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ABSTRACT

A hallmark of biological neural networks, which distinguishes them from their
artificial counterparts, is the high degree of sparsity in their activations. Here, we
show that by simply injecting symmetric, random, noise during training in recon-
struction or classification tasks, artificial neural networks with ReLU activation
functions eliminate this difference; the neurons converge to a sparse coding solu-
tion where only a small fraction are active for any input. The resulting network
learns receptive fields like those of primary visual cortex and remains sparse even
when noise is removed in later stages of learning.

1 INTRODUCTION

The brain is highly sparse with an estimated 15% of neurons firing at any given time (Attwell &
Laughlin, 2001). The most immediate answer for why is metabolic efficiency: action potentials
consume ∼20% of the brain’s energy (Sterling & Laughlin, 2015; Attwell & Laughlin, 2001; Sen-
gupta et al., 2010). However, there are further advantages to sparsity in the brain (Olshausen &
Field, 2004). One significant advantage is improving the signal to noise ratio (SNR) of neural sig-
nals. Sparsity improves SNR by (i) turning off any weakly firing neurons activated by noise; (ii)
increasing the separability of data points (Ahmad & Scheinkman, 2019; Xie et al., 2022).

Inhibitory interneurons that suppress all but the most active neurons from firing are an important
mechanism for enforcing this sparsity (Haider et al., 2010). Theoretical and empirical results sup-
port their involvement in both silencing noise and separating neural representations. Examples in-
clude horizontal interneurons in the retina (Sterling & Laughlin, 2015) and Golgi interneurons in
cerebellar-like structures (Fleming et al., 2022; Lin et al., 2014; Xie et al., 2022).

Biologically, as depicted in Fig. 1, these inhibitory interneurons implement a negative feedback
loop whereby the more active the excitatory neurons are, the more active the interneuron becomes,
and hence the more it inhibits these excitatory neurons. Simplified models of the circuit written as
ordinary differential equations (ODEs) show convergence to an approximate k of the most active
neurons remaining on (Gozel & Gerstner, 2021). This will be referred to as a Top-K activation
function (also known as k Winners Take All). There is empirical support for a number of interneuron
circuits approximating the Top-K operation (Sterling & Laughlin, 2015; Fleming et al., 2022; Lin
et al., 2014).

By contrast, in the field of deep learning, while inhibition is possible, analogous interneuron circuits
that enforce sparsity across a layer have not been widely adopted. The only truly sparse activation
function is the ReLU (Glorot et al., 2011). Moreover, mechanisms that enforce sparse neuronal
activity are also rarely used and when given the choice, networks will prefer to be dense. This is be-
cause sparsity can limit model capacity, resulting in information bottlenecks that harm performance
(Goodfellow et al., 2015).

Here, we find that by simply introducing isotropic, symmetric noise centered about zero during train-
ing, a layer of artificial neurons will converge to a sparse coding solution. This solution mimicks
a simplified version of the biological inhibitory interneuron circuit. The network gradually imple-
menting this inhibitory interneuron also results in better performance than explicitly enforcing any
sort of inhibition at the start of training.

Concretely, the network synchronizes every neuron’s bias term, setting them to be approximately the
same negative value, and also every neuron’s weight vector, setting them to have the same L2 norm.
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This results in the activity of every neuron existing within a particular range that, when combined
with the negative bias term they all agree upon, results in a sparse k neurons remaining active.

Because we assume that k is small, Top-K networks are a special class of sparse coding networks
that always have an approximate k neurons on for any input. They also implement this sparsity by
approximating the functionality of an inhibitory interneuron. The sparsity that comes from inhibition
– allowing a small subset of neurons to fire from the total number that otherwise would – is distinct
from sparsity where many of the neurons in the network are dead and never fire for any input.
This latter form of sparsity is misleading and equivalent to having a pruned, smaller network that is
densely firing; we indicate when this alternative form of sparsity occurs.

The degree to which our network becomes a sparse coding, Top-K network is proportional
to the amount of noise applied, up to a noise limit. To validate that the network approx-
imates an inhibitory interneuron, we replace each neuron’s bias term with a single, shared
bias term. This results in identical model performance and very similar levels of sparsity.
Further investigating the degree to which this network uses sparse coding, we find that it
learns receptive fields similar to those of mammalian V1 with Gabor filters and retinal gan-
glion cells with on/off center surround (Sterling & Laughlin, 2015; Olshausen & Field, 1997).

Figure 1: An inhibitory interneuron circuit
implementing a negative feedback loop to si-
lence all but the k most active neurons.

We find this Top-K network formation is particularly
evident for reconstruction tasks but also exists for
classification tasks and the intermediate MLP lay-
ers of a Transformer architecture. Our results hold
across a variety of datasets, noise distributions, and
numbers of neurons. We also observe that the net-
work retains its Top-K approximation even after the
noise is removed, making it an effective pre-training
task for sparsifying activations. This increase in
sparsity could reduce FLOPs when run on hardware
that can take advantage of it (Wang, 2020; Gale
et al., 2020; Davies et al., 2018).

We first review related work (Section 2) before out-
lining our experimental setup and presenting empiri-
cal observations (Section 3). Finally, we analyze the
network’s learning dynamics, providing intuition for
our results and highlighting avenues for future work
(Section 4).

2 RELATED WORK

Injecting noise into training data for statistical models was previously proposed by (Sietsma & Dow,
1991). Gaussian noise injection has been interpreted as a form of model regularization, to help avoid
overfitting (Zur et al., 2009) and improve generalization (Sietsma & Dow, 1991; Matsuoka, 1992).
It was later shown that noise injection is in fact equivalent to having a regularization term that
seeks to minimize the L2 norm of the network’s Jacobian (Bishop, 1995; Rifai et al., 2011; Alain &
Bengio, 2014). From this perspective, it makes sense that sparsity can be used to turn off neurons
and minimize this Jacobian, providing a potential explanation for our results.

Training with noise became particularly prominent in the form of de-noising autoencoders (Good-
fellow et al., 2015). Before deep neural networks with many layers could be trained end-to-end, it
was popular to train each layer of the network one at a time with an unsupervised, de-noising recon-
struction loss (Goodfellow et al., 2015). With small amounts of noise, these de-noising autoencoders
were shown to be equivalent to contractive auto-encoders that were regularized to be robust to local
perturbations of the training data (Alain & Bengio, 2014).

Approaches to introduce activation sparsity have included explicitly using Top-K activation func-
tions (Ranzato et al., 2007; Makhzani & Frey, 2014; Ahmad & Scheinkman, 2019), novel regular-
ization terms (Kurtz et al., 2020; Yang et al., 2020) and other approaches (Schwarz et al., 2021;
Molchanov et al., 2017). However, we are unaware of any existing work which finds that noisy
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training with a ReLU activation function not only results in sparsity but also converges to a sparse
coding, Top-K network.

Learning reconstructions of training data with sparse activations is the mainstay of sparse coding
(Olshausen & Field, 1997). Sparse coding uses an overcomplete basis to learn a reconstruction of
data with an L1 regularization penalty on neuron activity. The image reconstruction can be written
as x̂ =

∑N
i aiϕi where ϕi is a basis vector from the matrix or “dictionary” Φ; ai is the activity

of this basis vector, and the activation weighted sum of basis vectors produces the output x̂. The
objective function aims to minimize the mean squared-error between the reconstructed image and
the original image while having sparse neuron activity: argminΦ,a(x − x̂)2 + λ

∑N
i |ai|. This

sparse coding task is an example of a statistical model converging with neuroscience because, in
addition to producing sparse representations, the basis functions learn to become Gabor filters like
those found in area V1 of the visual system (Olshausen & Field, 1997).

Interestingly, the ReLU activation function that is crucial for the results of this paper can be derived
as the optimal solution to a simplified sparse coding problem when we assume that the basis vectors
are orthogonal (Ba, 2020; Gregor & LeCun, 2010). This results in the optimal solution for activity
ai to be given by ReLU(ui − λ) − ReLU(−ui − λ) or, if we constrain ai to be non-negative,
ReLU(ui−λ), where ui is the value obtained by projecting the data onto basis ϕi. Intuitively, if the
values of our target image x reconstructed by aiϕi are too small, it is better for ai = 0 than to predict
x, where the threshold for this tradeoff is given by λ, which behaves as an activation threshold.

Top-K activation functions inspired by inhibitory interneurons have been implemented in a number
of deep learning models for greater computational efficiency (Ahmad & Scheinkman, 2019), adver-
sarial robustness (Xiao et al., 2020; Tramèr et al., 2020), interpretability (Nelson et al., 2022), and
continual learning (Shen et al., 2021; Iyer et al., 2022). However, in all of these instances there
are explicit mechanisms built into the network to enforce Top-K and handle repercussions such as
creating dead neurons.

These Top-K networks, when trained with noise, are also closely related to associative memory
models such as Sparse Distributed Memory (SDM) and Modern Hopfield Networks that activate
a sparse subset of neurons and were developed to handle noisy queries (Kanerva, 1988; Krotov
& Hopfield, 2016). SDM in particular can be viewed as a de-noising autoencoder and has been
developed into an MLP that uses a Top-K activation function (Keeler, 1988). Finally, de-noising
autoencoders are single step versions of diffusion models (Song & Ermon, 2019).

3 RESULTS

Experimental Setup - By default, we train a single hidden layer ReLU network with different
amounts of random Gaussian noise applied to the input. The objective is to remove the noise and
reconstruct the original input. Formally, noise is applied from an isotropic Gaussian with variance
σ to the input x. The corrupted image is then put through our encoder and decoder. For the single
hidden layer case of Eq. 1 the encoder and decoder weight matrices and bias terms are: We ∈
Rm×n,be ∈ Rm,Wd ∈ Ro×m,bd ∈ Ro where n is the input dimension, o is output dimension,
and m is the number of neurons in the hidden layer. We will use the term “key vector” to refer to
rows of We and “value vector” to refer to the rows of Wd that correspond to each neuron. Our loss
function uses the mean squared error between the original image and reconstruction across our full
dataset, X .

x̃ = x+ ϵ, ϵ ∼ N(0, σI)

x̂ = Wd ReLU(Wex̃+ be) + bd

loss =
∑
x∈X

(x− x̂)2. (1)

We use Kaiming randomly initialized weights (He et al., 2015) and train until the fraction of active
neurons converges. We primarily use the CIFAR10 dataset of 50,000 images of 32x32x3 dimen-
sions, training either on the raw pixels (flattening them into a 3072 dimensional vector) or latent
embeddings of 256 dimensions, produced by a ConvMixer pretrained on ImageNet (Trockman &
Kolter, 2022; Russakovsky et al., 2015).
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To ensure our results are robust, we vary a number of settings, finding that in every case the rela-
tionship between noise and network sparsity holds. All code and training parameters can be found
at: https://github.com/anon8371/AnonPaper2.

Symmetric Mean Zero Noise Induces Top-K Networks - Figure 2 shows that a single hidden
layer ReLU network with 10,000 neurons learns to become a Top-K network with smaller k values
as the amount of noise increases. This network was trained on the CIFAR10 embeddings to mimick
training within a deeper network layer and where the manifold is smoother than when training on
raw image pixels.

While Fig. 2 only shows the mean number of neurons that are active across all 50,000 CIFAR10
inputs per epoch, Figure 3 shows the fraction of active neurons for every input. This reveals that
as noise increases, the variance for how many neurons are active shrinks, so that the mean is an
accurate summary statistic. Note that there are no dead neurons. Fig. 3 also shows the bias terms
for each neuron and the L2 norm of their key vectors. It is clear that these values all synchronize
to a value decided on by the network and are responsible for the sparse k neurons remaining active
after the ReLU nonlinearity is applied.

As noise increases, the bias terms become more negative to raise the activation threshold and in-
crease sparsity. The L2 norms of the key vectors also become smaller. We hypothesize this is a
counter-response to the L2 norms of the data increasing with noise and explains why in high noise
settings (σ ≥ 0.8) neuron activations linger around ∼50% sparsity before rapidly becoming very
sparse (see Fig. 2). Before the key vector L2 norms are sufficiently small, noisy data with large L2

norms produce very large neuron activations (both positive and negative) and the bias terms initial-
ized close to 0 have no real effect on which neurons are active. Because the key vectors are randomly
initialized from a symmetric distribution around 0, in expectation half of the neurons are active after
the ReLU nonlinearity is applied. This means the network must wait to first shrink its key vector L2

norms before the bias terms can affect activation sparsity.

Figure 2: There is a positive relationship between activation sparsity and noise. The average
fraction of neurons active during each CIFAR10 latent input over the course of training for 800
epochs. Each line corresponds to training randomly initialized networks with different noise levels σ
denoted by different colors. We show the average of three different random seeds and their standard
error of the mean (not visible as the variance is so low). Interestingly, the higher noise levels take
longer to sparsify but upon convergence become the sparsest.

To gain more intuition for the amounts of noise applied and reconstruction quality, we train networks
directly on CIFAR10 pixels and demonstrate their results in Fig. 4. Unsurprisingly, the more noise
that is applied, the worse reconstruction performance is. This is especially for noise levels large
enough to make a competing image closer to the noisy input than the noise-free target image.
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Figure 3: Noise induces the formation of Top-K networks. Shown column-wise are the fraction
of neurons that are active for each training input (Left), the values of each of the 10,000 neurons bias
terms (Middle) and the L2 norms of their key vectors (Right), as a function of number of training
epochs. Each is shown for three different representative noise levels (rows). These plots show each
input to the network and use the density of blue to represent how many times a particular value
occurs.

Figure 4: Example CIFAR10 reconstructions. Shown are example reconstructions obtained at
different noise levels for five randomly selected images from the test data. The network at σ ≥ 0.8
qualitatively transitions from fuzzy reconstructions to more general image details.

Shared Bias Terms and Inhibitory Interneurons - To test the observed transition into a Top-K
network, we re-train our networks, replacing each neuron’s bias term with a global shared bias term.
This results in identical model performance and similar k values. Using this shared bias term is
interesting because, in conjunction with the synchronization of the L2 weight norms, it is analogous
to dynamically learning a k value for the network.
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We compared this network with explicitly creating sparse Top-K networks. These Top-K networks
sort the neuron activations and keep only the k most active. They were either given fixed k values
or could learn the k values using either a continuous relaxation that is differentiable or the REIN-
FORCE algorithm (see Appendix A for details) (Williams, 2004). These approaches all performed
worse than the shared bias (and default ReLU) networks, with the best networks getting similar
validation accuracies as the much smaller 100 neuron network and only when they were not sparse,
using k = 3, 000 neurons. Even the approaches learning k were insufficiently dynamic and de-
pended too much upon the k initialization value.

Biological Receptive Fields - Looking more closely at the sparse solutions found by our ReLU
networks, we discovered that for σ ≥ 0.3, neurons begin to form receptive fields reminiscent of V1
Gabor filters and on/off center surround retinal ganglion cells (Sterling & Laughlin, 2015; Olshausen
& Field, 1997). Figure 5 shows the receptive fields of the 425 neurons most activated (sorted from
left-to-right and top-to-bottom) by a noisy image of a car when σ = 0.8. This is a similar result
to that of sparse coding (Olshausen & Field, 1997), however, here we use noise with the ReLU
activation function instead of a sparsity penalty and train on full images instead of 8x8 patches. See
Appendix B for more receptive fields from models trained at every noise level.

The longer training progressed, the more similar the receptive fields appeared to those found in
biology. These receptive fields are also unique to the noisy, reconstruction task. When we tried
training the network without any noise but instead with an L1 activation penalty motivated by the
original sparse coding setup (Olshausen & Field, 1997), no biological receptive fields were observed.
In addition, this approach resulted in unstable training, more dead neurons, less sparsity, and no
synchronization of key vector norms or bias terms.1

Figure 5: Biological receptive fields form with noise. Networks trained on CIFAR10 pixels with
σ = 0.8 Gaussian noise. The most active 125 neuron receptive fields are reshaped into 32x32x3 and
re-scaled so their values span the range of pixel values [0, 255]. Neurons are sorted by their activity
levels (top left is the most active, going across rows then down columns) for a random noisy input
of a car. Starting at σ ≥ 0.1 and particularly for σ = 0.8 (shown here) we observe the formation of
many Gabor filters and on/off center surround receptive fields that are unique to noisy training.

Explaining Away and Facilitation - Motivated by the similarity of our results with the sparse
coding solution, we adopt more ideas from sparse coding, specifically the ability to “explain away”
and “facilitate” (Olshausen & Field, 1997). Explaining away reduces the activity of neurons that are
redundant with others that are already active, while facilitation encourages co-activation of neurons
encoding a common structure such as a contour. We present our implementation and evaluation of
these models in the Appendix C.

With these models we find that our networks become even more sparse and do so more quickly, as
we would expect due to the explaining away of redundant neurons (see Appendix C). The network
also converges faster and overfits to the training data. Using optimal stopping, we get the same
performance with explaining away as with the best ReLU model. This suggests that the default
ReLU network is already surprisingly effective at de-noising.

Noisy Pre-Training Retains Model Sparsity without Performance Costs - Investigating our noise
trained sparse networks, we find that even after the noise is removed, they remain sparse. We train
our models in the same way as in Fig. 2 but at epoch 800 linearly anneal each noise level down to
0.0 over the next 800 epochs. Fig. 6 shows that the sparsity levels remain largely unperturbed.

1We did not implement the full sparse coding framework, only the L1 penalty, however, this shows that it is
insufficient to implement sparse coding while noisy training is.
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For classification, it is clear that while the correlation between noise and sparsity holds, it is not
quite as strong. We believe this is due to the fact that classification only needs to cluster the data
into the ten CIFAR10 labels, creating less interference between neural representations.

There is also no reduction in reconstruction or classification performance. In fact, for classification
σ ∈ {0.1, 0.3} both get 94.3% validation accuracy instead of the 93.4% that the baseline gets,
showing slightly better generalization while also being more sparse (66% for baseline versus 55%
for σ = 0.1 and 45% for σ = 0.3). Note that for the networks with σ ≥ 0.8 for reconstruction
and σ ≥ 3.0 for classification, annealing the noise results in dead neurons, presumably because
the data manifold no longer spans as large a space. However, these dead neurons do not harm task
performance or entirely explain the sparsity levels. See Appendix D for data on the fractions of dead
neurons.

Figure 6: Noisy pretraining retains network sparsity. The vertical purple lines denote the start of
noise annealing where each noise level is linearly decayed down to σ = 0. For both reconstruction
(left) and classification (right) tasks the networks remain highly sparse even after all noise is re-
moved. Moreover, there is no noticeable performance difference between any of the networks while
some of those trained with moderate noise perform slightly better than the noise free baseline. We
truncate the x-axis to start at epoch 600 for the sake of clarity. The classification networks continue
to sparsify even when noise annealing has started because unlike in the reconstruction task, the spar-
sity level did not converge within the first 800 epochs.

Model Ablations - Figure 7 shows the mean neuron sparsity at network convergence across a num-
ber of different experimental conditions: (i) three datasets: CIFAR10 pixels, CIFAR10 latent em-
beddings, MNIST; (ii) two noise distributions: Gaussian and Laplace; (iii) four numbers of neurons:
100, 1,000, 10,000 and 100,000; (iv) three training tasks: reconstruction, classification, and Trans-
former next token prediction.

We ran hyperparameter sweeps of different learning rates for Adam, RMSProp, SGD, and SGD with
Momentum (SGDM). We found that every optimizer with a high enough learning rate converged to
a sparse Top-K solution without creating dead neurons.2 We also tested the sigmoid and GELU
activation functions. While neither of these functions is truly sparse in setting activations to 0, we
counted neurons with absolute activation values < 0.0001 as “off”. We found for the latent CIFAR10
dataset, both sigmoid and GELU (Hendrycks & Gimpel, 2016) had no sparsity but while sigmoid
performs worse, GELU does just as well as ReLU. If we raised our arbitrary activation threshold to
< 0.01 we found that GELU does become sparse with respect to noise but still not as sparse as ReLU
while sigmoid remains fully dense (see Appendix E). Interestingly, for the raw CIFAR10 dataset,
both sigmoid and GELU using the lower < 0.0001 threshold did become sparse and perform as well
as ReLU. While still neither activation function becomes as sparse as ReLU, the GELU networks
implement the same Top-K convergence as ReLU shown in Fig. 3 and form biologically plausible
receptive fields like those of Fig. 5.

2Interestingly for SGD, with a low learning rate and enough epochs the model could learn non-sparse
solutions with ∼50% neuron activity and no updating of bias terms that performed almost as well as their
sparse counterparts.
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As part of ablating tasks, we test Transformer next token prediction. We train a small GPT2
models (Radford et al., 2019) with three blocks of interleaved Attention and Feedforward MLP
layers. In front of each MLPs of each network, we inject one of the following noise levels
σ ∈ {[0.0, 0.05, 0.1, 0.8, 1.5, 3.0, 8.0} and use the WikiText-103 dataset. At global training step
200k, we remove all noise to also investigate the longer term pretraining effects.

The correlation between noise and activation sparsity remains and is again retained even after noise
is removed. Furthermore, aside from the highest noise level of 8.0, pre-training has no effect on
model performance. Figure 7(d) shows the final sparsity amounts of the first model layer with each
of the other layers giving similar results with ∼3x to ∼9x more sparsity when σ = 3.0, compared
to σ = 0.0.

Figure 7: Training ablations. The positive correlation between noise and sparsity is robust to (a)
neuron counts, (b) datasets, (c) noise distributions, and (d) training tasks.

4 DISCUSSION

Why does noisy training induce our ReLU network to become a biologically plausible Top-K net-
work? Fundamentally, the network should want to use as many neurons as it can to give the best
reconstruction of the input data as possible. However, it must trade-off the increase in accuracy
gained by pooling more neurons with increased interference. This interference is caused by both
noise and non-orthogonality of the learned weight vectors (Elhage et al., 2022).

An increase in noise will create more erroneous low-level activations in neurons that must be ig-
nored to maximize signal to noise ratio. Therefore, during noisy training, the model must learn
weight vectors to encode information about the data distribution that can be separated from the noise
using only ReLU functions. In natural images, for example, certain projections (e.g., with Gabor
filters) have high kurtosis which allows them to be easily distinguished from noise via thresholding
or “coring” (Simoncelli & Adelson, 1996). Similarly, we hypothesize that the encoding layer in our
network is learning such projections, so that thresholding performs noise rejection while also pro-
ducing sparse activations. In theory, incorporating the “explaining away” of sparse coding networks
should additionally remove interference due to the non-orthogonality of weight vectors. Our initial
attempt at doing so did not produce performance gains, though it did increase sparsity. However
further investigation is warranted to understand its potential benefit.

The positive correlation between noise and sparsity is opposite to Transformer Attention and as-
sociative memory models such as SDM and Hopfield Networks (Bricken & Pehlevan, 2021). For
Transformer Attention, the difference is that Attention has direct access to every input within its
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receptive field but no further. This provides for high accuracy when dealing with these inputs (keys)
but an inability to store long term memories. As a result, in the low noise regime, it is optimal for
Attention to implement a form of nearest neighbour lookup, activating few keys. When there is more
noise, especially noise that moves the query so far from its target key that it is no longer the nearest,
it is optimal to activate more keys and average over them, losing accuracy but giving a solution in
the correct neighbourhood.

By contrast, SDM can store long term memories. However, it has the same negative correlation
between noise and sparsity as Attention because it attempts to store full patterns with maximum
fidelity within each neuron instead of distributing the features of each pattern across neurons (Kan-
erva, 1988). This results in SDM attempting to also perform a nearest neighbour lookup, activating
only as many neurons around the noisy query as is necessary to activate those storing the target
pattern.

We have shown the extent to which a feedforward ReLU MLP is capable of converging with a
biological inhibitory interneuron circuit. Using deep learning to give insights into neuroscience,
this result suggests that in the presence of noise, the biological sparse coding solution is optimal.
Moreover, the fact that noise alone results in sparse coding rather than having a sparsity penalty in
the loss function suggests that the primary driver behind sparse coding may be the handling of noise
with metabolic efficiency as an added benefit, rather than the other way around. In addition, the fact
that the reconstruction loss converges to this solution hints that the brain may be trying to maximize
mutual information of its sensory stimuli (Sterling & Laughlin, 2015).

Limitations - Our work is largely empirical. An important goal of future work will be to develop
a rigorous mathematical theory for modelling how the amount of noise affects sparsity for a given
dataset, rather than having to test a number of noise levels to find one that works (analogous to
tuning hyper-parameters).

In addition, while we show that our de-noising autoencoder converges with the biological sparse
coding network, conventional hardware accelerators are unable to benefit from the increased levels
of unstructured sparsity. Meanwhile, the advantages of noisy training for generalization, continual
learning, and adversarial robustness have already been documented. However, sparse networks have
recently been shown to aid mechanistic interpretability by removing polysemantism and encourag-
ing specialization (Nelson et al., 2022) and additional future applications may arrive.

Conclusion - We have shown that the realistic assumption of noisy training data is sufficient for
feed-forward layers to organically become highly sparse and retain their sparsity, even after noise
is removed. This result is particularly striking because of the way the networks converge with
sparse coding, producing biological receptive fields and approximating an inhibitory interneuron
that implements a Top-K operation. Combining noisy training with other approaches to induce
sparsity, including taking additional ideas from sparse coding, may result in even higher degrees
of sparsity. More broadly, this work builds a new bridge between artificial and biological neural
networks by showing how they can be more similar than they may otherwise appear.
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A LEARNING TOP-K VALUES

There are two different approaches taken to learn the k values in the explicit Top-K networks. The
first is to use a continuous relaxation of the k value that is otherwise a non-differentiable integer.
We create a window of size w and apply a sigmoid weighting to all values between k ± w. We can
then let k be a continuous value that is responsible for shifting the center point of this sigmoidal
activation window.

Another solution is to create a probability distribution over the possible k values, sample discrete
k integers from it, and use the REINFORCE algorithm (Williams, 2004) to update the sufficient
statistics of our distribution. Intuitively, we can think of this approach as trying a bunch of different
k values and updating to see more of those that lead to lower loss.

Both of these implementations can be found in our github repo at the following URL: https:
//github.com/anon8371/AnonPaper2.

B RECEPTIVE FIELDS

Here we show additional images of the receptive fields for networks trained with different amounts
of noise (Fig. 8), the queries used to activate these neurons (Fig. 9) and how the receptive fields
look more biological as the network is trained for longer (Fig. 10).
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Figure 8: Receptive fields across noise levels. We show for all noise levels the 625 most active
neurons for the truck query (middle of Fig. 9). For 0.8 ≥ σ which activate fewer neurons, we also
show the cat query below it. Biological like receptive fields start to appear for σ = 0.1 and can be
seen most clearly for σ ∈ {0.3, 0.8, 1.5}.
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Figure 9: Queries used to activate the receptive fields. These queries were randomly selected.
We use the cat (left) and truck images (middle) with the relevant noise levels to activate the neurons
shown in Fig. 8. We use the car image (right) for the main text Fig. 5 and receptive field changes
across epochs in Fig. 10.

Figure 10: Receptive fields become more biological across epochs. We show how the most active
receptive fields for the σ = 0.3 network evolve over the course of training to become more biolog-
ically similar. The specific number of epochs used (3,000, 9,000 and 19,000) were chosen simply
because of when the models were checkpointed and re-loaded for additional training. We use the
car image as our noisy query here (rightmost in Fig. 9).
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C EXPLAIN AWAY

We can model explaining away and facilitation with an additional weight matrix G ∈ Rm×m (recall
m is the number of neurons) that we run in a recurrent inner loop. Our one hidden layer network
becomes:

µ0 = Wex̃+ be

zt = ReLU(µt)

∆µ =
(
µ0 −Gzt

)
− µt

µt+1 = µt + γ∆µ

x̂ = Wd ReLU(µt∗) + bd, (2)

where t increments from 0 to t∗ as the number of iterations we want the inner loop to optimize
neural activity and γ is the size of the update step. In the simplest case where t∗ = 1 and γ = 1, we
do a single forward pass through this circuit making it analogous to a residual connection that comes
before the activation function. More generally, the value of t∗ can be thought of as the number of
recurrent connections that all originate from µ0 and end after every update to z. The original Eq.
1 is a special case where t∗ = 0. This use of G learnt with backpropagation was first explored in
Gregor & LeCun (2010).

Training the same networks as before but using Eq. 2 with t∗ = 1 and γ = 1 we present our results
in Table 1. We show the sparsity amounts of the networks in Fig. 11.

We can also replace Gzt with GdGezt where Ge ∈ R1×m, Gd ∈ Rm×1 implement a single in-
hibitory interneuron that uses 2m rather than m2 parameters and must learn each of its afferent and
efferent connections. When the neurons still have their bias terms this solution has no effect. Re-
moving the bias terms and relying just on the inhibitory interneuron, we found that it performs well
(Table 1) and becomes sparse as a function of noise but results in a number of dead neurons and is
not as sparse as the baseline ReLU or Explaining Away models. However, this shows that the full
inhibitory interneuron solution is at least plausible.

Method — Val. Acc. σ = 0.05 σ = 0.1 σ = 0.3 σ = 0.8

ReLU m =100 0.0047 0.0067 0.0130 0.0209
ReLU m =1,000 0.0019 0.0042 0.0112 0.0203
ReLU m =10,000 0.0018 0.0041 0.0109 0.0203
ReLU m =100,000 0.0032 0.0053 0.0111 0.0203
Shared Bias 0.0017 0.0040 0.0110 0.0204
Explain Away 0.0018 0.0041 0.0110 0.0206
Inhib. Interneuron 0.0017 0.0041 0.0109 0.0204

Table 1: Reconstruction Validation Accuracy - The baseline ReLU model varying the number of
neurons, compared to the shared bias, explaining away, and inhibitory interneuron networks. We
only show noise up to σ = 0.8 because the higher noise levels present trivial solutions that all
networks perform equally well on. Due to very high convergence between random seeds, we just
present a single run for each model.
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Figure 11: Explaining Away network is sparser and sooner. For every level of noise, the explain-
ing away network removes neurons redundantly active and makes them much more sparse.
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D DEAD NEURONS

Here we show the number of dead neurons that are present when we anneal our noise value to 0 for
reconstruction (Fig. 12) and classification (Fig. 13).

Figure 12: Dead Neurons during the reconstruction task. During noise annealing, the higher
noise levels σ ≥ 0.8 see a number of dead neurons. However, this does not full explain their
sparsity levels and on this trivial task it does not hurt their reconstruction performance.

Figure 13: Dead Neurons during the classification Task. Here there are fewer dead neurons, they
only appear for σ ≥ 3.0 and they only appear close to when the noise is entirely turned off. Again
these results do not fully explain the sparsity amounts found.
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E ACTIVATION FUNCTION ABLATIONS

For CIFAR10, we train each model for 3,000 epochs and present the mean number of active neurons
for GELU (Fig. 14) and sigmoid (Fig. 15). We don’t show the latent CIFAR10 results as sigmoid
and GELU are fully dense with no sparsity when the 0.0001 activation threshold is used. Neither of
these networks are as sparse as the ReLU network. Also neither network creates sparsity through
dead neurons, but given that all neurons have non-zero absolute activity, having dead neurons is
impossible.

While we just show the mean active neurons here, both solutions look like those of Fig. 3 with the
neurons for all inputs converging to a Top-K solution where the bias terms become negative and
synchronize along with the key vector L2 norms.

Figure 14: The GELU network sparsifies with noise when trained on CIFAR10. The GELU
network closely resembles the ReLU network by sparsifying (but not to the same degree). It also
forms biological receptive fields. We use the arbitrary 0.0001 absolute activation threshold to label
if a neuron is on or off.
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Figure 15: The sigmoid network also sparsifies with noise for CIFAR10. While sigmoid sparsifies
in proportion to noise, it does not form biological receptive fields and is less sparse than GELU or
ReLU.
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