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Abstract

Self-Supervised Learning (SSL) enables training performant models using limited
labeled data. One of the pillars underlying vision SSL is the use of data augmen-
tations—perturbations of the input which do not significantly alter its semantic
content. For audio and other temporal signals, augmentations are commonly used
alongside format transforms such as Fourier transforms or wavelet transforms.
Unlike augmentations, format transforms do not change the information contained
in the data; rather, they express the same information in different coordinates.
In this paper, we study the effects of format transforms and augmentations both
separately and together on vision SSL. We define augmentations in frequency space
called Fourier Domain Augmentations (FDA) and show that training SSL models
on a combination of these and image augmentations can improve the downstream
classification accuracy by up to 1.3% on ImageNet-1K. We also show improve-
ments against SSL baselines in few-shot and transfer learning setups using FDA.
Surprisingly, we also observe that format transforms can improve the quality of
learned representations even without augmentations; however, the combination of
the two techniques yields better quality.

1 Introduction

In the fast-evolving landscape of deep learning and computer vision, self-supervised learning has
emerged as a powerful paradigm for foundation models [1, 2]. Its success is rooted in its ability to
learn robust and generalizable representations from unlabelled data with no supervision. Existing
SSL approaches have been categorized into two main types: generative [3] and invariance-based
[4, 5, 6, 2, 7, 8]. The latter involves joint-embedding pre-training with two or more views of the same
input data sample. To prevent joint-embedding representations from collapsing (converge to identical
representations) during pre-training, it is crucial to employ stochastic augmentations like random
crop, color jitter, Gaussian blur, solarization etc. These augmentations are often hand-crafted for
specific downstream tasks and may not transfer well to other tasks [9, 10]. We show evidence (Figure
2) that progressively adding more hand-crafted augmentations improves downstream linear probing
performance and conversely, removing any given augmentation always hurts performance among 3
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self-supervised baselines. We therefore hypothesize that increasing augmentation diversity during
pre-training allows representations to become invariant to more nuisance concepts and could improve
downstream linear probing performance.

Meanwhile, in the audio and speech domain, recent works [11, 12, 13] have successfully performed
self-supervised learning by maximizing the mutual information between time and frequency formats
in the latent space using the Fourier Transform and a small number of format-specific augmentations.
This mode of transformation allows us to represent the same data under different coordinates. This is
unlike hand-crafted augmentations, since the data remains unperturbed. Prior works [14, 15, 16, 17]
have utilized the Fourier space to unify multi-domain latent spaces to benefit tasks like domain
generalization and image-to-image translation. We use the term format transform and Fourier
transform interchangeably in the context of images.

In this paper, we integrate both notions presented above. We study the effect of incorporating aug-
mentations in the Fourier domain of images with the goal of increasing overall augmentation diversity.
To this end, we propose a pipeline of augmentations called Fourier Domain Augmentations (FDA)
that can be applied in the complex Fourier domain. When data after these FDAs are inverted back to
the image space, we observe that they produce unique textures and patterns, which cannot be easily
reproduced by directly perturbing the image space.

We study the combined effect of applying FDA along with standard image augmentations on pre-
training state-of-the-art self-supervised baselines including SimCLR [4], BYOL [7], MoCov2 [18]
and SimSiam [5] on ImageNet-1K [19]. We show an average improvement of 1% in the top-1
accuracy during downstream linear probing. We also evaluate other downstream tasks including
few-shot learning and transfer learning and show qualitative improvements on image retrieval with
the use of FDAs.

Our results confirm our initial hypothesis of the need for augmentation diversity. We perform ablations
where we study the independent effects of augmentations in the image space and the frequency space
in a single-encoder contrastive learning setup (SimCLR). We explore the results of maximizing
agreement between two augmented views where the augmentation can be any one of (i) standard
image augmentations (ii) Fourier-mode augmentations and (iii) the combination of both.

Finally, we examine the individual effect of using the format transform itself disentangled from any
augmentations. This experiment is to understand if self-supervised learning can benefit from encoding
images presented in multiple formats without any augmentations i.e., the raw image and Fourier
transform. To achieve this we design a dual-encoder setup with contrastive learning where each
encoder is exposed to one modality, either raw image or Fourier image. We observe that providing
the Fourier transform as one of the views during pre-training improves linear probing performance by
16% compared to raw image pre-training in lieu of any augmentations. We further explore the benefit
of augmentations (both image and frequency) in this dual-encoder setup. Across all ablations, we
observe that combining image and FDA while pre-training in the image domain results in the best
downstream performance.

2 Background

Self-Supervised Learning is a powerful approach of learning representations from large amounts
of data without the use of labels. Learned representations can later be used for downstream tasks
[20] directly or with inexpensive fine-tuning. Representations are learned by solving pretext tasks
which can involve predicting simple transformations on a given image like rotations [21], jigsaw
[22] or color [23]. However, more successful self-supervised approaches involve joint-embedding
methods which force latent space similarity between multiple augmented views of the same image
sample. This can be achieved via contrastive or InfoNCE loss [24, 4, 18, 5], self-distillation [2, 7]
or by redundancy reduction in the latent space [8, 6]. Regardless of the training paradigm, all
joint-embedding methods rely on powerful data augmentations to control the degree of invariance
beneficial for downstream tasks.

Augmentations in Self-Supervised Learning engender invariances which in turn introduce good
inductive biases for downstream tasks [10, 25]. However, for any given downstream task, specific
augmentations may be better suited over others [10, 9]. This property tends to restrict the general-
ization capability of many self-supervised models as using an inappropriate set of augmentations
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Figure 1: Diversifying image augmentations with Fourier Domain Augmentations (FDA): We
show the pipeline of applying Fourier Mode Augmentations integrated with standard image augmen-
tations like random cropping, color jitter, grayscale etc. We use RFFT2D (available in PyTorch and
TensorFlow) to transform a random resized crop image into the Fourier space. Here, we stochastically
apply amplitude rescale, phase-shift, random frequency mask and Gaussian mixture mask which
together constitute Fourier Domain Augmentations (FDA). The remaining image augmentations are
applied after inverting the augmented Fourier spectrum back to the image space using iRFFT2D.

can significantly hurt downstream performance. Therefore, a standard protocol followed by most
self-supervised approaches is to identify optimal augmentations for best downstream linear probing
performance on ImageNet-1K.

Fourier-based Methods in Audio: Self-Supervised learning has shown success in the audio/speech
domain [26, 27] in predicting embeddings of future audio samples from a sequence of prior embed-
dings, by comparing with a context embedding derived from the sequence. Recently, Wang et. al
[11] have extended these results by directly comparing two augmented versions of a given audio
sample rather than utilizing a context embedding. In their work one version of the audio sample is in
the time-domain format, with augmentations directly applied to the waveform, while the other has
been Fourier-transformed into the frequency-domain, with augmentations applied to the spectrogram.
Encoders for the two formats are simultaneously trained so that their output embedding vectors align
when they arise from the same data source. Specifically, time-domain augmentations involve masking
(removing) some time intervals and adding noise. Frequency-domain augmentations involve masking
(removing) some frequency intervals and shifting all frequencies by an integer constant. [12] also did
contrastive learning on representations of two different signal formats; namely a waveform (not nec-
essarily audio), and a scaleogram arising from a wavelet transform. However, no data augmentations
were explored in that work. [13] train a joint time-frequency representation, where self-supervision is
implemented by penalizing the distance between a signal’s time and frequency representations, each
pretrained contrastively.

The contrasting of multiple formats (raw and frequency) of the same input is especially interesting
even in the image space, as it potentially allows generating rich embeddings that encode both
modalities. To the best of our knowledge, no analysis has been done of the separate and combined
effects of Fourier space augmentations and image augmentations. Moreover, neither augmentations in
the Fourier space nor the direct use of Fourier space in self-supervision have been properly explored
on image data for vision models.
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Figure 2: Augmentation Diversity: We display commonly used hand-crafted augmentations for
self-supervised learning on the left. We demonstrate the effect of increasing diversity in pre-training
augmentations (first plot) and removing individual augmentations (second plot). The best performance
is retained when all given augmentations are used in 3 baselines.
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Figure 3: Fourier Domain Augmentations (FDA): We illustrate the result of applying each aug-
mentation in FDA when inverted back into the image domain - amplitude rescale, phase shift, random
frequency mask, Gaussian mixture mask. We vary the strength using augmentation-specific hyper-
parameters m,n, p, q, k, o (see Section 4). We tune these hyper-parameters (no training required)
such that images are perturbed sufficiently without hiding the core ground-truth attributes.

3 Importance of Diversity in Pre-Training Augmentations

In this section, we illustrate the strong dependence that joint-embedding self-supervised models
have on pre-training augmentations. We hypothesize that each augmentation tackles a specific
type of invariance. Depending on the downstream task, a model’s generalization power can be
improved by enforcing invariance to physical properties irrelevant to the ground truth [10, 25, 9]. The
standard set of augmentations used by self-supervised models are - random cropping and resizing,
horizontal flip, color jittering, grayscale, Gaussian blurring and solarization. We display an example
of these augmentations in Figure 2 (top panel). These augmentations have been hand-crafted to show
competitive performance in downstream classification, particularly on ImageNet-1K.

In Figure 2 (bottom left plot), we show the effect of progressively adding individual augmentations
while pre-training SimCLR, BYOL and MoCov2 on ImageNet-1K and measuring the linear probing
accuracy. Each baseline demonstrates the best performance when all of the above augmentations
are used. This result supports our claim of diversity playing an important role in producing easily
classifiable representations.

While the diversity of augmentations is necessary, it is also important that each augmentation attacks
specific invariances. In Figure 2 (bottom, right plot), we show the impact of removing individual
augmentations while maintaining the rest. Each model shows a drop in performance when any of the
augmentations are removed. Among these, removing random cropping shows the strongest reduction
in performance (followed by grayscale) compared to the baselines which retain all augmentations.

It is important to note that regardless of the pre-training paradigm, self-supervised models only
demonstrate state-of-the-art performance when all of the above augmentations are used. As more
augmentations are incorporated during pre-training, the downstream performance steadily improves.
This begs the question - can we additionally incorporate new augmentations to further improve
linear classification performance? While most of the proposed augmentation strategies [6, 22, 28, 29]
perturb the image directly, we shift the focus to leverage the format transform of images to incorporate
new information and invariances. We first explore these benefits by augmenting the Fourier spectrum
and returning to the image space via an inverse transform. We then explore utilizing the Fourier
spectrum directly in joint-embedding pre-training to study its independent effect.

4 Fourier Domain Augmentations (FDA)

The Discrete Fourier Transform of a single-channel 2-dimensional image x ∈ RH×W is given by,

F(x)u,v =
H−1∑
h=0

W−1∑
w=0

e−2πi(
h
H u+

w
W v)xh,w (1)
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where, u = {0...H − 1} and v = {0...W − 1}. The Fourier transform can be applied over every
image channel (RGB). Both F and F−1 can be computed efficiently using the Fast Fourier Transform
algorithm [30]. Since the FFT of a real signal is Hermitian-symmetric, we use the RFFT2D operation
(provided by PyTorch and TensorFlow), which provides only the positive frequency terms to avoid
redundancy.

Let f denote the complex-valued Fourier spectrum of the image x (Equation 1). The real and
imaginary components of f are denoted by R(f) = A(f) cosP(f) and I(f) = A(f) sinP(f)
respectively where, A(f) is the amplitude and P(f) is the phase of the spectrum. Conversely,
A(f) =

√
R2(f) + I2(f), and P(f) = atan2 (I(f),R(f)).

The Fourier spectrum provides a number of unique insights into the image signal. A well-known
and often exploited property [31, 32, 33, 34] is that the amplitude represents low-level statistics
and superficial patterns in the image while the phase preserves structural and semantic information.
Traditional image processing techniques [35] involved using a circular kernel mask on the Fourier
spectrum to turn off high-frequency modes (low-pass filter) to create a blurring effect, after inverting
back to the image space (F−1). On the other hand, turning off low-frequency modes (high-pass filter)
creates a sharpening effect. Inverting the Fourier spectrum back to the image space lets us apply
our method as new augmentations in addition to standard image augmentations and does not require
us to re-define the self-supervised training pipeline. In Section 6, we study disentangle the effect
of format transform and augmentations with the use of a designated image encoder and frequency
encoder where we directly encode Fourier input (f ) into representations.

We propose the following general-purpose format transformations that perturb different properties in
the Fourier spectrum, producing unique augmentations when inverted back to the image space.

• Amplitude Re-scale: We prepare a uniform noise vector p ∈ RH×W within a range [m,n)
where, m,n > 0 (selected empirically). We multiply this noise with the amplitude of the
spectrum,

A(f) = A(f)� p

A randomly sampled noise is applied to each channel of the FFT of the 3-channel image.
When this augmentation is inverted to the image domain (F−1), it results in non-uniform
perturbations to the image color scope.

• Phase Shift: We randomly sample a constant shifting factor θ ∈ R within the range [p, q)
where, p, q > 0 (selected empirically). The phase is shifted as follows,

P(f) = P(f)± θ

This transform brings about a movement effect in the image wherein certain high-frequency
attributes are brightened.

• Random Frequency Mask: We define a binary mask h, commonly across all channels
where k% of frequencies are set to 0. We also ensure that the zero frequency mode (h0,0) is
always enabled so that semantic information is largely retained.

f = f � h

This transform randomly turns off both high and low frequency modes across all channels.
This preserves the color scope but results in a unique cloudy texture non-uniformly applied
across the image.

• Gaussian Mixture Mask: Unlike, low-pass and high-pass filters which apply a single
circular kernel at the center of the spectrum, we propose a more general form of frequency-
band masking. We prepare a Gaussian Mixture Mask with a randomly sampled set of origins,
c ∈ Ro×2 and standard deviations, σ ∈ Ro×2. We draw a 2D Gaussian kernel around each
origin given by,

G(u, v, c, σ) = exp−
(
(u− o0)2

2σ2
0

+
(v − o1)2

2σ2
1

)
An illustration of the resulting mask is shown in Figure 1. This method flexibly masks low
and high frequencies and the resulting images show unique textures containing both blurred
and sharpened artifacts.
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Figure 3 illustrates each proposed augmentation on a common set of images. We vary the strength of
each augmentation via their respective hyperparameters (including m,n, p, q, k, o). Each augmenta-
tion’s strength can be tuned such that it introduces sufficient invariance but does not obfuscate the
main content of the image relevant to the ground truth (in the downstream task). More importantly, we
confirm this effect when each augmentation is used together with other FDA or image augmentations.
Note that this is a subjective process involving visual examination of images. Due to resource
constraints, we apply the same set of augmentation parameters for all our experiments (detailed in
the Appendix) however, these can be further tuned for each specific baseline. In the next section, we
perform pre-training experiments on a combination of both FDA and image augmentations following
the pipeline illustrated in Figure 1.

5 Experimental Results

5.1 Experimental Setup

Table 1: ImageNet-1K Pre-Training with FDA:
We report the linear probing top-1 accuracy of 4
self-supervised baselines pre-trained on ImageNet-
1K. When FDA is applied in addition to standard
image augmentations, we observe ∼ 1% improve-
ment in performance across all models. We report
the mean and standard deviation across 3 random
seeds.

Top-1 Accuracy - ImageNet-1K
SimCLR BYOL MoCo v2 SimSiam

Baseline 69.2 (0.3) 74.3 (0.5) 71.7 (0.7) 73.7 (0.2)
+ FDA (Ours) 70.5 (0.1) 74.7 (0.6) 73.0 (0.4) 74.3 (0.5)

We examine 4 self-supervised baselines includ-
ing SimCLR [4], MoCov2 [18], BYOL [7] and
SimSiam [5]. Our TensorFlow [36] implemen-
tation replicates the training paradigms of each
model including their encoder architecture (pro-
jector, predictor, momentum encoder etc.), loss,
learning rate scheduling (cosine anneal) and
optimizer (LARS [37]). More details about
training detailed in the Appendix. We use the
ResNet-50 [38] backbone for all our experi-
ments. To be consistent, we apply the following
image augmentations across all baselines - ran-
dom resized crop, color jitter, horizontal flip,
Gaussian blur, grayscale and solarize. Within
this augmentation pipeline, we incorporate our
Fourier Domain Augmentations (FDA) as shown in Figure 1. All other training details and hyper-
parameters are mentioned in the Appendix. SimCLR follows a single-encoder setup while MoCo,
BYOL and SimSiam use a dual-encoder setup where one of the encoders is used for downstream
tasks. We find that applying FDA to only the left view (left encoder is used for downstream tasks) in
addition to existing image augmentations provides the best results as opposed to applying on both
views. We perform standard linear probing for evaluation where we train a linear classifier on frozen
pre-trained representations.

5.2 ImageNet Pre-Training

We pre-train SimCLR, BYOL, MoCov2 and SimSiam on ImageNet-1K [19] by further diversifying
the left view image augmentations with FDA. In Table 1, we summarize the linear probing top-
1 accuracy for each model compared to their baselines which do not use FDA. We observe that
FDA shows as average improvement of ∼ 1% with the highest improvement in MoCo v2 of 1.3%.
Recall Figure 2 where we demonstrated the steady improvement in downstream performance as
more augmentations are added. Our improvements with FDA solidifies our initial claims about the
importance of diversity.

5.3 Transfer and Few-Shot Learning

We perform few-shot and transfer learning on the above frozen ImageNet pre-trained self-supervised
baselines. In the few-shot setup, we apply 5-shot and 10-shot learning regimes where the training
set contains 5 or 10 images per label respectively. We test for transfer learning on iNaturalist (5089
classes) [39], DomainNet Painting (345 classes) [40], Food101 (101 classes) [41] and Places365
(400 classes) [42]. We observe that pre-training with FDA largely benefits both few-shot and transfer
learning tasks across all baselines. We observe the highest average improvement in MoCo.
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Table 2: Transfer and few-shot learning with FDA pre-trained encoders: We evaluate the few-
shot (5-shot, 10-shot) and transfer learning performance on the frozen encoder from Table 1. We
observe that baselines pre-trained with FDA improve the top-1 accuracy over most setups.

ImageNet (5-shot) ImageNet (10-shot) iNaturalist DomainNet (Painting) Food101 Places365 Average

SimCLR 38.2 45.6 45.9 61.8 73.7 50.4 52.6
+ FDA 39.3 46.6 47.7 63.6 74.4 51.0 53.8
BYOL 47.5 54.2 52.4 67.1 77.0 50.6 58.1
+ FDA 47.6 53.7 52.5 68.0 76.7 51.1 58.3

MoCo v2 43.5 51.4 46.7 63.9 75.4 51.1 55.3
+ FDA 43.8 52.8 48.6 64.0 76.8 51.9 56.2

SimSiam 46.2 53.3 51.5 66.7 76.5 50.3 57.4
+ FDA 46.2 53.5 52.7 67.3 76.7 50.1 57.8

Baseline Baseline + FDA (Ours)

iNaturalist DomainNet

Baseline Baseline + FDA (Ours)Query Query

Figure 4: Image retrieval: We test the image retrieval quality of vanilla MoCov2 and MoCov2
pre-trained with FDA on ImageNet on transfer datasets, iNaturalist and DomainNet. We observe that
the top retrieved images in MoCo FMA visibly match the semantics of the query image better.

5.4 Image Retrieval on Transfer Datasets

We also employ image retrieval as a qualitative evaluator of the learned representations. Given a query
image, we retrieve the top-4 nearest neighbours in the representation space using cosine similarity as
the distance metric. Specifically, given a sample x we retrieve argmax4y

xTy
‖x‖‖y‖ from the dataset.

In Figure 4, we display these results on 5 query images each from the test set of iNaturalist and
DomainNet and compare the retrieved neighbours between MoCov2 baseline and MoCov2 trained
with FDA on ImageNet-1K. The objective of this experiment is that the nearest neighbours should
closely match the semantics of the retrieved images. This property is upheld in some FDA trained
MoCo examples like the ice cream, teapot and woman with suitcase in DomainNet.

Table 3: Disentangling the effect of FDA and image augmentations: In a single-encoder con-
trastive learning setup, we ablate between the pair of augmentations used going from x (no augmen-
tations) to Aim(F−1(Afreq(f))) (FDA + image augmentations). Here Aim(.) denotes the image
augmentations (random crop, color jitter, blur etc.) and Afreq(.) denotes FDA transforms we propose
(amplitude rescale, phase shift etc.). We observe the best performance when using FDA + image
augmentations one view and image augmentations alone in the second view. All setups are pre-trained
on ImageNet-1K and we report the linear probing top-1 accuracy.

Augmentation Left View
x Aim(x) F−1(Afreq(f)) Aim(F−1(Afreq(f)))

Right View

x 1.5 68.6 34.7 69.6
Aim(x) 69.2 (SimCLR baseline) 68.8 70.5

F−1(Afreq(f)) 38.9 67.8
Aim(F−1(Afreq(f))) 70.4
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6 Disentangling the Effects of Augmentation and Format Transform

We showed that pre-training state-of-the-art self-supervised baselines with FDA and standard image
augmentations improves the linear classification performance of ImageNet-1K, its few-shot variants
and various transfer learning datasets. This also confirms our initial hypothesis that more diverse
augmentations ultimately benefit downstream tasks. However, a key aspect of our method is the
utilization of the Fourier domain to introduce further diversity. Recall, our method involves multiple
stages of transformations over a given image i.e., (i) The format transform (via FFT operation F)
(ii) Fourier Domain Augmentations (FDA) (iii) Inverse FFT operation to return to the image space
(F−1) (iv) Standard image augmentations like color jittering, blur, grayscale etc. Therefore, it is
essential to study the the effect of each operation independently to properly attribute the improvement
in downstream performance.

We represent the raw input image as x and its Fourier transform F(x) as f . We define the standard
image augmentations, such as random crop, jitter, blur, as a function Aim(.) and the FDAs as
Afreq(.). We train SimCLR in a single-encoder setup with a contrastive loss and various combinations
of augmented views on ImageNet-1K. SimCLR uses the InfoNCE [24] objective to learn image
representations. For every query sample, we maximize its similarity in the latent space with one
positive view of the same sample and minimize the similarity with the remaining samples in the batch.
The objective is as follows,

max log
exp (sim(A(xi), A(xi))/τ)∑2N

j=0 1i 6=j exp (sim(A(xi), A(xj))/τ)
(2)

Table 4: Sequence of augmentations: We follow
the sequence of augmentations illustrated in Figure
1 where we apply FDA before any of the image
augmentations (except random crop which is ap-
plied first). In this table, we test to see if applying
FDA after image augmentations is beneficial. We
observe comparable performance in both setups
(on SimCLR pre-trained on ImageNet-1K).

Augmentation Left View
Aim(F−1(Afreq(f))) F−1(Afreq(F(Aim(x))))

Right View Aim(x) 70.5 70.4

where sim(a,b) = aTb
‖a‖‖b‖ and A(.) is the

stochastically applied set of augmentations. In
Table 3, we test different pairs of augmenta-
tions between the positive views including, (i)
x: un-augmented and center-cropped image, (ii)
Aim(x), (iii) F−1(Afreq(f)): FDA applied in
the Fourier space and inverted back to the im-
age space, (iv) Aim(F−1(Afreq(f))): standard
image augmentations applied on top of inverted
FDA image. Due to the single-encoder con-
trastive learning setup, we present the results
as an upper triangular matrix as swapping the
views does not alter the overall objective.

We follow the SimCLR ImageNet-1K setup in-
cluding the architecture, learning rate, scheduling, loss and optimizer. We define a naive baseline
as the setup that uses a pair of raw un-augmented views (x). The use of large batch sizes allows
the model to contrast with a sufficient number of negative views, preventing collapse i.e., when
all representations are identical. Nevertheless, this model achieves a low performance of 1.48%
as lack of augmentations inhibits the learning of informative representations. Keeping the right
view un-augmented, we next experiment with different View 1 augmentations (first row in Table 3).
We observe significant improvements with both FDA (34.7%) and standard augmentations (68.6%)
applied individually, but the performance gains are highest when they are used together (69.6%).
Applying both augmentations to a single view also outperforms all methods which apply individual
augmentations to both views. A similar trend is seen in the second row when we apply standard
image augmentations to the right view. While we find that standard augmentations outperform
FDA when applied individually, we attribute this mainly to the use of random cropping in standard
augmentations, which significantly improves their performance (from 40% to 69%).

As applying FDA in conjunction with image augmentations gives the best result, we next ablate how
the order of FDA and image augmentations sequence affects the accuracy. In all previous experiments,
we apply FDA before any other image augmentations (except random crop) following the sequence
in Figure 1. In Table 4 we reverse this order and apply FDA after traditional image augmentations.
Formally, this can be defined as F−1(Afreq(F(Aim(x)))). We observe a comparable performance
in SimCLR ImageNet-1K with this image-augmentation-first strategy.
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6.1 The Effect of Format Transform

We next disentangle the effect of using the Fourier transform (f ) directly as input to the self-supervised
encoder. This experiment explores if we can produce better representations from input expressed in
multiple formats (image and frequency) similar to the approach discussed in [11]. Since the Fourier
spectrum of an image is complex-valued, it cannot be directly supplied to an image encoder. We
therefore convert it to a real-valued 3 channel by re-scaling the spectrum to bring the values between
[0, 1] (same as image input). Since the RFFT2D output is of half the width (∈ RH×W/2×3) as the
image, we interleave the real and imaginary components such that the resulting frequency image is
the same shape as that of the image (∈ RH×W×3).

Frequency
Encoder

Image
Encoder

RFFT2D

Image
Augmentations

Frequency
Augmentations

Maximize Agreement

RFFT2D

Figure 5: Dual-encoder setup for
multi-format contrastive learning: To
disentangle the effect of the format trans-
form, we design a two-encoder setup
where the left encoder gim(.) encodes
the image view and the right encoder
gfreq(.) encodes the Fourier transform
of the same view. Format-specific aug-
mentations are applied to both views.
Both encoders are trained independently
(no shared weights) and are aligned in
latent space via contrastive loss.

Format transforms represent the information in frequency
coordinates, which are incompatible with the image coor-
dinate system. We therefore deploy a two-encoder setup
where the first encoder gim(.) (left) only takes image input
and the second gfreq(.) (right) only takes frequency input.
The two encoders do not share any weights. The repre-
sentations of gim(.) are used for downstream tasks. We
maximize agreement in the latent space using the standard
InfoNCE loss described in Equation 2. Figure 5 illustrates
this two-encoder setup.

Note that our goal is to disentangle format transforms from
augmentations. We take the naive baseline that uses two
raw un-augmented views ((x,x) single encoder setup)
and substitute the right view with the frequency image
and train under the dual encoder regime (Figure 5). In
Table 5, we present an interesting finding where contrast-
ing raw image and frequency (x, f) results in 17.5% top-1
accuracy on ImageNet pre-training which is a 16% im-
provement over the raw baseline of 1.5%. Keeping the
left view un-augmented, we augment the right view (i)
in the frequency space (Afreq(f)) which improves the
performance to 20.6% and (ii) in the image space before
applying Fourier transform (F(Aim(x))) which improves
the performance to 48.8%.

Next, we augment the left view (Aim(x)) and contrast
against the set of frequency space right views. We do not
observe improved performance with format transforms in
this scenario. In fact, the performance degrades further
when the frequency view is augmented. We hypothesize
that this behavior may be caused by our choice of architecture for the frequency encoder i.e., ResNet
(ConvNets). The translation equivariance property of convolutional neural networks that applies to
real images, need not directly transfer to frequency images. The improvements we observe from the
format transform in lieu of image augmentations in the left view are still non-trivial, opening a new
direction for further research.

7 Discussion

We examined the need for diverse augmentations in self-supervised pre-training and proposed
Frequency-Domain Augmentations (FDA) to introduce further diversity by tapping into the format
transform of the image. FDA, when used in conjunction with image augmentations, showed im-
proved performance on ImageNet-1K top-1 accuracy on 4 baselines - SimCLR, BYOL, MoCov2
and SimSiam. We also showed improvements in transfer learning, few-shot learning and image
retrieval. We studied the disentangled effect of format transform using a dual-encoder setup with a
dedicated frequency encoder. When no augmentations are used, we observed a 16% improvement
in performance with the use of format transform in one view as compared to images in both views.
Pre-training with the format transform improves over raw images, however, the best performance is
still seen in the image space through diverse Fourier (FDA) and image augmentations. Our findings
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Table 5: Disentangling the effect of format transform: We examine the effect of contrasting image
and frequency views using the dual-encoder setup outlined in Figure 5 (cells highlighted in blue).
We compare this against the single-encoder setup which uses both image views (first row). When
the left image is not augmented, we observe noticeable improvements with format transform (and
augmentations) in the right view. We do not observe similar improvements when the left image is
augmented.

Augmentation Left View
x Aim(x)

Right View

x 1.5 68.6
f 17.5 63.3

Afreq(f) 20.6 62.4
F(Aim(x)) 48.8 59.0

open several questions for further research – (i) What are better methods to utilize and encode the
format transform and FDA without requiring to invert back into the image space?, (ii) How can
complex Fourier input be better structured to feed through real valued encoders?, (iii) How does FDA
behave in specialized domains that are not real images (e.g., medical scans).
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A Appendix

SimCLR BYOL MoCov2 SimSiam

Encoder ResNet-50 ResNet-50 ResNet-50 ResNet-50
Zero init residual False False False True

Projection model features MLP (4096, 256) MLP (4096, 256) MLP (4096, 256) MLP (2048, 2048, 2048)
Prediction model features N/A MLP (4096, 256) N/A MLP (512, 2048)

Momentum encoder (for right encoder) False True True True
Stop-grad (for right encoder) False True True True
Contrastive loss temperature 0.1 N/A 0.1 N/A

Optimizer LARS LARS LARS LARS
Learning rate 0.2 0.2 0.2 0.2
Weight decay 1.5× 10−6 1.5× 10−6 1.5× 10−6 1.5× 10−6

Learning rate schedule cosine decay cosine decay cosine decay cosine decay
Epochs 1000 1000 1000 1000

Linear probe epochs 90 90 90 90
Linear probe learning rate 0.3 0.3 0.3 0.3

Linear probe optimizer SGD SGD SGD SGD
Linear probe learning rate schedule cosine decay cosine decay cosine decay cosine decay

Table A.1: Training setup for each model: We provide the specific architecture and training setup
for each encoder for reproducibility.

Augmentation Hyper-parameter Values Probability (Left View) Probability (Right View)

Random Resized Crop 224× 224, min area: 0.08, max area: 1.0, min aspect: 3/4, 1.0 1.0max aspect: 4. / 3., aspect dist: log, resize method: bicubic
Color jitter contrast: 0.4, brightness: 0.4, saturation: 0.2, hue: 0.1 0.8 0.8
Grayscale N/A 0.2 0.2

Horizontal flip N/A 0.5 0.5
Gaussian blur min sigma: 0.1, max sigma: 2.0, kernel size: 23 1.0 0.1

Amplitude rescale m = 0.8, n = 1.75 0.2 0.0
Phase shift p = 0.4, q = 0.7 0.2 0.0

Random frequency mask k ∼ [0.01, 0.1) 0.5 0.0
Gaussian mixture mask c = 20, σ ∼ [10, 15) 0.2 0.0

Table A.2: Augmentation hyperparameters: We provide the parameters used for each augmenta-
tion, both image and FDA along with the probability.

A.1 Training Setup

We provide all our implementation details for each baseline - SimCLR, BYOL, MoCov2 and SimSiam
in Table A.1. We also include linear probing hyperparameters for full reproducibility.

A.2 Augmentation Hyperparameters

We provide the parameters used for each image and FMA augmentation along with the probability in
the left and right view in Table A.2.
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