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Abstract

Model editing enables targeted updates to the knowledge of large language models
(LLMs) with minimal retraining. Among existing approaches, locate-then-edit
methods constitute a prominent paradigm: they first identify critical layers, then
compute residuals at the final critical layer based on the target edit, and finally
apply least-squares-based multi-layer updates via residual distribution. While
empirically effective, we identify a counterintuitive failure mode: residual distri-
bution, a core mechanism in these methods, introduces weight shift errors that
undermine editing precision. Through theoretical and empirical analysis, we show
that such errors increase with the distribution distance, batch size, and edit sequence
length, ultimately leading to inaccurate or suboptimal edits. To address this, we
propose the Boundary Layer UpdatE (BLUE) strategy to enhance locate-then-edit
methods. Sequential batch editing experiments on three LLMs and two datasets
demonstrate that BLUE not only delivers an average performance improvement
of 35.59%, significantly advancing the state of the art in model editing, but also
enhances the preservation of LLMs’ general capabilities. Our code is available at
https://github.com/xpq-tech/BLUE.

1 Introduction

Large language models (LLMs) possess powerful comprehension and generation capabilities and have
become foundational infrastructure for various AI applications. However, the knowledge encoded
in the parameters of LLMs is limited to the training data and cannot be updated to reflect changes
in world knowledge. Updating the parameters of LLMs through retraining to keep them in sync
with world knowledge entails high computational costs [1]. Recently, model editing has garnered
increasing attention as a promising technique for efficiently updating the parameterized knowledge in
LLMs, which aims to correct erroneous or outdated knowledge within LLMs without compromising
their other capabilities [2].

Locate-then-edit methods are a prominent family of model editing techniques. They treat the Feed-
Forward Network (FFN) as a key-value memory [3] and update the key layers responsible for storing
factual knowledge using a least-squares solution. Specifically, these methods first employ causal
tracing analysis to identify multiple critical layers within LLMs that encode factual information. They
then use optimization techniques to compute the residuals required to update the final critical layer.
Finally, the residuals are distributed evenly from the first to the last critical layer, and the updates are
applied using a least-squares solution [4, 5], a process referred to as residual distribution.

Although locate-then-edit methods have achieved remarkable performance on model editing tasks [6],
we identify a counterintuitive failure mode: residual distribution, a core mechanism in these
methods, introduces weight shift errors that undermine editing precision. Specifically, we
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first empirically demonstrate that the contribution of residual distribution to model editing di-
minishes as the distribution distance increases and that the distributed residual is not the opti-
mal residual for editing. Subsequently, we theoretically find that the upper bound of weight
update errors increases with: (a) the size of the editing batch, (b) the number of sequential ed-
its, and (c) the residual distribution distance. These findings indicate that residual distribu-
tion can actually negatively impact the model editing of the locate-then-edit approaches.
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Figure 1: Comparison of existing locate-then-edit
methods and BLUE.

Therefore, we propose the Boundary Layer
UpdatE (BLUE) strategy, which enhances
locate-then-edit methods by updating only the
first and last critical layers through direct com-
putation of residuals, without residual distri-
bution. The comparison between BLUE and
existing locate-then-edit methods is shown in
Figure 1. We apply BLUE to enhance MEMIT
[5], RECT [7], PRUNE [8] and AlphaEdit
[6]. Results from 12 sequential editing ex-
periments conducted on three LLMs and two
datasets show that BLUE improves the perfor-
mance of existing locate-then-edit methods by
an average of 35.59%. Our further analysis
on downstream tasks and representation shift
demonstrates that BLUE also enhances the
ability of locate-then-edit methods to preserve
general capabilities and mitigates representa-

tion shifts in the post-edit LLMs. Furthermore, we show that BLUE not only improves editing
efficiency, but also strengthens the performance of locate-then-edit methods in long-form model
editing [9, 10] scenarios. In summary, our contributions are as follows:

• Through empirical and theoretical analysis of residual distribution, we reveal that residual
distribution of locate-then-editing methods actually leads to inaccurate model editing.

• We propose the BLUE strategy, which discards residual distribution and enhances existing
locate-then-edit methods by updating only the first and last critical layers through direct
residual computation.

• Experimental results show that locate-then-edit methods enhanced with BLUE outperform
the original methods, better preserve LLMs’ general capabilities, and further mitigate
representation shifts in the post-edit LLMs.

2 Related Work

Model editing can be categorized into parameter-preserving and parameter-modifying approaches,
depending on whether the original model parameters are altered.

Parameter-preserving model editing employs techniques like prompt engineering or attaching
additional parameters [11–14]. A representative method for prompt engineering is IKE [15], which
retrieves n contexts of the edited knowledge for a query to guide the model’s response without
altering its internal parameters. Methods that attach additional parameters include SERAC [16] and
GRACE [17], which store new memories externally and internally, respectively, by introducing new
parameter modules.

Parameter-modifying approaches achieve model editing by directly or indirectly adjusting model
parameters [18, 10]. Direct methods, such as FT-L [19], perform constrained fine-tuning on a small
number of layers to integrate new knowledge. Indirect methods can be divided into meta-learning
and locate-then-edit methods. Meta-learning methods, like MEND [20], leverage a hypernetwork
to transform edit-related representations and gradients into parameter updates. In contrast, locate-
then-edit methods, such as ROME [4] and MEMIT [5], adopt a key-value memory perspective
to identify and update single or multiple critical layers using least-squares optimization. Among
these, locate-then-edit methods have gained popularity and inspired several variants, such as PMET
[21], which focuses on precise editing, and AlphaEdit [6], which enhances the retention of original
knowledge and strengthens sequential editing capability.
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3 Background

3.1 Model Editing Problem

Model editing aims to efficiently update the knowledge of LLMs so that they remain in real-time sync
with reality [22]. Factual knowledge changes rapidly, making its update in LLMs a pressing need.
Factual knowledge can be represented as a triplet (s, r, o), where s is the subject, r is the relation, and
o is the object. This knowledge can be transformed into a prompt pi + o, where pi ∈ P is an element
of the set P that expresses the semantics of (s, r) in natural language. The element that most directly
expresses the semantics of (s, r) is called p, while the rest elements are pr. The goal of model editing
is to redirect the object o in the triplet to a new object o∗, represented as t = (s, r, o) → o∗. To
evaluate whether the post-edit model is effective on the post-edit knowledge triplet and does not
affect other triplets, assessments are made from three aspects: efficacy, generalization, and specificity.
Efficacy evaluates whether the model’s prediction on p is redirected to o∗. Generalization evaluates
whether the model’s prediction on pr is redirected to o∗. Specificity evaluates whether the model
maintains its original predictions on inputs outside the set P . To evaluate the generative capability of
the post-edit model, [4] also uses fluency and consistency as evaluation metrics. Fluency measures
the degree of repetition in the text generated by the model after editing; higher repetition indicates
lower fluency. Consistency evaluates the degree of alignment between the content generated by the
post-edit model based on s and the reference text of the subject associated with the new object o∗.
For more details, please refer to [4].

Model editing can be categorized according to whether the editing is sequential and the batch size
into sequential editing, batch editing, and sequential batch editing [23]. Sequential editing refers to
the continuous editing of a single piece of knowledge, while batch editing involves editing multiple
pieces of knowledge at once. Sequential batch editing combines these two scenarios, involving the
sequential editing of batch knowledge. This problem definition is highly relevant to the ever-changing
nature of bulk knowledge in practice. Therefore, we directly present the problem of sequential batch
editing. Suppose there is a sequence of n knowledge sets to be updated: [T1,T2, . . . ,Tn], where
each knowledge set Ti = {t1, t2, . . .}. Sequential batch editing requires that after performing n
sequential batch edits, the post-edit model can successfully predict all n knowledge sets without
affecting knowledge outside these sets.

3.2 Locate-then-Edit Model Editing

The locate-then-edit model editing is one of the most popular series of model editing methods [1].
These approaches typically use causal tracing [4] to identify the critical layers L where knowledge is
stored, and then compute weight shifts using least squares modeling to update the weights.

Specifically, they view the feed-forward network (FFN) as key-value memories [3]. Let hl−1 be the
residual stream of the l − 1 layer, and al be the output of the self-attention block of the l ∈ L layer.
The key-value memories of the FFN can be represented as follows:

ml︸︷︷︸
value

= W l
out σ(W

l
in γ(h

l−1 + al) )︸ ︷︷ ︸
key := k

, (1)

where ml is the output of the FFN block, and W l
in and W l

out are the input and output mapping
weights of the FFN block, respectively. σ and γ are activation functions. W l

out := W l
0 is viewed as a

linear associative memory that associates keys and values:

Kl
0 = [kl

1|kl
2|...|kl

n],M
l
0 = [ml

0,1|ml
0,2|...|ml

0,n]. (2)

Before editing, the linear associative memory satisfies:

W l
0 = argmin

W

∥∥WKl
0 −M l

0

∥∥2 . (3)

When new memories need to be inserted, a new group of keys Kl
1 and values M l

1 will be updated
into W l

0. Thus the new weight should satisfy:

W l
1 = argmin

W

∥∥WKl
0 −M l

0

∥∥2︸ ︷︷ ︸
preserve old

+
∥∥WKl

1 −M l
1

∥∥2︸ ︷︷ ︸
insert new

. (4)
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Let W l
1 = W l

0 + ∆l where ∆l is weight shifts. By applying the normal equation to Eq. (4), its
closed-form solution can be written as:

∆l = RlKl
1

T
(
Kl

0K
l
0

T
+Kl

1K
l
1

T
)−1

, (5)

where Rl =
(
M l

1 −W l
0K

l
1

)
is the residual of the new memories when evaluated on old weights W l

0

[5]. Kl
1 and Kl

0 are computed for each layer. In most locate-then-edit methods [5, 6], the residual of
layer l is evenly distributed from the residual of last critical layer L = max(L):

Rl =
RL

L− l + 1
=

ML
1 −WL

0 KL
1

L− l + 1
, (6)

where ML
1 = [mL

1 |mL
2 |...|mL

u ] represents u entries of new memories. Each entry is computed using
the following formula:

mL
i = hL

i + δLi = WL
0 kL

i + δLi , (7)
where δLi is a residual vector optimized by:

mL
i = hL

i + argmin
δL
i

1

P

P∑
j=1

− logPθ(hL
i +=δL

i )[o
∗|xj ⊕ p] (8)

The objective of the above equation is to optimize the learnable δLi to maximize the probability of the
model predicting o∗. xj ⊕ p represents the concatenation of the jth randomly generated P prefixes
by the model with prompt p to enhance generalization. θ(hL

i + = δLi ) denotes adding δLi to hL
i .

Fang et al. [6] extends locate-then-edit methods to the sequential batch editing scenario. They cache
the keys Kp of previously edited knowledge and incorporate Kp into the least squares optimization,
ultimately deriving the following closed-form solution for sequential batch editing:

∆l
seq = RlKl

1

T
(
Kl

pK
l
p

T
+Kl

0K
l
0

T
+Kl

1K
l
1

T
)−1

(9)

4 Rethinking the Residual Distribution of Locate-then-Edit Model Editing

In this section, we analyze the residual distribution both empirically (Section 4.1) and theoretically
(Section 4.2). Based on these insights, we further propose a novel strategy to enhance locate-then-
edit model editing (Section 4.3). We focus on the classic locate-then-edit model editing method,
MEMIT [5]. Experiments are conducted on three LLMs: Llama3-8B-Instruct [24], GPT-J (6B) [25],
and GPT2-XL, using the CounterFact dataset [4]. Unless otherwise specified, we use the first 200
samples from the CounterFact dataset. The critical layers analyzed for each model are: Llama3-8B:
{4, 5, 6, 7, 8}, GPT-J (6B): {3, 4, 5, 6, 7, 8} and GPT2-XL: {13, 14, 15, 16, 17}.

4.1 Analyzing Residual Distribution in Locate-then-Edit Model Editing

4.1.1 How Does the Distributed Residual Contribute to the Editing Object?

To measure the contribution of the distributed residuals to the editing object, we first define a
contribution score:

s = Pθ∗(o∗|p)− Pθ(o
∗|p) (10)

where Pθ∗(o∗|p) represents the probability of the post-edit model θ∗ regarding the edited knowledge
t = (s, r, o) → o∗. The rationale behind this is that the probability of the pre-edit model θ assigning
to o∗ on knowledge t is often low, while the model editing aims for the post-edit model to assign the
highest probability to o∗.

From Equ. (1) and Equ. (4), we can know that the essence of locate-then-edit is that the post-edit
model can activate the new memory ml

i = ml
0,i + δLi /(L− l + 1) in the FFN block at layer l using

the key kl
i corresponding to p, where ml

0,i represents the original memory of the model. Therefore,
we directly replace the output of the FFN block at layer l with the new memory ml

i to eliminate the
potential impact of activation failure. For comparison, we also directly compute residuals for each
layer, following the same process as mL

i . By using the distributed residual for simulated editing, we
can accurately measure the contribution of new memories while avoiding direct edits to the model.
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Figure 2: The average contribution score
of different simulated editing layers.

We perform simulated editing in each critical layer. The
average contribution scores are shown in Figure 2. For the
distributed residuals, it can be observed that only the last
critical layer achieves a contribution score close to 1.0.
The contribution scores of the other layers were all below
0.7, showing a decreasing trend layer by layer. For the
first critical layer, the contribution score is below 0.1 in
three LLMs. This indicates that the farther the residuals
are distributed, the lower their contribution to the
editing object. Even distribute through just one layer
can lead to a significant drop in the contribution score.
In contrast, for the computed residuals, their contribution
scores in each layer consistently approach 1.0.

4.1.2 Is the Distributed Residual the Optimal Residual for Editing?
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Figure 3: The variation in cosine sim-
ilarity between the distributed and the
directly computed memory across differ-
ent layers.

From Section 4.1.1, we observe that directly comput-
ing ml

i for each layer achieves high contribution scores.
Therefore, we assume that the directly computed ml

i rep-
resents the optimal memory for editing. To verify whether
residual distribution is optimal, we first compare the sim-
ilarity between residual distribution and the directly com-
puted ml

i, and then evaluate their performance in model
editing.

Similarity Analyzing. The variation in cosine similarity
between the distributed and the directly computed ml

i is
shown in Figure 3. It shows that the cosine similarity
between the distributed and the directly computed ml

i ex-
hibits a layer-by-layer decreasing trend, indicating that the
further residuals are distributed, the farther ml

i devi-
ates from the optimal memory. To further investigate
how residual distribution affects model editing performance, we next perform single-layer model
editing using both the distributed residuals and the directly computed residuals.
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Figure 4: Performance variations when
editing different single layers of the
model using computed and distributed
residuals separately. Fluency and Con-
sistency are normalized.

Post-edit LLM Performance. We update single layers
of the model using distributed residuals and computed
residuals, respectively. The results for Llama3 under the
batch editing setting are shown in Figure 4, while results
for GPT-J and GPT2-XL are presented in Figure 9 of
Appendix C. Specificity and Fluency remain comparable
across different cases, with outcomes closely matching
the original model. This indicates that small-batch edits
effectively retain the model’s original state. However,
significant differences arise in Efficacy and Generalization
between the two methods. For Efficacy, models edited
with computed residuals outperform those with distributed
residuals by over 3× on average, while for Generalization,
the improvement exceeds 2×. In terms of Consistency,
computed residuals achieve an average improvement of
more than 10%. These findings indicate that distributed
residuals introduce significant information loss during
model editing, leading to a higher likelihood of editing
failures.

4.2 Theoretical Analysis
of Residual Distribution in Locate-then-Edit Methods

Theorem 4.1. In the locate-then-edit model editing, when using residual distribution, the upper
bound for the weight shift error between the exact weight shift ∆l∗ and the actual weight shift ∆l is
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given by
∥∆l∗ −∆l∥2 ≤

(
∥Rl∗ −RL∥2 + (L− l)∥RL∥2

)
∥Q∥2, (11)

where Rl∗ denotes the exact residual, and Q = Kl
1
T
(
Kl

0K
l
0
T
+Kl

1K
l
1
T
)−1

.

The proof of the above theorem is presented in Appendix A. We also discuss the rationale for using
the upper bound instead of the lower bound in Remark 4.2. In Equ. (11), ∥Rl∥2 and ∥Q∥2 increase
with the number of new memories (i.e., the size of the editing batch [5]). When the number of new
memories is fixed, the upper bound increases with ∥Rl∗ − RL∥2 and L − l. L − l increases as
the residual distributes further, while it is unclear how ∥Rl∗ −RL∥2 changes. To explore this, we
assume the computed residual is the exact residual and analyze how ∥Rl∗ −RL∥2 changes across
layers. In Figure 5, we show how ∥Rl∗ −RL∥2 changes across layers. It shows that ∥Rl∗ −RL∥2
increases as the residual distribution extends farther. Therefore, we can conclude that weight shift
error increases with both the distance of residual distribution and the size of the editing batch.
Remark 4.2. The lower bound of the weight shift error can more effectively reflect the variation in
error, but according to ||Rl∗Q−RlQ||2 ≥ σmin(Q)||Rl∗ −Rl||2 we see that the lower bound of
the error shift is very small or even zero, where σmin(Q) is the smallest singular value of Q. This
occurs because we cannot guarantee that Q is nondegenerate. Even if Q is nondegenerate, σmin(Q)
would still be very small, making the result insignificant. Additionally, although a growing upper
bound does not necessarily imply an increase in error, our upper bound determines the worst-case
scenario of the error, providing essential insight into selecting the layers to update.

Considering the closed-form solution of locate-then-edit model editing in sequential batch editing,
the following lemma can be derived.
Lemma 4.3. In sequential batch editing, when using residual distribution, the upper bound of the
weight shift error between the exact weight shift ∆l∗ and the actual weight shift ∆l for locate-then-edit
methods is given by

∥∆l∗ −∆l∥2 ≤
(
∥Rl∗ −RL∥2 + (L− l)∥Rl∥2

)
∥Q′∥2, (12)

where Rl∗ denotes the exact residual, and Q′ = Kl
1
T
(
Kl

pK
l
p
T
+Kl

0K
l
0
T
+Kl

1K
l
1
T
)−1

.

∥Kl
pK

l
p
T ∥2 increases with the number of sequential edits, and thus Section 4.3 indi-

cates that the weight shift error also increases with the number of sequential edits.
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Figure 5: Variation of ∥Rl∗ − RL∥2
across layers.

4.3 BLUE: Boundary Layer
UpdatE for Improving Locate-then-Edit Model Editing

From the previous analysis, we know that the residual dis-
tribution of the locate-then-edit model editing is inherently
inaccurate, and this inaccuracy increases as the residuals are
distributed farther. So, how can we enable locate-then-edit
model editing to perform multi-layer updates while miti-
gating the negative impact of the residual distribution? A
straightforward method is to compute residuals separately
for each layer. However, this reduces the efficiency of the locate-then-edit approach, and it remains
unclear whether it is necessary to compute residuals and perform updates for all critical layers
individually.

Table 1: Average optimization steps.

Model Layer: Steps

GPT2-XL [13-17]: [16.37, 8.43, 1.71, 0.32, 0.10]
GPT-J (6B) [3-8]: [10.47, 1.68, 0.11, 0.0, 0.0, 0.0]

Llama3 (8B) [4-8]: [25.0, 11.10, 0.63, 0.0, 0.0]

Therefore, we conduct experiments where resid-
uals are computed and updates performed for all
critical layers. Computation is stopped when the
loss falls below 0.05. We update the critical lay-
ers sequentially in the order of increasing layers
and record the number of optimization steps re-
quired to compute residuals for each layer. The
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results are shown in Table 1. It can be observed that after completing the first layer update, the
number of residual computation steps in subsequent layers decreased significantly across all LLMs.
In GPT2-XL, the decrease is 48.5%; in GPT-J, 84.0%; and in Llama3, 55.6%. Furthermore, after
updating the first two layers, the optimization steps in the third layer for GPT2-XL, GPT-J and
Llama3 drop below 2.0, indicating that only two layers of weights needed to be updated to achieve
the editing goal.

The above observations indicate that when calculating residuals separately for all layers, updating
just two layers is sufficient to achieve the editing object. The new question is: which two layers
should be updated to achieve optimal editing performance? According to Theorem 4.1, the farther
the distribution of residuals, the greater the upper bound of the weight shift error. The last critical
layer is exactly the layer where the residual is computed. As a result, the first layer updated by the
current method is the most affected by the residual distribution. To mitigate this effect, we choose the
first critical layer as the first layer for updates. For the second layer, we choose the last critical
layer for the following reasons: 1) The selection of the first critical key layer is based on the premise
that the residual is computed at the last critical layer; and 2) BLUE is an optimization strategy, and
we aim to preserve the mechanism used in existing locate-then-edit model editing methods, which
compute residuals at the last key layer, to ensure broader applicability.

Therefore, we propose a Boundary Layer UpdatE (BLUE) strategy to boost the locate-then-edit
methods. BLUE updates only the boundary layers of the critical layers by directly computing
residuals of them, specifically the first critical layer and the last critical layer. This not only reduces
the number of layers to be updated, but we also demonstrate in Section 5 that it performs better
and better preserves LLMs’ general capabilities. BLUE is suitable for locate-then-edit methods that
perform multi-layer updates using even residual distribution: MEMIT [5], RECT [7], PRUNE [8]
and AlphaEdit [6].

5 Experiments

In our experiments, we demonstrate that BLUE can enhance the performance of current locate-
then-edit methods (Section 5.2), improve the retention of the original LLMs’ capabilities (Section
5.3), and alleviate the hidden state shifts introduced by locate-then-edit approaches (Section 5.4).
Additionally, in Appendix 5.5, we show that BLUE also boosts locate-then-edit methods in long-form
model editing. In Appendix 5.6, we present ablation studies demonstrating that selecting the first and
last critical layers for editing in BLUE is the optimal choice. Appendix I illustrates the efficiency
improvements introduced by BLUE. In Appendix J, we empirically validate Theorem 4.1 and Lemma
4.3, demonstrating that the weight shift error increases with both the batch size and the number
of sequential edits. Finally, we present the results of BLUE applied to the square root residual
distribution method, PMET, in Appendix K.

5.1 Experimental Setup

Datasets & LLMs. Our experiments are conducted on two datasets: CounterFact [4] and zsRE [26].
We select three LLMs as the editing subjects: GPT2-XL [27], GPT-J (6B) [25], Llama3 (8B) [28].
We also conduct experiments with Llama2 (13B) to further validate the effectiveness of BLUE in
Appendix G.

Baselines. BLUE is a facilitation strategy designed for locate-then-edit model editing that performs
multi-layer updates, which has been proven in prior research to achieve the best editing performance
[6]. Therefore, our baselines only consider locate-then-edit model editing methods. The locate-then-
edit methods we consider are: MEMIT [5], PRUNE [8], RECT [29], and AlphaEdit [6]. We present
the experimental details in the Appendix D.

5.2 Enhancing Editing Performance with BLUE

We first verify whether BLUE can enhance locate-then-edit model editing. Sequential batch editing
better aligns with real-world batch knowledge updates, and we follow [6] by using sequential batch
editing experiments to validate the capabilities of BLUE. We randomly sample 2,000 samples from
the dataset and perform sequential batch editing with a batch size of 100. The results of the sequential
batch editing are shown in Table 2. We use red to highlight the results enhanced by BLUE. The
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Table 2: Comparison of BLUE enhanced locate-then-model editing methods with original locate-
then-model editing methods on the sequential model editing task. We color all results that are actually
enhanced by BLUE in red. We directly adopt the baseline results from [6] to avoid the energy
consumption caused by redundant computation.

Method Model
Counterfact ZsRE

Efficacy↑ Generalization↑ Specificity↑ Fluency↑ Consistency↑ Efficacy↑ Generalization↑ Specificity↑

Pre-edited

L
la

m
a3

7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19

PRUNE 68.25±0.46 64.75±0.41 49.82±0.36 418.03±1.52 5.90±0.10 24.77±0.27 23.87±0.27 20.69±0.23

RECT 66.05±0.47 63.62±0.43 61.41±0.37 526.62±0.44 20.54±0.09 86.05±0.23 80.54±0.27 31.67±0.22

AlphaEdit 98.90±0.10 94.22±0.19 67.88±0.29 622.49±0.16 32.40±0.11 94.47±0.13 91.13±0.19 32.55±0.22

MEMITBLUE 99.57±0.24 94.13±0.77 83.77±0.77 626.26±0.51 32.29±0.38 95.94±0.38 90.98±0.69 32.41±0.81

PRUNEBLUE 96.73±0.64 89.68±0.85 57.79±1.14 627.39±0.37 33.39±0.36 86.55±0.86 82.22±1.00 31.04±0.80

RECTBLUE 98.77±0.40 93.40±0.74 79.34±0.86 619.07±0.62 30.62±0.37 94.37±0.49 89.49±0.76 32.76±0.81

AlphaEditBLUE 99.93±0.09 97.25±0.48 75.24±0.98 624.90±0.49 33.79±0.38 95.77±0.39 91.73±0.65 31.96±0.80

Pre-edited

G
PT

-J

16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±0.37 25.79±0.25 27.42±0.53

MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 30.39±0.27

PRUNE 86.15±0.34 86.85±0.29 53.87±0.35 427.14±0.53 14.78±0.11 0.15±0.02 0.15±0.02 0.00±0.00

RECT 98.80±0.10 86.58±0.28 72.22±0.28 617.31±0.19 41.39±0.12 96.38±0.14 91.21±0.21 27.79±0.26

AlphaEdit 99.75±0.08 96.38±0.23 75.48±0.21 618.50±0.17 42.08±0.15 99.79±0.14 96.00±0.22 28.29±0.25

MEMITBLUE 99.70±0.30 96.90±0.50 74.61±0.95 620.89±0.73 40.82±0.44 99.58±0.18 94.77±0.67 28.36±0.94

PRUNEBLUE 97.77±0.53 97.28±0.48 57.12±1.00 608.73±0.89 36.62±0.42 60.51±1.35 58.57±1.35 22.77±0.87

RECTBLUE 98.70±0.41 91.18±0.84 74.78±0.94 620.52±0.65 39.79±0.43 97.93±0.38 93.86±0.69 26.32±0.91

AlphaEditBLUE 99.77±0.17 97.13±0.48 75.23±0.95 621.07±0.62 41.34±0.44 99.63±0.16 95.96±0.59 28.67±0.94

Pre-edited

G
PT

2-
X

L

22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.42±0.25

PRUNE 82.05±0.38 78.55±0.34 53.02±0.35 530.47±0.39 15.93±0.11 21.62±0.30 19.27±0.28 13.19±0.18

RECT 92.15±0.26 81.15±0.33 65.13±0.31 480.83±0.62 21.05±0.16 81.02±0.31 73.08±0.35 24.85±0.25

AlphaEdit 99.50±0.24 93.95±0.34 66.39±0.31 597.88±0.18 39.38±0.15 94.81±0.30 86.11±0.29 25.88±0.21

MEMITBLUE 98.27±0.47 88.67±0.93 67.13±1.01 587.19±1.52 35.64±0.46 93.62±0.70 85.34±1.04 26.55±0.93

PRUNEBLUE 88.19±1.12 80.48±1.10 52.23±1.05 594.08±1.18 20.28±0.44 47.94±1.33 45.03±1.32 16.72±0.75

RECTBLUE 95.67±0.73 80.97±1.15 66.88±1.00 567.09±2.09 30.30±0.53 83.48±1.06 75.24±1.24 25.25±0.89

AlphaEditBLUE 99.40±0.28 96.00±0.60 76.63±0.93 621.92±0.56 40.98±0.43 96.88±0.50 89.58±0.91 25.93±0.92

results indicate that the BLUE strategy effectively enhances the performance of a range of
locate-then-edit methods in sequential batch editing tasks. 89.58% of the results (86 out of
96) were enhanced. After using BLUE, the editing performance of different editing methods is
enhanced across various LLMs, as shown in Table 4 of Appendix B. It can be observed that the
BLUE strategy significantly improves the performance of PRUNE and noticeably enhances the
editing performance of locate-then-edit methods on Llama3 and GPT2-XL. For other cases, such as
AlphaEdit on GPT-J, the improvements are minimal due to its already strong baseline performance.
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Figure 6: F1 scores of the post-edited Llama3 (8B) on six tasks.

5.3 Boosting
General Capability
Retention via BLUE

Model editing should
not affect other aspects
of LLMs. In addition
to using specificity and
fluency for evaluation,
this goal can also be
achieved by assessing
changes in the gen-
eral capabilities of the
models after editing.
Following the work of
[6], we evaluate the
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general capabilities of LLMs before and after editing using six natural language tasks from the
General Language Understanding Evaluation (GLUE) benchmark [30]. Specifically, we achieve this
through the following six evaluation tasks: SST (The Stanford Sentiment Treebank) [31], MRPC
(Microsoft Research Paraphrase Corpus) [32], MMLU (Massive Multi-task Language Understanding)
[33], RTE (Recognizing Textual Entailment) [34], CoLA (Corpus of Linguistic Acceptability) [35],
and NLI (Natural Language Inference) [36].

We conduct a total of 3,000 sequential edits on Llama3 (8B), with a batch size of 100 for each edit.
Every 500 steps, we evaluate the performance of the post-edited LLMs on these six tasks. The results
are shown in Figure 6. After 3,000 edits, the general capabilities of models edited by RECT, PRUNE,
and MEMIT are almost entirely lost. In contrast, models edited by the BLUE-enhanced versions of
these methods maintain their general capabilities well. Notably, AlphaEdit inherently demonstrates
strong general capability retention, and AlphaEditBLUE does not compromise this ability. These
results indicate that BLUE enhances the general capability retention of locate-then-edit methods.
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Figure 7: The distribution of hidden states in pre-edited and post-edited Llama3 (8B).

5.4 Mitigating Hidden States Shifts with BLUE

The existing locate-then-edit methods often result in shifts in the hidden states of the model after
editing [6]. In this part, we verify whether BLUE can alleviate this phenomenon. Specifically, we
extract the hidden states of 1,000 randomly selected factual prompts from LLMs before and after
editing. These hidden states are then reduced to two dimensions using t-SNE. The post-editing LLMs
mentioned here are the models described in Section 5.2. We then visualize the hidden states, and
the results are shown in Figure 7. It can be observed that the shifts in hidden states corresponding to
the locate-then-edit method enhanced by BLUE are weaker than those of the original method. This
demonstrates that BLUE can mitigate hidden states shifts caused by locate-then-edit methods.
The results on GPT-J (6B) and GPT2-XL can be found in Appendix H.

5.5 BLUE Boosts Long-Form Performance of Locate-Then-Edit Approaches

We conduct long-form model editing experiments on editing Llama3 (8B) using UnKEBench [10], a
representative work in long-form evaluation benchmarks. We adopt MEMIT and AlphaEdit, both
enhanced using the editing paradigm proposed in AnyEdit [9], as baselines, and follow the same
experimental setup as used in AnyEdit. As illustrated in Table. 3, the results demonstrate that BLUE
can also improve the performance of locate-then-edit methods in long-form evaluation scenarios.
We also conduct a case study on a long-form editing task to demonstrate in detail the effectiveness of
BLUE in Appendix E.
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Table 3: Comparison of Editing Methods on UnKEBench. The left side of ‘/’ represents the LLM’s
edited output for original questions, while the right side represents the edited output for paraphrase
questions.

Metric BLEU ROUGE-1 ROUGE-2 ROUGE-L BERT Score ROUGE-L (SubQ)
MEMIT 77.65 / 66.17 90.78 / 81.60 87.12 / 73.94 90.43 / 80.81 95.69 / 92.32 47.36
AlphaEdit 62.82 / 51.78 80.02 / 69.08 71.62 / 56.80 79.10 / 67.68 91.67 / 87.41 42.72
MEMITBLUE 82.34 / 74.76 90.79 / 85.36 86.89 / 78.94 90.33 / 84.68 96.50 / 94.72 52.15
AlphaEditBLUE 68.64 / 61.49 84.90 / 78.54 77.98 / 68.40 84.08 / 77.37 93.39 / 90.97 49.49
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Figure 8: Layer Ablation of BLUE.

5.6 Ablation Study

To verify that the first and last critical layers selected by BLUE are optimal for editing, we perform 30
sequential edits with a batch size of 100 on Llama3 (8B). As shown in Figure 8, the optimal editing
layers for all four BLUE-enhanced methods are consistently layers 4 and 8—the ones selected by
BLUE. This provides empirical evidence that the layers chosen by BLUE are indeed optimal for
model editing.

6 Conclusion

This paper rethinks the role of residual distribution in locate-then-edit model editing. Through
empirical and theoretical analyses, we show that residual distribution is not an optimal choice, as it
leads to increasing errors in weight updates with larger batch sizes, more sequential edits, and greater
distribution distances. Based on these findings, we propose the BLUE strategy, which improves
locate-then-edit methods by updating only the first and last critical layers of the model. Sequential
batch editing experiments on three LLMs and two datasets demonstrate that BLUE effectively
enhances editing performance. Further experiments and analyses indicate that BLUE also improves
the retention of LLMs’ original general capabilities and mitigates shifts in hidden states after editing.
Moreover, BLUE yields gains in both time and memory efficiency and strengthens locate-then-edit
methods in long-form model editing tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions and a complete (and correct)
proof for Theorem 4.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide a zip file with the code needed to reproduce our experiments,
as well as a README with instructions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We share our code. The datasets will be automatically downloaded from
open-source resources when the code is executed.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We share our code and hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Figures 2 3 5 and 96% CI in the main results (Table. 2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss computational resources used for all experiments in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Appendix M.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the papers that introduced the models and data used in our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Proof of Theorem 4.1

Proof. Let Kl
1
T
(
Kl

0K
l
0
T
+Kl

1K
l
1
T
)−1

:= Q, then the weight shifts error is:

∥∆l∗ −∆l∥2 = ∥Rl∗Q−RlQ∥2 (13)

≤ ∥Rl∗ −Rl∥2∥Q∥2 (14)

≤ ∥Rl∗ − RL

L− l + 1
∥2∥Q∥2 (15)

According to Section 4.1.2, the directly computed ml
i represents the optimal memory for editing, and

thus we have RL = RL∗
. Then, Equ. (15) can be written as:

∥Rl∗ − RL∗

L− l + 1
∥2∥Q∥2 (16)

=∥Rl∗ −RL∗
+RL∗

− RL∗

L− l + 1
∥2∥Q∥2 (17)

≤
(
∥Rl∗ −RL∗

∥2 + ∥RL∗
− RL∗

L− l + 1
∥2
)
∥Q∥2 (18)

≤
(
∥Rl∗ −RL∗

∥2 +
L− l

L− l + 1
∥RL∗

∥2
)
∥Q∥2 (19)

≤
(
∥Rl∗ −RL∥2 + (L− l)∥RL∥2

)
∥Q∥2 (20)

B BLUE’s Performance Improvement in Locate-then-Edit Model Editing
Across LLMs

We summarize the enhancement degree of each method by BLUE across different models, as shown
in the table below.

Table 4: The average performance improvement of BLUE on different locate-then-edit model editing
across various LLMs. The abnormal results of PRUNE editing GPT-J on the ZsRE dataset are
excluded in our statistics.

Model MEMIT PRUNE RECT AlphaEdit
Llama3 129.61% 144.52% 27.05% 2.50 %
GPT-J 6.73% 44.36% 0.58% 0.03%

GPT2-XL 17.02% 41.24% 9.47% 4.00%
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Figure 9: Performance variations when editing different single layers of the model using computed and
distributed residuals separately. For better visualization, Fluency and Consistency were normalized.

C Supplementary Results of Post-edit LLM Performance

We show the supplementary results of post-edit LLM performance in Figure 9. The results also
indicate that distributed residuals introduce significant information loss during model editing, leading
to a higher likelihood of editing failures.

D Experiment Details

All our experiments are conducted on A800 GPUs. The baseline methods used for comparison in the
experiments are kept in their original settings, with PRUNE following the reproduction settings of
[6]. For baseline methods enhanced by BLUE, all configurations remain consistent with the original
baselines, except for AlphaEditBLUE. For AlphaEditBLUE, we set the α values for Llama3 (8B), GPT-J
(6B), and GPT2-XL to 1, 95, and 80, respectively, to ensure the invertibility of matrices during the
editing process, thereby achieving better editing performance. For a clearer understanding of the
baselines, please refer to [6].

E Case Study on Long-form Model Editing Task

To demonstrate in detail the improvements of BLUE in long-form model editing, we present a case
study of editing Llama-3 (8B) in Table 5. It can be seen that the method enhanced by BLUE generates
content that is noticeably closer to the target output compared to the original method. This provides
additional evidence for the effectiveness of BLUE in long-form model editing tasks.

F Batch Model Editing

In addition to sequential batch editing, large-scale batch editing is also an important aspect of
evaluating the performance of model editing methods. Therefore, we conducted 10,000 batch edits
for both the baseline and the BLUE-enhanced methods, with the results shown in 6. The results in
the table indicate that while the improvement in large-scale batch editing after applying the BLUE
enhancement to the baseline is not as significant as in sequential batch editing, the baselines enhanced
by BLUE still demonstrate overall stronger performance. Specifically, 70.83% of the metrics (68 out
of 96) are improved. Note that although the baselines enhanced by BLUE performed better in terms
of efficacy and generalization, they show worse results in specificity. This suggests that while the
BLUE-enhanced model editing methods strengthen the knowledge being edited, it also affects other
unrelated knowledge. Achieving optimal performance across all three metrics simultaneously remains
a major challenge in model editing [14]. This is particularly true for locate-then-edit methods, as
BLUE serves as an enhancement to existing editing methods without altering their original modeling.
Therefore, addressing this issue may require future work on improving the original modeling of
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Table 5: Examples of different editing methods in long-form editing scenarios.
Type Text
Input What is George Rankin’s occupation?
Paraphrase What does George Rankin do for a living?
Target Output George Rankin has been actively involved in politics for over a decade. He has

served as a city council member for two terms and was recently elected as the
state representative for his district. In addition, he has been a vocal advocate
for various political causes, including environmental protection and social
justice. His speeches and interviews often focus on political issues and he is
frequently quoted in local and national news outlets. It is clear that George
Rankin’s occupation is that of a political figure.

AlphaEdit George Rankin has been involved in politics for over 20 years. He has served
as a member of the state legislature for 10 years and has been a mayor for 5
years. He has also been a member of various political committees and has run
for several political offices, including governor and U.S. Senate.

MEMIT George Rankin has been involved in politics for over 20 years. He has served
as a member of the state legislature for 10 years and has been a mayor for 5
years. He has also run for governor and senator, but has not held those offices.

AlphaEditBLUE George Rankin has been actively involved in politics for over a decade. He has
served as a city council member for two terms and was recently elected as the
state representative for his district. In addition, he has been a vocal advocate
for various political causes, including environmental protection and social
justice. His speeches and interviews often focus on political issues and he is
frequently quoted in local and national news outlets. It is clear that George
Rankin has been involved in politics for a long time and continues to be an
active and influential figure in the political scene.

MEMITBLUE George Rankin has been actively involved in politics for over a decade. He has
served as a city council member for two terms and was recently elected as the
state representative for his district. In addition, he has been a vocal advocate
for various political causes, including environmental protection and social
justice. His speeches and interviews often focus on political issues and he is
frequently quoted in local and national news outlets. It is clear that George
Rankin’s involvement in politics is a significant aspect of his public persona
and identity.

editing methods. Nevertheless, the overall superior performance of the BLUE-enhanced methods
also demonstrates that BLUE can improve the editing performance of locate-then-edit approaches in
batch editing.

G Results on LLaMA-2-13B

To demonstrate the effectiveness of BLUE on larger models, we selecte AlphaEdit and MEMIT
to perform sequential editing experiments on layers 30–34 of LLaMA-2-13B, following the same
setup as in the main experiments. The results are shown in Table 7. The results demonstrate that the
BLUE-enhanced methods achieve better overall editing performance than the baseline methods on
both the CounterFact and ZsRE datasets. We bolded all the enhanced results. On the CounterFact
dataset, all metrics except for Specificity show improvements over the baseline. On the ZsRE dataset,
all metrics of AlphaEdit show improvements, while MEMIT exhibits improvements in all metrics
except for Specificity. This indicates that BLUE is also effective on LLaMA-2-13B, further validating
the effectiveness of our approach.

H Hidden States Shifts in GPT-J (6B) and GPT2-XL

We present the hidden state shifts before and after model editing for GPT-J (6B) and GPT2-XL in
Figs. 10 and 11, respectively. Similar results to those on Llama3 (8B) are observed for GPT-J (6B)
and GPT-2 XL. The BLUE-enhanced baselines have a smaller overall impact on the model’s hidden
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Table 6: Comparison of BLUE enhanced locate-then-model editing methods with original locate-
then-model editing methods on the batch model editing task. Eff., Gen., Spe., Flu. and Consis. denote
Efficacy, Generalization, Specificity, Fluency and Consistency, respectively. We color all results that
are actually enhanced by BLUE in red.

Method Model
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

Pre-edited

L
la

m
a3

7.02±0.50 9.44±0.49 89.73±0.36 630.00±0.22 24.21±0.17 35.67±0.58 34.81±0.58 31.83±0.44

MEMIT 93.53±0.48 74.12±0.75 84.18±0.40 626.24±0.26 29.71±0.20 86.57±0.48 82.58±0.54 32.47±0.44

PRUNE 93.64±0.48 84.44±0.57 60.00±0.57 625.11±0.26 36.83±0.22 13.29±0.34 13.75±0.52 15.34±0.54

RECT 58.07±0.97 39.88±0.86 88.15±0.37 628.71±0.23 26.11±0.18 70.35±0.65 65.04±0.67 32.45±0.44

AlphaEdit 88.89±0.62 69.91±0.79 83.98±0.41 625.78±0.25 28.66±0.19 84.07±0.52 80.15±0.57 32.50±0.44

MEMITBLUE 99.28±0.17 93.83±0.40 79.34±0.46 626.09±0.26 33.04±0.21 95.38±0.23 92.62±0.33 31.68±0.44

PRUNEBLUE 99.37±0.16 94.30±0.35 60.17±0.57 623.54±0.24 36.64±0.21 86.83±0.44 83.55±0.50 28.23±0.42

RECTBLUE 94.02±0.46 79.25±0.69 85.45±0.39 627.57±0.24 30.34±0.19 85.27±0.48 77.73±0.58 31.83±0.44

AlphaEditBLUE 98.62±0.23 90.76±0.48 79.61±0.45 625.04±0.27 32.46±0.21 94.14±0.27 90.64±0.38 31.52±0.44

Pre-edited

G
PT

-J

15.20±0.70 17.70±0.60 83.50±0.50 622.40±0.30 29.40±0.20 26.40±0.60 25.80±0.50 27.00±0.50

MEMIT 98.72±0.22 87.14±0.56 74.05±0.52 620.68±0.30 39.72±0.24 95.90±0.30 89.06±0.49 26.30±0.50

PRUNE 91.54±0.55 90.00±0.49 57.49±0.60 562.52±0.58 37.34±0.20 29.98±0.67 26.91±0.65 16.75±0.40

RECT 88.13±0.63 63.40±0.83 79.31±0.50 622.54±0.27 35.62±0.22 70.46±0.70 61.90±0.73 26.64±0.50

AlphaEdit 99.26±0.17 86.70±0.56 69.65±0.53 587.89±0.49 39.51±0.23 93.09±0.36 82.64±0.59 22.78±0.47

MEMITBLUE 99.58±0.13 97.40±0.25 64.92±0.55 615.97±0.36 40.83±0.25 98.18±0.18 93.61±0.38 25.91±0.49

PRUNEBLUE 99.36±0.16 98.06±0.22 56.82±0.55 608.78±0.33 41.76±0.22 74.83±0.65 71.24±0.69 20.07±0.46

RECTBLUE 97.86±0.28 88.41±0.54 74.91±0.52 621.45±0.30 38.79±0.23 90.20±0.46 81.00±0.61 27.31±0.51

AlphaEditBLUE 99.39±0.15 95.52±0.35 69.28±0.54 619.90±0.32 41.25±0.24 98.26±0.19 96.63±0.39 26.59±0.50

Pre-edited

G
PT

2-
X

L

21.82±0.81 24.16±0.72 78.32±0.55 626.78±0.23 31.37±0.20 22.17±0.52 21.28±0.51 24.2±0.48

MEMIT 79.64±0.79 65.86±0.83 70.01±0.56 625.67±0.27 36.17±0.22 62.46±0.75 57.59±0.77 25.86±0.50

PRUNE 85.27±0.69 78.30±0.70 57.73±0.62 604.09±0.39 35.66±0.21 42.71±0.76 40.14±0.75 19.01±0.44

RECT 61.92±0.95 48.68±0.87 74.69±0.54 625.87±0.25 33.99±0.21 49.37±0.76 45.30±0.74 25.64±0.49

AlphaEdit 93.24±0.49 76.28±0.71 64.54±0.57 604.70±0.38 38.62±0.23 61.26±0.74 54.82±0.76 20.83±0.45

MEMITBLUE 87.54±0.65 78.14±0.71 65.37±0.54 615.34±0.43 37.10±0.22 71.93±0.72 67.51±0.75 23.44±0.49

PRUNEBLUE 95.70±0.40 90.18±0.48 53.81±0.57 596.30±0.56 37.02±0.24 51.06±0.77 47.82±0.76 14.74±0.39

RECTBLUE 70.93±0.89 58.73±0.85 72.09±0.53 621.52±0.34 34.78±0.21 58.88±0.77 54.29±0.77 24.55±0.49

AlphaEditBLUE 94.10±0.46 81.20±0.65 64.53±0.56 620.79±0.31 38.81±0.21 76.68±0.65 70.16±0.73 23.00±0.47

Table 7: Comparison of different editing methods on CounterFact and ZsRE datasets when editing
LLaMA-2-13B.

Method CounterFact Dataset ZsRE Dataset
Efficacy Generalization Specificity Fluency Consistency Efficacy Generalization Specificity

AlphaEdit 52.30±2.19 48.95±1.73 50.53±2.21 408.92±2.36 0.22±0.01 52.31±1.44 37.68±1.49 9.11±0.60

AlphaEditBLUE 78.75±1.79 69.53±1.81 44.27±1.76 513.49±3.09 22.10±0.57 53.01±2.32 41.32±1.52 9.18±0.60

MEMIT 79.20±1.77 65.94±1.79 41.53±1.75 378.10±4.01 14.44±0.59 50.11±1.46 34.70±1.47 9.71±0.61

MEMITBLUE 79.60±1.78 66.00±1.81 41.28±1.65 384.23±3.50 14.65±0.59 51.07±1.45 37.13±1.52 9.07±0.60

states compared to the original baselines. This indicates that BLUE can mitigate the hidden state
shifts caused by locate-then-edit methods, suggesting that the BLUE-enhanced baselines introduce
fewer side effects to the original model.

I Efficiency Analysis

To evaluate the time and peak memory required for a single edit, we perform 300 sequential edits with
a batch size of 1 and record the editing time and peak memory for each edit. The average peak memory
consumption and editing time per instance for each method are reported in Table 8 and Figure 12. In
terms of peak memory, BLUE achieves higher memory efficiency than the original methods. This is
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Figure 10: The distribution of hidden states in pre-edited and post-edited GPT-J (6B).
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Figure 11: The distribution of hidden states in pre-edited and post-edited GPT2-XL.

intuitive: by discarding residual distributions and instead computing residuals only for the first and
last key layers, BLUE reduces the memory overhead associated with residual distribution. Regarding
editing time, with the exception of PRUNEBLUE on Llama-3 (8B)—which incurs a slightly higher
editing time than its original counterpart—BLUE-enhanced methods consistently achieve lower
average editing times across different models and datasets. These findings demonstrate that BLUE
not only improves the editing performance of locate-then-edit methods, but also enhances their
editing efficiency.

J Experimental validation of the theorem and lemma

In this section, we experimentally validate the correctness of the theorem and lemma presented in
Section 4.2. In this section, we choose llama3 (8B) as the target model for editing, and use MEMIT
and AlphaEdit as the editing methods.

J.1 Experimental verification of Theorem 4.1

According to Theorem 4.1, the weight shift error increases with the batch editing size. To verify this,
we conduct batch editing experiments with 500, 1000, 5000, and 10000 edits on the CounterFact and
ZsRE datasets. The results are shown in Figure 13. It can be clearly observed that on both datasets,
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Figure 12: Average Editing Time per Instance for Different Methods

Table 8: Peak memory usage of both BLUE and locate-then-edit

Method CounterFact ZsRE
Llama-3 GPT-J GPT-2XL Llama-3 GPT-J GPT-2XL

AlphaEdit 36.09 30.43 7.14 36.09 30.43 7.43
AlphaEditBLUE 35.10 28.92 7.24 35.43 28.92 7.49
MEMIT 37.07 31.68 7.34 37.07 31.68 7.34
MEMITBLUE 36.42 30.67 7.30 36.42 30.67 7.38
RECT 37.07 31.68 7.34 37.07 31.68 7.34
RECTBLUE 36.42 30.67 7.22 36.42 30.67 7.37
PRUNE 38.17 33.18 7.53 38.17 33.18 7.53
PRUNEBLUE 36.85 30.67 7.30 36.85 30.67 7.46

the overall performance gap between BLUE-enhanced methods and non-enhanced methods increases
with the batch size, especially in terms of efficacy and generalization. Although not all metrics show
a strictly increasing performance gap with larger batch sizes—for example, on the Consistency metric
of the CounterFact dataset, the performance gap for 5000 batch edits is greater than that for 10000
edits—the overall trend still empirically supports the correctness of Theorem 4.1.

J.2 Experimental verification of Lemma 4.3

According to Lemma 4.3, the weight shift error increases with the number of sequential edits. To
verify this, we conduct sequential editing experiments with a batch size of 1, using 100, 500, 1000,
and 5000 edits. As shown in Figure 14, similar to the batch editing results, the overall trend on both
datasets shows that the performance gap between the BLUE-enhanced methods and the original
methods increases with the number of sequential edits. For instance, on the CounterFact dataset,
the performance gap in efficacy and generalization between AlphaEdit and AlphaEditBLUE increases
significantly when the number of edits reaches 5000. Although specificity and consistency do not
exhibit this trend, the patterns observed in efficacy and generalization still support the conclusion
that weight shift error increases with the number of sequential edits, as efficacy and generalization
directly reflect the impact of the editing methods.

24



1000050001000500
Num Batches

90

92

94

96

98

100

Ef
fic

ac
y

CounterFact - Efficacy

1000050001000500
Num Batches

70

75

80

85

90

95

Ge
ne

ra
liz

at
io

n

CounterFact - Generalization

1000050001000500
Num Batches

80

82

84

86

88

90

Sp
ec

ifi
cit

y

CounterFact - Specificity

1000050001000500
Num Batches

624

625

626

627

628

Fl
ue

nc
y

CounterFact - Fluency

1000050001000500
Num Batches

30

31

32

33

Co
ns

ist
en

cy

CounterFact - Consistency

AlphaEdit AlphaEditBLUE MEMIT MEMITBLUE

(a) CounterFact

1000050001000500
Num Batches

84

86

88

90

92

94

96

Ef
fic

ac
y

ZsRE - Efficacy

1000050001000500
Num Batches

80

82

84

86

88

90

92

94

Ge
ne

ra
liz

at
io

n

ZsRE - Generalization

1000050001000500
Num Batches

31.5

32.0

32.5

33.0

Sp
ec

ifi
cit

y

ZsRE - Specificity

AlphaEdit AlphaEditBLUE MEMIT MEMITBLUE

(b) ZsRE

Figure 13: Performance Variation of Model Editing with Batch Edits on CounterFact and ZsRE
Datasets

K BLUE in the Locate-then-edit Method with Square Root Residual
Distribution

Some locate-then-edit methods (e.g., PMET [21]) use a square root residual distribution instead
of an even spread. They claim that the square root residual distribution can mitigate information
loss during residual distribution. Since BLUE is designed for locate-then-edit methods with even
residual distribution, we do not consider such methods as baselines. Nevertheless, we attempt to
enhance PMET with BLUE. The results of sequential batch editing are shown in Table 9. PMETBLUE
exhibits a significant performance improvement when editing Llama3 on sequential model editing
task, while its performance gains in other scenarios are relatively limited. We speculate that this may
be because PMET’s use of square root distribution retains more editing information compared to even
distribution, leading to the limited improvement of BLUE. Additionally, PMET incorporates a self-
attention module during editing optimization but only edits the FFN weights when updating model
parameters. This might result in BLUE’s two-layer update being insufficient to fully integrate the
editing information into the model weights. Nevertheless, BLUE demonstrates notable improvements
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Figure 14: Performance Variation of Model Editing with Sequential Edits on CounterFact and ZsRE
Datasets

in the locate-then-edit approaches with residual even distribution, indicating that it remains applicable
to most locate-then-edit methods.

L Limitations

As a general strategy applicable to locate-then-edit methods, BLUE enhances various aspects of
the locate-then-edit paradigm. Extensive evidence demonstrates that BLUE improves the editing
performance of locate-then-edit methods, preserves the original model’s capabilities post-editing, and
alleviates the shift in hidden representations introduced by editing. Moreover, with updates applied
to only two layers, it also improves editing efficiency. However, the improvement of BLUE in the
locate-then-edit method for editing reasoning knowledge (e.g., MQuAKE [11]) remains to be verified,
and we leave it as future work..
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Table 9: Comparison of PMETBLUE with original PMET on the sequential batch and batch model
editing task. We color all results that are actually enhanced by BLUE in red.

Method Model Counterfact ZsRE

Efficacy↑ Generalization↑ Specificity↑ Fluency↑ Consistency↑ Efficacy↑ Generalization↑ Specificity↑
Sequential Model Editing Task

Pre-edited

L
la

m
a3 7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

PMET 99.47±0.26 90.78±0.84 76.07±0.92 619.62±0.66 32.45±0.41 94.97±0.45 89.98±0.75 32.95±0.81

PMETBLUE 99.57±0.24 94.13±0.69 83.77±0.77 626.26±0.51 32.29±0.38 96.07±0.36 91.73±0.66 32.66±0.81

Pre-edited
G

PT
-J 16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±0.37 25.79±0.25 27.42±0.53

PMET 99.73±0.18 93.93±0.70 72.32±0.96 618.82±0.62 41.77±0.45 99.07±0.26 96.10±0.56 28.79±0.93

PMETBLUE 99.57±0.24 92.82±0.76 77.61±0.92 620.02±0.59 39.19±0.43 99.16±0.25 87.37±1.01 28.13±0.93

Pre-edited

G
PT

2-
X

L 22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

PMET 95.80±0.72 87.27±1.00 62.66±1.06 542.47±2.49 31.56±0.54 93.22±0.69 87.06±0.96 25.58±0.91

PMETBLUE 95.30±0.76 85.57±1.08 67.93±0.99 603.03±1.37 37.20±0.42 89.32±0.91 80.53±1.19 26.74±0.92

Batch Model Editing Task

Pre-edited

L
la

m
a3 7.02±0.50 9.44±0.49 89.73±0.36 630.00±0.22 24.21±0.17 35.67±0.58 34.81±0.58 31.83±0.44

PMET 97.02±0.33 86.22±0.58 77.72±0.48 624.68±0.28 31.84±0.21 83.49±0.53 80.73±0.56 31.94±0.43

PMETBLUE 93.64±0.48 81.52±0.67 84.63±0.40 627.81±0.24 30.62±0.20 85.92±0.50 82.83±0.54 32.23±0.44

Pre-edited

G
PT

-J 15.20±0.70 17.70±0.60 83.50±0.50 622.40±0.30 29.40±0.20 26.40±0.60 25.80±0.50 27.00±0.50

PMET 99.57±0.13 92.48±0.44 71.41±0.52 620.31±0.31 40.79±0.24 89.24±0.46 82.69±0.59 25.51±0.49

PMETBLUE 97.65±0.59 87.24±1.13 73.32±1.06 616.85±0.65 38.14±0.46 80.77±1.24 67.58±1.45 28.00±1.01

Pre-edited

G
PT

2-
X

L 21.82±0.81 24.16±0.72 78.32±0.55 626.78±0.23 31.37±0.20 22.17±0.52 21.28±0.51 24.20±0.48

PMET 81.14±0.77 70.45±0.79 66.42±0.56 622.16±0.32 37.09±0.22 60.25±0.78 56.29±0.78 23.95±0.49

PMETBLUE 67.09±0.92 54.48±0.87 73.48±0.54 626.67±0.25 35.05±0.21 57.15±0.77 51.99±0.77 25.01±0.48

M Impact Statements

The model editing studied in this paper aims to efficiently update outdated or incorrect knowledge in
large language models (LLMs). While the original intention behind such techniques is beneficial,
there is also potential for misuse, such as injecting false or malicious content into LLMs. Therefore,
we caution readers not to place blind trust in the content generated by LLMs.
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