elements used in modern neural
networks, in that their output is a thresholded weighted sum of their inputs. The Multi Layer
Perceptron (MLP) (Rosenblatt, 1958) used multiple layers of neurons with input, hidden and output
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layers as a simplified model of the nervous system. The Group Method of Data Handling (GMDH)
(Ivakhnenko, 1971) trained a network with an MLP-type structure but each neuron in the network
implements a polynomial function of a few input variable, and this was used to train a network that is
8 layers deep.

However, practical learning of networks was made easier after error backpropagation was published
(Linnainmaa, 1976) and demonstrated for weight update and learning representation in neural
networks (Rumelhart et al., 1986).

B LEMMA 2 (PURI ET AL., 2021)

We have
∂

∂ak

Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
= (−1)k

(
Kd−k(ak+1, . . . , ad)

Kd(a1, . . . , ad)

)2

.

Proof. To compute the partial derivative of the ratio of continuants above, we first determine the
partial derivative of a single continuant Kk(a1, . . . , ak) with respect to al, l = 1, . . . , k. We use the
representation of Kk as the determinant of the following tridiagonal matrix:

Kk(a1, . . . , ak) = det


a1 1

−1 a2
. . .

. . . . . . 1
−1 ak

 . (10)

The partial derivatives of a determinant with respect to the matrix entries are given by the cofactor
matrix:

∂ detA

∂Aij
= co(A)ij ,

where co(A)ij = (−1)i+jMij and Mij is the (i, j)-minor of A. In the present case, with A as the
matrix in equation 10, we require partial derivatives with respect to the diagonal entries. Hence

∂Kk(a1, . . . , ak)

∂al
= Mll.

In deleting the lth row and column from A to compute Mll, we obtain a block-diagonal matrix
where the two blocks are tridiagonal and correspond to a1, . . . , al−1 and al+1, . . . , ak. Applying
equation 10 to these blocks thus yields

∂Kk(a1, . . . , ak)

∂al
= Kl−1(a1, . . . , al−1)Kk−l(al+1, . . . , ak). (11)

Returning to the ratio of continuants in the lemma, we use the quotient rule for differentiation and
equation 11 to obtain

∂

∂ak

Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
=

1

Kd(a1, . . . , ad)2

(
∂Kd+1(a0, . . . , ad)

∂ak
Kd(a1, . . . , ad)

−Kd+1(a0, . . . , ad)
∂Kd(a1, . . . , ad)

∂ak

)
=

Kd−k(ak+1, . . . , ad)

Kd(a1, . . . , ad)2
(Kk(a0, . . . , ak−1)Kd(a1, . . . , ad)

−Kd+1(a0, . . . , ad)Kk−1(a1, . . . , ak−1)) . (12)

We focus on the quantity

Kk(a0, . . . , ak−1)Kd(a1, . . . , ad)−Kk−1(a1, . . . , ak−1)Kd+1(a0, . . . , ad) (13)

in equation 12. For k = 0 (and taking K−1 = 0), this reduces to Kd(a1, . . . , ad). Equation equa-
tion 12 then gives

∂

∂a0

Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
=

(
Kd(a1, . . . , ad)

Kd(a1, . . . , ad)

)2

= 1,

13
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in agreement with the fact that a0 appears only as the leading term in equation 3. For k = 1,
equation 13 becomes

a0Kd(a1, . . . , ad)−Kd+1(a0, . . . , ad) = −Kd−1(a2, . . . , ad)

using equation 5, and hence

∂

∂a1

Kd+1(a0, . . . , ad)

Kd(a1, . . . , ad)
= −

(
Kd−1(a2, . . . , ad)

Kd(a1, . . . , ad)

)2

.

We generalize from the cases k = 0 and k = 1 with the following lemma.

Lemma 3. The following identity holds:

Kk(a0, . . . , ak−1)Kd(a1, . . . , ad)−Kk−1(a1, . . . , ak−1)Kd+1(a0, . . . , ad)

= (−1)kKd−k(ak+1, . . . , ad).

Combining equation 12 and Lemma 3 completes the proof.

Proof of Lemma 3. We prove the lemma by induction. The base cases k = 0 and k = 1 were shown
above and hold moreover for any depth d and any sequence a0, . . . , ad. Assume then that the lemma
is true for some k, any d, and any a0, . . . , ad. For k + 1, we use recursion equation 5 to obtain

Kk+1(a0, . . . , ak)Kd(a1, . . . , ad)−Kk(a1, . . . , ak)Kd+1(a0, . . . , ad)

=
(
a0Kk(a1, . . . , ak) +Kk−1(a2, . . . , ak)

)
Kd(a1, . . . , ad)

−Kk(a1, . . . , ak)
(
a0Kd(a1, . . . , ad) +Kd−1(a2, . . . , ad)

)
= Kk−1(a2, . . . , ak)Kd(a1, . . . , ad)−Kk(a1, . . . , ak)Kd−1(a2, . . . , ad).

We then recognize the last line as an instance of the identity for k, depth d − 1, and sequence
a1, . . . , ad. Applying the inductive assumption,

Kk+1(a0, . . . , ak)Kd(a1, . . . , ad)−Kk(a1, . . . , ak)Kd+1(a0, . . . , ad)

= −(−1)kKd−1−k(ak+2, . . . , ad)

= (−1)k+1Kd−(k+1)(a(k+1)+1, . . . , ad),

as required.

C EXAMPLE GENERATIONS

In Figures 5, 6, 7 and 8 we see example generations of GPT2-xl, CoFrGeNet-F, CoFrGeNet-A and
CoFrGeNet respectively when pre-trained on OWT dataset. While in Figures 9, 10, 11 and 12 we see
example generations of GPT2-xl, CoFrGeNet-F, CoFrGeNet-A and CoFrGeNet respectively when
pre-trained on GW dataset.

Table 5: Downstream task accuracies on GLUE benchmark after finetuning the pre-trained models.
The first column is the pre-training dataset. Results are mean±std with the best means bolded.

Data Model MNLI QQP QNLI SST2 COLA MRPC RTE WNLI

OWT

GPT2-xl (1.5B) 86.89±.15 88.93±.67 91.35±.34 93.56±.24 81.78±.38 79.83±.26 60.27±.22 58.28±.28

CoFrGeNet-F (985M) 87.26±.18 89.95±.12 91.89±.34 94.16±.29 82.59±.23 80.21±.19 61.35±.32 58.30±.16

CoFrGeNet-A (1.21B) 86.94±.12 89.31±.42 91.74±.31 93.83±.72 81.77±.25 79.89±.14 60.91±.92 58.28±.17

CoFrGeNet (798M) 87.11±.09 89.36±.23 91.79±.25 93.91±.15 81.97±.14 79.93±.17 61.25±.46 58.29±.19

Synthesizer-D (1.2B) 84.93±.34 86.82±.34 90.13±.51 91.34±.54 80.15±.72 77.95±.25 59.83±.35 58.28±.92

Sparse Attn (1.21B) 85.27±.63 86.38±.33 90.93±.18 92.72±.21 80.76±.28 77.42±.41 59.36±.29 58.27±.25

GW

GPT2-xl (1.5B) 78.28±.82 86.83±.17 82.93±.37 91.82±.22 74.18±.82 77.72±.93 60.19±.01 58.33±.07

CoFrGeNet-F (985M) 79.62±.63 87.26±.25 82.73±.53 92.36±.45 74.83±.56 78.01±.34 61.35±.08 58.33±.04

CoFrGeNet-A (1.21B) 78.42±.34 86.17±.46 82.51±.36 91.86±.36 74.15±.43 77.37±.83 60.85±.06 58.33±.06

CoFrGeNet (798M) 79.05±.37 86.98±.22 82.12±.28 92.13±.73 74.38±.74 77.95±.73 61.11±.04 58.33±.02

Synthesizer-D (1.2B) 77.56±.12 86.35±.61 80.38±.83 91.25±.71 73.27±.73 76.73±.27 59.26±.22 58.24±.97

Sparse Attn (1.21B) 77.67±.38 86.41±.82 80.77±.16 91.16±.16 72.83±.26 76.62±.81 59.39±.38 58.28±.28
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Figure 5: GPT2-xl example generation when pre-trained on OWT.

Figure 6: CoFrGeNet-F example generation when pre-trained on OWT.

Figure 7: CoFrGeNet-A example generation when pre-trained on OWT.
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Figure 8: CoFrGeNet example generation when pre-trained on OWT.

Figure 9: GPT2-xl example generation when pre-trained on GneissWeb.
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Figure 10: CoFrGeNet-F example generation when pre-trained on GneissWeb.

Figure 11: CoFrGeNet-A example generation when pre-trained on GneissWeb.
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Figure 12: CoFrGeNet example generation when pre-trained on GneissWeb.
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