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Abstract

Using a vocabulary that is shared across lan-
guages is common practice in Multilingual
Neural Machine Translation (MNMT). In ad-
dition to its simple design, shared tokens play
an important role in positive knowledge trans-
fer, assuming that shared tokens refer to similar
meanings across languages. However, when
word overlap is small, especially due to dif-
ferent writing systems, transfer is inhibited.
In this paper, we define word-level informa-
tion transfer pathways via word equivalence
classes and rely on graph networks to fuse
word embeddings across languages. Our ex-
periments demonstrate the advantages of our
approach: 1) embeddings of words with similar
meanings are better aligned across languages,
2) our method achieves consistent BLEU im-
provements of up to 2.3 points for high- and
low-resource MNMT, and 3) less than 1.0% ad-
ditional trainable parameters are required with
a limited increase in computational costs, while
inference time remains identical to the baseline.
We release the codebase to the community.1

1 Introduction

Multilingual systems (Johnson et al., 2017; Lam-
ple and Conneau, 2019) typically use a shared vo-
cabulary to build the word space uniformly. For
instance, in MNMT scenarios, this is achieved by
combining all source and target training sentences
together and training a shared language-agnostic
tokenizer, e.g., BPE (Sennrich et al., 2016), to split
the words into tokens.

Such a design is simple and scales easily. More-
over, shared tokens also encourage positive knowl-
edge transfer when they refer to equivalent or sim-
ilar meanings. Research on cross-lingual word
embeddings (Søgaard et al., 2018; Ruder et al.,
2019) shows that exploiting a weak supervision sig-
nal from identical words remarkably boosts cross-

1https://github.com/moore3930/
BeyondSharedVocabulary

Figure 1: bicycle and fiets have the same meaning, but
use different forms, potentially leading to a larger dis-
tance δ between their embeddings (E[·]). Our graph-
based module G explicitly reparameterizes the word
embeddings (EG[·]) leading to a reduced distance δ′.

lingual word embedding or bilingual lexicon in-
duction, i.e., word translation. This point is also
held for higher-level representation learning, e.g.,
multilingual BERT (Devlin et al., 2019), where
Pires et al. (2019) show that knowledge transfer is
more pronounced between languages with higher
lexical overlap. For bilingual machine translation,
Aji et al. (2020) investigate knowledge transfer in a
parent-child transfer setting2 and reveal that word
embeddings play an important role, particularly if
they are correctly aligned.

All findings above point to the importance of
word-level knowledge transfer for downstream sys-
tems, no matter whether this transfer is achieved
through sharing, mapping, or alignment. To some
extent, knowledge transfer in multilingual trans-
lation systems (Johnson et al., 2017) can be seen
as a special case in the aforementioned bilingual
translation setting, where model parameters and vo-
cabulary are both shared and trained from scratch,
and then knowledge transfer should emerge natu-
rally. However, the shared vocabulary, as one of the
core designs, has limitations: 1) When languages
use different writing systems, there is little word
overlap and knowledge sharing suffers. 2) Even
if languages use similar writing systems, shared
tokens may have completely different meanings in

2Normally, it refers to tuning the child model on the pre-
trained parent model, while the embedding table could be fully
shared, partially shared, or not shared at all.

https://github.com/moore3930/BeyondSharedVocabulary
https://github.com/moore3930/BeyondSharedVocabulary


different languages, increasing ambiguity.
In this paper, we target the first issue of word-

level knowledge sharing across languages. As il-
lustrated in Figure 1, due to different surface forms,
bicycle in English and fiets in Dutch have the same
meaning but are placed differently in the embed-
ding space, unlike the shared word station. Our
goal is to pull together embeddings of meaning-
equivalent words in different languages, including
languages with different writing systems, facilitat-
ing knowledge transfer for downstream systems.
For simplicity, we choose English as the pivot and
encourage words in other languages to move closer
to their English counterparts.

To this end, we define and mine subword-level
knowledge propagation paths and integrate them
into a graph which is represented as an adjacency
matrix. Then, we leverage graph networks (Welling
and Kipf, 2016) to model information flow. The em-
beddings of meaning-equivalent words will trans-
fer information along with the paths defined in the
graph and finally converge into a re-parameterized
embedding table, which is used by the MNMT
model as usual. At a higher level, our approach
establishes priors of word equivalence and then in-
jects them into the embedding table to explicitly
encourage knowledge transfer between words in
the vocabulary.

We choose multilingual translation as test bed
to investigate the impact of word-based knowledge
transfer. Several experiments show the advantages
of our approach: 1) Our re-parameterized embed-
ding table exhibits enhanced multilingual capabili-
ties, resulting in consistently improved alignment
of word-level semantics across languages, encour-
aging word-level knowledge transfer beyond iden-
tical surface forms. 2) Our method consistently
outperforms the baseline by a substantial margin
(up to 2.3 average BLEU points) for high- and low-
resource MNMT, which empirically demonstrates
the benefits of our re-parameterized embeddings.
3) Our method scales: The extra training time and
memory costs are small, while the inference time
is exactly the same as benchmark systems. More-
over, we demonstrate our method adapts to massive
language pairs and a large vocabulary.

2 Related Work

Prior work has demonstrated the importance of
word-level knowledge transfer. For instance,
Gouws and Søgaard (2015) show that by replacing

some specific words with their cross-lingual equiv-
alent counterparts, a downstream cross-lingual part-
of-speech tagging task can benefit from its high-
resource counterpart. Using cross-lingual word em-
bedding (Søgaard et al., 2018; Ruder et al., 2019)
can be seen as an extension of this idea at the rep-
resentation level. E.g., by fixing and applying pre-
trained embeddings to cross-lingual tasks.

For transfer learning in bilingual NMT, Amrhein
and Sennrich (2020) show that the child and par-
ent models should share a substantial part of the
vocabulary. For languages with different scripts,
vocabulary overlap is minimal and transfer suffers.
To alleviate this issue, they leverage a romanization
tool, which maps characters in various scripts to
Latin characters, often based on pronunciation, to
increase overlap. However, romanization has some
limitations because 1) romanization operates at the
character level, sometimes including pronunciation
features, and hence its benefits are mostly limited to
named entities, and 2) the process of romanization
is not always reversible.

Sun et al. (2022) extend surface-level characters
normalization and apply it to multilingual transla-
tion. Besides romanization signals, they further
introduce phonetic and transliterated signals to aug-
ment training data and unify writing systems. Their
approach also shows the merits of larger vocabulary
overlaps. However, the aforementioned limitations
of romanization and transliteration still hold.

Compared to previous work, our method is more
general and practical. We mine equivalent words
at the semantic level and inject priors into embed-
dings to improve knowledge transfer. Firstly, it
avoids the flaws in romanization- or pronunciation-
based approaches. Secondly, the graph-based trans-
fer framework naturally adapts to multilingual sce-
narios, where many-to-many equivalences exist.

3 Reparameterization Framework

In this section, we describe 1) how to build an
equivalence graph using pair-wise data and 2) how
to re-parameterize the embeddings via our graph-
based approach. Note that in the discussion below
we use the term ‘word’ as referring to an actual
word or a subword if a word segmentation approach
such as BPE (Sennrich et al., 2016) is used.

3.1 Equivalence Graph Building

We define the words with the same meaning in
different languages as equivalent words classes,
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Figure 2: Illustration of our framework. The left part denotes the subgraphs we build for each language pair, e.g.,
EN-DE and EN-NL, which are further merged into a multilingual graph. Since we only rely on English-centric
data, the graph is sparse, and only four (of the nine possible) sub-matrices are filled. As shown in the right part, the
information from the original embeddings (in grey) transfer and converge into the re-parameterized embeddings (in
blue) along the pathways defined in the graph, which are further used by a standard encoder-decoder model. All
parameters, including embeddings, are trained from scratch.

e.g., {bicycle, bike, Fahrrad, fiets} all mean bike
and therefore belong to the same equivalence class.
This semantic equivalence involves many-to-many
relationships across languages, which we represent
in a graph as follows. For these words, we aim
to transfer information with each other through
the graph and make them converge into similar
embedding representations.

Given a shared vocabulary V with size |V |, we
define the corresponding equivalence graph as an
adjacency matrix G|V |×|V |. Each point gi,j ∈ G is
a non-negative real number between 0.0 to 1.0 and
denotes the ratio of information transferred from
the word vj to word vi in V . In our approach, we
mine equivalent words class via word alignment
and define the corresponding transfer ratios base
on them.

More formally, let D be the entire (multilingual)
bitext corpus, Ds,t ⊆ D denotes a subset of parallel
data with a translation direction from source lan-
guage s to target language t. We train and extract
all of the subword-level alignments for each Ds,t

separately. For two words vi and vj in V , we define
an alignment probability from vj to vi in Ds,t as
corresponding transfer ratios gs,ti,j as follows:

gs,ti,j =
cs,ti,j∑|V |
k=1 c

s,t
i,k

, (1)

where cs,ti,j is the number of times both words are

aligned with each other across Ds,t.
A higher ratio is derived from a greater pair-

wise occurrence in the bitext. This is based on
the intuition that when a pair of aligned words
frequently co-occur, they 1) have higher confidence
as equivalent words, and 2) the knowledge sharing
between these two will benefit more context during
training. The corresponding bilingual equivalence
graph Gs,t can be induced by filling an adjacency
matrix using gs,ti,j . By element-wise summation
of multiple Gs,t, we can merge multiple bilingual
graphs into a single multilingual graph G:

G =
∑

Ds,t⊆D

Gs,t, (2)

and further normalize G to guarantee that each row
sums to 1.0.

Figure 2 illustrates our equivalence graph G for
two language pairs, i.e., EN-DE and EN-NL. It is
worth noting that, due to only English-centric align-
ments being extracted, the spaces of non-English di-
rection are usually empty (such as German-Dutch).

For practicality, in this paper, we choose English
as the pivot and define transfer paths based on align-
ments between English and other languages. It is
worth mentioning that alternative approaches, like
leveraging multilingual vocabulary (Lample et al.,
2018b) or multilingual colexification graphs (Liu
et al., 2023), could be used as well.



3.2 GNN based Messaging Passing
In Section 3.1, we model the priors of word equiv-
alences as a graph. Here, we show how to inject
such priors into embeddings via graph networks,
thereby re-parameterizing the embedding table.

The graph can be represented as an adjacency
matrix G|V |×|V |, see Section 3.1. Let E ∈ R|V |×d

be the original embedding table containing all |V |
original word embeddings, where d is the represen-
tation dimensionality.

Given G and E, we can easily define various
information transfers on the graph as matrix opera-
tions. E.g., a weighted sum of meaning-equivalent
word embeddings can be defined as E

′
= GE.

Graph networks (Welling and Kipf, 2016) ex-
tend such operations in a multilayer neural network
fashion. In each layer, non-linear functions and
learnable linear projections are also involved to
adjust the aggregation of messages. Here, the re-
parameterized word embeddings derived from the
first-layer graph network are defined as follows:

e′i = ρ(W1ei +W2

∑
j∈N (i)

gi,j · ej + b), (3)

where ei = E[vi], i.e., the embedding of word vi,
and W1,W2 ∈ Rd×d and b ∈ Rd are learnable pa-
rameters, and ρ is a non-linear activation function,
such as ReLu (Glorot et al., 2011). N (i) denotes
a set of neighbors of i-th node in the graph, i.e.,
the aligned words with gi,·>0. Respectively, W1

learns the projection for the current word embed-
ding ei and W2 learns for each neighbors ej∈N (i).

Equivalently, we can rewrite Equation 3 in a
matrix fashion as follows:

E′ = ρ(EW1 +GEW2 +B). (4)

To allow the message to pass over multiple hops,
we stack multiple graph networks and calculate
representations recursively as follows:

Eh+1 = ρ(EhW h
1 +GEhW h

2 +Bh), (5)

where h is the layer index, i.e., hop, and E0 is equal
to the original embedding table E. The last layer
representation EH is the final re-parameterized em-
bedding table, for the maximum number of hops
H , which is then used by the system just like any
vanilla embedding table.

Figure 2 illustrates the overall architecture. The
information from the original embedding table
propagates through multi-hop graph networks and

converges to the re-parameterized table. Then,
the downstream standard MNMT system looks
up corresponding word embeddings from the re-
parameterized table. The whole architecture is end-
to-end and supervised by the translation objective.

It is worth noting that, although the graph we
build in Section 3.1 only contains English-centric
pathways, knowledge transfer beyond English-
centric directions can also be handled through the
multi-hop mechanism. E.g., words in Dutch will
transfer information to English counterparts first
and then further propagate to other languages, e.g.,
German, by a 2-hop mechanism. We empirically
evaluate this point in Section 5.2.

4 Experiments and Results

In this section, we apply our approach to train mul-
tilingual translation models under different config-
urations.

4.1 Experimental Setup

4.1.1 Datasets
We conduct experiments on two datasets, the
smaller IWSLT14 benchmark and our own large-
scale dataset called EC30.

For IWSLT14, we follow the setting of Lin et al.
(2021) and collect 8 English-centric language pairs,
with size ranging from 89k to 169k. The data pro-
cessing script3 follows Tan et al. (2018).

To ensure a more diverse and inclusive large-
scale evaluation, we used the EC30 dataset de-
rived from EC40 (Tan and Monz, 2023), where
we excluded the data of 10 super low-resource lan-
guages. The EC30 dataset consists of 61 million
English-centric bilingual sentences as training data,
covering 30 non-English languages across a wide
spectrum of resource availability, ranging from
High (5M) to Medium (1M), and Low (100K) re-
sources. Each resource group consists of languages
from 5 families with multiple writing systems. We
choose Ntrex (Federmann et al., 2022) and Flores-
101 (Goyal et al., 2022) as our validation and test
datasets, respectively. A more detailed description
of datasets is provided in Appendix A.1.

We tokenize data with Moses (Koehn et al.,
2007) and use SentencePiece4 with BPE (Sennrich
et al., 2016) with 30K and 128K merge operations

3https://github.com/RayeRen/
multilingual-kd-pytorch/blob/master/data/iwslt/
raw/prepare-iwslt14.sh

4https://github.com/google/sentencepiece

https://github.com/RayeRen/multilingual-kd-pytorch/blob/master/data/iwslt/raw/prepare-iwslt14.sh
https://github.com/RayeRen/multilingual-kd-pytorch/blob/master/data/iwslt/raw/prepare-iwslt14.sh
https://github.com/RayeRen/multilingual-kd-pytorch/blob/master/data/iwslt/raw/prepare-iwslt14.sh
https://github.com/google/sentencepiece


Model DE ES FA AR HE NL PL IT EN�X X�EN AVG
Baseline (Lin et al., 2021) 28.1 35.2 16.9 20.9 29.0 30.9 16.4 29.2 - - 25.8
LASS (Lin et al., 2021) 29.8 37.3 17.9 22.9 30.9 33.0 17.9 30.9 - - 27.6
Our Baseline 28.5 36.0 17.4 20.2 27.9 31.5 17.6 29.7 24.4 27.8 26.1
Weighted Sum 29.2 36.7 18.1 20.9 28.5 32.2 18.2 30.5 24.8 28.7 26.8
GraphMerge-1hop 30.2 37.5 19.0 21.7 30.0 33.4 18.8 31.3 25.4 30.0 27.7
GraphMerge-2hop 30.4 37.9 19.0 21.9 30.0 33.7 19.2 31.6 25.5 30.5 28.0
GraphMerge-3hop 30.7 38.2 19.9 22.3 30.1 34.0 19.4 32.2 25.4 31.3 28.4
3-hop Gain +2.2 +2.2 +2.5 +2.1 +2.2 +2.5 +1.8 +2.5 +1.0 +3.5 +2.3

Table 1: Results on the IWSLT14 dataset. Following previous work (Lin et al., 2021), we report average out-of- and
into-English BLEU scores. For instance, the numbers on the DE column are the average of EN�DE and DE�EN
BLEU scores. EN�X and X�EN denote the average performance on 8 language pairs. We show the results from
Lin et al. (2021) in the first block, which learns language-specific sub-network for MNMT. Also, we report our
reproduced baseline results. 3-hop Gain are the gains over the reproduced baseline. The best results in each column
are in bold. More detailed results can be found in Appendix A.3.

for IWSLT14 and EC30, respectively. For EC30,
we employ temperature sampling to select data to
train BPE. The temperature is aligned with that of
the MNMT training phase.

4.1.2 Training Settings
For IWSLT14, we follow the setting of Lin et al.
(2021), using a standard 6-layer encoder 6-layer
decoder transformer model with 4 attention heads,
512 embedding dimensions, and 1,024 feedforward
dimensions. For EC30, we use Transformer-Big
with 16 attention heads, 1,024 embedding dimen-
sions, and 4,096 feedforward dimensions. All mod-
els are trained in a many-to-many setting.

The learning rate is 5e-4 with 4,000 warmup
steps and a inverse sqrt decay schedule. All
dropout rates and label smoothing are set to 0.1.
Data from different language pairs are sampled
with a temperature of 2.0 and 5.0 for IWSLT14 and
EC30, respectively. We train all models with an
early-stopping strategy5 and evaluate by using the
best checkpoint as selected based on the loss on the
development set. More detailed training settings
can be found in Appendix A.2

Tokenized BLEU is used as the metric in the con-
tent. To show a consistent improvement across met-
rics, SacreBLEU (Post, 2018)6, ChrF++ (Popović,
2017), and Comet (Rei et al., 2020) are also re-
ported in Appendix A.3 and Appendix A.4.

If not mentioned otherwise, we use eflomal7 with
intersect alignment symmetrization to extract align-
ments and build graphs as described in Section 3.1.

5Patience is set to {20, 10}, i.e., training stops if perfor-
mance on the validation set does not improve for the last {20,
10} checkpoints, with 1,000 steps between checkpoints.

6nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
7https://github.com/robertostling/eflomal

4.2 Results on IWSLT14

Table 1 summarizes the results for IWSLT14. The
Weighted Sum represents our most naïve setting,
i.e., the left multiplication of a graph matrix8 over
the embedding table as described in Section 3.2. It
is worth noting that even in this setting, +0.7 aver-
age BLEU gains are obtained without introducing
any extra trainable parameters. For simplicity, we
name our graph-based approach GraphMerge and
conduct experiments for 1, 2, and 3 hops.

It can be seen that GraphMerge consistently out-
performs the baseline by a substantial margin: 1)
the GraphMerge models yield better performance
for all language directions, 2) GraphMerge with a
3-hop setting achieves the best results with an av-
erage gain of +2.3 BLEU. The largest gain of +3.5
BLEU can be found for into-English translations.
Also, for out-of-English translation which is of-
ten considered the more difficult task, our method
obtains an improvement of +1.0 BLEU.

A noteworthy finding is that as we increase the
depth of the GNN from 1-hop to 3-hop, the per-
formance consistently improves for almost all lan-
guage pairs, resulting in notable gains of 1.6, 1.9,
and 2.3 BLEU, respectively. We attribute the pro-
gressive improvement to the gradual enhancement
of the quality of cross-lingual word embeddings. A
more detailed analysis can be found in Section 5.1.

The results in other metrics, like sacreBLEU,
ChrF++, and Comet can also be found in Table 11,
where we show that our improvements remain con-
sistent across a large spectrum of evaluation met-
rics.

8In practice, for the graph G in the naïve setting, we add an
identity matrix I to ensure no loss of information for current
words.

https://github.com/robertostling/eflomal


Model High Medium Low ALL
EN�X X�EN EN�X X�EN EN�X X�EN EN�X X�EN AVG

Baseline (Trans.-Big) 28.7 31.3 31.0 31.4 20.0 25.6 26.5 29.4 28.0
GraphMerge-1hop 29.5 32.0 31.7 31.8 20.6 27.0 27.3 30.3 28.8
GraphMerge-2hop 29.7 32.2 32.0 32.0 20.9 27.4 27.6 30.5 29.1
GraphMerge-3hop 29.4 31.8 32.0 31.9 21.0 27.4 27.5 30.4 29.0
2-hop Gain +1.0 +0.9 +1.0 +0.6 +0.9 +1.8 +1.1 +1.1 +1.1

Table 2: Large-scale experiments on the EC30 dataset (61M sentence pairs, 128K shared vocabulary). EN�X and
X�EN denote the average performance of out-of- and into-English translation on each resource group, respectively.
The best results in each column are in bold.

Figure 3: Zero-shot performance on EC30 (870 lan-
guage directions), grouped by High-, Medium-, and
Low-resource.

4.3 Large-scale Multilingual Results

To evaluate the scalability of our approach, we
also run experiments on the EC30 dataset which
includes 30 language pairs with 61M sentence
pairs. Furthermore, we also use a bigger model
(Transformer-Big) and larger vocabulary size
(128K), resulting in a stronger baseline.

As shown in Table 2, our method achieves con-
sistent improvements across all resource groups
over the baseline for English-centric pairs. When
extending GraphMerge from 1-hop to 2-hop, fur-
ther improvements of up to +1.1 average BLEU
points were achieved, but the improvements started
to slightly weaken in the 3-hop setting. These
improvements are in line with our results for
IWSLT14, see Section 4.2. The results for indi-
vidual languages can be found in Appendix A.4,
where the results in other metrics, like SacreBLEU,
ChrF++, and Comet are also reported and consis-
tent improvements are shown as well.

We also evaluate the zero-shot translation per-
formance on EC30 for 870 language directions not
involving English. Figure 3 shows our results for
9 resource groups, considering all resource combi-
nations (high, medium, low) for source and target.
Note that here resource size refers to the amount
of parallel English data that is available for a given

Settings EN�X X�EN AVG
Baseline 24.4 27.8 26.1
1-hop 25.4 30.0 27.7
1-hop w/o Tie 25.4 28.7 27.0
2-hop 25.5 30.5 28.0
2-hop w/o Tie 25.1 29.6 27.4
3-hop 25.4 31.3 28.4
3-hop w/o Tie 25.3 29.4 27.4
2-hop 25.5 30.5 28.0
eflomal → FastAlign 25.4 30.1 27.8
intersect → gdfa 25.2 29.9 27.6

Table 3: Ablation experiment results on IWSLT14. 1-,
2-, and 3-hop refer to the number of hops in GraphMerge
and ’w/o tie’ indicates tied input and output with original
embeddings instead of re-parameterized ones. gdfa is
the abbreviation of grow-diag-final-and.

source or target language. On average, our ap-
proach obtains improvements of 1.9 BLEU for all
groups compared to the baseline.

4.4 Ablation
To investigate the impact of some specific settings
in our framework, we conduct ablation experiments
on the IWSLT14 dataset in this section.

Tied Embeddings. A basic setting for the
transformer-based NMT model is to tie the de-
coder’s input and output embedding (Press and
Wolf, 2017; Pappas et al., 2018). Here, two embed-
ding tables exist in our GraphMerge model, i.e., the
original embedding table and the re-parameterized
one. We test which one is better to tie with the
decoder’s output embedding. Note that all embed-
dings are trained from scratch.

Graph Quality. We use the eflomal alignment
tool with the intersect strategy to extract align-
ments and construct the corresponding graph. The
graphs induced from different alignment strategies
may influence downstream results. We evaluate
this point and set up experimental groups as fol-
lows: 1) Using FastAlign (Dyer et al., 2013) to
extract alignments instead of using eflomal, where



Model EN↔ DE EN↔NL EN↔AR EN↔HE
Similarity BLEU Similarity BLEU Similarity BLEU Similarity BLEU

Baseline 0.24 28.5 0.25 31.5 0.23 20.2 0.23 27.9
GraphMerge-1hop 0.35 30.2 0.37 33.4 0.32 21.7 0.32 30.0
GraphMerge-2hop 0.42 30.4 0.44 33.7 0.38 21.9 0.38 30.0
GraphMerge-3hop 0.46 30.7 0.48 34.0 0.41 22.4 0.41 30.1

Model EN↔ES EN↔FA EN↔PL EN↔IT
Similarity BLEU Similarity BLEU Similarity BLEU Similarity BLEU

Baseline 0.25 36.0 0.22 17.4 0.24 17.6 0.27 29.7
GraphMerge-1hop 0.38 37.5 0.31 19.0 0.35 18.8 0.40 31.3
GraphMerge-2hop 0.45 37.9 0.37 19.0 0.43 19.2 0.48 31.6
GraphMerge-3hop 0.49 38.2 0.40 19.9 0.47 19.4 0.52 32.2

Table 4: English-centric word similarity analysis for each language pair in the IWSLT14 dataset. A high degree of
consistency between the similarity of representations and the corresponding BLEU scores can be found.

the latter is often considered to have better perfor-
mance (Östling and Tiedemann, 2016). 2) Using
grow-diag-final-and as the alignment strategy in-
stead of intersect, which improves recall but re-
duces precision (Koehn, 2009).

Table 3 shows the ablation results on IWSLT14.
We report results with different settings: 1-, 2-,
3-hop. By replacing the re-parameterized embed-
dings with the original one, BLEU performance
drops by {0.7, 0.6, 1.0} on average, respectively.
It shows that tying re-parameterized embeddings
with the decoder’s projection function significantly
influences performance. The quality of the graph
also mildly impacts downstream results: When
alignments are noisier, as is the case for FastAl-
ign and gdfa, performance drops by 0.2 and 0.4,
respectively, compared to the 2-hop GraphMerge.

5 Analysis

5.1 English-Centric Cross-lingual Word
Similarity

To verify whether embeddings of words with simi-
lar meanings are indeed closer to each other in the
representation space, compared to the baseline, we
conduct additional experiments as described below.

We utilize bilingual dictionaries from
MUSE9 (Lample et al., 2018a) as the ground truth
and analyze the embedding similarity between
word pairs. MUSE contains 110 English-centric
bilingual dictionaries and all languages in our ex-
periments are included. We limit our comparisons
to the word pairs that exist in both our vocabulary
of IWSLT14 and MUSE dictionaries. For each
language pair, more than 1,000 word pairs exist in
the intersection.

9https://github.com/facebookresearch/MUSE#
ground-truth-bilingual-dictionaries

We use cosine similarity to evaluate the aver-
age distance between the word pairs across all lan-
guage pairs. We also consider the isotropy of the
space, which can be seen as the distribution bias of
a space (Ethayarajh, 2019). Preserving isotropy
is to avoid a situation where the similarities of
words in a certain space are all significantly higher
than those in other spaces, making the comparison
across spaces not fair. The detailed results of the
degree of isotropy can be found in Appendix A.6.
In short, isotropies are all at a high level, i.e., low
degree of anisotropy, and therefore not a cause for
inflated similarities.

Table 4 shows the analysis results on IWSLT14.
It is evident that a strong level of consistency ex-
ists in our findings: 1) Firstly, as we increase the
depth of our GNN model from 1-hop to 3-hop, we
observe a progressive increase in the similarities be-
tween word representations with similar meanings.
This indicates that our re-parameterized method
effectively enhances the cross-linguality of the em-
bedding table. 2) Secondly, we observe consistent
translation improvements in each direction as the
cross-linguality becomes stronger. This supports
our hypothesis that improving the multilinguality
of the shared embedding table results in greater
translation quality.

5.2 Beyond English-Centric Cross-lingual
Word Similarity

As mentioned above, for practicality, we choose En-
glish as the pivot and only mine equivalent words
between English and other languages. Hence, in
non-English directions, such as DE-NL, meaning-
equivalent relationships are not explicitly incor-
porated into the graph (e.g., the empty parts in
Figure 2). We argue that even in this setting, cross-

https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries


Model DE↔NL DE↔AR DE↔HE NL↔AR NL↔HE AR↔HE
Baseline 0.29 0.23 0.25 0.24 0.26 0.29
GraphMerge-1hop 0.36 0.28 0.30 0.30 0.31 0.33
GraphMerge-2hop 0.42 0.32 0.34 0.35 0.35 0.37
GraphMerge-3hop 0.47 0.36 0.38 0.39 0.39 0.41

Table 5: Beyond English-centric word similarity analysis for each language pair in the IWSLT14 dataset. Consis-
tently enhanced multilinguality shows as graph networks go deeper.

Model EN�DA DA�EN EN�AF AF�EN
Bilingual Baseline 35.3 35.4 31.7 35.9
Bilingual GraphMerge-3hop 35.6 35.8 33.9 39.6
EC30 Baseline 36.9 39.7 38.4 48.2
EC30 GraphMerge-3hop 38.1 40.0 38.5 50.1

Table 6: Results of bilingual experiments on EN-DE and EN-AF language pairs. The evaluation set is the same as
that of EC30, i.e., Flores-101. The best results in each column are in bold.

linguality could still be enhanced due to the pivot of
English bridge the way of knowledge passing from
German to Dutch through our multi-hop mecha-
nism. We evaluate this point as follows.

Non-English-centric dictionaries included in
MUSE are limited, therefore we extend MUSE by
mapping words paired with the same English words
together, e.g., given an EN-DE pair {bike, Fahrrad}
and an EN-NL pair {bike, fiets}, we can build a new
word pair {Fahrrad, fiets} for DE-NL. For the 8
languages among the IWSLT14 dataset, we build
28 dictionaries for the corresponding non-English-
centric language pairs. Each of these dictionaries
contains more than 1,000 non-English-centric word
pairs except for AR-HE, where 697 pairs are found.

We report analysis results for 6 language pairs
among 4 languages, involving the same and dif-
ferent writing systems, i.e., DE, NL, AR, and
HE in Table 5. One can easily see that our re-
parameterized embeddings consistently exhibit a
higher degree of cross-linguality compared to the
baseline, which underlines the generality of our
approach even if only English-centric equivalence
relationships are leveraged. Full results for 8 lan-
guages and 28 pairs can be found in Appendix A.7.

5.3 Bilingual Experiments
In this section, we explore whether our method
is able to bring benefits for the "extreme" setting
of multilingual translation systems, i.e., bilingual
translation. We argue that the advantages of better
semantic alignments should also apply here.

We pick two language pairs from EC30, i.e., EN-
DA (1M) and EN-AF (100K), and conduct experi-
ments individually (note that the graph is rebuilt for
each as well). We use a rule of thumb setting, i.e.,

transformer-base (6 layers, 512 embeddings dim,
1024 feedforward, 4 attention heads), as the back-
bone. Also, we shrunk the vocabulary size to 16K
considering less data. In Table 6, we compare the
bilingual baseline with the GraphMerge-3hop set-
ting in 4 language directions, where we also list the
performances in these directions from our MMT
model trained on EC30 (see Section 4.3).

It shows that even in an "extreme" setting (bilin-
gual translation), our method still brings clear ben-
efits, especially for the low-resource pair (EN-AF),
+2.2 and +3.7 BLEU gains are achieved, respec-
tively. When we extend the "extreme" setting to
30-language MMT, resulting in a stronger baseline,
the improvements remain in these four directions.

It is worth noting that in the bilingual setting,
only one language is fed to the encoder or decoder.
We attribute the improvements here to two potential
factors: 1) Monolingual synonyms are modeled
better. E.g., bike and bicycle are both linked to
the pivot words (e.g., cykel in Danish), resulting in
enhanced representational similarity via the multi-
hop mechanism, and 2) the enhanced cross-lingual
word similarity, e.g., that of bike and cykel, may
also lead to higher accuracy during decoding. We
leave the further analysis for future work.

In addition, we also demonstrate our method’s
applicability for bilingual translation on the
English-Hebrew track in the WMT 2023 competi-
tion. In short, clear gains are still observed, even
when tested on a large-scale dataset exceeding
30 million sentences. A brief summary of par-
tial experiments results for our WMT2023 submis-
sion (Wu et al., 2023) can be found in Section A.5.



Model WPS Times
Transformer (30K) 201,378 1.00
GraphMerge-1hop 192,367 1.04
GraphMerge-2hop 188,851 1.06
Transformer-Big (128K) 69,702 1.00
GraphMerge-1hop 43,416 1.61
GraphMerge-2hop 33,912 2.05
Model Params Times
Transformer (30K) 62.3M 1.00
GraphMerge-1hop 63.3M 1.01
GraphMerge-2hop 64.4M 1.02
Transformer-Big (128K) 438.6M 1.00
GraphMerge-1hop 442.8M 1.01
GraphMerge-2hop 447.0M 1.02

Table 7: “WPS” is the average word number the model
processes per second. We fix “Time” of transformer
models to 1.0. 30K and 128K indicate the corresponding
vocabulary size.

5.4 Speed and Memory

Compared with the standard transformer model,
our method introduces extra graph operations. Par-
ticularly, a big graph (adjacency) matrix of size
30K × 30K is multiplied with the original embed-
ding table. An obvious question here is whether
training latency increases to an unacceptable level.
We show training latency in Table 7. All experi-
ments here were conducted on a single NVIDIA
A6000 GPU card with FP16 optimization. We uti-
lized the sparse matrix optimization provided by
PyTorch (Paszke et al., 2019) for implementation.

As shown in Table 7, for the model we used for
IWSLT14 (30K vocabulary), the extra training la-
tency is negligible, with only 4% and 6% for the
1-hop and 2-hop models. Even for a much bigger
graph matrix, (128K vocabulary, nearly 16 times
bigger adjacency matrix), training latency is lim-
ited. The only trainable parameter we introduced
here is the dense matrix within the graph networks,
which constitutes approximately 2% of all model
parameters. Furthermore, due to the sparsity of the
adjacency matrix, the additional memory usage is
negligible, amounting to less than 1%.

It is worth noting that although the graph matrix
can be sizable, the re-parameterized embedding
table can be decoupled and stored for online de-
ployment, meaning inference latency is exactly the
same as for the baseline. Meanwhile, for train-
ing, GraphMerge only applies to the embedding
table once per training step. In other words, the
batch size or the model size of the transformer
architecture does not matter. Both benefits show

practicality for large-scale settings.

6 Conclusions

In this paper, we target the shortcomings of solely
relying on a shared vocabulary for knowledge trans-
fer. Broadly speaking, our approach is to mine
word equivalence across languages and inject such
priors into the embedding table using a graph net-
work, thereby significantly improving transfer.

Our experiments show that our approach results
in embeddings with a higher degree of multilingual-
ity, leading to consistent improvements in MNMT.
E.g., our approach achieves 2.3 average BLEU gain
on IWSLT14, and the improvements still hold even
on a much larger and more diverse dataset, namely
EC30 (61M bitext, 30 language pairs). Also, even
for the minimal setting of MMT, i.e., bilingual
translation, the performance gains are still held
for 30+M dataset.

At the same time, our framework remains prac-
tical: 1) Through the multi-hop mechanism, the
pivot language (English) bridges the way of knowl-
edge transfer among non-English language pairs.
Therefore, even when only English-centric bitext
datasets are available, multilingual transfer can be
achieved. 2) A negligible number of additional
trainable parameters are required with a limited
increase in computational costs during training.
Meanwhile, the inference latency is exactly as same
as benchmark systems by storing and deploying the
re-parameterized embeddings for online systems.

7 Limitations

As the MT system scales up, a big vocabulary may
be introduced. Extra computing costs may get pro-
nounced as the vocabulary scales to a super big
size, e.g., NLLB (Costa-jussà et al., 2022) uses a
256K vocabulary.

8 Broader Impact

Multilingual translation systems have significant
progress recently. However, potential challenges
such as mistranslation or off-target issues still exist.
Moreover, the fairness problem also raise, i.e., the
generation ability is not guaranteed to be fair across
languages or demographic features, which may run
the risk of exploiting and reinforcing the societal
biases (e.g. gender or race bias) that are present in
the underlying data.
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High de nl fr es ru cs hi bn ar he
Medium sv da it pt pl bg kn mr mt ha
Low af lb ro oc uk sr sd gu ti am

Table 8: Languages grouped in different resource levels in EC30. We use ISO 639-1 in this table.

Model Sampled Data (offline) Full Data (offline) Full Data (online)
EN�HE HE�EN EN�HE HE�EN EN�HE HE�EN

Bilingual Baseline 24.6 31.1 34.1 46.0 - -
MMT Baseline 24.7 31.6 34.1 45.8 33.3 50.3
MMT + GraphMerge 1-hop 26.2 32.3 34.3 46.2 33.6 50.7

Table 9: Offline and online evaluation results on sampled (2M) and full (34M) training data for the WMT2023
competition. MMT + GraphMerge 1-hop means that we equip graph-based re-parameterized embedding tables for
our MMT baseline. The best BLEU scores in each column are written in bold.

English). EC30 is more profound in the total num-
ber of languages and in the balance of language
family and writing systems. Specifically, for each
language family, we include 6 representative lan-
guages across different resources (2 for each re-
source level). we categorized the languages into
high-, medium-, and low-resource groups, each
having 5 million, 1 million, and 100,000 bitext
examples, respectively.

For experiments on EC30, we use temperature
sampling to select data for training BPE due to
it being highly imbalanced (high resource data is
50 times bigger than low ones), the temperature
is aligned with that of the MNMT training phase.
More specifically, we keep the lowest-resource
dataset unchanged and sample data in other bitexts
to match the temperature ratio. Then, we merge the
data for BPE training and apply BPE to the EC30
corpus.

A.2 Training Settings

For all of our experiments, the training parameters
of our methods and baselines range from 62M to
447M. All models are trained on 4 A6000 GPU
cards and training times are from 10 hours to 8
days.

A.3 Detailed IWSLT14 Results

We show full results on IWSLT14 in tokenized
BLEU in Table 10. An interesting finding is that as
graph networks go deeper (from 1-hop to 5-hop),
into-English translation consistently gets improved,
while the average best one for out-of-English trans-
lation is GraphMeger with a 3-hop setting.

We also show full results on IWSLT14 in other
wide-used metrics, like SacreBLEU, ChrF++, and
Comet in Table 11. This shows that our improve-

ments remain consistent across a large spectrum of
evaluation metrics.

A.4 Detailed EC30 Results

We show full English-centric results (60 directions)
on the EC30 dataset in Table 12. The results
are placed from high-, medium-, to low-resource
groups.

Also, we show the results in SacreBLEU,
CharF++, and Comet on EC30 in Table 13. It
shows that our improvements remain consistent
across a large spectrum of evaluation metrics.

A.5 Detailed WMT2023 submission

For our WMT 2023 submission (Wu et al., 2023),
we make use of all the available data from the
constrained track of the shared task for English-
Hebrew translation, where 70M parallel data are
released. After data preprocessing, we reduced the
size of the bitext to 34M. We further normalize and
tokenize bitexts using Moses and SentencePiece
with 32K vocabulary size.

For offline evaluation, we conducted experi-
ments on full data (34M) and the sampled data
(2M). We apply Transformer-Large10 as the back-
bone for the full dataset considering the large scale
of bilingual sentences while using Transformer
Base for the sampled dataset here. Both bilingual
and MMT (two directions within one model) set-
tings are tested. We further equip GraphMerge-
1hop upon MMT baselines to show the benefits,
and the results can be found in Table 9.

It is easy to see that 1) The performances of
the bilingual and MMT models are comparable on
both full and sampled datasets. 2) Moreover, the

1012-layer encoder and decoder, 16 attention heads, 1024
embedding dimensions, and 4096 feed-forward dimensions.



Model EN � DE EN � ES EN � FA EN � AR EN � HE EN � NL EN � PL EN � IT
Our baseline 27.9 37.2 14.7 14.1 24.6 31.8 15.3 29.7
GraphMerge-1hop 29.2 38.2 15.9 14.6 25.6 33.0 16.1 31.0
GraphMerge-2hop 29.1 38.2 16.1 14.7 25.4 32.8 16.2 31.2
GraphMerge-3hop 28.9 37.9 16.2 14.7 25.2 32.6 16.2 31.3
GraphMerge-4hop 28.9 37.9 16.1 14.5 25.0 32.8 16.0 31.2
GraphMerge-5hop 28.3 37.4 15.6 14.0 24.6 32.3 15.6 30.5
Model DE � EN ES � EN FA � EN AR � EN HE � EN NL � EN PL � EN IT � EN
Our baseline 29.2 34.9 20.1 26.4 31.2 31.2 19.8 29.6
GraphMerge-1hop 31.2 36.9 22.1 28.8 34.4 33.8 21.6 31.6
GraphMerge-2hop 31.8 37.6 21.9 29.2 34.7 34.6 22.1 32.1
GraphMerge-3hop 32.4 38.5 23.6 30.0 35.1 35.4 22.6 33.0
GraphMerge-4hop 32.8 38.9 24.1 30.3 35.9 35.8 22.7 33.1
GraphMerge-5hop 33.5 39.4 24.3 30.3 36.0 36.2 22.7 33.5

Table 10: Detailed results on the IWSLT14 dataset. We report the BLEU score for each English-centric translation
direction.

SacreBLEU DE ES FA AR HE NL PL IT EN�X X�EN AVG
baseline 27.6 35.1 16.8 19.5 27.2 30.8 17.1 29.0 24.7 26.0 25.4
GraphMerge-1hop 29.7 36.9 18.7 21.3 29.4 32.9 18.5 30.6 25.5 29.0 27.2
GraphMerge-2hop 29.7 37.1 18.7 21.1 29.1 33.0 18.5 30.8 25.2 29.3 27.3
GraphMerge-3hop 30.1 37.6 19.5 21.9 29.5 33.5 19.0 31.5 25.3 30.3 27.8
3-hop Gain +2.6 +2.6 +2.7 +2.4 +2.3 +2.8 +1.9 +2.5 +0.6 +4.3 +2.4
ChrF++ DE ES FA AR HE NL PL IT EN�X X�EN AVG
baseline 52.1 58.0 40.1 43.7 50.5 54.5 42.1 52.8 50.0 48.4 49.2
GraphMerge-1hop 54.0 60.0 41.8 45.4 52.5 56.5 43.6 54.6 50.6 51.5 51.0
GraphMerge-2hop 54.0 60.0 41.8 45.4 52.5 56.5 43.6 54.6 50.6 51.5 51.0
GraphMerge-3hop 54.3 60.3 42.2 45.9 52.9 56.8 43.9 55.0 50.4 52.4 51.4
3-hop Gain +2.3 +2.3 +2.1 +2.2 +2.4 +2.3 +1.8 +2.2 +0.4 +4.0 +2.2
Comet DE ES FA AR HE NL PL IT EN�X X�EN AVG
baseline 75.5 79.8 74.2 76.2 78.8 78.7 72.9 78.3 78.9 74.7 76.8
GraphMerge-1hop 77.5 81.4 76.2 78.2 80.7 80.8 74.8 80.0 79.9 77.4 78.7
GraphMerge-2hop 77.5 81.7 76.1 78.3 80.9 80.9 74.8 80.2 79.8 77.8 78.8
GraphMerge-3hop 77.8 81.8 76.6 78.5 81.2 81.3 75.2 80.5 79.7 78.5 79.1
3-hop Gain +2.3 +2.1 +2.4 +2.3 +2.4 +2.6 +2.3 +2.2 +0.8 +3.8 +2.3

Table 11: Detailed results on the IWSLT14 dataset in SacreBLEU, ChrF++, and Comet. Consistent Gains can be
found for the GraphMerge-3hop setting. Especially, into-English improvements are large.

models equipped with GraphMerge-1hop achieve
consistent improvements in both two directions,
especially for sampled data, the gain is evident.

Finally, we use the model trained on full data
for WMT23’s final online evaluation. It shows
that even on a 30+M dataset consisting of two lan-
guages only, GraphMerge-1hop can still achieve
+0.3 and +0.4 BLEU improvements for out-of- and
into-English translation, which is also consistent
with offline evaluation. Other strategies we used in
this competition can be found in (Wu et al., 2023).

A.6 Isotropy Definition and Results

Introducing isotropy is to avoid a situation where
the similarities of words in a certain space are all
significantly higher than those in other spaces mak-
ing it difficult to compare results across spaces.

Given the degree of isotropy derived from the stan-
dard transformer model as an example:

For a set of word pairs (such as EN-DE), given
the degree of isotropy derived from a specific
model as an example: 1) for each word xi in the
intersection of MUSE EN-DE dictionary and our
vocabulary, we randomly select the target word xj
50 times from the whole subword space and aver-
age the similarity score between the embedding of
xi and xj as Ii, 2) then, average Ii for all the words
xi in the subsection as the metric IEN−DE . For the
optimal isotropic space, such a metric should be
close to zero. Meanwhile, if a large difference in
isotropy between two spaces exists, the similarity
comparison across space is problematic.

Table 14 shows the analysis results on IWSLT14.
For all of the 8 language pairs, more than 1,000



Model EN � DE EN � NL EN � FR EN � ES EN � RU EN � CS EN � HI EN � BN EN � AR EN � HE
baseline 32.1 24.1 41.8 22.8 22.7 25.9 39.9 32.2 19.5 25.8
GraphMerge-1hop 32.8 24.7 43.1 23.6 24.0 26.1 41.2 32.9 19.7 26.8
GraphMerge-2hop 33.3 24.6 43.3 23.8 24.3 26.6 41.5 32.3 20.3 26.9
GraphMerge-3hop 33.2 24.6 42.9 23.6 23.8 26.2 41.0 32.7 19.6 26.8
Model DE � EN NL � EN FR � EN ES � EN RU � EN CS � EN HI � EN BN � EN AR � EN HE � EN
baseline 37.1 27.9 37.1 24.9 27.9 32.7 33.7 28.1 27.9 35.5
GraphMerge-1hop 38.1 28.4 37.6 25.5 28.8 33.6 34.4 28.9 28.4 36.5
GraphMerge-2hop 38.0 28.9 38.0 25.8 28.9 33.3 34.3 29.5 28.6 36.6
GraphMerge-3hop 37.8 28.2 37.4 25.5 28.8 33.6 33.5 28.5 28.6 36.5
Model EN � SV EN � DA EN � IT EN � PT EN � PL EN � BG EN � KN EN � MR EN � MT EN � HA
baseline 36.0 36.9 24.6 34.6 16.7 36.1 34.9 27.3 48.4 14.4
GraphMerge-1hop 36.6 37.5 25.4 35.3 17.3 37.8 35.3 27.7 49.7 14.5
GraphMerge-2hop 36.9 38.3 25.9 35.2 17.9 37.9 35.8 27.9 50.1 14.5
GraphMerge-3hop 37.1 38.1 25.3 35.3 17.8 37.6 36.2 28.0 49.9 14.4
Model SV � EN DA � EN IT � EN PT � EN PL � EN BG � EN KN � EN MR � EN MT � EN HA � EN
baseline 39.5 39.7 27.3 39.9 23.3 35.0 24.6 26.1 48.2 10.2
GraphMerge-1hop 40.3 40.2 27.8 40.4 23.7 35.2 24.8 26.5 49.0 10.5
GraphMerge-2hop 40.2 40.5 28.0 40.2 24.0 36.1 25.3 27.1 49.5 9.3
GraphMerge-3hop 39.9 40.0 27.9 40.2 23.9 35.6 25.0 26.9 49.5 9.8
Model EN � AF EN � LB EN � RO EN � OC EN � UK EN � SR EN � SD EN � GU EN � TI EN � AM
baseline 38.4 16.2 25.9 29.3 21.1 24.1 5.0 28.5 4.4 7.0
GraphMerge-1hop 38.3 16.1 26.2 30.5 22.8 25.1 5.5 29.6 4.5 7.8
GraphMerge-2hop 38.8 17.0 26.7 29.8 23.1 25.6 5.9 29.8 4.7 8.0
GraphMerge-3hop 38.5 16.5 27.7 30.7 23.4 25.5 5.1 29.9 4.7 7.8
Model AF � EN LB � EN RO � EN OC � EN UK � EN SR � EN SD � EN GU � EN TI � EN AM � EN
baseline 48.2 21.8 31.0 35.7 27.3 30.6 1.4 24.4 15.1 20.6
GraphMerge-1hop 49.7 23.2 32.0 38.1 28.4 32.1 2.5 26.1 15.7 22.4
GraphMerge-2hop 50.2 22.4 32.5 39.1 29.2 32.8 1.2 27.0 16.4 22.8
GraphMerge-3hop 50.1 23.1 32.1 38.7 29.1 32.7 1.5 27.4 16.1 22.9

Table 12: Detailed results on the EC30 dataset in 60 directions. The results are placed from high-, medium-, to
low-resource groups. We report the BLEU score for each direction.

word pairs exist in the intersection of our vocabu-
lary and MUSE dictionaries. It is easy to see that
our re-parameterized embeddings are consistent
with better cross-linguality, i.e., the distance be-
tween word representations with similar meanings
is much smaller. Meanwhile, the isotropies are all
at a high level (low degree), i.e., evaluation risk due
to space bias is excluded as well. In other words,
similarity comparisons in Table 4 are fair.

A.7 Full Results of Beyond English-Centric
Word Similarity

In Table 15, we show the full results of non-English-
centric word similarity analysis for 28 language
directions in the IWSLT14 dataset. It is easy to find
that, as graph networks go deeper, word similarity
consistently gets closer.



SacreBLEU High Medium Low ALL
EN�X X�EN EN�X X�EN EN�X X�EN EN�X X�EN AVG

Baseline (Trans.-Big) 28.4 31.1 29.8 31.2 19.4 25.5 25.9 29.3 27.6
GraphMerge-1hop 29.1 31.6 30.4 31.5 20.0 26.7 26.5 29.9 28.2
GraphMerge-2hop 29.3 31.9 30.8 31.7 20.3 27.1 26.8 30.2 28.5
GraphMerge-3hop 29.2 31.6 30.7 31.7 20.4 27.3 26.8 30.2 28.5
2-hop Gain +0.9 +0.8 +1.0 +0.5 +0.8 +1.6 +0.9 +1.0 +0.9

ChrF++ High Medium Low ALL
EN�X X�EN EN�X X�EN EN�X X�EN EN�X X�EN AVG

Baseline (Trans.-Big) 52.5 57.1 53.9 56.4 42.8 49.7 49.8 54.4 52.1
GraphMerge-1hop 53.0 57.5 54.4 56.6 43.5 50.6 50.3 54.9 52.6
GraphMerge-2hop 53.3 57.6 54.8 56.6 43.8 50.9 50.6 55.0 52.8
GraphMerge-3hop 53.2 57.5 54.7 56.6 43.8 51.0 50.6 55.0 52.8
2-hop Gain +0.7 +0.5 +0.9 +0.2 +1.0 +1.2 +0.9 +0.6 +0.8

Comet High Medium Low ALL
EN�X X�EN EN�X X�EN EN�X X�EN EN�X X�EN AVG

Baseline (Trans.-Big) 82.0 83.4 80.6 79.7 73.3 72.7 78.6 78.6 78.6
GraphMerge-1hop 82.8 83.9 81.2 80.2 74.2 74.0 79.4 79.4 79.4
GraphMerge-2hop 83.1 84.0 81.5 80.2 74.6 74.3 79.8 79.5 79.6
GraphMerge-3hop 83.0 83.9 81.5 80.1 74.8 74.5 79.7 79.5 79.6
2-hop Gain +1.1 +0.7 +0.9 +0.5 +1.4 +1.6 +1.1 +0.9 +1.0

Table 13: Large-scale experiments on the EC30 dataset (61M sentence pairs, 128K shared vocabulary) in Sacre-
BLEU, ChrF++, and Comet. EN�X and X�EN denote the average performance of out-of- and into-English
translation on each resource group, respectively.

Model EN-DE EN-ES EN-FA EN-AR EN-HE EN-NL EN-PL EN-IT
Baseline 0.068 0.071 0.074 0.073 0.072 0.069 0.074 0.073
GraphMerge-1hop 0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
GraphMerge-2hop 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001
GraphMerge-3hop 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 14: The degree of isotropy in each space. It is easy to find that all of the degrees induces from our spaces are
close to 0, i.e., evaluation risk due to space bias is excluded.



Model DE↔NL DE↔AR DE↔HE DE↔ES DE↔FA DE↔PL DE↔IT
baseline 0.30 0.23 0.25 0.27 0.25 0.27 0.29
GraphMerge-1hop 0.37 0.28 0.30 0.34 0.30 0.33 0.36
GraphMerge-2hop 0.43 0.33 0.34 0.40 0.35 0.39 0.42
GraphMerge-3hop 0.47 0.36 0.38 0.44 0.38 0.43 0.46
Model NL↔AR NL↔HE NL↔ES NL↔FA NL↔PL NL↔IT AR↔HE
baseline 0.24 0.26 0.28 0.25 0.28 0.30 0.29
GraphMerge-1hop 0.30 0.31 0.36 0.30 0.35 0.39 0.33
GraphMerge-2hop 0.35 0.35 0.42 0.35 0.41 0.45 0.38
GraphMerge-3hop 0.39 0.39 0.46 0.39 0.45 0.49 0.41
Model AR↔ES AR↔FA AR↔PL AR↔IT HE↔ES HE↔FA HE↔PL
baseline 0.26 0.27 0.25 0.27 0.26 0.26 0.27
GraphMerge-1hop 0.32 0.32 0.31 0.33 0.32 0.31 0.31
GraphMerge-2hop 0.37 0.36 0.36 0.39 0.36 0.35 0.36
GraphMerge-3hop 0.40 0.40 0.39 0.43 0.40 0.39 0.40
Model HE↔IT ES↔PA ES↔PL ES↔IT FA↔PL FA↔IT PL↔IT
baseline 0.27 0.25 0.28 0.33 0.24 0.25 0.29
GraphMerge-1hop 0.33 0.31 0.36 0.41 0.29 0.31 0.37
GraphMerge-2hop 0.38 0.36 0.41 0.48 0.34 0.36 0.42
GraphMerge-3hop 0.42 0.40 0.45 0.52 0.37 0.39 0.47

Table 15: Full results of non-English-centric word similarity analysis on the IWSLT14 dataset for 28 language
pairs.


