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ABSTRACT

Robotic foundation models, or generalist robot policies, hold immense potential
to enable flexible, general-purpose and dexterous robotic systems. Despite their
advancements, our empirical experiments reveal that existing robot policies are
prone to learning spurious correlations from pre-training trajectories, adversely
affecting their generalization capabilities beyond the training data. To tackle this,
we propose a novel Policy Contrastive Decoding (PCD) approach, which redirects
the robot policy’s focus toward object-relevant visual clues by contrasting action
probability distributions derived from original and object-masked visual inputs. As
a training-free method, our PCD can be used as a plugin to improve different types
of robot policies without needing to finetune or access model weights. We conduct
extensive experiments on top of three open-source robot policies, including the
autoregressive policy OpenVLA and the diffusion-based policies Octo and 7.
The obtained results in both simulation and real-world environments prove PCD’s
flexibility and effectiveness, e.g., PCD enhances the state-of-the-art policy 7 by
8.9% in the simulation environment and by 108% in the real-world environment.

1 INTRODUCTION

Recent efforts in developing flexible, general-purpose, and dexterous robotic systems have largely
focused on robotic foundation models, or generalist robot policies. The goal of such policies is to
empower users to instruct robots to perform arbitrary tasks, enabling autonomous task execution with
minimal human supervision. Specifically, the policy takes as input a visual observation of the robot’s
state combined with a language instruction that defines the task, and outputs a robot action, such as
end-effector displacement. Ongoing advancements in scaling real-world robotic data corpora have
facilitated the development of numerous robot policies (Brohan et al.l [2022} |Kim et al.|, 2024; M|
et al.| 2024 [Pertsch et al.| 2025)), which have demonstrated exceptional effectiveness in controlling
various robots across diverse environments and acquiring a wide range of manipulation skills.

Despite their notable achievements, existing robot policies are prone to learning spurious correlations
(Ye et al., [2024; |Geirhos et al., 2020; [Liu et al.| [2023a) from pre-training trajectories, adversely
affecting their ability to generalize outside their training data. As illustrated in Fig. |1} the robot policy
predominantly relies on spurious features (e.g., background or textures) rather than object features
within observations to predict actions (see (a)(d)). Consequently, slight alterations to the visual
observation background, like adjustments to the panning light region (i.e., (a)—(b)) and the handle
position (i.e., (a)—(c)), lead to 36% and 32% drops in the policy’s action prediction performance,
respectively. Prior work in other fields has demonstrated that models relying on spurious correlations
often suffer significant performance degradation on test data when a distribution shift occurs between
the training and test environments (Lu et al., |2025; Varma et al.,2024; [zmailov et al., [2022). This
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underscores the importance of redirecting robot policies’ focus from spurious features to object-
relevant ones to enhance their generalization across different scenarios during inference. Therefore,
we provide a first study on the following question:

Can we propose a training-free, plug-and-play approach to mitigate the adverse effects of
spurious correlations, thereby rectifying predicted actions for existing robot policies?

In this work, we present a Policy Contrastive Decoding (PCD) approach to answer the question. The
core idea of our PCD approach is to shift the robot policy’s attention from spurious features to object-
relevant ones by contrasting action probability distributions derived from original and object-masked
observation images during inference. To ensure both effectiveness and flexibility of the approach, a
Tracking-to-Mask (Track2Mask) strategy is introduced, which first annotates target-specific objects in
the initial visual observation using human expertise (e.g., Point and Box prompts) or off-the-shelf
object detection models (e.g., Grounding DINO 2024b)), then employs the SAM2
2023) model to track these objects across subsequent observations in the trajectory. This enables
precise object masking with minimal or no human intervention. Moreover, unlike autoregressive
policies, diffusion-based policies cannot directly generate action probability distributions to feed into
our PCD. To cope with this limitation, we introduce a KDE-based Probabilistic Modeling (KDE-PM)
scheme, which calculates action probability distributions for diffusion-based policies using the kernel
density estimation (KDE) (Wkeglarczykl, [2018)) technique. This enables our PCD approach to be
compatible with both autoregressive and diffusion-based policies.

To the best of our knowledge, this is the first
T T e work to introducq a training-free .appro.ach for
+PCD (ours): 0.40 +PCD (ours): 0.31 resolving the spurious correlation issue in robot
policies. We conduct extensive evaluations in
both simulation and real-world environments,
across a total of 15 diverse tasks, and on top
of three open-source robot policies—including

the autoregressive policy OpenVLA (Kim et al.}
and the diffusion-based policies Oct o

e ——E et a.l.L and m (Black et al.| [2024). The
+PCD (ours): 0.41 achieved results demonstrate the strong flexibil-
ity and effectiveness of our PCD approach. On
simulation benchmarks, PCD enhances the per-
formance of Oct o, OpenVLA and 7y by 29.7%,
50.6% and 8.9%, respectively. On real-world
§. manipulation tasks, PCD outperforms the state-

(c) (d) of-the-art robot policy 7y by 108%.

Figure 1: Robot policies tend to spuriously cor- Contributions. Our contributions in thi§ work
relate task-irrelevant features with actions, com- are threefold. 1) We propose PCD, a simple,
promising their ability to generalize to unseen training-free, and easy-to-implement scheme to
scenarios. As observed, changing the light posi- tackle the spurious correlation issue in robot
tion from (a) to (b) and the drawer handle position policies. 2) PCD can bf? used as a plqgm to en-
from (a) to (c) results in 36% and 32% drops in hanpe; bOth autoregressive and dlffusmn—based
the performance of the baseline policy OpenvLa Policies, without requiring fine-tuning or access
2024), respectively. (d) Attention map. to pre-trained model weights. 3) Extensive ex-

More results are in Section [f.4]and Appendix[A] periments demonstrate PCD’s effectiveness and
flexibility, consistently improving three state-of-

the-art policies across 15 diverse tasks.

2 RELATED WORK

Robotic Foundation Models. The rapid development of robotic foundation models or generalist
robot policies has been significantly inspired by the success of large visual and language models
(Karamcheti et al [2024a; [Zhai et al.| 20234} [Touvron et al.,20234). Robot policies can be catego-
rized based on action prediction strategies into autoregressive models and diffusion-based policies.
Autoregressive policies sequentially generate action tokens based on previous outputs (Brohan et al|

2022} [2023} [Zawalski et al, 2024} [Belkhale et al.| 2024} [Zhang et al} 2024). OpenVLA (Kim et al.
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2024) equips with a Llama 2 (Touvron et al., [2023a) language model alongside a visual encoder
that merges pretrained features from SigLIP (Zhai et al., 2023a) and DINO-v2 (Oquab et al.,[2024).
Diffusion-based policies simultaneously generate entire action dimensions by performing diffusion
processes on noise (M. et al.|[2024; |Liu et al., [2024a)). Octo (Team et al}[2024)) learns a lightweight
policy on the OXE dataset (Collaboration et al., 2024)), enabling rapid adaptation to unknown tasks
and scenarios on standard consumer-grade GPUs. 7y (Black et al.,|2024) exhibits flexible control
over different robot types by leveraging pre-trained general knowledge from vision-language models.
Although most robot policies are trained on extensive robotic behavior datasets, recent studies have
shown that slight variations in deployment scenarios can significantly affect their generalization
performance on downstream tasks in real-world environments (Firoozi et al.,|2023}|Gao et al.,2024)).

Contrastive Decoding. Recent studies in large vision-language models (VLMs) have highlighted
the challenge of hallucination (Gunjal et al. 2024; [Rawte et al.| 2023} [Liu et al., |2023b; [Zhang
et al.| [2025)), where models generate inaccurate or misleading outputs not grounded in the input data.
Contrastive Decoding (CD) (Favero et al., [2024; |Chen et al., 2024} |[Leng et al., [2024) suppresses
hallucinations by comparing output distributions from original and distorted input without altering
the model’s weights. Instruction Contrastive Decoding (ICD) (Wang et al., 2024) is used to combat
hallucinations in multimodal tasks by modulating the confidence in multimodal alignment of the
model’s visual and textual inputs, enabling it to distinguish between hallucinated and relevant tokens.
Visual Contrastive Decoding (VCD) (Park et al.| 2025} [Favero et al., |2024)) aims to reduce object
hallucinations by comparing outputs from original and distorted visual inputs. This approach provides
a computationally efficient solution as it requires neither additional training nor external pre-trained
models. Our proposed approach in this work is mainly inspired by the success of VCD schemes.
However, unlike those schemes that contrast output distributions from original and noise-distorted
(Park et al.} 2025)) or image-removed (Favero et al., 2024)) inputs to counteract LVLMs’ overreliance
on language priors, our PCD contrasts action probability distributions derived from original and
object-masked inputs, thereby redirecting the robot policy’s focus to object-relevant visual features
and enhancing their generalization across different scenarios.

3 PROPOSED APPROACH

In this section, we present PCD, our training-free, plug-and-play scheme designed to tackle the
spurious correlation issue for existing generalist robot policies. Notably, PCD does not require access
to the pre-trained parameters of these robot policies; i.e., it treats each robot policy as a black-box.

3.1 PRELIMINARIES

This work focuses on robot manipulation tasks where the objective is to leverage a learned language-
conditioned policy 7y(a; | 0;,/) to predict an M-dimensional action a; = [ay,...,ap] € RM
conditioned on the current visual observation o; and the language instruction ¢ of the task. In this
part, we formalize two mainstream paradigms for action prediction: autoregressive action prediction
(e.g., OpenVLA (Kim et all|[2024)) and diffusion-based action prediction (e.g., Octo (M. et al.|
2024) and 7y (Black et al., [2024)).

Autoregressive Robot Policies. The policy decomposes the action prediction task into sequential
token generation. Each action dimension a; of a; is sampled autoregressively from the probability
distribution, conditioned on the visual observation o;, the language instruction ¢, as well as the

previously predicted dimensions a~; = {a; i;i:

ag ~ Ty (at | l, Oiaa<t)~

For example, OpenVLA first encodes o, through a hybrid vision backbone (DINOv2 (Caron et al.|
2023)) w/ SigLIP (Zhai et al.,[2023b) ) and tokenizes ¢ using a pre-trained language model (Llama
2 (Touvron et al.| |2023b))). These multimodal features are fused in the LLM’s embedding space,
which then autoregressively emits M discrete tokens. Each token is finally mapped to an action
dimension a; via a de-tokenizer (Kim et al., 2024).

Diffusion-based Robot Policies. The policy frames action generation as an iterative denoising
process (Ho et al.,2020). Denote e; the multimodal embeddings fusing o; and ¢. Starting from
Gaussian noise a* ~ A(0,I), the reverse diffusion process refines all the M dimensions of the
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Figure 2: Overview of our proposed Policy Contrastive Decoding (PCD) approach. PCD serves
as a plugin to redirect the robot policy’s focus toward object-relevant visual cues by contrasting action
probability distributions derived from original observations p and object-masked observations p. For
illustrative purposes, we visualize the predictions only in the Az and Ay dimensions of the robot
action space [Ax, Ay, Az, rot,, rot,, rot,, gripper].

action a; in parallel over K steps through:

aFl=a (af — véq (af, e;, k)) + N(0,0°T) (D

K2

where a¥ is the noisy action at diffusion step k, € (al, e;, k) is the denoising network, and o, 7, o
are parameters of a cosine noise schedule (Nichol and Dhariwall, 2021). By jointly optimizing the
entire M action dimensions of a;, diffusion-based robot policies enable fine-grained sampling from
the joint probability 7y (a;|l, 0;) of all action dimensions.

3.2 PoLIicy CONTRASTIVE DECODING (PCD)

The core idea of our proposed PCD method is to eliminate the adverse effect of spurious correlations
by redirecting the robot policy’s focus toward object-relevant features during inference. To facilitate
the introduction of our PCD, we define spurious correlations as follows.

Definition 3.1 (Spurious Correlations): Let observations o and language instructions | be
generated by a set of L underlying latent factors {c; ]L=1- These factors are decomposed
into task-relevant factors, denoted by the random variable u, which exclusively determine the
ground-truth expert policy such that p(alo,l) = p(a|u), and task-irrelevant factors, denoted
by the random variable v, which have no causal effect on the expert’s actions a. Spurious
correlation is then defined as the statistical dependence between the action a and these task-
irrelevant factors v observed under the training distribution piain(a,v), quantified by the
mutual information Iiyain (@, v).

Spurious correlations, indicated by mutual information Ii,4in(@,v) > 0 in the training set, allow
a robot policy 7y to infer action a from task-irrelevant factors v. These factors act as shortcuts.
However, such correlations are unreliable. Under out-of-distribution (OOD) conditions—stemming
from environmental shifts or compounding robotic errors—wv may change independently of task-
relevant factors v and, consequently, a, leading to inaccurate action predictions.

A direct approach to mitigate learning from spurious correlations involves filtering out v and utilizing
only u. Nevertheless, identifying and neutralizing spurious features is challenging due to their
significant variability across tasks and scenarios, coupled with interdependencies within the feature
space. Drawing inspiration from Vision Contrastive Decoding (VCD) (Park et al, 2025}, [Favero|
2024), which effectively reduces hallucinations in vision-language models, we introduce Policy
Contrastive Decoding (PCD). PCD aims to shift the robot policy’s focus from spurious features v
towards task-relevant features u associated with the target object. This is achieved by contrasting
model outputs derived from original visual inputs with those from object-masked visual inputs.

Method Overview. Fig. 2| presents an overview of our PCD approach. Suppose we have a pretrained
policy my. Given the current visual observation o; and the language command ¢, we first generate two
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distinct action probability distributions of a;: one is 7y (a;|l, 0;) conditioned on the original visual
input o, and the other is 7y (a;|l, 6;) conditioned on object-masked counterpart 6, that removes all
task-relevant factors related to target objects. Then, a new contrastive action probability distribution
75 (a;|l, 0;) is obtained by contrasting my(a;|l, 0;) and 7y (a;|l, 6;):

770((12‘|l70i)>a

mo(a;ll, 0;)

1
my(aill, 0;) = C - o(aill, 0;) ( @

where C'is a normalization constant and a larger value of & > 0 indicates a stronger amplification of
differences between the two distributions. Particularly, o« = 0 recovers the baseline policy. In such a
manner, the obtained 7} (a;|!, 0;) amplifies model predictions on object-relevant features in w, thus
exhibiting insensitivity to spurious features in v, as illustrated in Fig.

To guarantee the flexibility and practical applicability of our PCD method, we need to address the
following two questions:

1) How can object-masked observations 0; be automatically generated for each trajectory?
2) How can we approximate the policy distribution my for diffusion-based policies?

Tracking-to-Mask. We overcome the first question by devising a Tracking-to-Mask (Track2Mask)
strategy, which enables precise object masking for sequential visual observations along each trajectory,
requiring minimal or no human intervention. Concretely, the first step of Track2Mask is to annotate
the task-specified objects in the initial visual observation. Inspired by visual prompting techniques
(Wan et al.| 2024), one can annotate the target objects in the initial observation using Point or
Box prompts. Besides, we provide the option of leveraging off-the-shelf (open vocabulary) object
detection models, such as Grounding DINO (Liu et al 2024b)) for automatic object annotation.
Next, the SAM?2 (Kirillov et al., |2023)) model is used to track and segment the target object across
subsequent observations in the trajectory, and the segmented objects are then inpainted to obtain
object-masked observations. For more details of Track2Mask, please refer to Appendix [B]

KDE-based Probabilistic Modeling. We address the second question using KDE-based Probabilistic

Modeling (KDE-PM), which approximates action probability distributions for diffusion-based policies

through kernel density estimation (KDE) (Wkeglarczyk,|[2018]). Specifically, we first use the pretrained

diffusion-based policy to sample N candidate action predictions: {a;(j)} ;\le’ where a;(j) =

[a1(5), .-, anr (§)] ~ mo(a;]l, 0;). With the assumption that all action dimensions are independent,
M

i.e., mp(ai|l,0;) = [] mo(as|l, 0;), we calculate an approximated probability distribution for each
=1

action dimension of the action a; via KDE:

N .
1 a; — ai(j)
l,0;) = — Kl——= ), t=1,..., M, 3
mo(as|l, 0;) C’; ( 5 (3)
w?
where C” is a normalization constant and K(-) indicates a Gaussian kernel K(u) = \/%e’T, b

is the bandwidth parameter controlling the smoothness of the distribution, and {a;(j)};Z, are the
N candidate actions for the ¢-th dimension of the action a;, generated from the diffusion process.
Similarly, we can derive an action probability distribution for a; conditioned on object-masked 0, i.e.,
mo(at|l, 6;). With the independence assumption, from 7y (as|l, 0;) and 7y (as|l, 6;) we can compute
the joint action distributions, which are then used to compute the contrastive action probability
7, (aill, 0;) using Eq. . In this way, our PCD is compatible with diffusion-based robot policies.

Inference with PCD. As a training-free method, our proposed PCD can be employed as a plugin
to improve the inference stage of different types of robot policies (i.e., autoregressive policies and
diffusion-based policies). Specifically, for a pre-trained robot policy 7 (a; | 0;,¢), given the current
observation o;, we can obtain the object-masked o; (i.e., ;) leveraging the devised Track2Mask
strategy. Based on o;, 0; and a language command /, the autoregressive policy directly computes
contrastive action probability distributions for deriving a; (w/ Eq. (2)), whereas the diffusion-based
policy requires performing the KDE-PM process on its output predictions to achieve the same goal.
Pseudocode for our PCD method is provided in Algorithm i}
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Algorithm 1 PCD: Policy Contrastive Decoding

Require: A pre-trained robot policy: 7y (a; | 0;,¢); initial observation og; language command /;
maximum time step S.

I: s« 0

2: while s < S do
3 Obtain object-masked o;: O, > w/ Track2Mask
4: Obtain 7y (as|l, 05) and g (as|l, 65) > w/ KDE-PM for diffusion-based policies
5: Compute 7} (as|!, 0s) using Eq.
6: Sample a, from 7 (as|l, 05) and execute a
7 0,41 <+ New observation > Obtain a new observation
8: s+ s+1
9: end while

Table 1: SIMPLER Performance. Task-specific objects in the initial observation are annotated by
artificial Point and Box prompts or the automatic detection results of GDINO (Liu et al.| [2024b)).
The results are the success rate and the 95% confidence interval of 300 trials. As a plug-and-play
approach, PCD consistently enhances the three policies by large margins over the 9 tasks.

OpenVLA(Kim et al.|[2024) Octo (M. et al.[|2024) 7o (Black et al.|[2024)
Tasks Base +PCD Base +PCD Base +PCD
Point Box GDINO Point Box GDINO Point Box GDINO
Average 16.8+1424.4+1.622.941.625.3+1.6{13.8+1.3/17.6+1.4 17.4+1.417.941.4/63.9+1.8/68.1+1.868.6+1.869.6+1.7
+45.2% +36.3% +50.6% +27.5% +26.1% +29.7% +6.6% +7.4% +8.9%

Close Drawer |47.345.6 63.7+5.463.7+5.473.3+5.0/31.0+5.2(26.0+5.027.0+5.0 21.0+4.6|75.74+4.974.7+4.9 80.3+4.5 75.0+4.9
Move Near  |58.7+5.6 64.0+5.462.0+5.5 59.0+5.6) 3.7+2.1 | 6.7+2.8 6.0+2.7 9.0+3.2 |67.345.3/66.7+5.368.0+5.372.3+5.1
Open Drawer |23.3+4.8 36.345.433.0+5.334.7+5.4/ 0.3+0.7 [ 0.3+0.7 0.3+0.7 1.0+1.1|38.0+5.5/47.7+5.750.3+5.7 56.3+5.6
Pick Coke Can|18.0+4.3 38.0+5.543.3+5.6 45.3+5.6/29.3+5.2(51.3+5.7 50.7+5.7 50.7+5.7/84.0+4.1/84.3+4.1 87.3+3.8 88.0+3.7
Apple Drawer | 0.0+0.0 0.3+0.7 1.0+1.1 0.7+0.9 | 0.0+0.0 | 0.0+0.0 0.0+0.0 0.0+0.0 |17.0+4.326.0+£5.026.7+5.027.3+5.0
Carrot Plate | 0.0+0.0 7.3+2.9 0.0+0.0 4.7+2.4 [12.043.7(22.0+4.719.0+4.420.7+4.658.0+5.6/67.7+5.3 50.0+5.5 59.7+5.6
Eggpl. Basket | 0.3+0.7 5.3+2.5 1.7+1.4 5.3+2.5|38.345.5/33.0+5.331.3+5.238.7+£5.5(86.0+£3.983.7+4.284.7+4.1 87.0+3.8
Spoon Towel |0.0+0.0 2.3+1.7 1.0+1.1 4.3+2.3|9.3+3.3 [15.0+4.0 18.7+4.4 16.0+4.1/80.7+4.5/86.3+3.9 83.7+4.2 84.0+4.1
Stack Cube 3.7+21 2.7+1.8 0.040.0 0.0+0.0|0.0+0.0|4.34+2.3 4.0+2.2 3.742.1|68.7+5.2(76.3+4.876.7+4.877.0+4.8

Google
Robot

WidX.

4 EXPERIMENTS

In this section, we seek to answer the following questions:

1) Can PCD improve robot policies in both simulation and real-world environments?
2) How does the performance vary with different design choices?
3) What kinds of spurious correlations can our PCD tackle?

We answer the first question in Sections .| and [4.2] the second question in Section[4.3] and the third
question in Section Detailed descriptions of the baseline robot policies and the evaluation tasks
used in simulation and real-world environments are presented in Appendix [C]

4.1 SIMULATION EXPERIMENTS

We perform simulation experiments in SIMPLER (L1 et al.l 2024), a real-to-sim evaluation en-
vironment designed specifically for real-robot policies. SIMPLER accurately reflects real-world
performance, enabling reliable assessment of robotic policies. We evaluate 9 tasks across two robot
platforms: 5 tasks using the Google Robot and 4 tasks using the WidowX arm.

Experimental Setup. We conduct experiments on top of three diverse robot policies, including the
autoregressive policy OpenVLA (Kim et al.,2024), and the diffusion-based policies Octo (base) (M|
et al., [2024) and 7y (Black et al.|[2024). We treat these policies as black-boxes, applying PCD solely
based on the output action probability distributions for OpenVLA and the output actions for Octo
and 7y. For our PCD, we annotate the target object in the initial observation using three manners:
artificial Point and Box prompts, and automatic detection results from Grounding DINO (Liu et al.,
2024b). The number of the sampled noise vectors N in KDE-PM is set to 24 for Octo and 7.
We perform ablation studies on the hyperparameter « in Eq. (Z), as well as on the object detection
strategies and object inpainting paradigms of the devised Track2Mask module in Section
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Figure 3: Real-world Performance. The target objects in the initial observation are automatically
annotated by Grounding DINO (Liu et al., 2024b). PCD delivers a remarkable 108 % performance
improvement on the baseline, though it incurs a 24% increase in time cost.

Results and Analysis. Table [T] reports the performance of three robot policies (i.e., OpenVLA
(Kim et al., 2024), Octo (M. et al.l [2024) and 7 (Black et al., 2024)) integrated w/ or w/o our
PCD across a total of 9 tasks from Google Robot and WidowX. From the results in the table, we
have the following key observations. 1) Our PCD consistently improves the three baseline policies
over the 9 tasks from both the Google Robot and WidowX robotic platforms. On average, PCD
boosts the success rates of the autoregressive policy OpenVLA, and the diffusion-based policies
Octo and 7y by up to 50.6%, 29.7% and 8.9%, respectively. 2) Our PCD exhibits stable and
outstanding performance across the three object annotation strategies, including artificial Point and
Box prompts and automatic object detection with Grounding DINO, underscoring its effectiveness
and adaptability. In particular, on the Oct o and OpenVLA baseline policies, leveraging the off-the-
shelf model Grounding DINO demonstrates better performance than using human Point and Box
prompts, while showing comparable results on 7, highlighting the practical applicability of the PCD
method. 3) Compared to OpenVLA and Octo, the baseline model 7y demonstrates significantly
superior performance across all 9 tasks. For instance, OpenVLA and Oct o achieve near-zero success
rates on “Apple Drawer” task whereas 7y achieves success rates of 17.0% and 68.7% on these two
tasks, respectively. Despite this, from the average results over the 9 tasks, our PCD still enhances the
strong baseline 7y by 8.9%. In summary, the obtained results in the table demonstrate that our PCD
approach can be used as a plugin to improve different types of robot policies.

4.2 REAL-WORLD EXPERIMENTS

In this section, we conduct experiments on real-world tasks to assess PCD’s practical effectiveness.

Experimental Setup. The simulation experiments show that 7y significantly outperforms Octo
and OpenVLA. Therefore, we employ 7y as the baseline policy to validate the effectiveness of our
PCD approach, as shown in Fig. [3] Considering the generalization limitations of existing robot
policies in real-world environments, we first finetune 7y on downstream real-world tasks before
evaluating PCD’s performance. We design 6 manipulation tasks that focus on evaluating the policy’s
performance along multiple dimensions: spatial reasoning and interacting with various objects and
scenes. The g policy is jointly fine-tuned on the 6 real-world tasks, with each task consisting of
10 training demonstrations. During inference, we conduct 20 trials for each real-world task and
randomize the configurations and orientations of task-specific objects for each trial. We use an
AGILEX PIPER 6DOF robot arm in our experiments. For our PCD, we leverage the off-the-shelf
model Grounding DINO to detect task-specific objects in the initial observation, and use LaMa
(Suvorov et al.| 2022) to inpaint those objects segmented by the SAM2 (Kirillov et al.|2023)) model.
All other hyperparameters are kept consistent with the settings applied in the simulation experiments.

Results and Analysis. Fig. [3|reports the success rates as well as time costs of the state-of-the-art
robot policy 7y (Black et al.l[2024) integrated w/ or w/o our PCD on 6 real-world tasks. For each
task, we record the time cost (in seconds) from the start of the inference process to the successful
completion of the task. From the obtained results in the figure, we have several key observations. 1)
PCD consistently improves the success rates of the strong baseline policy across six real-world tasks,
achieving an average enhancement of 108%. 2) While PCD significantly boosts success rates, it also
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Figure 4: Ablation studies on (a) the hyperparameter « in Eq. , (b) the object detection schemes
and (c) object inpainting strategies in Track2Mask. o = 0 in (a) and the black dotted lines in (b)(c)
represent the performance of the baseline policies. The results are averaged over the 9 simulation
tasks. PCD consistently improves the three policies when o« > 0 and exhibits low sensitivity to
changes in off-the-shelf object detection and inpainting strategies.

increases the time cost by 24% on average compared to the baseline policy. However, considering the
notable improvement in task completion success rates, this trade-off is acceptable in a wide range of
real-world robotic applications. 3) PCD demonstrates consistent performance improvements across
tasks of varying complexity. For example, in the challenging "Stack Cube" task, PCD improves the
success rate from 0.05 to 0.10, showing its strong adaptability and robustness across diverse scenarios.
Additionally, the backgrounds of these six real-world tasks are far more complex than those of the
nine simulation tasks, containing numerous distracting elements such as plastic bottles, baskets, and
trash cans. Nevertheless, our PCD shows remarkable advantages. It is worth mentioning that we use
consistent PCD hyperparameters across tasks in both the simulation and real-world environments,
without carefully tuning task-specific PCD hyperparameters (e.g., «) for each individual task, leaving
room for potential performance improvements through task-specific parameter tuning.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to explore how the performance of our PCD varies with
different design decisions. We perform experiments in the SIMPLER simulation environment, and
report the average results across the nine tasks for our PCD applied to the three baseline policies.

Effect of .. As formulated in Eq. (2)), PCD leverages the hyperparameter « to control the level of
amplification between output distributions from original and object-masked visual inputs. A larger o
value indicates a stronger amplification of differences between the two distributions, while o = 0
reduces to regular prediction. We adjust « by setting it to {0, 0.2, 0.4, 0.6, 0.8, 1.0}, and report
the performance of our PCD method over the 9 tasks in Fig. ] (a). a = 0 represents the baseline
policies. As can be observed, our PCD consistently improves Oct o, OpenVLA and 7y when av > 0,
demonstrating its effectiveness and stability. Particularly, PCD yields the best results on Octo,
OpenVLA and 7y when the values of « are set to 1.0, 0.8, and 0.2, respectively.

Effect of Off-the-shelf Object Detection Models. Beyond leveraging artificial Point and Box
prompts, the devised Track2Mask module can employ off-the-shelf open vocabulary object detection
models to annotate task-specific objects in the initial observation of the trajectory during inference.
Fig. 4] (b) presents an ablation study on various automatic object detection models, including the
Grounding DINO (Liu et al.,[2024b) model discussed in the main paper, as well as the open vocabulary
object detection model YOLO World (Cheng et al.| 2024) and semantic segmentation model SED
(Xie et al.l |2024). The output of these models is fed into the SAM2 (Kirillov et al.l 2023) model
for tracking and segmenting the detected objects across subsequent observations in the trajectory.
As can be seen, our PCD consistently improves the baseline policies when integrated with each of
the three off-the-shelf models, showcasing its effectiveness and stability. Generally, the Grounding
DINO model yields the best results among the three models.

Effect of Object Inpainting Strategies. Once the objects specified in the language instruction
of the target task are segmented by the SAM2 model, they are inpainted to create object-masked
observations. In this experiment, we investigate the effect of different object inpainting strategies on
PCD’s performance. Fig. [d](c) shows the results of PCD integrated with three inpainting strategies:
Telea (Teleal 2004) and Navier-Stokes (Bertalmio et al.| 2001) and LaMa (Suvorov et al., [2022).
As indicated in the figure, our PCD approach consistently improves the baseline policies across all
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Figure 5: Performance of baseline policies integrated w/ or w/o our proposed PCD approach in
unseen testing scenarios. Dotted lines represent the original performance. OpenVLA
[2024)) and 7 (Black et al.l[2024)) are used as baselines in simulation and real-world environments,
respectively. PCD effectively mitigates the side effects of various types of spurious correlations,
boosting the robot policy’s generalization to novel scenarios.

strategies, showcasing its effectiveness and stability. Furthermore, PCD demonstrates low sensitivity
to variations in the three object inpainting strategies, further validating its applicability and robustness.
Notably, LaMa delivers the best results across all three baseline policies.

4.4 ROBUSTNESS TO VARIOUS KINDS OF SPURIOUS CORRELATIONS

The central concept of our proposed PCD approach in this work is to overcome the adverse effects of
spurious features on the decision-making of robot policies. So, what types of spurious correlations
can PCD effectively address? To answer the question, we evaluate the robustness of the OpenVLA
and g policies to task scene variations in both simulation and
real-world environments. As illustrated in Fig. [5] we report the performance of the two baseline
policies integrated w/ or w/o our proposed PCD approach in different testing scenarios with unseen
spatial relationships, brightness, distractors and table textures within visual observations. The results
shown in the figure lead to the following observations. 1) Consistent with the previous experimental
results, our PCD approach significantly improves the performance of the baseline policies on both
simulation and real-world tasks (Orange line vs. Blue line). 2) Both baseline policies experience
substantial drops in performance when testing scenarios are modified. For example, altering the
brightness of visual observations results in 48% and 75% decreases in success rates for the two
policies, respectively. 3) PCD consistently alleviates the performance degradation of the baseline
policies across all unseen testing scenarios. Remarkably, after integrating PCD, the two baseline
policies even performs better in 4/10 of unseen scenarios than in the original training scenarios. The
results in the figure reveal that our proposed PCD approach can serve as a plugin to mitigate the
adverse effects of various types of spurious correlations on the generalization of robot policies.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, propose Policy Contrastive Decoding (PCD) to tackle the adverse effects of spurious
correlations learned by generalist robot policies. PCD redirects the policy’s attention from spurious
features to object-relevant ones during inference by contrasting action probability distributions
obtained from original and object-masked inputs. As a plug-and-play approach, PCD can enhance
both autoregressive and diffusion-based policies, without requiring fine-tuning or access to pre-
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trained model weights. Comprehensive experiments demonstrate PCD’s flexibility and effectiveness,
achieving consistent improvements over three state-of-the-art robot policies across a total of 15 tasks
in simulation and real-world environments.

While our PCD demonstrates effectiveness and flexibility, there are certain limitations. 1) PCD
performs object detection and segmentation for each visual observation in the trajectory to produce
object-masked observations, which increases the computational overhead of the baseline police.
Recent progress in fast LLM inference techniques (Zhou et al.,|2024; Leviathan et al.,[2023; |Liu et al.|
2023c) could potentially enhance the computational efficiency of our PCD approach. 2) This work
concentrates exclusively on addressing the spurious correlation issue in robot policies during the
testing stage, without exploring methods to prevent the learning of such correlations during training.
Hence, future work will focus on investigating effective strategies to tackle spurious correlations at
both the training and inference levels.
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A CAM VISUALIZATION OF FAILURE CASES

We present the CAM (Selvaraju et al.l 2017) visualization of failure cases for the OpenVLAEl model
across the nine tasks in Fig. @ For each task, the averaged CAM results over the seven action
dimensions ([Ax, Ay, Az, rot,, rot,, rot,, gripper]) are plotted. As can be observed from the figure,
the model tends to predict actions based on spurious or background features in visual observations.
For instance, on the “move the blue plastic bottle near sponge” (denoted as “Move Near”) task, the
model model habitually focuses on the “coke can” object that it frequently encountered during the
training phase. These observations demonstrate that the learned policy utilizes perceptual data for
decision-making in a way that significantly diverges from human strategies. Robot policies often
erroneously associate task-irrelevant features with actions, a major cause of overfitting and poor

generalization across tasks.
-
-

Close Drawer Move Near

°

Overemphasized
Irrelevant Regions

Overlooked
Object Regions

Carrot Plate Eggplant Basket

Spoon Towel Stack Cube

Figure 6: CAM visualization of failure cases.

B DETAILS OF THE TRACK2MASK MODULE

In our devised Track2Mask module, the target object specified by the language instruction in the initial
observation can be annotated using Point and Box prompts, along with off-the-shelf open-vocabulary
object detection models, as illustrated in Fig. [7]] The SAM2 (Kirillov et alll 2023) model is then
applied to automatically track and segment the target object across subsequent observations in the
trajectory, which enables precise object masking with minimal or no human intervention during
inference. Note that, once the task-specific objects are segmented by the SAM?2 model, they are
inpainted to create object-masked observations.

t=1
_— d Original
Human Point Observation
t=0 2
Human
Original < B SAM 2 : SAM 2
. 0X
Observation
Detection Results Inpainting t=0

4 Object-masked
Observation

Figure 7: Illustration of the Track2Mask module.

'We only visualize the CAM results of OpenVLA, as the action prediction mechanism of diffusion-based
models (e.g., Octo and 7o) makes it difficult to produce their CAM results.
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C DETAILS OF THE EXPERIMENTAL SETUP

C.1 BASELINE POLICIES

Simulation Experiments. We conduct simulation experiments using three diverse robot policies in
the SIMPLER environment, including the autoregressive policy OpenVLA (Kim et al.||[2024), and
diffusion-based policies Oct o (base) (M. et al.|[2024) and 7y (Black et al., [2024).

* OpenVLA: a vision-language-action model with 7 billion parameters, is trained on 970,000
episodes of robotic demonstrations from the Open X-Embodiment dataset. This policy is
fine-tuned using the pre-trained Prismatic (Karamcheti et al., 2024b) modelE]

* Octo (base): an open-source generalist policy with 93 million parameters, is pre-trained
on a blend of 25 different datasets from the Open X-Embodiment dataset. It utilizes a
transformer backbone derived from ViT-B, accompanied by a diffusion action head to model
expressive action distributions [}

* 7y: a flow matching architecture built on top of a pre-trained vision-language model to
leverage Internet-scale semantic knowledge. To facilitate evaluation in the SIMPLER
environment, we leverage the reproduced version of 7, pretrained on tasks from this
environment

Real-world Experiments. Since the simulation experiments show that my significantly outperforms
Octo and OpenVLA, we conduct real-world experiments using the my policy E} The policy is
finetuned using on six real-world tasks, with each task consisting of 10 trajectories. We employ the
parameter-efficient finetuning strategy LoRA (Hu et al.;|2022)) to adapt 7 to these real world tasks.
The training hyperparameters are listed in Table 2|

Table 2: Hyperparametes for finetuning 7 on real-world tasks.

Hyperparametes Setting
Batch Size 128
Optimizer AdamW

Learning Rate 2.5e-5
LR Schedule Cosine Decay
Weight Decay le-10
Training Step 25000
Action Chunk 10
LoRA Rank 16

C.2 EVALUATION TASKS

We conduct extensive evaluations in both simulation and real-world environments using a total of
15 diverse tasks. The details of these tasks are presented in Table[3] We conduct 20 trials for each
real-world task, randomizing the task configurations in every trial, as illustrated in Fig.

D PERFORMANCE AT THE MAXIMUM STEP

In Table|l} tasks completed before the predefined maximum step are included in the success rate
calculation, and the task is terminated upon completion. Table ] presents success rates computed at
the maximum step, irrespective of whether tasks were completed earlier. As seen, PCD demonstrates
its advantages by improving the success rates of OpenVLA, Octo and 7 by up to 45.0%, 19.3%
and 7.9%, respectively. We also observe that the vast majority of models underperform on these
tasks relative to their results in Table [T which indicates that even though they complete the task
successfully ahead of the maximum steps, their later predicted actions lead to task failure. The

Zhttps://openvla.github.io/
*https://octo-models.github.io/
*nttps://github.com/allenzren/open—pi-zero
Shttps://www.physicalintelligence.company/blog/pi0
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Figure 8: We conduct 20 trials for each real-world task, randomizing the task configurations in every
trial. The language command for this task is “stack the green cube on the yellow cube.”

Table 3: Details of simulation and real-world tasks.

Env. | Tasks Language Instruction Task-specific Objects | # Trials
Close Drawer close top/middle/bottom drawer top/middle/bottom drawer 300
Move Near move X near Y apple, orange, pepsi can, ...| 300

g Open Drawer open top/middle/bottom drawer top/middle/bottom drawer 300
= Pick Coke Can pick coke can coke can 300
= | Apple Drawer | open top drawer/place apple into top drawer top drawer, apple 300
E | Carrot Plate put carrot on plate carrot, plate 300
i Eggplant Basket put eggplant into yellow basket eggplant, yellow basket 300

Spoon Towel put the spoon on the towel spoon, towel 300
Stack Cube stack the green block on the yellow block green cube, yellow cube 300
Pick Ball pick the ball ball 20
= | Pick Plug pick the plug plug 20

§ Move Near move the can near the apple/watermelon can, apple, watermelon 20
= | Cookies Towel put the cookies on the towel cookies, towel 20
~ | Banana Plate put the banana in the plate banana, plate 20

Stack Cube stack the green cube on the yellow cube green cube, yellow cube 20

Table 4: Success rates (%) and 95% confidence interval of three baseline policies integrated w/ or
w/o our PCD over 9 tasks from Google Robot and WidowX—calculated at the maximum step.

OpenVLA(Kim et al.! 2024} Octo (M. et al.! 2024' 7o (Black et al.] 2024}
Model + + +

Base | point  Box DINO | B%° | ot Box DINO | B | poit  Box DINO
Average 15.1+1.321.041.521.1+1.521.9+1.6[11.9+1.2[13.4+1.3 14.0+1.3 14.2+1.3[59.2+1.9/62.7+1.8 63.7+1.863.9+1.8
g +39.1% +39.7% +45.0% +12.6% +17.6% +19.3% +59% +7.6% +7.9%

Close Drawer  [47.3+5.6/61.3+5.563.7+5.472.7+5.0[28.0+5.1{24.3+4.9 28.3+5.1 20.3+4.6/75.0+4.9(74.0+5.0 79.0+4.6 74.7+4.9
Google Move Near 47.3+5.6/48.045.750.7+5.741.3+5.6/ 2.7+1.8 | 5.0+2.5 4.7+2.4 8.0+3.1|60.0+5.5/56.0+5.6 59.0+5.6 62.0+5.5
Robot Qpen Drawer [23.3+4.8(34.3+5.431.0+5.233.3+5.3/ 0.3+0.7 | 0.3+0.7 0.0+0.0 1.0+1.1|34.7+5.4/42.3+5.647.7+5.752.7+5.6
Pick Coke 17.3+4.3]34.045.441.345.6 39.7+5.523.0+4.8/41.7+5.6 42.7+5.6 43.3+5.6/80.3+4.5/81.0+4.4 82.3+4.3 84.0+4.1

Apple Drawer | 0.0+0.0|0.3+0.7 1.0+1.1 0.7+0.9 | 0.0+0.0 | 0.0+0.0 0.0+0.0 0.0+0.0|17.0+4.3126.0+5.026.7+5.027.3+5.0

Carrot Plate 0.0+0.0]3.0+1.9 0.0+0.0 2.7+1.8(9.0+3.2 [12.7+3.8 11.7+3.6 12.0+3.7|54.0+5.6/62.0+5.5 55.3+5.6 54.3+5.6

WidX Eggplant Basket| 0.3+0.7 | 5.0+2.5 1.7+1.4 3.7+2.1 [37.0+5.5/25.3+4.922.7+4.731.7+5.3|83.3+4.2|77.7+4.7 80.3+4.5 81.0+4.4
* Spoon Towel | 0.0+0.0 | 1.7+1.4 0.3+0.7 3.0+1.9 | 7.0+2.9 | 9.0+3.2 13.7+3.9 9.0+3.2 (79.3+4.6/85.0+£4.0 82.7+4.382.7+4.3
Stack Cube 0.0+0.0 | 1.3+1.3 0.0+0.0 0.0+0.0|0.0+0.0 | 2.7+1.8 2.3+1.7 2.3+1.7 |49.0+5.7/60.3+5.5 60.3+5.5 56.7+5.6

superiority of the proposed PCD method is compellingly evidenced by the consistent performance
gains over baseline policies presented in Table [I]and Table ]

E COMPUTATIONAL OVERHEAD

Table 3 reports the computational overhead of three baseline policies integrated w/ or w/o our PCD
method in the SIMPLER environment. 1) Inference Latency. PCD approximately doubles the
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Table 5: Computational overhead of three baseline policies integrated w/ or w/o our PCD method in
the SIMPLER environment.

OpenVLA Octo o
Model Base +PCD Base +PCD Base +PCD
Average time cost for each infer. step (s) 0.86 1.77 0.21 0.39 0.66 1.09
Memory cost (MB) 16357 16869 2884 3528 8535 11699

inference latency per step across all three policies. This is an expected trade-off, as PCD requires a
second forward pass on the object-masked input to compute the contrastive signal. For Octo and ),
although the KDE-PM process introduces additional inference time, the overall time overhead is still
kept to roughly a twofold increase due to their parallel processing of the original and object-masked
images. Crucially, this increased inference time does not significantly affect the total task completion
time in real-world scenarios, given the much longer duration of the robot’s physical execution. As
proven by Figure 3] PCD only brings 24% extra execution time on OpenVLA. 2) Memory Cost. The
impact on memory cost varies based on the policy’s architecture. For OpenVLA, which processes the
original and masked inputs serially, the memory overhead is negligible, with the primary cost being
the increased sequential processing time. In contrast, the memory costs of Octo and 7y are 1.22x
and 1.37x that of the baseline respectively, due to their parallel data processing mechanisms.

F PCD vs. CLASSIFIER-FREE GUIDANCE (CFG)

The proposed PCD algorithm shares similarity with the training-free approach classifier-free guidance
(CFG) (Ho and Salimans},[2022), where the masked image serves as the unconditional inputs. However,
the essential distinction lies in how and when the guidance is applied: CFG provides implicit guidance
during the iterative decoding process. At each step of the diffusion, it steers the generation away
from the unconditional prediction. This is an implicit probabilistic modeling process. In contrast, our
PCD is an explicit post-hoc correction. The quantitative comparison shown in Table [6] shows that our
PCD method significantly outperforms CFG across the nine SIMPLE tasks. However, the time cost
of PCD is 1.29 times that of CFG. Therefore, harnessing the complementary strengths of PCD and
CFG to further address spurious correlations remains a promising avenue for future research.

Table 6: Comparison of PCD and Classifier-Free Guidance (CFG) (Ho and Salimans| 2022).

Model 0 +CFG +PCD
Average time cost for each inference step (seconds) 0.66 0.84 1.09
Average success rate over nine tasks (%) 63.9 62.7 68.1
Close Drawer 75.7 75.7 74.7
Move Near 67.3 62.7 66.7
Open Drawer 38.0 46.3 47.7
Pick Coke 84.0 81.3 84.3
Apple Drawer 17.0 13.0 26.0
Carrot Plate 58.0 59.0 67.7
Egg. Basket 86.0 87.3 83.7
Spoon Towel 80.7 78.3 86.3
Stack Cube 68.7 60.3 76.3

To further investigate CFG, we conduct a step-by-step analysis in Table[7] applying CFG after a
certain step and running 100 trials for each setting. The results show a clear trend: the earlier the CFG
intervention, the more severe the performance degradation. The primary reason appears to be that
CFG’s influence on the noise space disrupts the semantic integrity of the model’s reasoning process,
ultimately degrading performance.

Table 7: Performance of CFG under different starting steps.

Starting step Success Rate (%)

0 62.7
2 63.8
4 64.8
8 64.5
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a) Object Detection Failure b) Incomplete Object Masking

Input

Result

move the sponge place the spoon close the top put the carrot
near the up can on the towel drawer on the plate

Figure 9: Failure cases of the Track2Mask module.

G FAILURE CASES OF TRACK2MASK

From the Track2Mask pipeline presented in Appendix Fig[7] the failure cases fall into two categories:
a) Object Detection Failure—the off-the-shelf open-vocabulary detector (i.e., GDINO) fails to
localize objects in the initial observation; b) Incomplete Object Masking—the target objects along
the trajectory are partially masked, as shown in Fig. [0} According to Equation 2, when the first failure
case occurs, PCD’s prediction becomes equivalent to the original baseline result.

We conduct a ablation study to assess the impact of the incomplete masking failure cases in Table|[§]
where £ indicates the ratio of masked pixels manually excluded. As can be seen, PCD’s performance
progressively declines as /3 increases, until it approaches the baseline performance when 3 reaches
60%. Nevertheless, both kinds of failure cases are exceptionally rare in our experiments, owing to the
stability and effectiveness of the employed off-the-shelf models, i.e., GDINO for object detection and
SAM v2 for object tracking and segmentation.

Table 8: Performance of PCD under different ratios () of masked pixels manually excluded. The
task is “pick coke can”.

Model Baseline +PCD (5 = 0) 5=0.2 8=04 B8 =0.6
OpenVLA 25 40 32 28 27
0 84 38 38 85 84

H APPLICABILITY TO MORE COMPLEX TASKS

In our experiments on multi-objects tasks, PCD masks all task-relevant objects simultaneously. Here,
we perform a new ablation study using the "Move Near" task to validate this strategy. Specifically, for
task “Move A Near B”, we compare the results of i) masking only object A, ii) masking only object
B, iii) masking A first, followed by masking B upon a successful grasp of A; and iv) Masking both A
and B. The results are shown in Table[9] where the baseline model is OpenVLA. As can be observed,
masking all task specific objects simultaneously yields the best performance.

Table 9: Ablation study on masking strategies for multi-object tasks.

Model Task Mask A Mask B Mask A then B Mask A and B
OpenVLA Move Near 60 50 57 62
o Carrot Plate 53 62 56 67

Our PCD method has been evaluated on the long-horizon task "Apple Drawer" in the SIMPLER
environment. As illustrated in Appendix Table 3, the official language instruction of the task is
composed of two sequential sub-tasks: "open the top drawer" and "place the apple into the top
drawer". Our strategy is to mask objects based on the instruction of the current sub-task. For sub-task
1, we mask only the "top drawer"; for sub-task 2, we mask both the "apple" and the "top drawer". In
other words, PCD holds potential for long-horizon tasks by leveraging an LLM-based planner with
CoT reasoning to decompose abstract commands into concrete sub-tasks.
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I PERFORMANCE GAPS AMONG DIFFERENT OBJECT ANNOTATION
STRATEGIES

The observed performance gaps among different object annotation strategies in Table 1 arises from
the distinct "preferences” inherent in each approach. For instance, prompts from humans versus those
from object detection models exhibit different understandings of object presence. As illustrated in
Fig[T0} in the case of a "drawer", a human annotator tends to point to or box a specific drawer within a
cabinet, whereas an object detection model typically bounds the entire cabinet containing all drawers.
This leads to significant performance disparities on "drawer"-related tasks. We argue that no single
object annotation strategy is universally optimal; rather, the most effective approach is contingent
upon the specific task.

Human Point Human Box

Object
Annotaton
Strategies |

Object
Masking
Results

Figure 10: Object masking results of Track2Mask using different object annotation strageties.

J ROBUSTNESS UNDER VARIOUS MAGNITUDES OF DISTRACTORS

Here, we investigate the robustness of the PCD method under various magnitudes of distractors by
incrementally increasing the number of distractors in the image background of the "pick coke can"
task. The obtained results confirm that PCD maintains superior performance and exhibits greater
robustness against these disturbances compared to the baseline.

Model Original ~ Few distractors ~ Many distractors
OpenVLA 25 24 14
+PCD 40 39 36

Table 10: Robustness of PCD to various magnitudes of distractors presented in Fig

pick
coke can

Original Observation Few Distractors Many Distractors

Figure 11: Various magnitudes of distractors.

K PERFORMANCE IN MULTI-PERSPECTIVE SCENARIOS

In this part, we conduct an experiment to investigate PCD’s effectiveness in multi-perspective
scenarios. Specifically, we leverage the miniVLA+VQ h8+Wrist (Belkhale and Sadigh| 2024)
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policy—which incorporates both third-person perspective and wrist images as input—as our baseline.
The achieved results on five randomly sampled tasks from the LIBERO-90 (Liu et al., 2023a)
benchmark are shown in Table [T} demonstrating that PCD consistently improves the baseline policy
across all five tasks.

LIBER-90 Task miniVLA+VQ h8+Wrist +PCD
put the butter at the front in the top drawer of the cabinet and close it 54 72
put the black bowl on top of the cabinet 98 100
pick up the ketchup and put it in the basket 72 84
put the white mug on the plate 86 88
pick up the book and place it in the front compartment of the caddy 46 54
Average 71.2 79.6

Table 11: Performance of PCD on five LIBER-90 Tasks.

L LLMS USAGE STATEMENT

In the preparation of this paper, we employed Large Language Models (LLMs) solely as a writing
assistance tool for limited text polishing and language refinement. LLMs were not involved in any
aspects of research ideation, conceptual development, technical analysis, algorithm design, experi-
mental execution, or result interpretation. All scientific contributions, methodological innovations,
and intellectual content remain entirely our own.
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