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Abstract

Vision-Language Models (VLMs) often generate plausible but incorrect responses
to visual queries. However, reliably quantifying the effect of such hallucinations in
free-form responses to open-ended queries is challenging as it requires visually ver-
ifying each claim within the response. We propose Programmatic VLM Evaluation
(PROVE), a new benchmarking paradigm for evaluating VLM responses to open-
ended queries. To construct PROVE, we provide a large language model (LLM)
with a high-fidelity scene-graph representation constructed from a hyper-detailed
image caption, and prompt it to generate diverse question-answer (QA) pairs, as
well as programs that can be executed over the scene graph object to verify each
QA pair. We thus construct a benchmark of 10k challenging but visually grounded
QA pairs. Next, to evaluate free-form model responses to queries in PROVE, we
propose a programmatic evaluation strategy that measures both the helpfulness
and truthfulness of a response within a unified scene graph-based framework. We
benchmark the helpfulness-truthfulness trade-offs of a range of VLMs on PROVE,
finding that very few are in-fact able to achieve a good balance between the two.
Project page: https://prove-explorer.netlify.app/.

1 Introduction
Vision-language models (VLMs) have emerged as an effective solution for generating responses to
queries about visual content. However despite impressive progress (and much like their LLM-cousins)
VLMs are still known to hallucinate – to generate plausible but incorrect answers that are either
inconsistent or unverifiable against the provided visual context. This crucial shortcoming has the
potential to erode trust in such systems and has already begun to attract research [24, 13, 7, 10] and
regulatory [3] interest, particularly as using such models as the “foundation” of various high-stakes
applications becomes imminent [4].

This has led to a flurry of research on reliably benchmarking VLMs by measuring not just the
helpfulness but also the truthfulness of responses [19, 11, 22, 9, 16, 12, 20, 14, 13, 7]. Existing bench-
marks either evaluate the model’s discriminative responses to existence-based queries, or generative
responses to open-ended questions. Discriminative benchmarks comprise of close-ended questions
(typically yes/no questions) that ease evaluation but do not simulate real-world use. Generative
benchmarks, on the other hand, include open-ended queries (eg. “describe this image”) but resort
to open-ended evaluation, using external models (typically a proprietary LLM) to score responses
given some context (typically ground-truth image annotations). However we find that in several
such benchmarks, the context provided is completely insufficient to judge if the response contains
hallucinations. For example, for a query like "How color is the dog?" and with a ground truth answer
"brown", a VLM might respond with "The dog has a dark brown shiny coat". This response contains
several details ("dark" and "shiny") that cannot be easily verified against the ground-truth by an LLM.
Furthermore, the absence of a clear scoring rubric coupled with the sensitivity of LLMs to minor
prompt differences, often leads to inconsistent and arbitrary scores – see Fig. 1.

We propose PROVE , a new benchmark for evaluating VLM hallucinations that performs reliable and
interpretable close-ended evaluation of responses to diverse, grounded, and unambiguous open-ended
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def execute_function(G):
    entities = G.get_entities()
    for entity in entities:
        if entity == “puppy”:
            attrs = G.get_attributes(entity)
            return attrs.get(“count”, “”)
    return None

assert execute_function(G) == 4 # Verify
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Figure 1: Top. Existing VLM benchmarks either limit query-types to easy-to-evaluate but restrictive
binary questions, or use external LLMs to generate open-ended questions (without verifying their
validity) and score answers (often without complete image context or a clear scoring rubric). Bottom.
We propose PROVE, a new benchmark that constructs high-fidelity scene-graph representations from
hyper-detailed image captions, that are queried via an LLM-generated program to verify a free-form
generated question-answer pair. At test-time, we perform an interpretable and close-ended evaluation
of the helpfulness and truthfulness of VLM responses by comparing scene-graphs.

questions. To do so, we first use hyper-detailed image captions to construct a high-fidelity scene
graph representation of the image. We then use an LLM to generate a diverse set of open-ended
question-answer pairs that test a range of model capabilities while simulating real-world use. To
ensure that the questions are grounded in visual content, we prompt an LLM to generate Python code
that can be executed to verify the QA pair (using predefined scene graph functions). We only retain
the QA pairs that we can programmatically verify. We thus construct a benchmark of 10k examples
that we use to perform close-ended and interpretable evaluation of the helpfulness and truthfulness of
responses from a range of VLMs. We demonstrate the superiority of PROVE over existing benchmarks
in terms of reliability, interpretability, and scalability.

2 Related work

Discriminative benchmarks generate a series of binary questions to verify the presence (or absence)
of various entities (or distractors) in the image. Early benchmarks like POPE [12] limited their
scope to object entities annotated by humans or external off-the-shelf models [25], while generating
distractor entities using various strategies. Follow-up works expand the scope to additionally evaluate
responses to negative presence queries [16] or using an LLM to generate a broader range of existence-
based questions covering objects and their attributes [9]. However, while the binary questions that
typify such benchmarks simplify evaluation, they do not realistically simulate in-the-wild use.

Generative benchmarks instead evaluate model hallucinations in response to free-form questions.
CHAIR [19] measures the precision and recall of entities mentioned in a generated image description
against the ground truth. HaELM [23] additionally uses a large language model (LLM) to judge
generations, whereas M-HalDetect [7] has humans annotate hallucinations in model generated
descriptions and a predictive model. Recently, AMBER [22] combines a POPE style evaluation with
a generative evaluation over an open-ended split. While these benchmarks are indeed more realistic,
they still restrict the query instruction to image captioning (“Describe this image in detail.”) and do
not stress-test performance in response to truly free-form queries.

Most recently, a few benchmarks with truly open-ended queries have been proposed [20, 13, 11, 14],
which either hand-design or use an LLM to generate free-form questions, and use external models
to judge the corresponding responses. However, these too have limitations: MMHal [20] and
HallusionBench [13] rely on a series of off-the-shelf models which introduce noise. GAVIE’s [14]
reliance on dense captions and bounding boxes leads to a majority of questions querying localized
image regions and spatial relationships, many of which have unnatural-sounding responses (eg.
mentioning image coordinates). Finally, GPT-4-based evaluation is both expensive and confounded
by the model’s own limitations.
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Q.   How many wooden boards make up the pallet?
A. The pallet is made up of six wooden boards.

def verify(sg): 
    for entity in sg.get_entities():
        if 'boards' in entity:

            attributes = sg.get_attributes(entity)
            if 'count' in attributes:
                return attributes['count’] 
    return None 
# Progam answer: ==6 

Q. Describe the state of the beer bottle caps.
A. The beer bottle caps are multi-colored, grouped together, and 
placed in a certain way to depict a crab.

def verify(sg): 

    for entity in sg.get_entities(): 
        if 'beer bottle caps' in entity:
            return sg.get_attributes(entity).get('state', ’’)
    return None

# Progam answer: placed in a certain way,depict a 
crab,daytime,slightly angled down,multi-colored,grouped
together,many different types,medium close-up front view 

Q. What is the position of the crab's arms relative to its body?
A. The crab's arms are above its body.

def verify(sg):
    for entity in sg.get_entities():
        if "crab's arms" in entity:

            relations_out = sg.get_outgoing_relations(entity)
            if "crab's body" in relations_out and 'above' in 
relations_out["crab's body"]['spatial’]:
                return 'above its body’
    return None

# Progam answer: above its body 

Figure 2: The PROVE benchmark (v0.1). Left. Sunburst visualization of the first 4 question words.
Right. Example scene-graph, QA-pairs, and verification programs generated for a sample image.

3 Progammatic VLM Evaluation (PROVE)

Vision-language models are trained to respond to a question Q about an image I with a ground-truth
answer A. Let mθ(.) denote a VLM model trained on a large dataset of such (I, Q, A) triplets.
At test time, we wish to evaluate the model response Â=mθ(Q, I). Specifically, while prior work
typically evaluates either the response’s correctness (is Â=A) or truthfulness (is p(Â|I) > threshold),
we propose a unified framework that jointly evaluates both and captures the tradeoff between the two.

To do so, we first download image-caption pairs (I, C) from the recently proposed DOCCI [17]
dataset. This dataset contains 15k manually curated images with comprehensive human-annotated
descriptions. DOCCI is particularly well-suited source for VLM evaluation because: i) its captions
are extremely detailed, with a higher median caption length than competing datasets, which correlates
with high image recall ii) its comprehensive and rigorous 3-stage human annotation protocol leads to
high-fidelity captions that are suitable to test a range of image understanding challenges including
spatial reasoning, counting, text rendering, and compositionality, and iii) its images are newly curated
and so are truly held-out data for existing VLMs.

Building a robust scene-graph representation. Following Cho et al. [6], we first prompt an LLM
to extract entity (<entity>), attribute (<entity, attribute>), and relationship (<entity_1,
attribute, entity_2>) tuples from the image caption, that we use to construct a scene graph
representation g(C) as a directed graph with attributed entities as nodes and relationships as edges.
The scene graph is implemented as a Python class with methods to query the graph for its entities,
attributes, and relationships, as well as to extract and describe subgraphs in natural language.

Generating open-ended questions with verifiable answers. Next, we prompt a pre-trained LLM to
generate challenging, diverse, and unambiguous question-answer (QA) pairs from a provided caption
and scene graph, alongwith an accompanying Python program that accepts the scene graph as input
and can be executed to verify the generated QA pair [8, 21]. The prompt includes a few examples of
such scene-graph and QA+program input/output pairs to guide the model. Finally, we execute the
generated program on the scene graph as a unit test to verify the QA pair – if the program fails or
returns an answer that is semantically different from the ground truth answer, it is discarded. We also
keep track of the subgraph visited by the program for each succesful verification, the size of which
we use as a proxy for the complexity of the QA pair. We repeat this procedure to create a benchmark
of open-ended image+QA pairs {(Ii,Qi,Ai)}Ni=1 that are amenable to closed-form evaluation.

Dataset statistics. We now present some statistics about PROVE v0.1, which comprises of 10k QA
pairs generated from 908 image-caption pairs from the DOCCI test set, with an average of 11 QA
pairs per image. These are obtained after filtering out QA pairs with invalid verification programs
(18.9% of the total generated) or whose programmatic answers differ semantically from the ground
truth answer (9.9% of the total generated). Questions average 10.1 words in length whereas answers
average 11.8 words. In Fig. 2 we present a sunburst visualization of the first 4 words in the questions;
as seen, our benchmark is diverse and spans a wide range of question types.
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Method Simple Complex Full
H T Avg. H T Avg. H T Avg.

Phi-3 Vision (4B) [1] 60.6 67.7 64.1 56.8 65.3 61.0 60.0 67.3 63.6
LLaVA-1.5 (7B) [15] 60.9 68.1 64.5 57.1 66.4 61.7 60.3 67.8 64.1
GPT-4o-mini* [2] 61.9 63.8 62.9 60.4 63.8 62.1 61.7 63.8 62.7
GPT-4o* [2] 68.5 66.8 67.7 63.9 65.5 64.7 67.7 66.6 67.2

Table 1: Results of benchmarking four different VLMs on PROVE v0.1 (*=closed source model).

Q: What kind of material is used for the horizontal bars that 

support shapes above the entryway?

(A: The material used for the horizontal bars that support shapes 

above the entryway is metal.)

GPT-4o: The horizontal bars that support the star-shaped 

structures above the entryway appear to be made of metal, likely 

steel or aluminum.

Score: 100%

Q: What do the clouds reflect off of in the scene?

(A: The large cumulus clouds reflect off of the large windows 

above the double doors.)

GPT-4o: The clouds are reflected off the glass windows and 

doors of the building in the scene.

Score: 85% (missing: <double doors>)

Q: What color is the floor on the left side of the image?

(A: The floor on the left side of the image is light gray.)

GPT-4o: The floor on the left side of the image is gray.

Score: 100%

Q: Which text is rendered on the fire extinguisher? 

(A: The text rendered on the fire extinguisher includes 

"INSTRUCTIONS", "1 PULL RING PIN", "USE / EXTINGUISHER / 

UPRIGHT / SQUEEZE LEVER", "2 START FROM / 8 FEET BACK / 

AIM AT BASE / OF FIRE”)

GPT-4o: The text on the fire extinguisher includes instructions for 

use. Here is the visible text: **INSTRUCTIONS** 1. PULL RING 

PIN. 2. START FROM 8 FEET BASE OF FIRE. 3. USE 

EXTINGUISHER LEVER. 4. SWEEP SIDE

Score: 75% (missing: <fire ex., “START FROM 8FT BACK”>

Figure 3: GPT-4o Performance Analysis. Left. Score by question type. Right. Example responses.

4 Benchmarking VLMs with PROVE

Closed-form response evaluation. After ensuring the validity of the generated QA pairs, we proceed
to evaluating each VLM response Â=mθ(Q, I). We first extract tuples and build a scene graph
representation g(Â). We then measure response helpfulness H(.) based on recall of the ground
truth answer, by computing the fraction of ground truth answer tuples that are entailed by the model
response (using a text-entailment model [18]). We also report truthfulness T(.) by computing response
precision i.e. the fraction of response tuples that are entailed either by the original caption or the
image itself (using a visual entailment model [5])1 Let |= denote entailment. We define:

H(Â) =
|{t ∈ g(A) | Â |= t}|

|g(A)|
; T(Â) =

|{t ∈ g(Â) | C |= t ∨ I |= t}|
|g(Â)|

(1)

We report both these metrics as well as their average across the full dataset as well as simple (requiring
visiting <=3 nodes of the graph to answer) and complex subsets. Note that the two metrics are not
necessarily correlated – a response can be helpful (by answering the query) but not entirely truthful
(might contain hallucinations), and vice versa. Naturally, different models and mitigation strategies
may lead to varying tradeoffs between the two – an aspect that PROVE is uniquely suited to analyze.

Findings. Table 1 presents evaluation results. We compare the performance of a few representative
VLMs of varying sizes. We find that while strong models such as GPT-4o [2] do indeed perform best
across data splits, this is driven by significantly higher helpfulness – less powerful models such as
LLaVA-1.5 [15] in fact score higher on truthfulness. In Fig. 3 we analyze fine-grained performance
and find that GPT-4o’s performance is particularly strong on questions that require reasoning about
colors (“what color”) and spatial relationships (“where is”) but poorer on verification (“Can you”,
“Is there”). Finally, we also conduct a human study to evaluate the question relevance and answer
correctness of QA pairs in our benchmark. Overall, out of 794 QA pairs, only 1.4% of questions
are judged to be irrelevant to the image, 3.5% of answers are judged to be incorrect, and 0.6% are
marked as both. We will focus on addressing these issues in subsequent versions of PROVE.

1This reduces false-positive hallucination detactions, as no caption can capture every aspect of an image.
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