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ABSTRACT

We study a robust, i.e. in presence of malicious participants, multi-agent multi-
armed bandit problem where multiple participants are distributed on a fully decen-
tralized blockchain, with the possibility of some being malicious. The rewards of
arms are homogeneous among the honest participants, following time-invariant
stochastic distributions, which are revealed to the participants only when certain
conditions are met to ensure that the coordination mechanism is secure enough. The
coordination mechanism’s objective is to efficiently ensure the cumulative rewards
gained by the honest participants are maximized. To this end and to the best of our
knowledge, we are the first to incorporate advanced techniques from blockchains,
as well as novel mechanisms, into such a cooperative decision making framework
to design optimal strategies for honest participants. This framework allows vari-
ous malicious behaviors and the maintenance of security and participant privacy.
More specifically, we select a pool of validators who communicate to all partic-
ipants, design a new consensus mechanism based on digital signatures for these
validators, invent a UCB-based strategy that requires less information from partic-
ipants through secure multi-party computation, and design the chain-participant
interaction and an incentive mechanism to encourage participants’ participation.
Notably, we are the first to prove the theoretical regret of the proposed algorithm
and claim its optimality. Unlike existing work that integrates blockchains with
learning problems such as federated learning which mainly focuses on optimality
via computational experiments, we demonstrate that the regret of honest partic-
ipants is upper bounded by log T under certain assumptions. The regret bound
is consistent with the multi-agent multi-armed bandit problem without malicious
participants and the robust multi-agent multi-armed bandit problem with purely
Byzantine attacks which do not affect the entire system.

1 INTRODUCTION

Multi-armed Bandit (MAB) (Auer et al., 2002a;b) models the classical sequential decision making
process where a player selects one arm from multiple arms and observes the reward of the pulled
arm at each time step. The player aims to maximize the cumulative reward throughout the game,
equivalent to the so-called regret minimization problem navigating the trade-off between exploration
(e.g., exploring unknown arms) and exploitation (e.g., favoring the currently known optimal arm).
The recent emerging advancement of federated learning, wherein multiple participants jointly train
a shared model, has spurred a surge of interest in the domain of multi-agent multi-armed bandit
(multi-agent MAB). In this context, multiple participants concurrently interact with multiple MABs,
with the objective being the optimization of the cumulative averaged reward across all the participants
through communications. Significantly, these participants face additional communication challenges.

Numerous research has been focused on the multi-agent MAB problem, including both centralized
settings as in (Bistritz and Leshem, 2018; Zhu et al., 3–4, 2021; Huang et al., 2021; Mitra et al., 2021;
Réda et al., 2022; Yan et al., 2022), and decentralized settings as in (Landgren et al., 2016a;b; 2021;
Zhu et al., 2020; Martı́nez-Rubio et al., 2019; Agarwal et al., 2022), where it is assumed that reward
distributions are uniform among participants, namely homogeneous. Recent attention has shifted
towards addressing decentralized, heterogeneous variants, including (Tao et al., 1546–1574, 2022;
Wang et al., 1531–1539, 2021; Jiang and Cheng, 1–33, 2023; Zhu et al., 2020; 2021; 3–4, 2021; Zhu
and Liu, 2023; Xu and Klabjan, 2023b), which are more general and bring additional complexities.
In these scenarios, the shared assumption is that all participants exhibit honesty, refraining from any
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malicious behaviors, and adhere to both the shared objective and the designed strategies. However,
real-world scenarios often deviate from this assumption, are composed of malicious participants
that perform disruptively. Examples include failed machines in parallel computing, the existence of
hackers in an email system, and selfish retailers in a supply chain network. Consequently, recent
research, such as (Vial et al., 2021; Zhu et al., 2023), has focused on the multi-agent MAB setting
with malicious participants, which is formulated as a robust multi-agent MAB problem. This line of
work yields algorithms that perform optimally, provided that the number of malicious participants
remains reasonably limited.

However, there are three major concerns related to the existing robust multi-agent MAB framework,
namely optimality, security, and privacy, respectively. Firstly, in (Vial et al., 2021), the truthfulness of
the integrated reward estimators by participants is not taken into account. Every participant maintains
reward estimations and thus we also call them estimators. In essence, it means it might not be possible
to assert the correctness of these estimators, even though the relative differences between the arms
are bounded. In certain scenarios, estimators play a crucial role in guiding decision making. For
instance, in the context of smart home (Zhao et al., 2020), driven by the rapid growth of the Internet
of Things (IoT), in a smart home device setting the suppliers of the devices are the participants
monitored by the manufacturer, the devices are the arms, and the consumers are the environment,
the manufacturer seeks to understand consumer behavior. The reward corresponds to any metric
measuring consumer engagement. Each supplier develops its own engagement (reward) estimatation
by arm pulls where it is important for the estimators to be accurate. The knowledge about the ground
truth, i.e. consumer behavior in expectation across time, is essential, making the correctness of
estimators a critical concern. Secondly, there is the possibility of malicious participants (suppliers)
exhibiting various disruptive behavior beyond broadcasting inaccurate estimators which is a facet
not covered in existing work (Vial et al., 2021; Zhu et al., 2023). For example, in a network routing
problem, where devices (i.e., participants) send information through communication channels that
represent the arms to maximize information throughput (i.e., the reward), malicious participants
could intentionally cause channel congestion and disrupt the traffic that honest participants rely on.
This has the potential to systematically affect the performance of honest participants as a significant
motivation herein. Thirdly, existing literature assumes that participants are willing to share all the
information with other participants, including the number of pulls of arms and the corresponding
reward estimators. This, however, exposes the participants to the risk of being less private, as it might
be easy to retrieve the cumulative reward and action sequence, based on the shared information. This
has not yet been explored by the existing work and thereby motivating our work herein.

Notably, blockchains have a great potential to address these challenges, which are fully decentralized
structures and have demonstrated exceptional performance in enhancing system security and accuracy
across a wide range of domains (Feng et al., 2023). This trending concept, widely applied in finance,
healthcare and edge computing, was initially introduced to facilitate peer-to-peer (P2P) networking
and cryptography, as outlined in the seminal work by (Nakamoto, 2008). A blockchain (permissioned
where the set of participants is fixed versus permisionless where the set of participants is dynamic
and anyone can join) comprises of a storage system for recording transactions and data, a consensus
mechanism for participants to ensure secure decentralized communication, updates, and agreement,
and a verification stage to assess the effectiveness of updates, often referred to as block operations
(Niranjanamurthy et al., 2019), which thus provides possibilities for addressing the aforementioned
concerns. First, the existence of verification guarantees the correctness of the information before
adding the block to the maintained chain, and the storage system ensures the history is immutable.
Secondly, the consensus mechanism ensures that honest validators, which are representatives of
participants, need to reach a consensus even before they are aware of each other’s identities, leading
to a higher level of security and mitigating systematic attacks. Lastly, enabling cryptography and full
decentralization without a central authority has the potential to improve the privacy level. However,
no work has studied how blockchains can be incorporated into an online sequential decision making
regime, creating a gap between multi-agent MAB and blockchains that we take a step to close it.

There has been a line of work adapting blockchains into learning paradigms, and blockchain-based
federated learning has been particularly successful as in (Li et al., 2022; Zhao et al., 2020; Lu et al.,
2019; Wang et al., 2022). In this context, multiple participants are distributed on a blockchain, and
honest participants aim to optimize the model weights of a target model despite the presence of
malicious participants. Notably, the scale of the model has led to the introduction of a new storage
system on the blockchain, the Interplanetary File System (IPFS), which operates off-chain, ensuring
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the stability and efficiency of block operations on the chain. However, due to the unique decision
making in MAB, the existing literature does not apply to the multi-agent MAB, necessitating a novel
framework for blockchain-based multi-agent MAB. Moreover, there is limited study on the theoretical
effectiveness of blockchain-based federated learning, as most studies focus on their deployment
performances. Theoretical validity is crucial to ensure cybersecurity because deploying blockchains,
even in an experimental setting, is risky and has been extremely challenging. Henceforth, it remains
unexplored how to effectively incorporate blockchains into the robust multi-agent MAB framework,
and how to analyze the new algorithms theoretically, which we address herein.

To this end, we herein propose a novel formulation of robust multi-agent MAB on blockchains.
Specifically, we are the first to study the robust multi-agent MAB problem where participants are fully
distributed, can be malicious, and operate on permissioned blockchains. In this context, a fixed set of
participants pull arms and communicate to validators, and validators communicate with one another
and decide on a block to be sent to the chain. Participants can only receive rewards when the block is
approved, in order to ensure security, which means the rewards are conditionally observable, even for
the pulled arm, which complicates the traditional bandit feedback and introduces new challenges.
Participants can be malicious in various disruptive aspects. The objective of the honest participants is
to maximize their averaged cumulative received reward. Participants not only design strategies for
selecting arms but also strategically interact with both other participants and the blockchain. The
blockchain keeps track of everything (the history is immutable), guarantees the functionality of the
coordination mechanism through chain operations, and communicates with the environment.

For the new formulation, we develop an algorithmic framework, motivated by existing work while
introducing novel techniques. The framework uses a burn-in and learning period. We incorporate a
UCB-like strategy into the learning phase to perform arm selection, while using random arm selection
during the burn-in period. We also use validator/commander selection to eliminate the need for an
authorized leader, including both full decentralization and efficient reputation-based selection. We
propose the update rules for both participants and validators to leverage the feedback from both the
environment and the participant set. Furthermore, we modify the consensus protocol without relying
on 2

3 voting; instead, we use a digital signature scheme (Goldwasser et al., 1988) coupled with the
consensus protocol in (Lamport et al., 2019). Moreover, we introduce the role of a smart contract
(Hu et al., 2020) that interacts with both the blockchain and the environment, which validates the
consensus and collects the feedback from the environment. To incentivize malicious participants
(we want the malicious participants to actively participate via information sharing in order to be
identified soon) we invent a novel cost mechanism inspired by the use of mechanism design in
federated learning (Murhekar et al., 2023). It is worth noting that the existence of this smart contract
and cost mechanism also guarantees the correctness of the information transmitted on the chain.

Subsequently, we perform theoretical analyses of the proposed algorithm. We formally analyze the
regret that reflects optimality and fundamental impact of malicious behavior on blockchains. Precisely,
we show that under different assumptions in different settings, the regret of honest participants is
always upper bounded by O(log T ), consistent with existing robust multi-agent MAB (Zhu et al.,
2023; Vial et al., 2021). This is the very first theoretical result on leveraging blockchains for online
sequential decision making problems, to the best of our knowledge. Furthermore, this regret bound
coincides with the existing regret lower bounds in multi-agent MAB when assuming no participants
are malicious (Xu and Klabjan, 2023a), implying its optimality. We also find that, surprisingly,
various aspects about security are by-products of optimality.

Our main contributions are as follows. First, we propose a novel formulation of multi-agent MAB
with malicious participants, where rewards are obtainable only when the coordination mechanism’s
security is guaranteed. Additionally, the actual received rewards account for the accuracy of the
shared information through our proposed cost mechanism. To maximize the cumulative rewards of
honest participants, we develop a new algorithmic framework that introduces blockchain techniques.
Along the way we design new mechanisms and protocols. We also prove the theoretical effectiveness
of the algorithm through an extensive analysis of regret under assumptions on the problem setting,
such as the ratio of honest participants, the cost definition, and the validator selection protocol. This
work bridges the gap between cybersecurity and online sequential decision making.

The structure of the paper is as follows. In Section 2, we introduce the problem formulation and
notations. In Section 3, we propose the algorithmic framework. Subsequently, in Section 4, we
provide detailed analyses of the theoretical guarantee for the proposed algorithms.
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2 PROBLEM FORMULATION

We start by introducing the notations used throughout the paper. Consistent with the traditional MAB
setting, we consider K arms, labeled as 1, 2, . . . ,K. The time horizon of the game is denoted as T ,
and let us denote each time step as 1 ≤ t ≤ T . Additionally as in Multi-agent MAB, let us denote the
number of participants as M labeled from 1 to M . We denote the public and secret keys of participant
m as (PKm, SKm) for any 1 ≤ m ≤ M . The list of public keys PK1, PK2, . . . , PKM is public
to anyone, in the order indicated by the participant set. Meanwhile, in our newly proposed blockchain
framework, we denote the total number of blocks as B = T and whether each block at time step
t is approved or not is represented by a binary variable bt ∈ {0, 1}. Let us denote the reward of
arm i at participant m at time step t as {rmi (t)}i,m,t, which follows a stochastic distribution with
a time-invariant mean value {µi}i. Let atm be the arm selected at time t by participant m and let
nm,i(t) be the number of arm pulls for arm i at participant m at time t. We denote the set of honest
participants and malicious participants as MH and MA, respectively, which are not known apriori.
Note that they are time-invariant. Similarly, let SV (t) denote the set of validators at time t which is
algorithmically determined. We denote the estimators maintained at participant m as µ̄m

i (t), µ̃m
i (t)

for local and global reward estimators, respectively, and the validators estimators as µ̃i(t). We point
out that µ̃i(t) is a function of µ̄m

i (t). What are stored in a block is deferred to Appendix F.

The process during one iteration is as follows. At the beginning of each decision time, each participant
selects an arm based on its own policy. Then, a set of validators is selected, and the participants
broadcast their reward estimators to the validators. The validators perform aggregation of the collected
information. Next, they run a consensus protocol to examine whether the majority agree on the
aggregated information, a process called validation. They send the validated information to the smart
contract, which verifies its correctness and sends feedback to the environment. If the smart contract
is approved, the blockchain is updated. Lastly, the environment distributes the reward information
plus cost based on the feedback from the smart contract (only if the block has been approved). The
participants then update their estimators accordingly. The corresponding flowchart is presented in
Figure 1.

Figure 1: The flow of the algorithm
Cost Mechanism We propose a cost mechanism where if the estimators from the malicious
participants are used in the validated estimators, i.e. ∂µ̃i(t)

∂µ̄m
i (t) ̸= 0, then the honest participants incur

a cost of cmt ≥ 0 and malicious participants receive cmt < 0, which they are not aware of until the
end of the game. It incentives the participation of malicious participants, in particular, given that
they may not be willing to share anything. In the meantime, as a by-product, it also penalizes the
aggregated estimators by the honest participants, which ensures the correctness of the estimators. In
addition cmt = 0 for every m if ∂µ̃i(t)

∂µ̄m
i (t) = 0.

With the goal to maximize the total cumulative (expected) reward of honest participants, we de-
fine the regret as follows. We denote the cumulative reward of honest participants as rT =∑

m∈MH

∑T
t=1 r

m
at
m
(t)1bt=1−

∑T
t=1 ct and the regret as RT = maxi

∑
m∈MH

∑T
t=1 r

m
i (t)1bt=1−

rT and pseudo regret R̄T = maxi
∑

m∈MH

∑T
t=1 µ

m
i − E[rT ] (rationality in Appendix F).

Attacking principles are described in Appendix D (Existential Forgery, Adaptive Chosen Message
Attack, and Universal Composability Framework), which are used in the digital signature scheme
(Goldwasser et al., 1988) and secure multi-party computation (Asharov et al., 2012),
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3 METHODOLOGIES

In this section, we present our proposed methodologies within this new framework. Notably, we
develop the first algorithmic framework at the interface of blockchains in cybersecurity and multi-
agent MAB in online sequential decision making, addressing the joint challenges of optimality,
security, and privacy. We leverage the blockchain structure while introducing new advancements to
the existing ones, to theoretically and efficiently guarantee the functionality of the chain with new
consensus protocols and a cost mechanism. Additionally, it is designed for online sequential decision
making scenarios, distinguishing our work from existing literature on federated learning. Moreover,
compared to existing work on Byzantine-resilient multi-agent MAB, our methodology operates on a
blockchain with an added layer of security and privacy.

In the framework, every participant can be either honest or malicious, including selected validators
and commanders. The number of malicious participants must be known apriori, but not who are
they. The malicious clients can perform every step in an adversary manner to their likening except
updating trust coefficients (pm, wm). For this step, they must follow the general agreed-upon rule.
This assumption is quite common in blockchain works. The only component that must know who
is malicious and who is honest is the environment (since it must assign appropriate penalties based
on these designations). In our use case of smart homes, this means that the customers know which
supplier is malicious and which supplier is honest (for example based on google reviews). The
algorithmic framework is composed of two phases: the burn-in period, which is a warm-up phase for
t ≤ L, where L is the length of the burn-in period, and the learning period, where t > L. It consists of
5 functions, with the main algorithm presented in Algorithm 1, and the remaining functions detailed
in Algorithms 2-5 (Appendix C). Algorithm 1 constitutes the core of the methodology, including
the sequential strategies executed by the honest participants, black-box operations by the malicious
participants, and the chain executions.

The core algorithm includes several stages, as indicated in the following order. We present the
pseudo code of the core algorithm in Algorithm 1, named BC-UCB. Here, the common random
seed q̄t, t = 1, . . . , T and the random seed for each participant q = (q1, q2, . . . , qM ) are publicly
known in advance. Function V RF refers to verifiable random functions proposed in (Micali et al.,
1999) composed of G that represents the generating function for the public and secret key with seed
q0, i.e. G(q0) = (pk, sk), and V RFF (q̄t, G(q0)) = (hash, π) where hash is a hash value and π
is a function (proof) that returns True or False given hash and public key pk, i.e. π(hash, pk)
outputs True or False. Let hl be the size of hash which is an input to π. For any multi-set S0,
majority(S0) refers to an element in S0 with the highest count.

Arm selection As in an MAB framework, the participants decide which arm to pull at each time step.
The strategies depend on whether participants are honest or malicious. The honest participants follow a
UCB-like approach. More specifically, each honest participant m selects arm atm = t mod K during
the burn-in period. During the learning period, it assigns a score to each arm i and selects the arm with
the highest score, which can be formally written as atm = argmaxi µ̃

m
i (t−1)+F (m, i, t−1) where

µ̃m
i (t) is the maintained estimator at participant m. Here F (m, i, t) = (C1 log t

nm,i(t)
)β with constant C1, β

being specified in the theorems. A malicious participant j, however, selects arms based on arbitrary
strategies, which is also known as Byzantine’s attack and written as atj = ht

j(Ft) ∈ [K] where Ft

denotes the history up to time step t (everything on the blockchain and additional information shared
by other participants).

Validator or Commander Selection At each time step, a coordination mechanism or iterative
protocol selects a pool of participants allowed to act on the chain, known as validators. The com-
manders are selected in the similar way but with different parameters. Specifically, the coordination
mechanism samples the set of validators and commanders according to Algorithm 2 (in Appendix C),
based on the trust coefficients of participants pm(t), wm(t). The chain relays this set of validators
to aggregate the reward estimators and to achieve consensus as detailed below. The commanders
participate in the consensus protocol.

We use a smart contract that takes membership of a participant in SV (t) as input and produces a
single sorted list of SV (t) based on the public keys PKm of participants. It is worth noting that the
sorting function can be incorporated into the script. Then, the participants access this smart contract
scsort with input SV (t), PK to obtain the sorted list of validators SV (t) from its output.
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Broadcasting During broadcasting, the participants sent information to validators which then
perform the aggregation step. To expand, malicious participant j broadcasts its estimators µ̄j

i (t)
to the validators using a black-box attack, e.g. a Byzantine’s attack or a backdoor attack. Honest
participant m broadcasts its true reward estimators µ̄m

i (t) to the validators.

Aggregation Next, the validators integrate the received information. Specifically, for each honest
validator j, an honest validator determines the set, Aj

t , B
j
t as follows. For t > L, the set Aj

t reads
as m ∈ Aj

t ⇔ nm,i(t) >
nj,i(t)
ki(t)

for every i where ki(t) ≥ maxk∈M
nk,i(t)K

L is the threshold
parameter which can be constructed through the secure multi-party computation protocol as in
(Asharov et al., 2012), without knowing the value of nm,i(t) to ensure privacy. More specifically,
each participant m sends nm,i(t) and the value of ki(t) to the protocol. The protocol then outputs
whether m ∈ Aj

t . The set Bj
t is computed as follows, depending on the size of Aj

t . If |Aj
t | > 2f

where f = |MA| and the process is in the learning period t > L, then Bj
t = ∪i{(m, µ̄m

i (t)) :

µ̄m
i (t) is smaller than the top f values in Aj

t and larger than the bottom f values in Aj
t}. Otherwise

in burn-in, Bj
t = {t mod K} and Aj

t = ∅. Once again, the malicious participants choose the sets At

and Bt in a black-box manner.

Consensus The consensus protocol is central to the execution of the blockchain and guarantees that
the chain is secure. More specifically, we incorporate the digital signature scheme (Goldwasser et al.,
1988) into the solution to the Byzantine General Problem (Lamport et al., 2019) under any number of
malicious validators. The pseudo code is presented in Algorithm 3. First, a commander is selected
from the validators that broadcasts Bt to other validators with its signature generated by (Goldwasser
et al., 1988), which we call a message. This process is then repeated at least M times, based on the
algorithm in (Lamport et al., 2019). The validators output the mode of the maintained messages. The
consensus is successful if more than 50% of the validators output the Bt maintained by the honest
validators. Otherwise, the consensus step fails, resulting in an empty set Bt.

Global Update The set Bt is then sent to the validators, which compute the average of the estimators
within Bt, known as the global update detailed in Algorithm 4. More precisely, for each arm i at

time step t, the estimator is computed as µ̃i(t) =
1
2 (µ̂i(t) + µ̃i(τ)), µ̂i(t) =

∑
m∈Bt

µ̄m
i (t−1)

|Bt| where
τ = maxs<t{bs = 1}. If Bt is not empty, and µ̃i(t) = ∞, µ̂i(t) = ∞, otherwise.

Block Verification The validators run the smart contract scblock to validate the block and assign
bt = 1 if the estimator satisfies the condition µ̃i(t) ≤ 2. It disapproves the block otherwise, which is
denoted as bt = 0.

Block Operation At the beginning of the algorithm, the environment sets a random cost value
ct = c between 0 and 1. The smart contract sends the output containing the validated estimator µ̃i(t),
the set Bt, and the indicator bt of whether the block is approved to the environment. Subsequently,
the environment determines the rewards, namely Block Operation, as in Algorithm 5, to be distributed
to the participants based on the received information from the smart contract, in the following
three cases. Case 1: If bt = 1 and Bt ⊂ MH , i.e ∂µ̃i(t)

∂µ̄m
i (t−1) = 0 for every m ̸∈ MH , then the

environment distributes rmat
m
(t) and µ̃i(t) to participant m for any 1 ≤ m ≤ M . Case 2: If bt = 1

and Bt ∩ MH < |Bt|, i.e. there exists m ∈ MA such that ∂µ̃i(t)
∂µ̄m

i (t−1) ̸= 0, then the environment

distributes rmat
m
(t) − ct and µ̃i(t) to any honest participant m, and rj

at
j
(t) + ct to any malicious

participant j. Case 3: If bt = 0, the environment distributes nothing to the participants.

Participants’ Update After receiving the information from the environment, the honest participants
update their maintained estimators as follows. Rule For the global reward estimator µ̃m

i (t), they
update it when they receive µ̃i(t), i.e. µ̃m

i (t) = µ̃m
i (t), and otherwise, µ̃m

i (t) = µ̄m
i (t). For the

number of arm pulls and the local reward estimators, they update them as nm,i(t) = nm,i(t− 1) +

1bt=1 · 1at
m=i, µ̄

m
i (t) =

µ̄m
i (t−1)+rm

at
m

(t)·1at
m=i

nm,i(t)
. (1)

In SELECTION the value wm(t) implies a certain number of commanders, i.e. the number of
commanders is a function of wm(t) and likewise the validators with respect to pm(t). We call

pm, wm trust coefficients. Based on the concept of staking, pm(t) =
∑

s≤t r
m
as

(s)∑M
m=1

∑
s≤t r

m
as

(s)
.
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Algorithm 1 BC-UCB

Initialization: For participants 1, 2, . . . ,M , arms 1, . . . ,K, at time step 0 we set µ̃m
i (0) = ˆ̃µi(0) =

nm,i(1) = 0; the number of honest participants MH ; Verifiable Random Function V RF
for t = 1, 2, . . . , T do

for each participant m do // Validator Selection
Sample z = SELECTION(t,m, pm(t− 1), V RF ). If z = 1, participant m is a validator.

end
Let SV (t) be the set of all validators
for each validator m do // Commander Selection (wm = 1

|SV (t)|)

Sample z = SELECTION(t,m, 1
|SV (t)| , V RF ). If z = 1, validator m is a commander.

end
Let SC(t) be the set of commanders
for each participant m ∈ MH do // Arm Selection - UCB

if k ∈ Am
t for every k ∈ MH with SV (t) and SC(t) and t > L then

atm = argmaxi µ̃
m
i (t− 1) + F (m, i, t− 1)

else
Sample an arm atm = t mod K.

end
Pull arm atm

end
for each participant m ∈ MA do // Arm Selection - Any Strategy

Select an arm atm and pull arm atm

end
for each participant m do // Broadcasting

Broadcast µ̄m
i (t − 1) to validators SV (t), where malicious participants m ∈ MA use an

attack regarding an arm atm, i.e., µ̄m
i (t− 1) = h̄t

m,i(Ft−1).
end
for each participant m ∈ SV (t) do // Aggregation

Validator m ∈ MH ∩ SV (t) determines the set Bm
t = Bt containing trusted participants j

and the corresponding estimators µ̄j
i (t)

Validator m ∈ MA,m ∈ SV (t) arbitrarily determines the set Bm
t

end
// Consensus
Validators run consensus on {Bm

t }m according to CONSENSUS(SC(t), {Bm
t }m,M )

Validators run the smart contract scblock to compute µ̃i(t) according to GLOBAL UPDATE(Bt)
// Global Update

Validators perform Block Validation: // Block Verification
If there exists i ∈ {1, 2, . . . ,K} with global estimator µ̃i(t) < ∞

Approve the block by letting bt = 1
else

Disapprove the block by letting bt = 0
end

// Environment
The environment sends rewards to participants using OPERATION(µ̃i(t), a

t
mm, Bt, bt)

for each participant m do // participants’ Update
Participant m ∈ MH updates µ̃m(t), nm,i(t), µ̄m(t), pm(t), wm(t) based on Rule; partici-

pant m ∈ MA updates µ̃m(t), nm,i(t), µ̄
m
i (t) arbitrarily

end
end

4 REGRET ANALYSES

In this section, we demonstrate the theoretical guarantee of our proposed framework by conducting
a comprehensive study of the regret as in Section 2. Specifically, to allow for flexibility and
generalization, we consider various problem settings, including the number of malicious participants
MA, the cost definition ct, the commander selection rule, and the validator selection rule.
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The initial set of results does not consider pm and wm; instead, they impose assumptions on the
number of validators and honest participants. They should be interpreted as letting pm and wm

be such that the outcome of Validator/Commander Selection (Algorithm 2 in Appendix C) has the
desired properties. All proof steps are in Appendix E.

4.1 LIMITED NUMBERS OF MALICIOUS PARTICIPANTS

Most existing work on blockchain or robust optimization (Nojoumian et al., 2019; Feng et al., 2023; Li
et al., 2022) considers a limited number of malicious participants, as majority voting-based consensus
and the accuracy of the constructed estimators largely depend on whether the ratio of malicious
participants is reasonable. An extreme case occurs when all but one participant are malicious,
rendering the methods in this literature inapplicable, since the blockchain cannot achieve consensus.
Therefore, consistently, we first analyze the regret bound given a limited number of participants.

4.1.1 LOW NUMBERS OF MALICIOUS PARTICIPANTS AND CONSTANT COST

First, we consider the case when the number of honest participants is larger than 2
3 · M which is

the same as MA ≤ 1
3 , and there are 1

3M + 1 commanders. The cost mechanism uses constant
cost, i.e. c(t) = c where c is specified in Section 3, which requires honest participants to exclude
any estimator that is from the malicious participants when updating µ̂i(t). Meanwhile, commander
selection assumes that at least one honest participant serves as a commander, which allows the honest
participants to achieve consensus on the accurate µ̃. The formal statement reads as follows.
Theorem 1. Let us assume that the total number of honest participants is at least 2

3M and that
there is at least one honest participant in the validator set. Meanwhile, let us assume that the
malicious participants perform existential forgery on the signatures of honest participants with
an adaptive chosen message attack. Lastly, let us assume that the participants are in a standard
universal composability framework when constructing A. Then we have that E[RT |A] ≤ (c+ 1) ·
L+

∑
m∈MH

∑K
k=1 ∆k([

4C1 log T
∆2

i
]+ π2

3 )+ |MH |Kl1−T where L is the length of the burn-in period

of order log T , c > 0 is the cost, C1 meets the condition that C1

6|MH |kiσ2 ≥ 1, σ2 ≥ 1
MH

, ∆i is
the sub-optimality gap, l is the length of the signature of the participants, and ki is the threshold
parameter used in the construction of At. Here the set A is defined as A = {∀1 ≤ t ≤ T, bt = 1}
which satisfies that P (A) ≥ 1− 1

lT−1 .
Proof sketch. The full proof is provided in Appendix E; the main logic is as follows. We decompose
the regret into three parts: 1) the length of the burn-in period, 2) the gap between the rewards of
the optimal arm and the received rewards, and 3) the cost induced by selecting the estimators of
the malicious participants. For the second part of the regret, we bound it in two aspects. First, we
analyze the total number of times rewards are received, i.e., when the block is approved, which is
of order 1 − l1−T . Then, we control the total number of times sub-optimal arms are pulled using
our developed concentration inequality for the validated estimators sent for verification. Concerning
the third part, we bound it by analyzing the construction of Bt, which depends on the presence of
malicious participants in At. By demonstrating that At contains only a small number of malicious
participants in comparison to the total number of honest participants, we show that Bt does not
induce additional cost. Combining the analysis of these three parts, we derive the regret bound.

4.1.2 MODERATE NUMBER OF MALICIOUS PARTICIPANTS AND DISTANCE-BASED COST

Along the line of work on robust optimization (Dong et al., 2023), a common assumption is that
at least 1

2 participants are honest. To this end, we relax the assumption on the minimal number of
honest participants from 2

3 to 1
2 , modifying the cost definition. We propose the following algorithmic

changes, an alternative to the aggregation step. We call the already proposed strategy as Option 1.

Option 2 Construct a filter list At as in Option 1. Construct a block list Bt ⊂ At for any t > L as
Bt = {m : µ̄m

i (t) is smaller than the top f values and larger than the bottom f values}.

The choice of the option affects step 2 in Aggregation. Let us assume that sets At, Bt are constructed
based on Option 2, instead of Option 1 in Theorem 1. We also need to adjust the global estimator
µ̃i(t) in Global Update as µ̃i(t) = Ptµ̃i(t − 1) + (1 − Pt)µ̂i(τ) where Pt = 1 − 1

t and again
τ = maxs<t{bs = 1}. Finally, the cost associated with the global estimator is constructed as
ct = mini Dist(µ̃i(t), µi), where Dist(µ̃i(t), µi) = |µ̃i(t)− µi|6. The length of the burn-in period
is now ( log T

2 )
1
6 . We point out that Operation is executed by the environment which is the only entity

having the knowledge of {µi}i. The formal regret statement reads as follows.
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Theorem 2. Let Option 2 be used. Let us assume that the total number of honest participants is
at least 1

2M and let us assume that there is at least one honest participant in the validator set.
Meanwhile, let us also assume that the malicious participants perform existential forgery on the
signatures of honest participants with an adaptively chosen message attack. Lastly, let us assume
that the participants are in a standard universal composability framework when constructing A.
Then we have that E[RT |A] ≤ (c+ 1) · L+O(log T ) + |MH |Kl1−T where L is the length of the
burn-in period of order (log T )

1
6 , c is an uniform upper bound on the cost ct, and l is the length of

the signature of the participants. Here the set A is defined as in Theorem 1.

4.1.3 LARGE NUMBER OF MALICIOUS PARTICIPANTS AND DISTANCE-BASED COST

Surprisingly, we report next that by more precisely characterizing the different types of malicious
behaviors, we can relax the assumption on the number of malicious participants. Structure of
malicious behaviors We define set M1

A ⊂ MA as comprising of malicious participants that only
perform attacks on the estimators. Furthermore, we denote by M2

A ⊂ MA the set comprising of
malicious participants that perform attacks on the consensus. Also, M2,1

A ⊂ M2
A are the malicious

participants that perform attacks on both the estimators and the consensus. Note that all the malicious
participants are allowed to perform existential forgery on the signatures of the honest participants.
We next introduce Option 3 as an alternative to options 1 and 2. Option 3 Construct a filter list At

and the initial Bt as in Option 2. In this option, we further refine Bt. If honest participant m is a
validator at time step t, then it maintains a participant blocklist Dt such that {d ∈ Dt : d ∈ SC(t),
participant d attacks the consensus in that d signs two different messages (the received one from other
participants and a self-modified one) and sends the self-modified one}. Let Bt = Bt ∩ (Dt)

c where
(Dt)

c represents the compliment set of Dt. Note that the construction of set Dt is feasible, as the
honest participant can track the public key (the signature) through tracing back a Chandelier tree, and
thus track the label through the fixed mapping between the participants’ public keys and the labels.
Theorem 3. The algorithm is applied with Option 3 and the aforementioned distance-based cost.
Let us assume that the total number of honest participants is at least 1

4M and let us assume that
M1

A < MH − 1 and M2
A < 1

2M − 1. Meanwhile, let us assume that the malicious participants
perform existential forgery on the signatures of honest participants with an adaptive chosen message
attack. Lastly, let us assume that the participants are in a standard universal composability framework
when constructing A. Then we have that E[RT |A] ≤ O(log T ).

4.2 GENERAL NUMBER OF MALICIOUS PARTICIPANTS

What we have assumed thus far is that there is a limited number of malicious participants. Ideally,
one would expect the protocol to accommodate any number of malicious participants. Although (Zhu
et al., 2023) addresses this general situation, their work is not related to the blockchain protocol. To
this end, we explore this general setting where there can be any number of malicious participants on
a blockchain. However, intuitively, if a majority of participants engage in an attack on the consensus,
the blockchain can always be invalidated, resulting in a linear regret lower bound. To account for a
general number of participants, we refine the structure of malicious behaviors and allow for multiple
types of malicious behaviors as an additional assumption in this broader context.

4.2.1 GENERAL NUMBER OF MALICIOUS PARTICIPANTS AND DISTANCE-BASED COST

Besides the 3
4 assumption, more surprisingly, we find that this brand new algorithmic framework

works for more general settings with any number of participants, assuming a more refined structure
of the malicious participants. The cost definition is again the distance-based one with Option 3.
Theorem 4. Let us assume that the total number of honest participants is arbitrary. Let us assume
that M1

A < 1
2M − 1 and M2

A < 1
2M − 1, and further assume that M2,1

A = ∅. The cost is the
distance-based cost. Meanwhile, let us assume that the malicious participants perform existential
forgery on the signatures of honest participants with an adaptive chosen message attack. Lastly, let us
assume that the participants are in a standard universal composability framework when constructing
A. Then we have that E[RT |A] ≤ O(log T ).

4.2.2 GENERAL NUMBER OF MALICIOUS PARTICIPANTS WITH AN EFFICIENT COMMANDER
SELECTION PROTOCOL

So far, what we have discussed imposes assumptions on the outcome of selection. While this guaran-
tees the decentralization of the coordination mechanism, there is room for improvement in efficiency.
As an extension, we consider a more general commander selection procedure in the protocol, with
adaptive numbers of commanders, to improve efficiency while ensuring decentralization.
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Commander selection The commander set Cs
t is determined by executing Algorithm 2 in Appendix

C where the trust coefficients wm(t) are the probabilities of being selected as commanders. Let

wm(t) = wm = 1 − log T
T , for any m ∈ MH and wj(t) = w =

log
|MA|

η

L , for any j ∈ MA.
Subsequently, we establish the following regret bound based on wj from these two choices and
Option 3. Due to the choice of wm, we no longer require that there is at least one honest commander.
Theorem 5. Assume the same conditions as in Theorem 4 where the cost is the distance-based one.
Let us assume that the commanders are selected based on the above protocol, and the estimators are
computed as aforementioned. We still require that at least one half of the validators are honest. Then
we obtain that the regret upper bound with respect to our algorithm is O(log T ).

4.2.3 GENERAL NUMBER OF MALICIOUS PARTICIPANTS WITH CONSTANT COST

Recall that with the assumption of at most 1
3 participants are malicious, we have established the

regret bound when the cost is constant. Without this assumption, we have proved the regret assuming
distance-based cost, which highlights a gap. To this end, we next consider the constant cost that
imposes more penalization and show the corresponding result. Intuitively, if the information from
malicious participants is close enough to that from honest participants, the cost would always be
constant, and thus the regret would be linear in T . As a result, we propose the following definition
characterizing the difference between the two groups of participants and introduce an assumption
accordingly, by generalizing Strictly Pre-fixed ϵ-safe zone as in Appendix D.
Pre-fixed ϵ-safe zone A pre-fixed ϵ-safe zone is defined as a set of participants Sϵ, such that for
any participant m ∈ Sϵ and any arm 1 ≤ i ≤ K, we have that fm

i − hm
i ≥ ϵ · qmi , where f j

i is the
black-box reward generator, hj

i is the stochastic reward generator for arm i with mean value µi with
random seed j and qji follows an unknown but fixed distribution different from that of hj

i .
Assumption 1. (Pre-fixed) The pre-fixed ϵ-safe zone contains no malicious participants that only
perform attacks on the estimators, namely, M1

A ∩ Sϵ = ∅.

We update the estimator computation, where the global estimator µ̃i(t) is constructed as µ̃i(t) =

Ptµ̃i(t−1)+(1−Pt)ˆ̂µi(t−1), ˆ̂µi(t) =

∑
m∈Ci

t
µ̄m
i (t)

|Ci
t |

with Ci
t = {1 ≤ j ≤ M : |µ̂i(t)−µ̄j

i (t)| ≤ ϵ
2}.

Theorem 6. Assume the same conditions as in Theorem 4 except that the cost is constant. Let us
further assume that Assumption 1 holds. With the new rule of updating the estimators, the regret
bound of the proposed algorithm is O(log T ).
In Theorem 6 we have the same assumptions about honesty, and validators and commanders (pm and
wm can be anything). The significant change here is constant cost.

4.2.4 GENERAL NUMBER OF MALICIOUS PARTICIPANTS WITH AN EFFICIENT VALIDATOR
SELECTION PROTOCOL

The requirement on honesty of validators lacks efficiency, taking significant time to achieve consensus.
To address this, we propose a new approach to select validators based on a newly defined reputation
score system motivated by the Proof-of-Authority concept (Fahim et al., 2023), allowing selecting
any number of validators ranging from MH to 2MH − 1. More advantages are shown in Appendix
F. More specifically, for each participant i, its reputation at time step t is computed by a new smart
contract as RSt

i = G(U t
i ), where G is any monotonicity preserving function, and U t

i quantifies the
accuracy of the information from participant i at time step t, defined as U t

i =
∑K

j=1 −(µ̄i
j(t− 1)−

µ̃j(t− 1))2 − ϵ2(¯̄µi
j(t− 1)− µ̃j(t− 1))2)2 where ¯̄µi

j(t− 1) denotes the estimator for arm j after
the consensus step, and µ̄i

j(t− 1), µ̃j(t− 1) are the aforementioned estimators for arm j.
Validator Selection First the protocol ranks the reputations of the participants and records the
participants as {l1, l2, . . . , lM} accordingly, where l1 represents the participant with the largest
reputation. Then the protocol selects the top N participants, where MH ≤ N ≤ 2MH − 1.
Theorem 7. Assume the same conditions as in Theorem 4 except that the cost is constant. Let us
further assume that Assumption 1 holds, that the validators are selected based on Validator Selection,
and there is at least one honest commander. Then we have that E[RT |A] ≤ O(log T ).

4.2.5 OTHER MATERIAL

Appendix A includes a discussion about other possible performance measures, Appendix B summaries
of the contributions and future work, and Appendix C exhibits functions used in the model approach.
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A OTHER PERFORMANCE MEASURE

While we have established various theoretical bounds on the regret of the coordination mechanism,
demonstrating the algorithm’s optimality, it is worth noting that security has been a crucial aspect
of building fault-tolerant systems. In fact, we ensure that the security guarantee is necessary for
the coordination mechanism’s optimality, which is connected through our proposed framework as
part of our contributions. In other words, security is an implication of the exhibited regret bounds.
In the meantime, recall that to incentivize the participation of participants, we invented a new cost
mechanism, motivated by (Murhekar et al., 2024). While our setting is not completely zero-sum,
which does not enable the full characterization of Nash Equilibrium, the two different groups of
participants, namely, malicious participants and honest participants, have conflicting objectives.
To this end, we provide a qualitative discussion by illustrating the trade-offs faced by malicious
participants and point out potential future directions regarding the cost mechanism. More specifically,
we consider the following factors that affect security and illustrate how they are connected with
regret.

A.1 SECURITY OF THE PROTOCOL

Digital signature The security of the coordination mechanism partially depends on the reliability
of the signature scheme, as it determines whether a participant can maintain its own signature and the
corresponding mapping between the label and signature. Note that the employment of the digital
signature scheme (Goldwasser et al., 1988) is in a plug-in fashion, independent of everything else. As
a result, the theoretical guarantee still holds, implying the security of the coordination mechanism and
serving as a prerequisite needed for achieving consensus when running the Byzantine Fault Tolerant
protocol.

Consensus The security of the consensus protocol also plays an important role in the coordination
mechanism’s security, as no single participant can determine the estimator to be sent to the smart
contract. This prevents malicious participants from manipulating the estimators but adds additional
challenges for honest participants. By deploying the Byzantine Fault Tolerant protocol with the
digital signature scheme and our newly proposed commander selection procedures, we guarantee that
both consensus and good enough estimators are achieved with high probability. Only in this case
can the regret be optimized, which implies that optimal regret indicates the security of the consensus
protocol.

Privacy Another main aspect of security is whether the participants’ information is accessible to
others, namely the degree of privacy preservation. We note that though the empirical reward estimators
are available, the number of arm pulls is not broadcast. This prevents malicious participants from
retrieving the reward and arm sequence, thus protecting privacy. Moreover, the rule for computing
reputation is unknown to the participants, as it is implemented through a smart contract, which
prevents malicious participants from manipulating the reputation. The correctness of the reputation is
essential to the consensus protocol and thus the regret. In other words, the optimality of the regret
also implies the correct execution of the reputation system.

A.2 OPTIMALITY OF THE COST MECHANISM

This cost mechanism is consistent with the one in (Murhekar et al., 2024), by adding a cost term to
the original reward. While their cost depends on how many samples a participant contributes, we
measure how much contribution a participant makes to the validated estimators. Honest participants
need to identify the malicious participants and gain knowledge about the reward to maximize their
reward function.

Assuming the cost is constant, the optimal strategy for malicious participants is to send sufficiently
accurate information so that the honest participants cannot determine their identities, which implies
that there is no Nash Equilibrium. If the malicious participants keep broadcasting incorrect estimators,
they would be excluded from consideration by the honest participants, allowing honest participants
to incur a smaller cost. On the other hand, if the malicious participants send accurate enough
information, the cost for honest participants is small as well, by definition. This implies that our
proposed mechanism captures the trade-off and has the potential to uncover the Nash equilibrium
with respect to how malicious participants transmit their estimators. We point out that quantitatively
and rigorously characterizing the equilibrium presents a very promising direction, which goes beyond
the scope of this paper.
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B CONCLUSION AND FUTURE WORK

This paper considers a robust multi-agent multi-armed bandit (MAB) problem within the framework
of system security, representing the first work to explore online sequential decision-making with
participants distributed on a blockchain. The introduction of conditionally observable rewards and the
penalization of inaccurate information brings new challenges, while taking security and privacy into
consideration, besides optimality, distinct from blockchain-based federated learning or Byzantine-
resilient multi-agent MAB. To solve the problem, we propose a new methodological approach
combining the strategy based on Upper Confidence Bound (UCB) with blockchain techniques and
invent new modifications. On a blockchain, a subset of participants forms a validator set responsible
for information integration and achieving consensus on information transmitted by all participants.
Consensus information is then sent to a smart contract for verification, with approved blocks only
upon successful verification. The environment determines and sends the reward information to
the participants based on the interaction with the smart contract. As part of our contributions, we
use reputation to determine the validator selection procedure, which depends on the participants’
historical behaviors. Additionally, we incorporate a digital signature scheme into the consensus
process, eliminating the traditional 1

3 assumption of the Byzantine general problem. Furthermore, we
introduce a cost mechanism to incentivize malicious participants by rewarding their contributions to
the verification step. We provide a comprehensive regret analysis demonstrating the optimality of
our proposed algorithm under specific assumptions, marking a breakthrough in blockchain-related
learning tasks, which has seen little analysis. To conclude, we also include a detailed discussion on
the security and privacy guarantees.

While our framework works for a general number of malicious participants, it relies on assumptions
about the structure of malicious behaviors. Removing such assumptions would generalize the problem
setting. Meanwhile, we consider two types of attacks related to the framework—those targeting
the estimators and those targeting the consensus—and note that there is a rich body of literature
on different aspects of security attacks. Incorporating these into the framework is both meaningful
and promising. Lastly, we emphasize that mechanism design has great potential in online learning,
especially in a multi-agent system, to ensure that participants perform as expected. We hope that
this work can pave the way for combining the rich literature in mechanism design with multi-agent
learning systems, in the era of cybersecurity and mixed-motive cooperation.

C PSEUDO CODE OF SUB ALGORITHMS

Algorithm 2 Validator or Commander Selection

1: function SELECTION(t,m, l, V RF )
2: Let (pkm, skm) = G(qm)
3: Let (hash, π) = V RFF (q̄t, pkm, skm)
4: z = 0
5: if hash

2hl ̸∈ [0, 1− l] then
6: z = 1
7: end
8: If π(hash, pkm) = True then return z else return 0
9: end function

D TERMINOLOGIES

Existential Forgery Following the definition in (Goldwasser et al., 1988), malicious participants
successfully perform an existential forgery if there exists a pair consisting of a message and a
signature, such that the signature is produced by an honest participant.

Adaptive Chosen Message Attack Consistent with (Goldwasser et al., 1988), we consider the
most general form of a message attack, namely the adaptive chosen message attack. In this context,
a malicious participant not only has access to the signatures of honest participants but also can
determine what message to send after seeing these signatures. This grants the malicious participant a
high degree of freedom, thereby making the attack more severe.

Universal Composability Framework For homomorphic encryption, more specifically, secure
multi-party computation, we follow the standard framework as in (Canetti, 2001). Specifically,
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Algorithm 3 Consensus

1: function CONSENSUS(SC(t), {Bm
t }m,M )

2: Run scsort(SV (t), PK) which returns sorted SC(t)
3: for h = 1, 2, . . . , |SC(t)| do
4: Generate the digital signature {smh }m as in (Goldwasser et al., 1988)
5: Define a message as (smh , Bm

t )
6: Execute Algorithm SM(M) in (Lamport et al., 2019) with SC(t)[h] as the commander
7: Derive the received information B̃h

t from SC(t)[h]

8: vmt = 1 if B̃h
t = Bm

t at honest participant m and 0 otherwise
9: end

10: if majority(vmt ) = 1 then
Consensus is achieved and Bt = Bm

t

11: else
Consensus fails and Bt = ∅

12: return Bt

13: end function

Algorithm 4 Global Update

1: function GLOBAL UPDATE(Bt)
2: if Bt is not empty then

Compute µ̃i(t) =
∑

m∈Bt
µ̄m
i (t)

|Bt| for each i ∈ {1, . . . ,K}
3: else

µ̃i(t) = ∞ for each i ∈ {1, . . . ,K}
4: return (µ̃i(t))i∈{1,...,K}
5: end function

Algorithm 5 Operation

1: function OPERATION({µ̃i(t)}i∈{1,...,K}, {atm}m, Bt, bt)
2: Generate rmat

m
for every participant m

3: if bt = 1 and Bt ⊂ MH then
Distribute rmat

m
and µ̃i(t) for every i to every participant m

4: if bt = 1 and Bt ∩MH < |Bt| then
Distribute rmat

m
− ct and µ̃i(t) for every i to every honest participant m ∈ MH

Distribute rmat
m
+ ct and µ̃i(t) for every i to every malicious participant m ∈ MA

5: else
Distribute nothing to all participants

6: return
7: end function
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an exogenous environment, also known as an environment machine, interacts sequentially with a
protocol. The process runs as follows. The environment sends some inputs to the protocol and
receives outputs from the protocol that may contain malicious components. If there exists an ideal
adversary such that the environment machine cannot distinguish the difference between interacting
with this protocol or the ideal adversary, the protocol is deemed universally composable secure.

Strict pre-fixed ϵ-safe zone A pre-fixed ϵ, δ-safe zone is defined as a set of participants Sϵ, such
that for any participant j ∈ Sϵ and any arm 1 ≤ i ≤ K, we have that the f j

i = (1− ϵ) · hj
i + ϵ · qji ,

where f j
i is the corresponding black-box reward generator, hj

i is the corresponding known stochastic
reward generator for arm i with mean value µi with random seed j and qji follows an unknown but
fixed distribution different from that of hj

i .

This assumption separates the malicious participants from the honest participants to make the
malicious participants distinguishable, thereby eliminating the estimators from malicious participants.
It is worth noting that this assumption is consistent with the existing literature (Dubey and Pentland,
2020), which adopts the same principle when considering malicious behavior.

Moreover, this assumption can be relaxed to the version in our work where the minimum gap, instead
of the exact gap, is ϵ, which measures the difference between the estimators from the malicious
participants and those from the honest participants.

E PROOF OF RESULTS IN SECTION 4

PROOF OF THEOREM 1

Proof. For regret, we have the following decomposition. Let us denote bt as the indicator function
of whether the block at time step t is approved. Likewise, for any time step t, we denote whether
the estimators from the malicious participants are utilized in the integrated estimators as ht. Let the
length of the burn-in period be L.

Note that

RT = max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

(µb
at
m
− ct)

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µb
at
m
+

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m
1bt=1 +

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m
1bt=1 +

∑
m∈MH

T∑
t=1

c1ht=1

Meanwhile, the regret can be bounded as follows

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

c1ht=1

.
= (c+ 1) · L+ T1 + T2 (2)

We start with the second term T2. Note that ht = 1 is equivalent to {m : m ∈ Bt ∩m ̸∈ MH} ̸= ∅.
Note that because the cost is positive, Bt is nonempty.
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By taking the expectation over T2, we derive

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH}̸=∅]

Based on Lemma 2 in (Zhu et al., 2023), we obtain that

1{m:m∈Bt∩m ̸∈MH}≠∅ = 1|At|<2f

which immediately implies that

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1ht=1]

=
∑

m∈MH

T∑
t=L+1

cE[1{m:m∈Bt∩m̸∈MH}̸=∅]

=
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ].

In the meantime, we note that for any honest validators, the choice of At guarantees that honest
participants are included after the burn-in period. More specifically, the set of At satisfies that for any
validator j ∈ MH ,

m ∈ At ⇔ kinm,i(t) > nj,i(t) ⇔ m ∈ MH

where 1 < ki < 2. This condition holds at the end of burn-in period which is straightforward since
each honest. After the burn-in period, the honest participants has the same decision rule

atm = argmaxiµ̃
m
i (t) + F (m, i, t)

where µ̃m
i (t) = µ̃b

i (t). In other words, each honest participant uses the validated estimator µ̃b
i (t).Since

both nm,i(t) and nj,i(t) are larger than L
K , then we have that there exists ki =

nj,i(t)K
L , such as

kinm,i(t) > nj,i(t) for every m ∈ MH .

This implies that

At > |MH | ≥ 2f (3)

by the assumption that the number of honest participants is at least 2
3M .

That is to say,

E[1|At|>2f ] = 1

and subsequently, we have

E[T2|A] =
∑

m∈MH

T∑
t=L+1

cE[1|At|<2f ]

= 0

We note that the construction of At is done without knowing the number of pulls of arms of other
participants. This is realized by using the homomorphic results, Theorem 5.2 as in (Asharov et al.,
2012) under the universal composability framework.
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Next, we proceed to bound the first term T1. Note that

E[T1|A] ≤
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1)

= (T − L) · |MH | · µi∗ −
∑

m∈MH

T∑
t=L

E[µat
m
|bt = 1]P (bt = 1)

In the meantime, we obtain the following

E[µat
m
|bt = 1]

= E[

K∑
k=1

µk · 1at
m=k|bt = 1]

=

K∑
k=1

E[µk1at
m=k|bt = 1]

≥
K∑

k=1

µk · 1

P (bt = 1)
· (E[1at

m=k]− P (bt = 0)).

This immediately gives us that

E[T1|A]

≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(

K∑
k=1

µk · 1

P (bt = 1)
· (E[1at

m=k]− P (bt = 0)))P (bt = 1)

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(

K∑
k=1

µk(E[1at
m=k]− P (bt = 0))

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0). (4)

Based on Theorem 2 in (Lamport et al., 2019), the consensus is achieved, i.e. bt = 1, as long as
the digital signatures of the honest participants can not be forged. Based on our assumption, we
have that the malicious participants can only perform existential forgery on the signatures of the
honest participants and the attacks are adaptive chosen-message attack. Then based on the result,
Main Theorem in (Goldwasser et al., 1988), the attack holds with probability at most 1

Q(l) for any
polynomial function Q and large enough l where l is the length of the signature.

More precisely, we have that with probability at least 1− 1
TlT−1 , the signature of the honest participants

can not be forged, and thus, the consensus can be achieved, i.e.

P (bt = 1) ≥ 1− 1

T lT−1
. (5)

Subsequently, we derive that

(14) ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µk(
1

T lT−1
)

≤
∑

m∈MH

T∑
t=L

(µi∗ −
K∑

k=1

µkE[1at
m=k]) + |MH |KlT−1

=
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

.
= T21 + |MH |KlT−1
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And for each honest participant, they are using the estimators based on the validated estimators, as
long as the block is approved. Consider the following event, A = {∀1 ≤ t ≤ T, bt = 1}. Based on
(15) and the Bonferroni’s inequality, we obtained that

P (A) = P (∀1 ≤ t ≤ T, bt = 1)

= 1− P (∃1 ≤ t ≤ T, bt = 0)

≥ 1−
T∑

t=1

P (bt = 0)

≥ 1− 1

lT−1
.

On event A, the blockchain always gets approved, and then all the honest participants follow the
validated estimators from the validators. By (3) and Lemma 2 in (Zhu et al., 2023), we have that the
validated estimator µ̃i(t) can be expressed as

µ̂i(t) =
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t)

where the weight wj,i(t) meets the condition∑
j∈At∩MH

wj,i(t) = 1,

which immediately implies that

E[µ̂i(t)] = µi.

We note that the variance of µ̂i(t), var(µ̂i(t)), satisfies that,

var(µ̂i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t))

≤ |At ∩MH |
∑

j∈At∩MH

wj,i(t)
2var(µ̄j

i (t)))

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 1

nj,i(t)

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 ki
nm,i(t)

= |MH | ki
nm,i(t)

∑
j∈MH

w2
j,i(t)σ

2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a+ b)2 ≥ a2 + b2.

Next, we show by induction that var(µ̃i(t)) ≤ 3|MH | kiσ
2

nm,i(t)
for t ≥ 3K.

At time step 3K, we have that var(µ̃i(t)) ≤ 1 since E[µ̃i(t)] = µi ≤ 1. In the meantime,

3|MH | kiσ
2

nm,i(t− 1)

≥ 3|MH |kiσ
2

3

= |MH |kiσ2 ≥ 1
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since we have ki ≥ 1 and σ2 ≥ 1
MH

.

First, assume that for t− 1, we have var(µ̃i(t− 1)) ≤ 3|MH | kiσ
2

nm,i(t−1) .

Meanwhile, by the update rule such that µ̃i(t) = (1− Pt)µ̂i(t) + Ptµ̃i(τ) where τ = maxs<t{bs =
1}.

Note that with probability at least P (A) = 1− 1
lT−1 , bs = 1 for all s < t. This implies that on event

A, τ = t− 1. Therefore, by the cauchy-schwartz inequality, we obtain that

var(µ̃i(t)) ≤ 2(1− Pt)
2(var(µ̂i(t))) + 2P 2

t var(µ̃i(t− 1))

≤ 1

2
|MH | kiσ

2

nm,i(t)
+

1

2
3|MH | kiσ

2

nm,i(t− 1)

≤ 3|MH | kiσ
2

nm,i(t)

where the last inequality holds by the fact that nm,i(t−1) ≥ nm,i(t)−1 ≥ 2
3nm,i(t) when t > 3 ·K.

Subsequently, we have that

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t)

)2

2var(µ̃m
i )

}

≤ exp {−
(
√

C1 log t
nm,i(t)

)2

6|MH | kiσ2

nm,i(t)

}

= exp {− C1 log t

6|MH |kiσ2
} ≤ 1

t2
(6)

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

6|MH |kiσ2 ≥ 1.

Likewise, by symmetry, we have

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l) ≤ 1

t2
. (7)

Meanwhile, we have that

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) = 0 (8)

if the choice of l satisfies l ≥ [ 4C1 log T
∆2

i
] with ∆i = µi∗ − µi.
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Based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +

T∑
t=L+1

1{am
t =i,nm,i(t)>l}

≤ l +

T∑
t=L+1

1
{µ̃m

i −
√

C1 log t

nm,i(t−1)
>µi,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µ̃m

i∗+

√
C1 log t

nm,i∗ (t−1)
<µi∗ ,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µi+2

√
C1 log t

nm,i(t−1)
>µi∗ ,nm,i(t−1)≥l}

.

By taking the expectation over nm,i(t), we obtain

E[nm,i(t)] ≤ l +

T∑
t=L+1

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l)

≤ l +

T∑
t=L+1

1

t2
+

T∑
t=L+1

1

t2
+ 0

≤ l +
π2

3
= [

4C1 log T

∆2
i

] +
π2

3
(9)

where the second inequality holds by using (6), (7), and (18).

Then by the definition of T21, we derive

E[T21|A] =
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)]

≤
∑

m∈MH

K∑
k=1

∆k([
4C1 log T

∆2
i

] +
π2

3
)

where the inequality results from (17).

Consequently, we obtain

(14) ≤ E[T21|A] + |MH |KlT−1

≤
∑

m∈MH

K∑
k=1

∆k([
4C1 log T

∆2
i

] +
π2

3
) + |MH |KlT−1. (10)

Furthermore, we have

(23) ≤ (c+ 1) · L+ E[T1|A] + E[T2|A]

≤ (c+ 1) · L+
∑

m∈MH

K∑
k=1

∆k([
4C1 log T

∆2
i

] +
π2

3
) + |MH |KlT−1 + 0 (11)

which completes the proof.
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PROOF OF THEOREM 2

Proof. By the same deifnition of the regret, we, again, have the following regret decomposition

Note that

RT = max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

(µb
at
m
− ct)

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µb
at
m
+

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m
1bt=1 +

∑
m∈MH

T∑
t=1

ct

= max
i

∑
m∈MH

T∑
t=1

µi −
∑

m∈MH

T∑
t=1

µat
m
1bt=1 +

∑
m∈MH

T∑
t=1

ct1ht=1

Meanwhile, the regret can be bounded as follows

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2 (12)

We start with the second term T2. Note that ht = 1 is equivalent to {m : m ∈ Bt ∩m ̸∈ MH} ≠ ∅.

By taking the expectation over T2, we derive

E[T2|A] =
∑

m∈MH

T∑
t=L+1

E[ct · 1ht=1]

=
∑

m∈MH

T∑
t=L+1

E[ct · 1{m:m∈Bt∩m ̸∈MH}̸=∅]

By the Chernoff-Hoeffding’s inequality and choosing ηt ≥
√
log t√
ni(t)

, we obtain that

P (|µ̄m
i (t)− µi| ≥ ηt)

= P (|µ̄m
i (t)− µi| ≥

√
log t√
ni(t)

)

≤ 2 exp {− log t

4σ2n2
m,i(t)

}

= 2 exp {− log t

4σ2n2
m,i(t)

}

≤ 1

t2
.
= Pt,

when t > L, i.e. after the burn-in period.

If ct ≤ 1
t , then we have that E[T2|A] ≤ log T , which presents an upper bound on T2.

If ct = Dist(µ̃i(t), µi), then based on the definition of Bt and m ∈ Bt as in Option 2, we have that
µ̄m
i (t) is smaller than the top f values and larger than the below f values. Based on Theorem 1 as in

(Dong et al., 2023), we have that

||µ̂i(t)− z̄i(t)|| ≤ cδ∆
2
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where ∆ represents the largest distance between the honest estimators and z̄i(t) that is the averaged
estimator maintained by all the honest participants.

Then by definition, we obtain that

∆ = max
i∈MH

|µ̄i(t)− z̄i(t)|

≤ max
i,j∈MH

[|µ̄i(t)− µi|+ |µ̄j(t)− µi|]

≤ 2ηt

which holds with probability 1− Pt.

Therefore, we have that with probability 1− Pt

|µ̂i(t)− z̄i(t)| ≤ 2cδηt

and

|z̄i(t)− µi| ≤ ηt

which holds by the Chernoff Bound inequality.

Subsequently, we obtain that with probability 1− Pt

|µ̂− µi| ≤ |µ̂i(t)− z̄i(t)|+ |z̄i(t)− µi|
≤ (2cδ + 1)η6t

Meanwhile, for the distance measure, we have with probability 1− Pt

Dist(µ̃i(t)− µi) = |µ̃i(t)− µi|6

= |q̄tµ̃i(t− 1) + (1− q̄t)µ̂i(t)− µi|6

≤ q̄t|µ̃i(t− 1)− µi|6 + (1− q̄t)|µ̂i(t)− µi|6

≤ q̄tDist(µ̃i(t− 1), µi) + (1− q̄t)(2cδ + 1)6η6t (13)

Since by definition, we derive that

P (Dist(µ̃i(L), µi) ≥ O(
η2t

ni(t)
))

≤ P (Dist(µ̃i(L), µi) ≥ O(
log t3

ni(t)3
))

≤ P (|µ̃i(L)− µi| ≥ O(

√
log t√
ni(t)

))

≤ P (|µ̃i(L)− µi| ≥ ηt)

= Pt

That is to say, with probability 1− Pt,

Dist(µ̃i(L), µi) ≤ O(
η2L

ni(L)
)

Next, suppose that at each time step t, with probability 1− Pt, Dist(µ̃i(t), µi) ≤ O(
η2
t

ni(t)
).

Then by choosing q̄t = 1− 1
ni(t)

and 13, we have that

Dist(µ̃i(t+ 1), µi)

≤ q̄tDist(µ̃i(t), µi) + (1− q̄t)(2cδ + 1)6η6t

≤ O(
η2t

ni(t)
) +O(

1

ni(t)
η6t )

= O(
η2t+1

ni(t+ 1)
)
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Then we use the mathematical induction and derive that for any t ≥ L, with probability 1− Pt,

Dist(µ̃i(t), µi) ≤ O(
η2t

ni(t)
).

By the definition of cost, we obtain that with probability 1− Pt

ct = min
i

Dist(µ̃i(t), µi)

≤ O(
log t

maxi ni(t)2
) = O(

log t

t2
)

where the last inequality holds by the fact that maxi ni(t) ≥
∑

i ni(t)

K = O(t).

Then we drive that

E[T2|A] ≤
∑

m∈MH

T∑
t=L+1

E[ct · 1{m:m∈Bt∩m ̸∈MH}̸=∅]

≤
∑

m∈MH

T∑
t=L+1

E[ct]

≤
∑

m∈MH

T∑
t=L+1

[(1− Pt) ·O(
log t

t2
) + Pt]

=
∑

m∈MH

T∑
t=L+1

O(
log t

t2
)

≤ log T
∑

m∈MH

T∑
t=L+1

O(
1

t2
) = O(log T ).

We next follow the same steps as in the proof of Theorem 1 for bounding E[T1]. Note that

E[T1|A] ≤
T∑

t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1)

= (T − L) · |MH | · µi∗ −
∑

m∈MH

T∑
t=L

E[µat
m
|bt = 1]P (bt = 1)

In the meantime, we obtain the following

E[µat
m
|bt = 1]

= E[

K∑
k=1

µk · 1at
m=k|bt = 1]

=

K∑
k=1

E[µk1at
m=k|bt = 1]

≥
K∑

k=1

µk · 1

P (bt = 1)
· (E[1at

m=k]− P (bt = 0)).
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This immediately gives us that

E[T1|A]

≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(

K∑
k=1

µk · 1

P (bt = 1)
· (E[1at

m=k]− P (bt = 0)))P (bt = 1)

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

(

K∑
k=1

µk(E[1at
m=k]− P (bt = 0))

= (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0). (14)

Based on Theorem 2 in (Lamport et al., 2019), the consensus is achieved, i.e. bt = 1, as long as
the digital signatures of the honest participants can not be forged. Based on our assumption, we
have that the malicious participants can only perform existential forgery on the signatures of the
honest participants and the attacks are adaptive chosen-message attack. Then based on the result,
Main Theorem in (Goldwasser et al., 1988), the attack holds with probability at most 1

Q(l) for any
polynomial function Q and large enough l where l is the length of the signature.

More precisely, we have that with probability at least 1− 1
lT

, the signature of the honest participants
can not be forged, and thus, the consensus can be achieved, i.e.

P (bt = 1) ≥ 1− 1

lT
. (15)

Consequently, we have

E[T1] ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µk(
1

lT
)

≤
∑

m∈MH

T∑
t=L

(µi∗ −
K∑

k=1

µkE[1at
m=k]) + |MH |KlT−1

=
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1 (16)

Based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +

T∑
t=L+1

1{am
t =i,nm,i(t)>l}

≤ l +

T∑
t=L+1

1
{µ̃m

i −
√

C1 log t

nm,i(t−1)
>µi,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µ̃m

i∗+

√
C1 log t

nm,i∗ (t−1)
<µi∗ ,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µi+2

√
C1 log t

nm,i(t−1)
>µi∗ ,nm,i(t−1)≥l}

.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

By taking the expectation over nm,i(t), we obtain

E[nm,i(t)] ≤ l +

T∑
t=L+1

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) (17)

Recall that by our concentration inequality, we obtain that

P (µ̃m
i (t) + (

C1 log t

nm,i(t)
)

1
6 < µi, nm,i(t− 1) ≥ l)

≤ P (|µ̃m
i (t)− µi| ≥ O(

log t
1
6

ni(t)
1
3

), nm,i(t− 1) ≥ l)

= P (Dist(µ̃m
i (t), µi) ≥ O(

η2t
ni(t)

), nm,i(t− 1) ≥ l)

≤ Pt =
1

t2
.

Meanwhile, we have that
T∑

t=L+1

P (µi + 2(
C1 log t

nm,i(t− 1)
)

1
6 > µi∗ , nm,i(t− 1) ≥ l) = 0 (18)

if the choice of l satisfies l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi.

This immediately implies that

E[nm,i(t)] ≤ l +

T∑
t=L+1

Pt +

T∑
t=L+1

Pt + 0

≤ l +
π2

3
= O(log T ).

Then, by 16, we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

Henceforth, based on 23, we have the following upper bound on the regret
E[RT |A] ≤ (c+ 1) · L+ E[T1|A] + E[T2|A]

≤ (c+ 1) · L+O(log T ) + |MH |KlT−1 (19)
which completes the proof.

PROOF OF THEOREM 3

Proof. Again, we start by decomposing the regret as

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2
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We note that the consensus protocol runs M times, with each validator (i.e., participant in this case)
being selected as a commander. For any malicious participant j ∈ M2

A, it serves as a commander and
is thus included in Dt. This holds true because, according to Lemma 3 in (Goldwasser et al., 1988),
if the message is a chandelier tree generated by the secret key SKm of participant m, any participant
can verify the public key PKm, or equivalently, trace back to the root of the signature tree of the
message sender. Due to the unique mapping between PKm and m, the honest participant keeps a
record of the vertex index of the malicious participants that attack the consensus.

This implies that j ̸∈ Bt, i.e. the set Bt can only contain estimators from either honest participants or
set M1

A that satisfies |M1
A| < MH − 1. Therefore, the property of Bt follows from that as in Option

2, which essentially indicates that Option 3 is equivalent to Option 2 with at least one half honest
participants. Considering that the remaining algorithmic steps are the same, the analysis of T1 and T2

is consistent with that of Theorem 2.

Consequently, we have that

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

and

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O(
1

t2
) = O(log T ).

Subsequently, we derive the same regret bound as in Theorem, as

E[RT ] ≤ (c+ 1) · L+O(log T ) + |MH |KlT−1 + log T
∑

m∈MH

T∑
t=L+1

O(
1

t2
)

= O(log T )

which completes the proof.

PROOF OF THEOREM 4

Proof. The proof of Theorem 4 is similar to that of Theorem 3 as follows. The regret of the
coordination mechanism is again decomposed as

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2

For malicious participant j ∈ M2
A, it only attacks the consensus process and does not attack the

estimators. In the meantime, for malicious participant l ∈ M1
A, it only attacks the estimators, but

does not attack the consensus process. Since |M1
A| < 1

2M − 1, when using Option 2, the set Bt is
the same as the case where only at most 1

2M participants are malicious. Therefore, we have that

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O(
1

t2
) = O(log T ).

Meanwhile, since the total number of malicious participants in M1
A meets that |M1

A| < 1
2M − 1, and

the consensus protocol runs M participants with each participant as a commander, the consensus
always succeeds with probability at least 1− 1

lT
. This immediately gives us that based on (16)

E[T1] =
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1
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Meanwhile, the statistical property of nm,k(t) depends on that of the global estimator µ̃k(t) by our
decision and update rule. The computation of µ̃k(t) depends on set Bt, which is the same as the case
where there are only at most 1

2M − 1 malicious participants. Subsequently, we obtain

E[nm,i(t)] ≤ l +

T∑
t=L+1

Pt +

T∑
t=L+1

Pt + 0

≤ l +
π2

3
= O(log T ).

when l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi.

Then, based on 16, we again arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

Henceforth, by the regret decomposition, we have the following upper bound on the regret
E[RT |A] ≤ (c+ 1) · L+ E[T1|A] + E[T2|A]

≤ (c+ 1) · L+O(log T ) + |MH |KlT−1 (20)
which completes the proof.

PROOF OF THEOREM 5

Proof. The proof of Theorem 5 follows a similar approach to that of Theorem 4. the coordination
mechanism’s regret can be decomposed as follows:

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2

For malicious participant j ∈ M2
A, the attacks are limited to the consensus process and do not affect

the estimators. Conversely, a malicious participant l ∈ M1
A, it targets the estimators but does not

disrupt the consensus process. Given that |M1
A| < 1

2M − 1, when using Option 2, the set Bt is the
same as the case where only at most 1

2M participants are malicious. Therefore, we have that

E[T2] ≤ log T
∑

m∈MH

T∑
t=L+1

O(
1

t2
) = O(log T ).

The analysis of T1 requires further work, especially considering the development of this new com-
mander selection protocol. More specifically, by definition, we have wm(t) = wm = 1 − log T

T ,
for any m ∈ MH . Consider the event of whether honest participant m is selected as a commander
as Et

m. In other words, Et
m = 1 if participant m is a commander and 0 otherwise. Define Et as

∩m∈MH
{Et

m = 0}. Then we have that

E[

T∑
t=1

Et] =

T∑
t=1

E[∩m∈MH
{Et

m = 0}]

≤
T∑

t=1

∑
m∈MH

E[{Et
m = 0}]

=

T∑
t=1

∑
m∈MH

(1− wm(t)) = log T.
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It implies that for the total length of having no honest commanders is at most log T , there is no honest
commander, which indicated that the consensus fails. In the meantime, we note that if there is a
honest commander in set SC(t), then the consensus is achieved with the correct µ̃, i.e. bt = 1, and
thus we have E[1bt=0] ≤ log T

T and E[
∑T

t=1 1bt=0] ≤ log T .

Differently, by our choice, wj(t) = wj =
log

|MA|
η

T , for any j ∈ MA. Then we consider the event of
whether malicious participant j is selected as a commander or not, namely, F j

t . Likewise, F j
t = 1 if

participant j is a commander and 0 otherwise. Define Ft = ∩j∈MA
{∃s ≤ t, s.t.F j

s = 1}. Then we
obtain

P (Ft) = P (∩j∈MA
{∃s ≤ t, s.t.F j

s = 1})

≥ 1−
∑

j∈MA

P ({∀s ≤ t, s.t.F j
s = 0})

= 1−
∑

j∈MA

(1− wj)
t

= 1− |MA|(1− wj)
t

≥ 1− |MA|e−wjt

By the choice of wj =
log

|MA|
η

T , we derive that P (Ft) ≥ 1− |MA|e−wjt = 1− η. This means that
at each time step, the malicious participants have high probability of being chosen as commanders,
which provides enough incentive for them to participate, and thus implies the rationality of this
probability.

Subsequently, since the total number of malicious participants in M1
A meets that |M1

A| < 1
2M − 1,

and the consensus protocol runs M participants with at least one honest commander, the consensus
always succeeds with probability at least 1− log T

T . Based on 14, we obtain that

E[T1] ≤ (T − L)|MH |µi∗ −
∑

m∈MH

T∑
t=L

K∑
k=1

µkE[1at
m=k] +

∑
m∈MH

T∑
t=L

K∑
k=1

µkP (bt = 0)

≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KO(log T ).

Again, based on the decision rule, we have the following hold for nm,i(T ) with l ≥ [ 4C1 log T
∆2

i
],

nm,i(T ) ≤ l +

T∑
t=L+1

1{am
t =i,nm,i(t)>l}

≤ l +

T∑
t=L+1

1
{µ̃m

i −
√

C1 log t

nm,i(t−1)
>µi,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µ̃m

i∗+

√
C1 log t

nm,i∗ (t−1)
<µi∗ ,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µi+2

√
C1 log t

nm,i(t−1)
>µi∗ ,nm,i(t−1)≥l}

.
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Note that taking the expectation over nm,i(t) gives

E[nm,i(t)] ≤ l +

T∑
t=L+1

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) (21)

Using the concentration inequality, we obtain that

P (µ̃m
i (t) + (

C1 log t

nm,i(t)
)

1
6 < µi, nm,i(t− 1) ≥ l)

≤ P (|µ̃m
i (t)− µi| ≥ O(

log t
1
6

ni(t)
1
3

), nm,i(t− 1) ≥ l)

= P (Dist(µ̃m
i (t), µi) ≥ O(

η2t
ni(t)

), nm,i(t− 1) ≥ l)

≤ Pt =
1

t2
.

Likewise, we obtain that

T∑
t=L+1

P (µi + 2(
C1 log t

nm,i(t− 1)
)

1
6 > µi∗ , nm,i(t− 1) ≥ l) = 0 (22)

if the choice of l satisfies l ≥ [ 4C1 log T
∆6

i
] with ∆i = µi∗ − µi, which leads to

E[nm,i(t)] ≤ l +

T∑
t=L+1

Pt +

T∑
t=L+1

Pt + 0

≤ l +
π2

3
= O(log T ).

Consequently, we obtain that

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

Combining all these together, we derive the following upper bound on the expected regret

E[RT |A] ≤ (c+ 1) · L+ E[T1|A] + E[T2|A]

≤ (c+ 1) · L+O(log T ). (23)

This concludes the proof of Theorem 5.
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PROOF OF THEOREM 6

Proof. Again, we decompose system’s regret as follows:

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2

Differently, the definition of ct is a constant-based one, where ct = c1∃m∈Ct&m∈M1
A

since the
estimators in Ct are used for computing µ̃m

i (t). Note that here we do not count malicious participants
in M2

A in, as these participant do not perform attacks on the estimators, i.e. having no negative effect
on µ̃i(t).

In the meantime, by the robust estimator property of the estimators in Bt, we obtain that

||µ̂i(t)− z̄i(t)|| ≤ c∆∆
2

where with probability 1− Pt,

∆ = max
m∈MH

|µ̄m
i (t)− z̄i(t)|

≤ max
m,j∈MH

[|µ̄j
i (t)− µi|+ |µ̄m

i (t)− µi|]

≤ 2ηt

This immediately implies that for m ∈ MH

|µ̄m
i (t)− µ̂i| ≤ |µ̄i(t)− z̄i(t) + z̄i(t)− µ̂i|

≤ 2ηt + 4(c∆)η
2
t

≤ 1

2
ϵ||q||

where the last inequality holds by the choice of ϵ and ||q|| denotes the minimum value of the random
variable following distribution qmi .

By assumption, we have that for j ∈ M1
A,

f j
i (t) = (1− ϵ)gmi (t) + ϵqmi (t)

where f j
i (t) represents the underlying distribution of the rewards of malicious agent j ∈ M1

A. It is
worth emphasizing that this assumption is consistent with (Dubey and Pentland, 2020), originated
from the Huber’s ϵ-Contamination model (Huber and Ronchetti, 2011).

By taking the expectation over the distributions, we obtain that

µj = (1− ϵ)µi + ϵE[q]

This implies that for j ∈ M1
A with probability 1− 2Pt

|µ̄j
i (t)− µ̂i| ≥ |µ̄j

i (t)− µ̄m
i (t) + µ̄m

i (t)− µ̂i|
≥ |µ̄j

i (t)− µ̄m
i (t)| − |µ̄m

i (t)− µ̂i|

≥ ϵ||q|| − 1

2
ϵ||q||

≥ 1

2
ϵ||q||

This is to say that j ∈ M1
A does not belong to Ct, and thus implies that ct = 0 for t > L with

probability 1− 3Pt = 1− 3
t2 , and ct = c with probability 3

t2 .

Therefore we have that

E[T2] ≤
∑

m∈MH

T∑
t=L+1

O(
3

t2
) = O(1).
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Based on (17), we again obtain that

E[nm,i(t)] ≤ l +

T∑
t=L+1

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) (24)

By the fact that with probability 1 − 3Pt, ct = 0, we again have that the validated estimator µ̃i(t)
can be expressed as with probability 1− 3Pt

µ̃i(t) =
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t)

which is also equivalent to µ̃m
i (t). Here the weight wj,i(t) meets the condition∑

j∈At∩MH

wj,i(t) = 1,

which immediately implies that
E[µ̃i(t)] = µi.

We note that the variance of µ̃i(t), var(µ̃i(t)), satisfies that, with probability 1− 3Pt

var(µ̃i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t))

≤ |At ∩MH |
∑

j∈At∩MH

wj,i(t)
2var(µ̄j

i (t)))

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 1

nj,i(t)

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 ki
nm,i(t)

= |MH | ki
nm,i(t)

∑
j∈MH

w2
j,i(t)σ

2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a+ b)2 ≥ a2 + b2.

Subsequently, we have that

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t)

)2

2var(µ̃m
i )

}

≤ (exp {−
(
√

C1 log t
nm,i(t)

)2

2|MH | kiσ2

nm,i(t)

})(1− 3Pt) + 3Pt

= (1− 3Pt) exp {−
C1 log t

2|MH |kiσ2
}+ 3Pt ≤

4

t2
(25)
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where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

6|MH |kiσ2 ≥ 1.

Likewise, by symmetry, we have

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l) ≤ 4

t2
. (26)

This immediately implies that

E[nm,i(t)] ≤ l +

T∑
t=L+1

4Pt +

T∑
t=L+1

4Pt + 0

≤ l +
4π2

3
= O(log T ).

Then we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

Once again, by the regret decomposition, we obtain that

E[RT ] ≤ E[(c+ 1) · L+ T1 + T2]

≤ (c+ 1) · L+O(1) +O(log T ) + |MH |KlT−1

= O(log T )

PROOF OF THEOREM 7

Proof. As before, the regret is decomposed as

RT ≤ L+ c · L+

T∑
t=L+1

∑
m∈MH

(µi∗ − µat
m
1bt=1) +

∑
m∈MH

T∑
t=L+1

ct1ht=1

.
= (c+ 1) · L+ T1 + T2

We first show the monotonicity of the reputation score after the burn-in period. Recall that the
reputation score of participant i is defined as

U t
i =

K∑
j=1

−(µ̄i
j(t)− µ̃j(t))

2 − ϵ2e(
∆
µ

i

j(t)−µ̃j(t)
2)

.
= U1,t

i + U2,t
i

where
∆
µ
i

j(t) denotes the estimator for arm j given by participant i after the consensus step, and
µ̄i
j(t), µ̃j(t) are the aforementioned estimators for arm j.

We consider t > L, where

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l) ≤ 1

t2
. (27)
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We consider malicious participant j ∈ M1
A and honest participant m ∈ MH , and by definition, it

only attacks the estimators, which immediately gives us that

U2,t
j = U2,t

i = 0.

Again, by this definition and the pre-fixed ϵ zone, we obtain

f j
i (t) = (1− ϵ)gmi (t) + ϵqmi (t)

and thus j ∈ M1
A with probability 1− 2Pt

|µ̄j
i (t)− µ̂i| ≥ |µ̄j

i (t)− µ̄m
i (t) + µ̄m

i (t)− µ̂i|
≥ |µ̄j

i (t)− µ̄m
i (t)| − |µ̄m

i (t)− µ̂i|

≥ ϵ||q|| − 1

2
ϵ||q||

≥ 1

2
ϵ||q||

Subsequently, we arrive at

|µ̄j
i (t)− µ̃i| ≥

1

2
ϵ||q||

Meanwhile, we have

|µ̄m
i (t)− µ̂i| ≤ |µ̄i(t)− z̄i(t) + z̄i(t)− µ̂i|

≤ 2ηt + 4(c∆)η
2
t

≤ 1

2
ϵ||q||

which also implies that

|µ̄m
i (t)− µ̃i| ≥

1

2
ϵ||q||

That is to say, the first term in the reputation score meets that

U1,t
j ≤ U1,t

m

and subsequently, we obtain

U t
j ≤ U t

m.

Next, let us consider malicious participant k ∈ M2
A and honest participant m ∈ MH . By defini-

tion, participant k only attacks the consensus process without altering the estimators. However,
Equivalently, this does not imply

U1,t
k = U1,t

m = 0

since µ̄m
i ̸= µ̄k

i due to the randomness, which brings additional challenge.

We consider the difference between the estimators,

|U1,t
k − U1,t

m |
≤ |µ̄k

i (t)− µ̃i(t)|2 + |µ̄m
i (t)− µ̃i(t)|2

≤ 1

2
(ϵ||q||)2.

In the meantime, if participant k serves as a validator, we immediately have

∆
µ
i

j(t)− µ̃j(t)
2) > 0,

U2,t
k < −ϵ2
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while in the meantime, U2,t
m = 0.

Consequently, we arrive at

U t
k − U t

m = U1,t
k − U1,t

m + U2,t
k − U2,t

m

≤ |U1,t
k − U1,t

m |+ U2,t
k

≤ 1

2
ϵ2 − ϵ2 = −1

2
ϵ2 < 0

where the second last inequality holds by assuming ||q|| ≤ 1 without loss of generality.

Combining these all together, we obtain that

U t
j < U t

m

for any malicious participant j ∈ MA and honest participant m ∈ MH , which implies the monotonoc-
ity of U quantity in the reputation score.

Subsequently, by the monotone preserving property of function G(·), we immediately have

G(U t
j ) < G(U t

m)

for any malicious participant j ∈ MA and honest participant m ∈ MH .

Based on the Validator selection Protocol where the top N participants are selected with |MH | <
N < 2|MH | − 1, we obtain that MH ⊂ SV (t) and |SV (t)| ≤ 2|MH | − 1, which implies that the
consensus always achieves if every validator is selected as a commander for exactly once, i.e. bt = 1
with probability at most 1−Ml−T .

Otherwise, if a participant k ∈ M2
A is never selected as a validator, then the set of validators does not

contain any malicious participants attacking the consensus, and then the consensus always achieves,
i.e. bt = 1.

To summarize, we have that

P (bt = 1) ≥ 1−Ml−T .

Note that the set Bt, Ct herein is the same as the set of Bt, Ct as in Theorem 6, which immediately
implies that j ∈ M1

A does not belong to Ct, and thus implies that ct = 0 for t > L with probability
1− 3Pt = 1− 3

t2 , and ct = c with probability 3
t2 .

Therefore we again obtain that by the definition of T2 that depends on bt and ct

E[T2] ≤
∑

m∈MH

T∑
t=L+1

O(
3

t2
) = O(1).

Again, using (17), we obtain the following decomposition

E[nm,i(t)] ≤ l +

T∑
t=L+1

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) (28)

Furthermore, with probability 1− 3Pt, ct = 0 again implies that the validated estimator µ̃i(t) has
the following explicit formula, with probability 1− 3Pt

µ̃i(t) =
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t)
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which is the value of µ̃m
i (t) as well, where wj,i(t) are the weights such that∑

j∈At∩MH

wj,i(t) = 1.

This immediately gives us that

E[µ̃i(t)] = µi.

We note that the variance of µ̃i(t), var(µ̃i(t)), satisfies that, with probability 1− 3Pt

var(µ̃i(t)) = var(
∑

j∈At∩MH

wj,i(t)µ̄
j
i (t))

≤ |At ∩MH |
∑

j∈At∩MH

wj,i(t)
2var(µ̄j

i (t)))

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 1

nj,i(t)

≤ |At ∩MH |
∑

j∈At∩MH

w2
j,i(t)σ

2 ki
nm,i(t)

= |MH | ki
nm,i(t)

∑
j∈MH

w2
j,i(t)σ

2

≤ |MH | kiσ
2

nm,i(t)

where the inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by the
definition of sub-Gaussian distributions, the third inequality results from the construction of At, and
the last inequality is as a result of (a+ b)2 ≥ a2 + b2.

Subsequently, we have that

P (µ̃m
i (t)−

√
C1 log t

nm,i(t)
> µi, nm,i(t− 1) ≥ l)

≤ exp {−
(
√

C1 log t
nm,i(t)

)2

2var(µ̃m
i )

}

≤ (exp {−
(
√

C1 log t
nm,i(t)

)2

2|MH | kiσ2

nm,i(t)

})(1− 3Pt) + 3Pt

= (1− 3Pt) exp {−
C1 log t

2|MH |kiσ2
}+ 3Pt ≤

4

t2
(29)

where the first inequality holds by Chernoff bound, the second inequality is derived by plugging in
the above upper bound on var(µ̃m

i (t)), and the last inequality results from then choice of C1 that
satisfies C1

2|MH |kiσ2 ≥ 1.

In a similar manner, we obtain

P (µ̃m
i (t) +

√
C1 log t

nm,i(t)
< µi, nm,i(t− 1) ≥ l) ≤ 4

t2
. (30)

Plugging the concentration-type inequalities in, we derive

E[nm,i(t)] ≤ l +

T∑
t=L+1

4Pt +

T∑
t=L+1

4Pt + 0

≤ l +
4π2

3
= O(log T ).
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Then we arrive at

E[T1] ≤
∑

m∈MH

K∑
k=1

∆kE[nm,k(t)] + |MH |KlT−1

≤ O(log T ) + |MH |KlT−1

Once again, by the regret decomposition, we obtain that

E[RT ] ≤ E[(c+ 1) · L+ T1 + T2]

≤ (c+ 1) · L+O(1) +O(log T ) + |MH |KlT−1

= O(log T )

F DISCUSSIONS

Block Information

Let ht
j(Ft) be the estimators given by malicious participant j ∈ MA where Ft denotes the history up

to time step t (everything on the blockchain and additional information shared by other participants).
The blocks on the blockchain record the execution information. Specifically, at each time step t the
block records the global estimators {µ̃i(t)}i and local estimators {µ̄m

i (t)}m,i, counts {nm,i(t)}m,i,
Bt specified in Aggregation, and arms atm pulled. Moreover, the block also records the reward rmi (t)
of each participant m ∈ M . The information related to an individual participant, such as µ̄m

i (t)
and rmi (t), is signed by the participants using digital signatures that are the same across time. Each
quantity in the block related to m is stored together with the public key of client m. Arm indices also
need to be stored for quantities depending on i. If it is desirable the arms to be pseudo anonymous,
public keys of arms can be used and digital signatures would be created based on private key pairs
of (participant, arm). By using Global Update in Algorithm 4, the definition of {µ̃i(t)}i and (1), all
these quantities can be verified given rmi and atm.

Ratinality of RT

We argue the rationale of this regret definition as follows. It holds true that these two regret measures
are well-defined, considering that MH is fixed and does not change with time. Furthermore, our
definition aligns with those used in the context of blockchain-based federated learning (Zhao et al.,
2020), as their objective is to optimize the model maintained by honest participants, though without
involving online decision making. Additionally, this definition is consistent with the existing robust
multi-agent MAB problem (Vial et al., 2021), except that the cost mechanism is introduced which
incentives participation and guarantees correctness. Compared to the multi-agent MAB, our regret is
averaged over only honest participants due to the existence of malicious participants. Note that the
two measures are the same if the number of malicious participants is zero since the cost ct is also
zero in such a case, implying consistency.

Discussion on Theorem 1

It is worth noting that the minimum number of honest participants is consistent with (Zhu et al., 2023).
Although they establish the regret bound in a cooperative bandit setting with Byzantine attacks for
any number of participants, the regret is only smaller than the individual regret when this assumption
holds for every neighbor set of every honest participant at each time step. Otherwise, the regret is
even larger, providing no advantage or motivation for participants to collaborate, essentially reducing
the problem to the single-agent MAB problem.

Discussion on Theorem 2

We would like to emphasize that there should be at least one honest commander who has the same
sent estimator as the honest validators. The honest validators choose to do majority voting only
when the received message matches their own. In other words, consensus alone is not sufficient for
the protocol; rather, consensus on the correct estimators guarantees the desired functionality of the
protocol.
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Discussion on Theorem 7

Reputation-based Validator Selection

It is worth mentioning that the reputation system also ensures the fairness of the protocol, or
equivalently, decentralization, as no single participant is favored and the criterion is merit-based,
depending on how much they contribute to the protocol. Also, privacy is maintained since the
participants are not aware of U t

i due to the existence of G(·). Meanwhile, the number of validators
N given by the reputation score system is flexible in the range of [MH , 2MH − 1], balancing the
trade-off between decentralization and efficiency. While it is practically meaningful, it is also crucial
to demonstrate the theoretical effectiveness of the coordination mechanism after incorporating the
reputation score system. Subsequently, we present the following theoretical regret guarantee of the
entire system with the above reputation score system for validator selection. The formal statement
reads as follows.

It is worth noting that existing works, such as (Dennis and Owen, 2015; Zhou et al., 2021; Arshad
et al., 2022), have proposed reputation-based validator selection. However, most of this work focuses
on the practical performance of a reputation system, with limited theoretical analyses on the security
guarantee. Here, we prove that the reputation system ensures optimal regret, which is only obtainable
when the coordination mechanism is secure enough in terms of the consensus and the associated
information after the consensus.
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