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Abstract—Transformer neural networks require a large
amount of labeled data to train effectively. Such data is often
scarce in electroencephalography, as annotations made by medi-
cal experts are costly. This is why self-supervised training, using
unlabeled data, has to be performed beforehand. In this paper, we
present a way to design several labeled datasets from unlabeled
electroencephalogram (EEG) data. These can then be used to
pre-train transformers to learn representations of EEG signals.
We tested this method on an epileptic seizure forecasting task on
the Temple University Seizure Detection Corpus using a Multi-
channel Vision Transformer. Our results suggest that 1) Models
pre-trained using our approach demonstrate significantly faster
training times, reducing fine-tuning duration by more than 50%
for the specific task, and 2) Pre-trained models exhibit improved
accuracy, with an increase from 90.93% to 92.16%, as well as
a higher AUC, rising from 0.9648 to 0.9702 when compared to
non-pre-trained models.

Index Terms—self-supervised learning, electroencephalogram,
pre-training datasets, transformers, epileptic seizure forecasting.

I. INTRODUCTION

Transformer neural networks distinguish themselves from
other deep learning architectures thanks to their self-attention
mechanism. This feature allows these networks to focus on
different parts of the input sequence as they process it, facili-
tating the capture of long-range dependencies and contextual
relationships. On top of this, this type of network also operates
on the entire sequence of input data at once, allowing for
parallelization and improved efficiency. These traits however
come at a price: transformer-based models require a substantial
amount of annotated data during training to avoid overfitting
[1,2].

While transformers have primarily found their footing in
Natural Language Processing (NLP) [1] and Computer Vision
(CV) [3], researchers have recently started extending their
capabilities to electroencephalogram (EEG) applications, in-
cluding emotion recognition [4], motor imagery [5,6], and
epileptic seizure forecasting [7,8]. However, unlike for NLP
and CV, which have a lot of labeled data available to train their
models, quality annotated data in the medical field is scarce
and has a high acquisition cost, since it requires an expertise
exclusive to medical practitioners.

To address this challenge, Self-Supervised Learning (SSL)
emerges as a pivotal approach. SSL harnesses the available
unlabeled data in a specific field and generates pseudo-labels
for it through some of its intrinsic characteristics. The model

is then pre-trained on this “self-labeled” data, enabling it to
acquire some fundamental data representation. Subsequently,
these pre-trained models can be fine-tuned for specific appli-
cations using a small sample of labeled data, outperforming
their non-pre-trained counterparts [9]-[11].

In this article, we present a methodology to exploit the
huge amount of unlabeled EEG data available by designing
three intuitive and interpretable pre-training tasks. We bench-
mark these pre-trainings by comparing their contributions to
the performances of Hussein et al’s Multi-channel Vision
Transformer (MViT) [7] on an eyes open/eyes closed (EO/EC)
classification dataset. Finally, we test the performance im-
provement of the best pre-training on an epileptic seizure
forecasting task, leveraging the Temple University Hospital
Seizure Detection Corpus (TUSZ) [12].

II. PRE-TRAINING DATASETS

We collected two datasets to demonstrate the capabilities
of the proposed methods. Their specifications are described in
subsection II-A. The main contribution of this article, namely
the processes by which unlabeled data from these datasets
is converted into useful pre-training data, is described in
subsection II-B.

A. The initial datasets

1) The EO/EC dataset: This dataset features a healthy male
subject in the 20-25 age category. It includes an 11 minutes, 32
channels EEG signal recorded at 1 kHz. Annotations comprise
two labels: EO when the subject has his eyes open while his
EEG is being recorded, EC when his eyes are closed. Given
its small size and the simplicity of the task, the EO/EC dataset
was used for experimenting with the different pre-training
methods to identify the most effective one with statistically
significant results.

2) The TUSZ dataset: The TUSZ database is part of a
larger EEG corpus created to facilitate EEG processing tool
development [13]. TUSZ comprises EEG signals from 579
patients in 1175 sessions, including 352 sessions with seizures.
Annotations exploited in this paper consist of the start and
end times of seizures during the session, although more
detailed information is available. Specifically, we leveraged
these elements to generate our classification labels, that is, PI
for pre-ictal, and II for inter-ictal. The first label designates
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Fig. 1. Visualisation of the three EEG signals alterations for the proposed pre-training tasks. Alteration #1 replaces channels of the EEG with white noise,
alteration #2 shuffles the order of the channels, and alteration #3 mixes two randomly paired EEG samples together by replacing the channels of the first

sample by the channels of the second one and vice versa.

EEG signals present from a few minutes to a few seconds
before a seizure, while the second is used to describe patterns
that do not immediately precede or follow a seizure. Being able
to segregate both labels therefore allows to forecast epileptic
seizures.

Four unipolar EEG montages were employed in the dataset,
two using an average reference and the other two including
earlobe-referenced electrodes. Half of the montages use 19
electrodes, and the rest use 21, all following the 10-20 system
[14]. In this paper, the TUSZ corpus is employed for bench-
marking against a literature-standard task and evaluating the
impact of pre-training on model performances in a practical
scenario.

To simulate the scarcity of labeled data, we randomly
excluded 70% of the labels on both datasets. This share of
unlabeled data is the one used to generate the pre-training
datasets. The remaining 30% of labeled data is reserved for
fine-tuning on the respective specific tasks.

B. Altering the EEG signals

As previously explained, the goal of a pre-training task is to
draw the model to already internalize some key features of the
kind of data it is being trained on. Doing so allows the initial
weights of the model to be closer to the ones minimizing the
loss function when training on the useful task, saving time and
increasing performances [10,11]. Keeping this idea in mind,
we came up with three different ways to teach EEG properties
to a deep learning model.

All three proposed methods can be summarized as binary
classification tasks, distinguishing between "EEG” and “non-
EEG” multi-channels signals. More specifically, we collected
unlabeled EEG data that we split in two halves, keeping one
part as the control, real EEG, and altering the other part to
become the “non-EEG” signal. Three relevant alterations have
been designed so far, characterizing the three methods depicted
underneath and illustrated in Fig. 1.

1) White noise replacement: In this first type of modifi-
cation, n random channels of the original EEG are replaced
with Gaussian white noise. The number of replaced channels
n is a random integer varying uniformly between 1 and
hyperparameter N for each sample generated. It is expected
that a higher number of channels affected leads to more ease
for the model at recognizing the “non-EEG” samples. N
therefore controls the “difficulty” of the task (the closer NV
is to 1, the harder the classification becomes), and a value
of 5 has been arbitrarily selected. The intuition behind this
modification is that, unlike with EEG signals that have a power
spectral density which tends to decrease with the frequency
[15], the spectral density of white noise remains constant
across all frequencies. Being able to part between white noise
and EEG frequency behaviors therefore implies that the model
has integrated such behaviors.

2) Shuffling: In this modification, all the channels are
conserved, but their positions are permuted. This operation
amounts to shuffling the locations of the different EEG
probes for the model, and it therefore has to learn the inter-
dependencies between the channels to classify the data as
shuffled or not. Channels in EEG are correlated proportionally
to the distance between them. That is, the further they are
located from one another, the less correlated they are [16].

3) Mixing: This third method takes two EEG samples as
input and selects n € [1, N] channels from the first input
to replace channels in the second input and vice versa. The
objective is to have channels that are not correlated to any
other channel, although having the same behavior as normal
EEG signals. Like with channel shuffling, this classification
task aims at teaching the channels correlations to the model.
Once again, the hyperparameter N has arbitrarily been set to 5
(in this case, the further away N is from 7cpanners/2 = 16 for
EO/EC and 10 for TUSZ, the more difficult the task becomes,
as less uncorrelated channels are potentially identifiable).




III. DESIGN OF THE MODEL
A. Transformer architecture

We selected the Multi-channel Vision Transformer (MViT)
architecture from Hussein et al. [7] to benchmark our pre-
trainings. This architecture, designed specifically for EEG
classification, was adopted because its configuration makes
it more parameter extensive than a majority of the other
approaches, meaning that this model would benefit the most
from our contribution compared to less bulky models. The
MVIT relies on Dosovitskiy et al.’s Vision Transformer [3],
which performs image classification by partitioning an image
into non-overlapping patches, flattening them, and feeding
them through an encoder after positional embedding. The
encoder output is then processed by a Multi-Layer Perceptron
(MLP) to classify the image.

The MViT operates in a similar manner, except that the sin-
gle encoder is replaced by an array of independent encoders,
each dedicated to process one of the EEG channel. After these
encoders have performed their individual tasks, their outputs
are concatenated together before passing through the MLP
classifier. As this model only works with two-dimensional
data, the 1D EEG signal must be converted. This transforma-
tion is achieved in [7] using the Continuous Wavelet Transform
(CWT), a mathematical technique that decomposes the signal
into its various frequency components at different time scales
[17]. This results in a time-frequency (2D) representation of
the EEG data. Fig. 2 provides a visual representation of the
MVIT architecture, where EEG scalograms (i.e., the output
of the CWT) serve as input, and the model predicts their
respective classes.

B. Model specifications

1) Scales: To adapt to the size and purpose of each
dataset, we designed two models of different scales from the
architecture previously described. Their parametrizations are
summarized in Table I. The EO/EC model was designed to be
considerably smaller than its TUSZ counterpart for two rea-
sons. First, reducing the model size allows to train more copies
of it in a limited amount of time, resulting in the possibility to
achieve significance testing on its performances. The task of
eyes open and eyes closed classification is also rather simple
and performed on a limited dataset, such that training a more
consequent model would induce more overfitting.

2) Optimizer and regularization: Both models underwent
training using an AdamW optimizer [18] set with parameters
B = 09, B = 0.999, weight decay Ayeights = 1074,
and fixed learning rate [, = 10~%. Further regularization was
applied in the form of dropout with a rate of 0.5 in the decision
head and 0.1 inside the encoders.

IV. PERFORMANCES ASSESSMENT

A. Benchmarking the pre-trainings

To identify the most effective data alteration method among
the three discussed in Section II-B, we utilized each of them to
pre-train our MViT model on the EO/EC dataset. Leveraging
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Fig. 2. Schematic representation of the MViT architecture for EEG classifi-
cation. The model ingests scalograms of individual EEG channels, processes
them through parallel encoders, and fuses their features for final classification
via a MLP. Scalograms are generated using the CWT to provide a time-
frequency representation of the EEG data.

TABLE I
HYPER-PARAMETERS RELATED TO THE MODEL ARCHITECTURE AND THE
NUMBER OF WEIGHTS THIS CONFIGURATION YIELDS.

Hyper-parameter EO/EC TUSZ
Input tensor shape [32, 25, 8] [20, 25, 40]
# encoders in parallel 32 20

# transformer layers in encoder 1 8

# attention heads per layer 2 4

Size of hidden and output layers

(Transformer MLP) (16, 8] [80, 401
Size of hidden layers (Decision head) [128, 64] [512, 256]
Weights EO/EC TUSZ

# trainable weights in parallel encoder 28 160 5 248 000
# trainable weights in decision head 827 665 10 372 177
# total trainable weights 855 825 15 620 177

the dataset’s small size, we conducted our experiment 17
times, starting with a different seed for each occurrence. This
repetition allowed us to establish the significance of the results
through statistical testings.

In each experiment, we employed three versions of the same
model, all initialized with identical random weights. Each
model was pre-trained on one of the three datasets created
with the data alterations for 40 epochs. Subsequently, fine-
tuning for the EO/EC classification task continued for an
additional 40 epochs. We introduced a control model that
underwent no pre-training, only fine-tuning for 40 epochs,
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Fig. 3. Pre-training performances assessment methodology on the designed
pre-training datasets. Starting with five copies of a same untrained model,
four of them are pre-trained separately with one of the proposed method for
40 epochs, while the fifth model is not pre-trained. All models are then fine-
tuned on the specific task. This operation is repeated /N times (in this paper,
N = 17) to account for the variability between the experiments.

commencing with the same initial weights as the other models.
Additionally, we examined a fifth model with hybrid pre-
training, consisting of 20 epochs of training on the dataset with
white noise alteration, followed by 20 epochs on the dataset
with channel shuffling alteration. We hypothesized that this
hybrid pre-training would impart a broader range of features
to the model, as white noise replacement focuses on teaching
frequency content, while channel shuffling emphasizes channel
correlations. A schematic representation of the pre-training
performance assessment methodology is presented in Fig. 3.

Four performance metrics were extracted at the end of
each experiment, following model fine-tuning. These metrics
include 1) the epoch of convergence (EOC), which denotes
the epoch with the lowest validation loss; 2) the minimum
validation loss; 3) the validation accuracy at the EOC; and 4)
the validation area under the curve (AUC) at the EOC.

B. Performances comparison in practical scenario

Following the determination of the best pre-training method
detailed in the previous section, our next step is to assess its
effectiveness in a practical scenario, specifically, forecasting
epileptic seizures. The objective here is to train our algorithm
to distinguish between pre-ictal EEG patterns (revealing an im-
minent seizure) and inter-ictal EEG patterns (i.e., no imminent
seizure) recorded from epileptic patients.

To assess the performance gains attributed to our proposed
pre-training, we undertake a comparison between two identical
models, each initialized with different weight configurations.
The first model, referred to as "NPT” for ”Non-Pre-Trained,”
begins with random weights initialization. The second model,
termed “PT” for ”Pre-Trained,” undergoes pre-training on the
most performant of our designed datasets. The weights from
the model’s epoch of convergence (EOC) during pre-training
are then adopted as the initial weights for the primary task.

Both models are fine-tuned using the same training and
validation data splits from the TUSZ dataset, and we employ
an early stopping mechanism with a patience of 5 epochs to
ensure that the loss of both models converges. As in section

Model performances on the EO/EC task after different pre-
trainings

%k %k %

40 1

301

201

Epoch of convergence

White noise  Hybrid No pre-training

*

Shuffling Mixing

0.575 A1

0.550 A1

0.525 A1

0.500 A

0.475 A

Minimum validation loss

0.450 A

0.425 A

Mixing White noise Hybrid No pre-training
Type of pre-training

Shuffling

Fig. 4. Box plots of the EOC (top) and the minimum validation loss (bottom)
for each of the proposed pre-training methods. The significance levels are:
p < 0.05 (¥), p < 0.01 (¥¥), p < 1073 (¥*%), and p < 1074 (¥**¥) (not
all relations of significance are shown).

IV-A, we evaluate both models using four performance met-
rics: validation loss, validation accuracy, and validation AUC,
all measured at the EOC, plus the EOC itself. Additionally,
we measure the loss, accuracy, and AUC of both models on
the test split, resulting in a total of 7 performance metrics.

V. RESULTS AND DISCUSSION
A. Benchmarking the pre-trainings

Fig. 4 displays a box plot showing the distribution of the
EOC and the minimum validation loss across all pre-training
methods. Additionally, Table II provides a summary of the
previously selected performance metrics, including means and
standard deviations, for each pre-training approach.

To assess the statistical significance of eventual differences
in performances, we conducted two-tailed Welch’s t-tests [19]
on each pair of pre-training methods. This test was selected
based on the assumption that the experimental results can
be considered independent and identically distributed (iid)
random variables, and that the true variances of the samples
differ. The summary of the significance testing is added to
Table II.

When comparing the pooled pre-training performances with
the ones of the model without pre-training, we observed no



TABLE II
MEAN PERFORMANCES FOR EACH TYPE OF PRE-TRAINING ON THE
EO/EC DATASET. VALUES IN PARENTHESES ARE THE STANDARD
DEVIATIONS. THE SIGNIFICANCE OF THE PERFORMANCE IMPROVEMENT
WITH REGARDS TO THE NON-PRE-TRAINED MODEL WAS TESTED AT
p < 0.05 (%), p < 0.01 (*%), p < 1073 (**%), AND p < 10~4 (##%%),

Pre-training EOC Min val. loss Val. acc. [%] Val. AUC

White noise 27.4 (9.58)** 0.497 (0.053) 76.8 (4.92) 0.847 (0.036)
Shuffling 17.0 (12.0)***=+  0.500 (0.029)* 77.4 (2.74) 0.839 (0.026)
Mixing 31.4 (5.37)** 0.496 (0.040) 77.8 (4.78) 0.843 (0.035)
Hybrid 17.2 (10.9)**x  (0.507 (0.050) 78.3 (4.35) 0.828 (0.032)
Pooled 23.2 (11.6)*# =  0.500 (0.044)* 77.6 (4.32) 0.839 (0.033)
No pre-training 36.1 (4.27) 0.520 (0.025) 75.7 (4.36) 0.825 (0.025)

significant improvements in terms of validation accuracy and
validation AUC at the EOC, as indicated by p-values exceeding
0.05 (p-values: 0.1419 and 0.0661, respectively). However, we
observed highly significant improvements in EOC (p-value <
107°) and significant improvements in minimum validation
loss (p-value = 0.0197) with pre-training.

Among the pre-training methods, only the shuffling alter-
ation demonstrated a significant improvement in minimum
validation loss compared to the non-pre-trained model (p-value
= 0.0441). While the statistical tests indicated a trend for
other alteration types (p-values: 0.0530 for channel mixing and
0.1329 for white noise replacement), these trends did not cross
the significance threshold v = 0.05. The hybrid pre-training
approach showed the least significant difference in this metric,
with a p-value of 0.3474.

When examining the EOC, both the shuffling alteration and
the hybrid pre-training approach exhibited highly significant
improvements compared to the non-pre-trained model (p-value
< 107° for both). Moreover, they were shown to perform
significantly better than channel mixing (p-values: 0.0024 for
shuffling and 0.0011 for hybrid) and white noise replacement
(p-values: 0.0132 for shuffling and 0.0088 for hybrid). How-
ever, it is worth noting that the standard deviation of the EOC
for these two pre-training methods is higher than that of the
other alterations.

To investigate a potential trade-off between the speed of
convergence (determined by the EOC) during pre-training and
the minimum validation loss, we conducted a linear regres-
sion analysis. The results (Table III) revealed that the EOC
explained only a small portion of the variance in the minimum
validation loss, with the highest R?-score being slightly above
0.25. This led to the conclusion that earlier convergence during
pre-training did not compromise the validation loss.

Based on the gathered results, datasets with the shuffling
alteration proved to be the most effective for pre-training,
significantly improving both EOC and minimum validation
loss. Therefore, a dataset with this alteration pre-trained the
model in the seizure forecasting task.

The hybrid pre-training approach, although significantly
reducing the EOC, did not exhibit a significant improvement
in the minimum validation loss. Exploring alternative methods
of hybrid pre-training, such as applying multiple alterations

TABLE 111
SLOPES AND R2 SCORES OF THE LINEAR REGRESSIONS FITTING THE
EOC-MINIMUM VALIDATION LOSS RELATION. THE PRE-TRAININGS ARE
RANKED FROM THE LOWEST TO THE HIGHEST R2.

Pre-training Slope [loss increase/epoch] R?
Mixing 1.049 x 1073 0.0194
Shuffling —0.488 x 1073 0.0399
No pre-training —1.637 x 1073 0.0763
White noise —2.459 x 1073 0.1985
Hybrid —2.351 x 1073 0.2581
TABLE IV
COMPILATION TIME OF BOTH MODELS FOR THE DIFFERENT TRAINING
PHASES.

Training phase Time/epoch (avg.) [s] EOC  Tot. train. time [h]

Pre-training (PT) 11 117 9 27.8
Fine-tuning (PT) 5 288 4 5.88
Fine-tuning (NPT) 5 698 8 12.66

simultaneously or mixing multiple datasets, could therefore
be an avenue for future research.

B. Performances comparison in practical scenario

Building upon the insights gained in the previous section
and following the protocol established in section IV-B, we
initiated the pre-training of our larger transformer model using
a dataset generated by means of the shuffling alteration,
applied to a portion of the TUSZ data.

When comparing the time necessary for the Pre-Trained
(PT) and Non-Pre-Trained (NPT) models to converge to a local
validation loss minimum (Table IV), it clearly appears that pre-
training allows for a much faster fine tuning, as the number
of epochs required to find a minimum is halved (going down
from 8 epochs to 4) when the only difference between the
models is whether the starting weights are random or issued
from pre-training. To put it differently, once the initial cost
of pre-training the model on an important amount of data
is incurred, it will serve as a foundational point for various
related tasks, thereby reducing their fine-tuning duration.

Turning our attention towards model performance, the eval-
uvation of PT and NPT, summarized in Table V, reveals
improvements in all assessed metrics when employing our pre-
training method before fine-tuning. In particular, the test loss
reduces from 0.1939 in the absence of pre-training to 0.1748
when initializing with pre-trained weights. This reduction has
a positive cascading effect on test accuracy and AUC.

Taken together, these findings indicate that the pre-training
datasets developed in this study not only accelerate model
convergence during task-specific training but also contribute to
the creation of models with better classification performance
compared to models lacking pre-training.

VI. CONCLUSION AND FUTURE WORKS

In this study, we devised three distinct methods for pre-
training deep learning models on EEG tasks using unlabeled



TABLE V
COMPARISON OF THE MODEL PERFORMANCES AFTER FINE-TUNING
DEPENDING ON WHETHER IT WAS PRE-TRAINED OR NOT.

Metric PT NPT
Validation loss at EOC 0.1689  0.2035
Validation accuracy at EOC [%] 92.15 90.43
Validation AUC at EOC 0.9719  0.9630
Test loss 0.1748  0.1939
Test accuracy [%] 92.16 90.93
Test AUC 0.9702 0.9648

data. These techniques all revolve around the core task of
EEG identification within a variety of multi-channel signals,
aiming to impart the model with essential intrinsic properties
of EEG, such as its characteristic frequency behavior and
channel correlations.

Our findings demonstrate a consistent and significant im-
provement in training time for models pre-trained with any
of the designed pre-training methods compared to models
initialized with random weights. Additionally, one specific pre-
training approach, involving the shuffling of EEG channels
and training the model to distinguish shuffled from unaltered
EEG data, stands out by substantially enhancing minimum
validation loss when compared to non-pre-trained models.

The applicability of this specific pre-training method was
further validated in the context of a seizure forecasting task,
leveraging the Temple University Seizure Detection Corpus. In
this task, the pre-trained model not only exhibited significantly
faster training, converging to optimal performance in less than
half the epochs required by an identical non-pre-trained model,
but also achieved superior results in terms of loss, accuracy,
and AUC for both the validation and test sets.

Moving forward, future researches building upon the results
of this study should explore the performances of the proposed
pre-training techniques on a broader range of EEG datasets
and applications. In particular, there’s a need to assess the ef-
fectiveness of these pre-training methods for different models
and architectures, with a focus on the less data-greedy ones.

In conclusion, our research underscores the significance
of pre-training in the context of EEG signal analysis, while
also exploiting more easily accessible and otherwise useless
unlabeled data. These findings open doors to the exploitation
of more data-greedy architectures in the field of EEG classifi-
cation and allows to build general models whose weights can
serve as a basis for many specific task requiring EEG analysis.

CODE AVAILABILITY

The code developed to generate the pre-training datasets
from unlabeled data is available at the following GitHub
repository: https://github.com/tbary/EEGPreTrainingDatasets.
Researchers can access and utilize this code for further in-
vestigation and experimentation.
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