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ABSTRACT

Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted
for domain-specific adaptation. While domain-specific supervised fine-tuning
(SFT) is effective and efficient, it often weakens cross-domain generalization
and struggles with noisy training data. To address these challenges, we propose
DONOD, a lightweight model-intrinsic data selection method. Our approach
evaluates data using two model-parameter-based metrics: Delta of Norm (DON),
which captures the cumulative influence on model weights, and Norm of Delta
(NOD), which quantifies weight instability. Moreover, by employing the Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we
effectively filter noisy, unlearnable, and generalization-harming samples without
relying on auxiliary models during the SFT process. Experiments on mathematical
tasks demonstrate that data selected by DONOD achieves superior fine-tuning
efficiency and improved robustness against noisy data. By filtering out 70% of
the whole dataset, we improve target-domain accuracy by 14.90% and cross-
domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-
architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B)
generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing
related methodologies, DONOD demonstrates comparable or superior performance
while remaining dataset-agnostic, enabling broader applicability. Code will be
made publicly available soon.

1 INTRODUCTION

Figure 1: Performance of DONOD across various bench-
marks. Our 20% selected dataset outperforms or matches
the full-data training baseline in most evaluation dimensions.
This demonstrates that DONOD enables efficient fine-tuning
with significantly fewer training samples, while improving
generalization performance.

In recent years, large language mod-
els (LLMs) have demonstrated strong
generalization capabilities and re-
markable success across a wide range
of applications (Achiam et al., 2023;
Meta AI, 2024; Yang et al., 2025a;
Bai et al., 2025). While foundation
models pretrained on massive corpora
provide a powerful starting point, ef-
fectively adapting them to specific
user needs or domain-specific tasks
often requires fine-tuning. In practice,
many real-world scenarios demand
rapid, on-demand adaptation, a pro-
cess we refer to as ad-hoc instruction
fine-tuning. Unlike universal instruc-
tion fine-tuning, which aims for broad
capability, ad-hoc fine-tuning focuses
on a specific set of task instructions to
enhance a particular ability or domain
knowledge. This approach assumes
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the base model is already instruction-aligned (e.g., an Instruct-type model) and prioritizes efficient
specialization. This setting is particularly relevant for startups, researchers, and domain experts who
need to customize LLMs for narrow applications, such as adding a language, creating internal tools,
powering customer support, or enabling domain-specific reasoning. While still potentially consuming
a significant number of tokens, the process is focused on a restricted domain.

However, ad-hoc fine-tuning of LLMs with massive instruction datasets incurs substantial compu-
tational costs. At scale, these training costs are tremendous and often unaffordable for startups
or researchers (Xia et al., 2022; Yang et al., 2025c). For instance, fine-tuning a 13B-parameter
model on hundreds of millions of instruction–response pairs can require thousands of GPU hours.
Even more concerning, recent studies indicate that the quality of fine-tuning data is more critical
than its quantity (Li et al., 2025b; Xia et al., 2024; Wang et al., 2023). This is because large-scale
instruction data collected via web scraping or weak supervision often contain substantial noise and
redundancy (Li & Zhang, 2021; Szep et al., 2024; Yang et al., 2024). Consequently, significant
resources may be wasted on examples that contribute little to, or even degrade, the final model’s
performance.

To overcome these challenges, data selection has been proposed as a promising solution. By
identifying a compact yet highly representative subset from existing SFT data (Li et al., 2025b; Xia
et al., 2024), it is possible to retain or even improve model performance compared to full-dataset
training, while reducing training costs. Many existing methods, reward-model-based filtering (Xu
et al., 2025; Yang et al., 2025b) or gradient-based selection (Xia et al., 2024), have achieved promising
results in accelerating training and improving the efficiency of the LLM fine-tuning process. Despite
the promising results, many of these methods incur huge computational overhead or rely on task-
specific validation sets (Xia et al., 2024; Xie et al., 2023), which may limit their scalability across
diverse domains. Furthermore, recent studies have found that models fine-tuned on such data are prone
to domain overfitting along with degraded generalization across domains (Li & Zhang, 2021; Szep
et al., 2024). This limited cross-domain generalization poses a unique challenge for ad-hoc instruction
fine-tuning, as we aim to improve performance on the target domain without compromising general
capabilities in other domains. These issues highlight the urgent need for a principled, data-centric
approach that can accelerate instruction fine-tuning by reducing training overhead while preserving
generalization, thereby enabling more efficient, scalable, and robust LLMs training. This raises a
central question: How can we select the most representative samples from large-scale datasets to
enable efficient, generalizable, and robust fine-tuning of LLMs?

To address the challenges, we propose DONOD, a model-intrinsic data selection method that identifies
a compact yet highly informative subset of training data points. Specifically, DONOD introduces
two complementary metrics derived from the model’s training dynamics: Delta of Norm (DON) and
Norm of Delta (NOD), as detailed in Section 3.2. To reconcile these dual objectives, maximizing
generalization via DON while minimizing harmful fluctuations via NOD, we adopt the Technique
for Order of Preference by Similarity to the Ideal Solution (TOPSIS) algorithm (Hwang & Yoon,
1981; Chakraborty, 2022) to rank samples based on their proximity to the ideal selection criterion.
Importantly, DONOD requires no auxiliary models, domain-specific heuristics, or validation sets.
It leverages only intrinsic training signals, enabling scalable, efficient, and fully self-supervised
selection. Extensive experiment results across diverse benchmarks and LLM architectures show that
DONOD achieves training acceleration while preserving or even exceeding the full-data generalization
performance with significantly fewer training examples. For instance, compared with the full-data
SFT setting, DONOD achieves a 14.90% gain in target-domain accuracy and a 5.67% gain in
cross-domain accuracy using only 30% of the data. Furthermore, our method shows strong cross-
architecture generalization, consistently performing well on models of varying structures and scales.
Since most existing methods are not robust to more complex and realistic noisy settings, we further
validate the robustness of DONOD in more challenging scenes, highlighting its practical significance.

The contributions can be summarized as follows: (1) We propose DONOD, a lightweight and
model-intrinsic data selection framework for fine-tuning acceleration of LLMs, significantly reducing
training costs while maintaining performance. (2) We propose two complementary metrics, DON and
NOD, to jointly ensure the generalization of the selected samples and reduce noisy or unlearnable
samples. (3) Extensive experiments across diverse benchmarks and architectures demonstrate the
superior fine-tuning performance, particularly in cross-domain and cross-architecture generalization,
highlighting the method’s practicality for scalable and robust LLM training.
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2 RELATED WORK

Data selection for supervised fine-tuning on LLMs critically impacts model performance. Traditional
methods often rely on external models as quality judges ((Du et al., 2023), (Chen et al., 2024)) or
employ reward models to identify high-quality data (Yang et al., 2025b). However, this dependence
on auxiliary models, e.g., trained from scratch, incurs significant computational costs and limits
scalability. Recent studies ((Li et al., 2025a)) further question the effectiveness of this paradigm.

Alternative approaches focus on intrinsic data metrics. For instance, Cao et al. (2024) proposes
evaluating data quality through features like length, naturalness, and coherence. However, the field
lacks consensus on universal metrics: while Chen et al. (2023) emphasizes diversity, Liu et al. (2024)
argues for prioritizing complex or challenging samples. This ambiguity motivates the third category,
model-intrinsic methods. These methods leverage the model’s training dynamics to bypass explicit
metric definitions. As noted by Jiang et al. (2019); Yang et al. (2025c), the model’s response to data
inherently signals its utility for learning, enabling automated data selection.

Model-intrinsic selection methods branch out based on various scenarios. The first category assumes
access to a target data distribution, often via validation or development sets. For example, Mindermann
et al. (2022) approximates loss differences between holdout and training sets, while Xia et al. (2024)
uses gradient similarity between validation and training data. These methods falter when target
distributions are ambiguous or undefined, which is common in scenarios aiming to enhance broad
capabilities rather than optimize for specific benchmarks.

The second category eliminates reliance on target distributions. Works like (Wang et al., 2024), (Jiang
et al., 2019), (Loshchilov & Hutter, 2016), and (Li et al., 2024b) employ loss or perplexity thresholds,
assuming high-loss samples are valuable learning challenges. However, this assumption proves brittle
for noisy or mislabeled data (Yang et al., 2024), where high loss reflects annotation errors rather
than learnable patterns. Furthermore, challenging samples may exceed the model’s current capacity,
rendering them unproductive for training.

Both categories neglect cross-domain generalization. Methods targeting specific distributions risk
catastrophic forgetting, where performance gains on target tasks degrade generalizability. Conversely,
loss-based selection exacerbates this by prioritizing samples that induce significant weight updates,
destabilizing pre-trained knowledge.

To address these limitations, we propose DONOD. DON functions as a proxy of generalization, while
NOD recognizes that the sample causes significant instability in the model weight. Integrated via the
TOPSIS, DONOD filters noisy, unlearnable, and generalization-harming samples without auxiliary
models or predefined targets.

3 THE PROPOSED METHOD

3.1 OVERVIEW

Our proposed method is summarized in Figure 2. The approach consists of three core components: 1)
DON and NOD metrics based on the Frobenius norm are used to estimate the samples’ impact on
model weight update. 2) TOPSIS is a multi-objective decision mechanism that balances task-specific
gain and cross-domain generalization, ensuring that the selected subset preserves both in-domain
effectiveness and robustness to distribution shifts. 3) By approximating the full model behavior
through changes in the output layer, DONOD enables lightweight and scalable selection without
the need to backpropagate through the entire model. These components construct an efficient data
selection framework that supports accurate, low-cost subset selection, enabling fine-tuning with
significantly fewer samples while maintaining or even improving model performance.

3.2 DON AND NOD METRICS

Let D denote an ad-hoc dataset for instruction fine-tuning. For a specific data sample Di ∈ D, let
{W l}Ll represent the weight of the model before fine-tuning and {W ′l}Ll the weight matrix after
fine-tuning on Di. We employ the DON and NOD to quantify this change. Specifically, the DON is
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TOPSIS Selection by DON and NOD Train with Selected Data

Selection

Selected
Dataset

Figure 2: Overview of our proposed DONOD, which follows a lightweight pipeline: (1) Compute
DON and NOD metrics for each sample and (2) Apply TOPSIS to select representative data and filter
harmful/low-quality data.

defined as:

DON =

L∑
l=1

(
∥W l∥F − ∥W ′l∥F

)
=

L∑
l=1

√√√√ ml∑
i=1

nl∑
j=1

|wl
i,j |2 −

√√√√ ml∑
i=1

nl∑
j=1

|w′l
i,j |2

 , (1)

where ml and nl are the dimensions of the weight matrix W l of layer l, ∥ · ∥F denotes the Frobenius
norm. Here, we adopt the Frobenius norm due to its ability to capture fine-grained structural changes
across all weight elements while maintaining computational efficiency, making it a suitable and
scalable proxy for quantifying sample-level influence in large-scale models. Thus, DON captures
the cumulative shift in the model’s weight magnitude. From a generalization perspective, a positive
DON suggests that a sample reduces the model’s Frobenius norm, which is associated with lower
complexity and better generalization (Bartlett, 1996; Yin et al., 2020; Shalev-Shwartz & Ben-David,
2014). A detailed theoretical justification for this connection is provided in Appendix B and C.
Meanwhile, the NOD is defined as:

NOD =

L∑
l=1

∥W l −W ′l∥F =

L∑
l=1

√√√√ ml∑
i=1

nl∑
j=1

∥wl
i,j − w′l

i,j∥2, (2)

which measures the direct geometric displacement of weights in parameter space at the current step.
Thus, in the context of SFT, NOD quantifies how drastically a single sample perturbs the parameter
space. These metrics are complementary: DON reflects the overall scaling of weights, whereas NOD
reflects the sensitivity of model weight on a single sample.

While the Frobenius norm can be applied to whole model weights, prior works (Nadipalli, 2025;
Rosati et al., 2024) show that fine-tuning primarily affects later layers, with the output layer acting as
a bottleneck for domain adaptation. Therefore, we estimate the sample influence using the weights of
the last layer, which brings two benefits: 1) Computational Efficiency: The output layer is typically
smaller than the hidden layers, reducing the computational cost of computing norms across iterations,
2) Interpretability: Output layer updates correlate more directly with task performance, avoiding the
entangled representations of deeper layers.

In this way, we derive a simplified version of the computation of Eq.1 and Eq.2:

DON = ∥WL∥F − ∥W ′L∥F =

√√√√mL∑
i=1

nL∑
j=1

|wL
i,j |2 −

√√√√mL∑
i=1

nL∑
j=1

|w′L
i,j |2, (3)
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where mL and nL are the dimensions of the output layer.

NOD = ∥WL −W ′L∥F =

√√√√mL∑
i=1

nL∑
j=1

|wL
i,j − w′L

i,j |2. (4)

3.3 INTEGRATION OF TOPSIS

TOPSIS is a multi-criteria decision analysis (MCDA) method that ranks alternatives by their relative
closeness to an ideal solution. In DONOD, TOPSIS is employed to resolve the inherent tension
between the two metrics, DON and NOD, by identifying samples that simultaneously maximize
DON (to enhance generalization) and minimize NOD (to avoid noise). After computing the DON
and NOD for each sample, we apply TOPSIS to rank the data points.

TOPSIS inherently balances conflicting objectives, i.e., maximizing DON and minimizing NOD, by
leveraging geometric distance in the normalized metric space. Moreover, normalization mitigates the
impact of differing metric magnitudes, ensuring neither DON nor NOD dominates the ranking. It
avoids subjective weight assignment (unlike weighted sum) and provides a total ordering of samples
(unlike Pareto optimality), which is critical for deterministic selection decisions. Thus, we choose
TOPSIS in our framework. Details of the algorithm are provided in Appendix F.

3.4 COMPUTATIONAL COMPLEXITY

The algorithm’s computational complexity consists of: (1) per-sample DON and NOD computation
and (2) TOPSIS-based sample selection.

In the first phase, we perform a forward pass (O(P ) time per sample, where P is the model’s
parameter count), a backward pass restricted to the output layer (O(O) time, O being the output
layer’s parameters), and compute Frobenius norms for weight updates (O(O)). Since O ⊂ P , the
per-sample cost simplifies to O(P ), resulting in a total training complexity of O(N · P ), where N is
the number of training samples.

The second phase involves normalizing DON/NOD metrics (O(N)), computing distances to ideal
and negative-ideal solutions (O(N)), and ranking samples via TOPSIS scores, dominated by an
O(N logN) sorting step. Thus, the selection process has a total complexity of O(N logN). Com-
bining both phases, the dominant term is O(N · P ), as P ≫ N logN in modern neural networks
(e.g., P ∼ 106–1012 parameters). The overall time complexity simplifies to O(N · P ) . For storage,
only O(N) space is required to store per-sample metrics, as no intermediate model states need to
be retained. Therefore, the runtime of DONOD can be approximated by the model’s inference
speed. In our experiments using Llama-3.1-8B-Instruct, processing the SAT Math COT dataset took
approximately 18 minutes of wall-clock time on a single A100 80GB GPU, with negligible storage
requirements.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Evaluation Benchmarks and Training Datasets Following Ma et al. (2025), we construct our
evaluation benchmark based on AGIEval (Zhong et al., 2024) and IFEval (Zhou et al., 2023). This
benchmark is designed to be comprehensive and domain-orthogonal, assessing abilities in logical
reasoning, mathematics, reading comprehension, and instruction following. By incorporating diverse
datasets, the benchmark reflects real-world ad-hoc SFT scenarios, where the objective is to strengthen
targeted model abilities rather than optimize for narrow or unrepresentative benchmarks.

To comprehensively evaluate DONOD’s effectiveness across diverse domains, tasks, and data con-
ditions, we select data that span a wide range of settings, including variations in domain (e.g.,
mathematics, logical reasoning, instruction following), task format (e.g., chain-of-thought, multiple-
choice, fine-grained evaluation), and the presence or absence of validation sets. This design enables
robust benchmarking under realistic and varied constraints. Specifically, we assess DONOD across
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Table 1: Experimental results with domain-specific averages on LogiQA Train and GSM8K. The
Non-Target column shows average performance excluding logic reasoning or Math (target domain).
The All Avg column shows the average of all tasks in the benchmark. All values are percentages.

Dataset Method Logic↑ Reading↑ Math↑ IFEval↑ Non-Target↑ All Avg↑

LogiQA Train

LESS 5% 22.62 25.19 21.47 64.33 36.99 27.91
Random 5% 20.45 24.27 24.06 46.95 31.96 26.35
ALL 100% 22.98 24.02 22.26 17.74 21.34 22.77
DONOD 5% 20.91 24.27 24.22 68.95 39.15 28.86

GSM8K
ALL (100%) 33.43 70.74 47.99 59.70 48.96 48.74
LESS 5% 34.74 71.85 25.78 60.63 50.46 44.97
DONOD 5% 37.16 71.92 33.69 71.16 52.74 48.51

Table 2: Experimental results with domain-specific averages on SAT Math COT and IFEval-Like
Data. The Non-Target column shows average performance excluding mathematical reasoning or
IFEval (target domain), revealing how methods generalize to other abilities.

Dataset Method Logic↑ Reading↑ Math↑ IFEval↑ Non-Target↑ All Avg↑

SAT Math COT

IFD 40% 39.31 68.26 64.18 63.03 56.87 55.04
ALL 100% 37.12 68.76 64.14 59.70 55.19 53.23
Random 40% 38.32 69.72 61.17 59.89 55.98 53.15
DONOD 30% 39.98 67.62 73.70 63.40 57.00 56.25
DONOD 20% 38.96 70.08 67.44 65.62 58.22 56.01

IFEval-Like Data
ALL (100%) 36.06 64.92 44.84 64.33 48.60 48.68
IFD 40% 34.06 66.31 34.04 71.90 44.80 46.55
DONOD 30% 36.14 57.82 66.47 46.77 53.47 49.01

the 4 settings, SAT Math Chain-of-Thought (COT) (Davidson, 2023) (math, COT, no validation set),
LogiQA-Train (Liu et al., 2020) (logical reasoning, multiple-choice, with validation set), IFEval-like
Data (Xu et al., 2024) (instruction-following, general, no validation set) and GSM8K (Cobbe et al.,
2021) (math, COT, biased distribution vs. SAT Math and Aqua-RAT).

Models and Experiment Settings We evaluate DONOD on a diverse instruction-tuned models to
assess its generalizability across architectures and fine-tuning paradigms. Specifically, we consider:
(1) LLaMA-3.2-3B-Instruct (Meta AI, 2024), a lightweight model optimized for instruction-following
tasks; (2) LLaMA-3.1-8B-Instruct (Grattafiori et al., 2024), a mid-sized model widely used in
recent instruction-tuning studies; (3) LLaMA-2-13B-Chat (Touvron et al., 2023), a larger model
trained with conversational objectives; and (4) Qwen 2.5-7B-Instruct (Team, 2024), a model from a
distinct architecture family, differing in tokenizer, training data, and parameterization. This ensures a
comprehensive evaluation of DONOD under varied model designs and training strategies. We focus
on the output layer of the Llama-3.1-8B-Instruct model for our experiment.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

As shown in Table 1 and Table 2, DONOD consistently outperforms other baseline methods while
using less data across nearly all benchmarks. Specifically, our method achieves the best performance
in core reasoning tasks such as math and logic, outperforming full-data baselines in both target-
domain accuracy and cross-domain generalization. For instance, on GSM8K, DONOD with only
5% of the data achieves higher logic, reading, and IFEval scores than training with 100% of the
data, while on SAT Math COT, DONOD with 20–30% data yields notable improvements over full-
data fine-tuning in both math reasoning and overall averages. Notably, it exhibits strong cross-task
and cross-domain transferability without relying on task-specific tuning or heuristics, and remains
competitive even in challenging settings such as reading comprehension. The strong gains in the
Non-Target and All Avg columns further highlight that DONOD not only strengthens task-specific
reasoning but also transfers well to broader abilities such as instruction following. These results
demonstrate that, during the LLM fine-tuning process, DONOD achieves training acceleration using
substantially less training data, offering a scalable and generalizable solution for data-efficient LLM
fine-tuning.
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Table 3: Cross-architecture generalization of selecting data with Llama-3.1-8B-Instruct and fine-
tuning on Llama-2-13b-chat, Qwen-2.5-7B-Instruct, and Llama-3.2-3B-Instruct.

Method Logic
(↑)

Reading
(↑)

Math
(↑)

IFEval
(↑)

Non-Target
(↑)

All
Avg (↑)

Llama-2-13b-chat
ALL (100%) 30.57 54.68 23.38 29.94 38.39 35.28
DONOD 20% 31.52 55.58 26.89 29.39 38.83 36.57
DONOD 30% 31.30 54.61 23.39 29.57 38.49 35.53

Qwen-2.5-7B-Instruct
ALL (100%) 43.62 73.99 74.57 56.01 57.87 58.90
DONOD 20% 41.95 68.28 79.86 58.23 56.15 59.09
DONOD 30% 42.57 71.15 77.07 61.74 58.48 59.33

Llama-3.2-3B-Instruct
ALL (100%) 9.23 34.67 10.60 63.96 35.95 23.10
DONOD 20% 27.65 50.46 34.78 65.80 47.97 38.71
DONOD 30% 29.46 56.75 33.92 65.06 50.42 41.03

Table 4: Experimental results with domain-specific averages. The Non-Target column shows
average performance (%) excluding mathematical reasoning (target domain), revealing how methods
generalize to other abilities.

Method Logic↑ Reading↑ Math↑ IFEval↑ Non-Target↑ All Avg↑
DON 36.19 68.12 58.15 66.17 56.83 52.38
NOD 40.23 67.12 65.71 58.04 55.13 54.39

Weighted Sum 38.08 69.15 63.74 53.79 53.67 53.54
Pareto Optimization 36.85 70.02 57.82 65.25 57.37 53.07

DONOD 38.96 70.08 67.44 65.62 58.22 56.01

4.3 CROSS-ARCHITECTURE GENERALIZATION

To assess the cross-architecture generalization of our selected data points, we select data points using
Llama-3.1-8B-Instruct and then fine-tune the datasets using Llama-2-13b-chat, Qwen-2.5-7B-Instruct,
and Llama-3.2-3B-Instruct. As shown in Table 3, our selected subsets (e.g., 20% and 30%) not only
retain but also surpass the full-data baseline in overall performance across diverse models. Notably,
DONOD yields consistent gains in overall averages, with particularly large improvements for the
smaller Llama-3.2-3B-Instruct, where 20–30% subsets boost the average score by more than 15 points
over the full-data performance. These results suggest that, despite differences in size and architecture,
LLMs share a consistent perception of instruction difficulty. In (Li et al., 2024a), this consistency is
demonstrated through metrics like perplexity and Instruction-Following Difficulty scores, which show
strong rank correlations across models of different sizes. As a result, smaller models like GPT-2 can
effectively filter instruction data for much larger models, such as LLaMA2-7B or GPT-4. DONOD
builds on the same principle, but instead of external metrics, it leverages intrinsic parameter-level
signals to identify universally useful samples. In practice, this means that data selected with a smaller
model (e.g., Llama-3.1-8B) can transfer effectively to larger or structurally different models (e.g.,
Llama-2-13B or Qwen-2.5-7B), echoing the weak-to-strong transfer effect. These results highlight
the strong cross-architecture transferability of DONOD-selected samples, underscoring the practical
utility for scalable and data-efficient fine-tuning across heterogeneous model families.

4.4 ROBUSTNESS IN IDENTIFYING NOISE

Real-world datasets often involve noise, where mislabeled or poorly aligned samples can degrade
model performance and hinder generalization. Unfortunately, creating clean and diverse datasets is
time-consuming and expensive. Therefore, it is necessary to evaluate the robustness of data selection
methods under noisy settings. In this study, we conduct a controlled experiment on the SAT Math
CoT dataset using the LLaMA 3.1 model. We start with the top 20% of samples originally selected
by DONOD. To simulate real-world data imperfections, we introduce controlled noise by randomly
masking words in the labels of these clean samples, which mimics subtle corruption or annotation
errors. These perturbed samples are then reintegrated into the full dataset, creating a new training
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pool containing embedded noisy instances. We reapply DONOD to this dataset to select a new top
20% subset based on the updated DON and NOD values. We assess sensitivity to noise by measuring
the overlap between the original and newly selected top 20%. The result shows a drop to only 38.7%
overlap, indicating that DONOD successfully identifies and filters out many of the newly corrupted
samples. This experiment highlights DONOD’s strong responsiveness to fine-grained label corruption
and its ability to dynamically adapt selection criteria.

4.5 ABLATION STUDY AND ANALYTICAL RESULTS

To understand the effect of each component in DONOD, we conduct an ablation study on the SAT
Math CoT dataset using LLaMA-3.1-8B-Instruct. As summarized in Table 4, we evaluate four
configurations: (1) ranking by DON only, (2) ranking by NOD only, (3) joint usage of DON and
NOD without TOPSIS (via weighted sum or Pareto Front), and (4) the full DONOD method (DON
+ NOD + TOPSIS). We do not consider configurations such as DON + TOPSIS, since the TOPSIS
framework inherently requires multiple criteria to balance conflicting signals.

Effect of Individual Metrics When applied individually, the two metrics exhibit complementary
behaviors. NOD achieves stronger performance on the target domain (e.g., Math: 65.71%), as
it emphasizes samples that induce substantial localized parameter updates, thereby favoring task-
specific adaptation. However, this comes at the cost of reduced generalization to non-target domains,
suggesting susceptibility to overfitting. In contrast, DON promotes smoother and more stable
parameter updates, which better preserve generalizable knowledge. This results in superior cross-
domain generalization but comparatively weaker gains in task-specific reasoning. These findings
confirm that DON and NOD capture distinct yet complementary aspects of sample importance.

Combination Strategies Directly combining DON and NOD, such as a weighted sum or a Pareto
Front, fails to fully reconcile their competing objectives. Weighted sum marginally improves reading
comprehension but reduces math and non-target performance compared to using DON or NOD
in isolation. Pareto Front, on the other hand, places greater emphasis on cross-domain stability
but sacrifices task-specific accuracy. These results underscore the need for a principled integration
mechanism to balance stability and specificity.

Full Method (DONOD) The proposed DONOD achieves the best balance between domain-specific
performance and cross-domain generalization. By ranking samples according to their proximity to the
ideal trade-off between DON and NOD, TOPSIS provides a principled means of resolving conflicts
between the two criteria. This yields improvements in both target-domain accuracy and transferability,
while also enhancing the overall average performance. Moreover, these results highlight the necessity
of integrating both DON and NOD within a multi-objective optimization framework, validating the
effectiveness of TOPSIS.

Validation of Output Layer Focus To further justify our design choice in Section 3.2, we analyze
the sensitivity of weight changes across layers. By ranking the Frobenius norm delta across layers
after fine-tuning Llama-2-13B-Chat on the SAT Math COT dataset, as shown in Figure 3, we observe
that the output layer exhibits the largest shifts, reflecting its heightened responsiveness to task-specific
supervision. Restricting DON and NOD to this layer thus provides a representative signal of overall
weight dynamics, closely aligned with the layer-wise average Frobenius norm, while substantially
reducing computational cost. Compared to computing Eq.1 and Eq.2 across all layers for every
data sample, our approach only requires backpropagation through the final layer together with
constant-time DON/NOD computations, yielding a highly efficient yet effective approximation.

Stability of DONOD Across Data Proportions To evaluate the stability of DONOD under varying
data regimes, we train models on subsets ranging from 10% to 100% of the data. As shown in
Figure 4, DONOD exhibits consistent performance and remarkable efficiency, often matching or
surpassing the full-data baseline with substantially fewer samples. Notably, with only 10% of the data,
it outperforms the full-data baseline in both Logic and Overall Average, underscoring its robustness
under data scarcity. At 20%, DONOD achieves an optimal trade-off, reaching peak scores in Logic
and Reading while maintaining strong overall averages. These results demonstrate that DONOD
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Figure 3: Rank of the top 5 lay-
ers by Frobenius norm delta af-
ter fine-tuning Llama-2-13B.

Figure 4: Stability of DONOD across data proportions.

reliably identifies high-quality samples that maximize informative learning signals while minimizing
noise.

Figure 5: Illustration of the distribution of pruned
dataset with DONOD and NODON (keep samples with
the lowest TOPSIS scores, efficiently sample with high
NOD and low DON).

Human Evaluation on Selected Datasets
To further validate the effectiveness of our
selection strategy, we conduct a human
evaluation by inverting the process: in-
stead of retaining the top-ranked samples,
we keep those with the lowest TOPSIS
scores, forming the NODON dataset. As
shown in Figure 5, these samples clus-
ter on the high-NOD, low-DON region
of the NOD–DON plane. Manual inspec-
tion of the NODON-pruned SAT Math
COT datasets reveals several recurring cat-
egories: (1) over-elaborated answers to
trivial questions, (2) incomplete or partial
responses, (3) incorrect reasoning steps,
(4) mislabeled or flawed questions, and
(5) overly complex or impractically diffi-
cult problems. These findings indicate that
DONOD systematically removes unhelpful or misleading samples, thereby improving instruction
data quality and enhancing both the robustness and generalization of fine-tuned LLMs.

5 CONCLUSION

In this paper, we propose DONOD, a model-intrinsic data selection framework to enhance LLM
fine-tuning efficiency without sacrificing model performance. By leveraging weight dynamics, our
method selects high-quality data and suppresses the selection of noisy or uninformative data via
dual complementary metrics, DON and NOD. These metrics are integrated via TOPSIS, enabling
a principled trade-off between maximizing generalization and minimizing harmful updates. Ex-
periments show that DONOD can reduce training data volume by up to 70% while outperforming
standard supervised fine-tuning, achieving superior training acceleration. Notably, datasets selected
by smaller models also generalize well when used to fine-tune other LLM architectures, underscoring
the framework’s scalability and practicality for real-world LLM pipelines. We hope DONOD inspires
further research on data selection for LLM training from a model-intrinsic perspective and believe
our method will serve as a promising dataset optimization tool for the community, enabling enhanced
data-centric LLM training pipelines.
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6 ETHICS AND REPRODUCIBILITY STATEMENT

The datasets (benchmarks) used for the evaluation and comparison of our method and baselines are
publicly accessible, ensuring the transparency and reproducibility of our work. We will release our
work to the community as soon as it is accepted, ensuring that our work is reproduced and grounded
for other researchers and practitioners.
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APPENDIX

A AI ASSISTANT USAGE STATEMENT

Large Language Models (LLMs) were employed in a limited capacity during the preparation of this
paper, primarily for text refinement. Importantly, LLMs were not involved in formulating the core
ideas, designing the methodology, or determining the structure and substantive content of the work.

B THEORETICAL FOUNDATIONS

The generalization gap for a learning algorithm, for a specific function f , is the difference between
its true (expected) risk RD(f) over the data distribution D and its empirical risk RS(f) over a finite
sample S = {(x1, y1), . . . , (xm, ym)}. A smaller generalization gap means the model’s performance
on unseen data is closer to its performance on training data, i.e., the model generalizes well.

The Rademacher complexity Rm(F) of a hypothesis class F measures its ability to fit random noise.
It is formally defined ((Bartlett & Mendelson, 2003) and (Neyshabur et al., 2015)) as:

Rm(F) = Eξ∈{±1}m

[
1

m
sup
f∈F

∣∣∣∣∣
m∑
i=1

ξif(xi)

∣∣∣∣∣
]

Similarly by (Bartlett & Mendelson, 2003), for a hypothesis class F of real-valued functions and
a 1-Lipschitz loss function ℓ, a standard generalization bound, if inputs are bounded and output is
bounded, states that for any f ∈ F , with probability at least 1 − δ over the random draw of the
sample S:

RD(f) ≤ RS(f) + 2Rm(F) + C

√
log(1/δ)

m

where C is a constant related to the range of the loss function, and for 1-Lipschitz losses, it simplifies

to 2Rm(F) +
√

log(1/δ)
2m . This inequality implies that the generalization gap RD(f) − RS(f) is

bounded by terms that include the Rademacher complexity of the hypothesis class F . Therefore, to
show that the generalization gap of M ′ is smaller, we need to show that the Rademacher complexity
of its corresponding hypothesis class is smaller.

C THEORETICAL ANALYSIS

Here, based on our case, we simplify our network as a network with a fixed architecture (d layers,
width H) and RELU activations, and consider a hypothesis class of functions whose weights w satisfy
a bound on µp,q(w). Specifically, we are interested in the Frobenius norm, which is µ2,2(w). Let
Fµ = N

µ2,2≤µ
d,H,σRELU

be the class of functions that can be realized by such a network where the overall
ℓ2 norm of its weights is at most µ.

For the model Mhigh of weight Whigh, its actual Frobenius norm is µMhigh
= µ2,2(Whigh). The

function fWhigh
computed by Mhigh belongs to the hypothesis class FµMhigh

.

Similarly, the network Mlow has weights Wlow, and its actual Frobenius norm is µMlow
=

µ2,2(Wlow). The function fWlow
computed by Mlow belongs to the hypothesis class FµMlow

. We are
given µMlow

> µMhigh
.

Here, we theoretically prove that models with high DON generalize better.

To resonate the use of DON, we first introduce two key mathematical tools, the generalization gap
and Rademacher complexity, as shown in Appendix 1.1. Let M , Mhigh and Mlow be three neural
networks with identical architectures but distinct weight matrices W , Wlow and Whigh, respectively.
Here Mhigh stands for a model with high DON, Mlow stands for a model with low DON, and M is
an arbitrary auxiliary model.
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We show that the model with higher DON generalizes better, e.g., if

DONhigh − DONlow =

L∑
l=1

(
∥W l∥F − ∥W l

high∥F
)

−
L∑

l=1

(
∥W l∥F − ∥W l

low∥F
)
> 0

(5)

then Mhigh generalize better.

Simplify 5, we have:
L∑

l=1

(∥W l
low∥F − ∥W l

high∥F ) > 0 (6)

Using the same notation as (Neyshabur et al., 2015), let µ2,2(Wlow) =
∑L

l=1 ∥W l
low∥F and

µ2,2(Whigh) =
∑L

l=1 ∥W l
high∥F , suppose the Frobenius norms of the weights satisfy µ2,2(Wlow) >

µ2,2(Whigh), we want to proof that that the generalization gap of Mhigh is smaller than that of Mlow.

Proof. Firstly, we make necessary assumptions and the setup based on our practical conditions as
detailed in Appendix 1.2. According to the Corollary 2 of (Neyshabur et al., 2015), for any d ≥ 1,
1 ≤ p < ∞, and 1 ≤ q ≤ p∗ = p/(p− 1) (where 1/p+ 1/p∗ = 1), the Rademacher complexity of
the class Nd,H,σRELU

µ2,2≤µ is bounded.

In our case, we are considering the Frobenius norm, so p = 2 and q = 2. This means p∗ =
2/(2 − 1) = 2. Since q = 2 and p∗ = 2, the condition q ≤ p∗ (2 ≤ 2) is met. Therefore, we can
apply the bound from Corollary 2:

Rm(Nd,H,σRELU

µ2,2≤µ ) ≤
(

2µ
2
√
d

)d

Rlinear
m,2,D

Here, Rlinear
m,2,D is the Rademacher complexity of D-dimensional linear predictors with unit ℓ2

norm with respect to a set of m samples. Since p = 2, by the same Corollary 2 (Neyshabur

et al., 2015), we have a bound for this term: Rlinear
m,2,D ≤

√
min {p∗,4log(2D)}maxi ∥xi∥2

p∗

m . Let

K = 2d

dd/2

√
min {p∗,4log(2D)}maxi ∥xi∥2

p∗

m . This K is a positive constant that depends only on the
fixed architecture (d), input dimensionality (D), sample size (m), and the maximum ℓ2 norm of input
data points (which is assumed finite).

So, the Rademacher complexity bound for our class becomes:

Rm(N
µ2,2≤µ
d,H,σRELU

) ≤ K · µd

For network Mhigh, its function fWhigh
belongs to the class FµMhigh

, and its Rademacher complexity
is bounded by:

Rm(FµMhigh
) ≤ K · µd

Mhigh

For network Mlow, its function fWlow
belongs to the class FµMlow

, and its Rademacher complexity
is bounded by:

Rm(FµMlow
) ≤ K · µd

Mlow

As explained in Appendix 1.2, since we are given µMlow
> µMhigh

, and µM , µM ′ are non-negative
(being norms), it directly follows that µd

Mlow
> µd

Mhigh
. Therefore:

Rm(FµMhigh
) ≤ K · µd

Mhigh
< K · µd

Mlow
(7)

This shows that the Rademacher complexity of the hypothesis class associated with Mhigh is strictly
smaller than that associated with Mlow.

From the generalization bound established in Appendix B: For Mhigh, with probability at least 1− δ:

RD(fWhigh
)−RS(fWhigh

) ≤ 2Rm(FµMhigh
) + C

√
log(1/δ)

m

15
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For network Mlow, with probability at least 1− δ:

RD(fWlow
)−RS(fWlow

) ≤ 2Rm(FµMlow
) + C

√
log(1/δ)

m

Since Eq.7, it implies that the upper bound on the generalization gap for Mhigh is lower than that for
Mlow, that is, in the worst case, the generalization gap Mhigh can have is strictly less than Mlow. In
other words, Mhigh is generally better generalized. We also provide a more intuitive interpretation of
DON and NOD metrics in Appendix D.

D INTUITION BEHIND DON AND NOD METRICS

DON as a Proxy for Generalization: A negative DON indicates that fine-tuning on Di increases
the model’s weight magnitude. As shown above, we have proved that the model with high DON
lead to better generalization. This is also supported by the study of (Shalev-Shwartz & Ben-David,
2014), its increment relates to the regularization principles, where smaller norms often correlate with
lower generalization error (e.g., weight decay). Intuitively, samples that induce a significant increase
in the Frobenius norm contribute to the complexity of the model, potentially damage its ability to
generalize across domains, and high and positive DON indicate the simplification of the model and
better generalization. Our experimental results support this intuition, showing that samples yielding
high DON positive values improve cross-domain accuracy.

NOD as an Indicator of Bad Sample: A high NOD value indicates that the data point Di has
a significant influence on the model. In the context of ad-hoc SFT, training begins with a model
that already possesses a certain level of generalization. Since the model is unlikely to encounter
entirely new information or learn fundamentally new concepts after pretraining, data points with high
NOD values are often indicative of low-quality samples, such as mislabeled or noisy data. Therefore,
our method focuses on filtering out samples with high NOD values, thereby removing noisy or
unlearnable data from the training process.

E CHOICE OF FROBENIUS NORM

The Frobenius norm is a matrix norm defined for a matrix W ∈ Rm×n as the square root of the sum
of the squares of its elements, i.e., ∥W∥F =

√∑m
i=1

∑n
j=1 |wi,j |2. Compared to other norms, it

offers specific advantages. For instance, the ℓ1 norm is given by ∥W∥1 =
∑m

i=1

∑n
j=1 |wi,j |, it treats

the matrix as a flattened vector and measures the total absolute deviation. The ℓ1 norm’s robustness
to outliers makes it suitable for measuring aggregate influence. However, it lacks sensitivity to the
fine-grained linear transformation differences represented by the weight matrix, which is critical
for data selection. Moreover, it provides a less effective measure of the magnitude difference for
fine-grained data selection. To capture the slightest difference between samples, the Frobenius norm
shows better performance. In terms of the ℓ2 norm, for a matrix, it typically implies the Spectral
norm and is given by ∥W∥2 = σmax(W ), where σmax(W ) is the maximum singular value obtained
from the singular value decomposition (SVD) of W . This makes the ℓ2 norm solely focus on the
largest singular value, capturing the dominant direction of the matrix’s transformation but ignoring
the contribution of smaller singular values. This ignorance of finer structural changes in the weight
matrix, making it less suitable for detecting sample-wise influences. Furthermore, the computation of
SVD for a large matrix, which is a common situation for modern LLMs, can be a heavy workload,
hindering the scalability of the method. For the same matrix W ∈ Rm×n, comparing with the
expensive computation of ℓ2 spectral norm (O(min(mn2,m2n))), Frobenius norm is much more
efficient and only requiring O(mn).

F IMPLEMENTATION OF TOPSIS

1. Normalization: DON and NOD are normalized to eliminate scale differences. Given a
matrix W ∈ Rn×2, where n is the number of samples and columns represent DON and
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NOD, vector normalization is applied:

w̃i,j =
wi,j√∑n
k=1 w

2
k,j

. (8)

2. Ideal Solutions: The hypothetical ideal solution Z+ and negative-ideal solution Z− are
defined as:

Z+ = [max(W̃DON),min(W̃NOD)] (9)

Z− = [min(W̃DON),max(W̃NOD)] (10)

These represent the hypothetical ”best” and ”worst” cases, where DON is maximized and
NOD minimized (for Z+), and vice versa (for Z−).

3. Distance Calculation: The Euclidean distance of each sample to Z+ and Z− is computed:

D+
i =

√√√√ 2∑
j=1

(w̃i,j − Z+
j )2 (11)

D−
i =

√√√√ 2∑
j=1

(w̃i,j − Z−
j )2 (12)

4. TOPSIS Score: The final score for each sample is:

Ci =
D−

i

D+
i +D−

i

, (13)

where Ci ∈ [0, 1]. Higher scores indicate closer alignment with Z+ and greater divergence
from Z−.

G TRAINING SETTINGS

• Global batch size: 16

• Micro-batch size: 1

• Learning rate: 2e-5

• Optimizer: AdamW (Loshchilov & Hutter, 2019)

• Warmup-ratio 0.025

• Every model is trained on 8 NVIDIA A100 GPUs for less than 1 hour

H BAD SAMPLES GALLERY

How many edges does a cube have ?
I need t o i d e n t i f y how many edges a cube has . I remember t h a t a

cube i s a t h r e e − d i m e n s i o n a l shape wi th s i x s q u a r e f a c e s . Each
s q u a r e f a c e has f o u r edges , b u t when c o n s i d e r i n g edges t h a t
a r e s h a r e d between two f a c e s , I can ’ t c o u n t a l l edges
s e p a r a t e l y .A cube has 12 un iqu e edges . They can be grouped
i n t o t h r e e s e t s o f f o u r edges t h a t run p a r a l l e l t o each of t h e

cube ’ s t h r e e d i m e n s i o n s . Thus , a f t e r c o n s i d e r i n g a l l f a c e s and
a v o i d i n g d oub l e c o u n t i n g , I c o n f i r m t h a t t h e t o t a l number o f

edges i n a cube i s 1 2 .\ n T h e r e f o r e t h e f i n a l answer i s A cube
has 12 edges .

F ind t h e number o f v e r t i c e s o f t h e r e c t a n g u l a r p r i sm .

17
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I need t o f i n d t h e number o f v e r t i c e s o f a r e c t a n g u l a r p r i sm . I
know t h a t a r e c t a n g u l a r p r i sm i s a 3D shape wi th r e c t a n g u l a r
f a c e s , l e n g t h , width , and h e i g h t . I can imag ine t h a t each
c o r n e r o f t h e p r i sm i s a v e r t e x , and t h e r e a r e 2 c o r n e r s a t
each edge . I can c o u n t 4 v e r t i c e s a t t h e t o p face , 4 v e r t i c e s
a t t h e bot tom face , and no a d d i t i o n a l v e r t i c e s a t t h e edges ,
s i n c e each edge has 2 v e r t i c e s a l r e a d y c o u n t e d . I c o n c l u d e t h a t

t h e r e a r e 4 + 4 = 8 v e r t i c e s i n a r e c t a n g u l a r p r i sm .\ n
T h e r e f o r e t h e f i n a l answer i s A r e c t a n g u l a r p r i sm has 8
v e r t i c e s .

I f you s e l e c t t h r e e o f t h e f o u r numbers 1 , 2 , 3 , and 4 , a l l o w i n g
d u p l i c a t e s , and a r r a n g e them i n a row t o form a t h r e e − d i g i t
n a t u r a l number . How many m u l t i p l e s o f 3 a r e t h e r e ?\n

T h e r e f o r e t h e f i n a l answer i s There a r e 22 m u l t i p l e s o f 3 t h a t can
be formed by s e l e c t i n g t h r e e o f t h e f o u r numbers 1 , 2 , 3 , and
4 ( a l l o w i n g d u p l i c a t e s ) and a r r a n g i n g them i n a row t o form a
t h r e e − d i g i t number .

What i s t h e s m a l l e s t number among t h e t h r e e numbers 5 , 8 , and 4?
I am asked t o f i n d t h e s m a l l e s t number among t h r e e g i v e n numbers :

5 , 8 , and 4 . I w i l l compare t h e t h r e e numbers by l o o k i n g a t
t h e i r v a l u e s . I can s e e t h a t 4 i s t h e s m a l l e s t number among t h e

t h r e e , a s i t has t h e l o w e s t v a l u e .\ n T h e r e f o r e t h e f i n a l
answer i s The s m a l l e s t number among 5 , 8 , and 4 i s 4 .

The f u n c t i o n $f$ i s d e f i n e d as f o l l o w s : \ n$$f ( x ) = 4 + \ f r a c {\\
t e x t { s q r t }}{x } . $$ \nWhat i s t h e v a l u e o f $ f ( 1 4 4 ) $ ?\n\nA . 0 \nB
. 16 \nC . 40 \nD . 76

We s t a r t by s u b s t i t u t i n g 144 i n t o t h e f u n c t i o n f ( x ) . The f u n c t i o n
i s d e f i n e d as : f ( x ) = 4 + s q r t ( x ) . So we need t o c a l c u l a t e f
( 1 4 4 ) . S u b s t i t u t i n g 144 i n t o t h e f u n c t i o n , we have : f ( 1 4 4 ) = 4
+ s q r t ( 1 4 4 ) . Next , we c a l c u l a t e s q r t ( 1 4 4 ) . The s q u a r e r o o t o f
144 i s 1 2 .Now we can s u b s t i t u t e t h i s back i n t o t h e f u n c t i o n : f
( 1 4 4 ) = 4 + 1 2 . Adding t h e s e v a l u e s t o g e t h e r g i v e s : f ( 1 4 4 ) =
1 6 .\ n T h e r e f o r e t h e f i n a l answer i s 16

You s u b t r a c t e d 4 . 3 when you s h o u l d have added 4 . 3 t o a number ,
r e s u l t i n g i n 8 . 8 . F ind t h e c o r r e c t v a l u e .

\n T h e r e f o r e t h e f i n a l answer i s The c o r r e c t v a l u e i s 1 7 . 4 .

Karen bakes 50 c h o c o l a t e c h i p c o o k i e s . She keeps 10 f o r h e r s e l f ,
and she g i v e s 8 t o h e r g r a n d p a r e n t s . Karen wants t o g i v e
e v e r y o n e i n h e r c l a s s c o o k i e s . Each p e r s o n i n h e r c l a s s w i l l
r e c e i v e 2 c o o k i e s . How many p e o p l e a r e i n Karen ’ s c l a s s ?

T h e r e f o r e t h e f i n a l answer i s Karen has 16 p e o p l e i n h e r c l a s s .

Ronnie i s a t r a i n e n g i n e e r . His t r a i n p u l l s 3 r e d boxca r s , 4 b l u e
boxca r s , and 7 b l a c k b o x c a r s . The b l a c k b o x c a r s can each ho ld
4000 pounds o f coa l , and t h e r e d b o x c a r s can ho ld 3 t i m e s as
much as t h e b l u e b o x c a r s . A l l o f t h e t r a i n ’ s b o x c a r s combined
can ho ld 132 ,000 pounds o f c o a l . What i s t h e r a t i o o f t h e c o a l

c a p a c i t y o f each b l a c k bo xc a r t o each b l u e bo x ca r ?
I u n d e r s t a n d t h a t Ronnie ’ s t r a i n has 3 r e d boxca r s , 4 b l u e boxca r s

, and 7 b l a c k boxca r s , and we need t o f i n d t h e r a t i o o f t h e
c o a l c a p a c i t y o f each b l a c k b ox ca r t o each b l u e b ox ca r . I
r e c o g n i z e t h a t t h e b l a c k b o x c a r s can ho ld 4000 pounds o f coa l ,

and t h e r e d b o x c a r s can ho ld 3 t i m e s as much as t h e b l u e
boxca r s , and t h e t o t a l c a p a c i t y o f a l l b o x c a r s i s 132 ,000
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pounds . I w i l l l e t t h e c o a l c a p a c i t y o f each b l u e b o xc a r be B
pounds , so each r e d bo x ca r can ho ld 3B pounds . I can w r i t e an
e q u a t i o n based on t h e t o t a l c a p a c i t y o f a l l b o x c a r s : 3 (3B) + 4
B + 7 ( 4 0 0 0 ) = 1 3 2 , 0 0 0 . I s i m p l i f y t h e e q u a t i o n by combin ing
l i k e t e r m s : 9B + 4B + 28 ,000 = 1 3 2 , 0 0 0 . I combine l i k e t e r m s t o

g e t : 13B + 28 ,000 = 1 3 2 , 0 0 0 . I s u b t r a c t 28 ,000 from bo th s i d e s
t o g e t : 13B = 104 ,000 , and t h e n d i v i d e bo th s i d e s by 13 t o

g e t : B = 8 , 0 0 0 . I know t h a t each b l u e b o xc a r can ho ld 8 ,000
pounds , and each b l a c k bo x ca r can ho ld 4 ,000 pounds , so t h e
r a t i o o f t h e c o a l c a p a c i t y o f each b l a c k b o xc a r t o each b l u e
b ox ca r i s 4000/8000 = 1 / 2 .

\n T h e r e f o r e t h e f i n a l answer i s The r a t i o i s 1 : 2 .

I EMPIRICAL VALIDATIONS OF OUTPUT LAYER FOCUS

Figure 6: Ranking of Frobenius norm delta of layers of Llama-3.1-8B-Instruct after fine-tuning on
SAT Math COT dataset, epoch 2
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Figure 7: Ranking of Frobenius norm delta of layers of Llama-3.1-8B-Instruct after fine-tuning on
SAT Math COT dataset, epoch 3

Figure 8: Ranking of Frobenius norm delta of layers of Llama-3.1-8B-Instruct after fine-tuning on
SAT Math COT dataset, epoch 4
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Figure 9: Ranking of Frobenius norm delta of layers of Llama-3.1-8B-Instruct after fine-tuning on
SAT Math COT dataset, epoch 5

Figure 10: Ranking of Frobenius norm delta of layers of Llama-2-13b-chat after fine-tuning on SAT
Math COT dataset, epoch 1
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Figure 11: Ranking of Frobenius norm delta of layers of Llama-2-13b-chat after fine-tuning on SAT
Math COT dataset, epoch 2
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J BENCHMARK DETAILS

Table 5: Constructed Benchmark Details. To ensure the representativity of each measured ability,
multiple datasets focusing on the same ability are selected, mitigating potential biases arising from
the limited scope of individual exams. Additionally, the inclusion of the comprehensive and unrelated
dataset IFEval-en further enhances the reliability and representative of the benchmark, aligning it
more closely with real-world use cases.

Dataset Ability Validation Set Available Test Set Size
LSAT-AR Logical Reasoning False 230
LSAT-LR Logical Reasoning False 510
LogiQA-en Logical Reasoning True 651
LSAT-RC Reading Comprehension False 269
SAT-en Reading Comprehension False 206
AQUA-RAT Mathematical Problem-Solving True 254
SAT-math Mathematical Problem-Solving False 220
IFEval-en Instruction Following False 541

K DATASETS DETAILS

Table 6: Details of the datasets used in the study.

Dataset Ability Label Type Size
LogiQA Train Logic Reasoning Single letter only 7,851
SAT Math COT Mathematical Problem-Solving COT 32,444
GSM8K Mathematical Problem-Solving COT 8794
Ifeval-Like Data Instruction Following General text 56.3K

L ABLATION CONFIGURATIONS

Table 7: Ablation study configurations.

Configuration DON NOD TOPSIS
DON Only ✓ × ×
NOD Only × ✓ ×
DON + NOD (Weighted Sum) ✓ ✓ ×
DON + NOD (Pareto Front) ✓ ✓ ×
DON + NOD + TOPSIS (Full) ✓ ✓ ✓
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