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Figure 1: Generated world by our IaaW. Each line represents a fixed-view video that includes our
proposed three stage of visual world generation: initialization, exploration, and continuation.

Abstract

Generating an interactive visual world from a single image is both challenging
and practically valuable, as single-view inputs are easy to acquire and align well
with prompt-driven applications such as gaming and virtual reality. This paper
introduces a novel unified framework, Image as a World (IaaW), which synthesizes
high-quality 360-degree videos from a single image that are both controllable and
temporally continuable. Our framework consists of three stages: world initializa-
tion, which jointly synthesizes spatially complete and temporally dynamic scenes
from a single view; world exploration, which supports user-specified viewpoint
rotation; and world continuation, which extends the generated scene forward in
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time with temporal consistency. To support this pipeline, we design a visual world
model based on generative diffusion models modulated with spherical 3D positional
encoding and multi-view composition to represent geometry and view semantics.
Additionally, a vision-language model (IaaW-VLM) is fine-tuned to produce both
global and view-specific prompts, improving semantic alignment and controlla-
bility. Extensive experiments demonstrate that our method produces panoramic
videos with superior visual quality, minimal distortion and seamless continuation
in both qualitative and quantitative evaluations. To the best of our knowledge, this
is the first work to generate a controllable, consistent, and temporally expandable
360-degree world from a single image.

1 Introduction

Recent advances in world models [11, 21] and video generation have enabled simulation and extension
of environments in rich, multimodal ways. World models have evolved to handle raw visual inputs,
producing videos conditioned on actions or inferred intent across domains such as robotics [41,
18], autonomous driving [48, 10], and interactive gaming [4]. Concurrently, large-scale diffusion
models [17, 7, 28, 43] and vision transformers [27] have redefined the frontier of video generation,
achieving high fidelity and temporal coherence across diverse conditions. These advancements
collectively point toward a promising new direction: building dynamic, controllable, and immersive
environments directly from visual cues.

In this work, we take a step further by proposing a novel problem: generating an explodable and
temporally extendable panoramic world from a single image—one that not only predicts future frames,
but also supports interactive viewpoint control, enabling arbitrary view rotations and continuous scene
evolution. Compared to prior methods that rely on multi-view or panoramic input, our single-image
setup significantly reduces the cost of data acquisition and aligns with the growing trend of prompt-
based generative models. Unlike traditional world models that focus on action-conditioned prediction,
our approach synthesizes immersive scenes that respond to user-specified actions, enabling both
free-form viewpoint control and continuous scene expansion.

Generating such a visual world from single image is both practically appealing and technically
challenging. It requires the model to infer latent geometry, spatial layout, and temporally coherent
dynamics from highly limited visual evidence—an under-constrained and ill-posed task. We formulate
this as a new direction in panoramic video generation, where the goal is to synthesize panoramic,
navigable, and temporally extensible video from minimal visual input.

Existing methods are not designed for this setting. Many prior approaches to panoramic video gener-
ation adopt one-shot generation strategies without temporal continuity or interaction capability. For
instance, 360DVD [38] relies on text-to-video models with limited resolution, while 4K4DGen [22]
generates each frame independently without temporal coherence. Others assume richer input such as
multi-view videos [42, 25] or full panoramic images [20, 23].

To address these challenges, we structure our solution as a three-stage generative pipeline shown
in Fig. 2: (1) World Initialization, which synthesizes a spatially complete and temporally coher-
ent panoramic video from a single image, which provides stable spatiotemporal foundation for
the subsequent stages; (2) World Exploration, which enables interactive navigation by modeling
viewpoint changes as actions, thereby embedding user control directly into the generation process;
and (3) World Continuation, which extends the scene forward in time while maintaining temporal
consistency beyond a fixed horizon. Each stage addresses a specific limitation in prior work, and
they collectively enable consistent, controllable and infinitely extensible world synthesis. To support
this pipeline, we design a visual world model, implemented by augmenting a diffusion-based video
generator with 3D Spherical Rotary Positional Encoding (RoPE) and multi-view composition. These
components equip the model with the ability to represent scene geometry and maintain diversity
across dynamic panoramic sequences. To enhance controllability and prompt alignment, we also
finetune a vision-language model (IaaW-VLM) that generates semantically grounded, view-specific
prompts conditioned on the user’s perspective. Comprehensive experiments demonstrate that IaaW is
capable of generating high-fidelity, semantically plausible panoramic videos that are both spatially
coherent and temporally smooth. To our knowledge, this is the first framework to achieve infinitely
expandable, user-controllable panoramic world synthesis from a single image.
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Figure 2: Pipeline of our proposed IaaW method, which consists of three core stages: world
initialization, world exploration, and world continuation. In the world initialization stage, given a
single reference image, we employ our finetuned IaaW-VLM to produce a holistic video-level prompt
alongside multiple view-specific prompts. These, in conjunction with the input image, are processed
by our IaaW-InitialModel (IaaW-IM) to generate the initial world video V1. World exploration stage
enables user’s spatial control over the generated scene, the rotation module transforms the video Vk

to reflect the desired viewpoint video V ′
k . In the final world continuation stage, the rotated video and

its associated prompt are fed into the IaaW-ContinualModel (IaaW-CM), which produces an extended
segment of the world. This process is inherently recursive, allowing the newly generated video to
undergo further view rotations and extensions.

2 Related Work

2.1 World Model

World models [11, 21] aim to predict the future evolution of an environment in response to specific
actions. Traditionally, these models operated in abstract spaces and were predominantly used for
planning [14, 31, 30] or policy learning [13] in reinforcement learning contexts. Recent advances in
generative modeling have extended world models to the visual domain, enabling video generation
conditioned on control inputs [49]. In autonomous driving [48, 10], models predict based on driver
actions, while in robotics [41, 18], predictions are conditioned on control signals of robots. Genie [4]
further generalizes this by learning action-conditioned dynamics from raw gameplay videos in an
unsupervised manner and WonderWorld [44] focuses on static 3D scene world generation using
Gaussian-Splatting-like representation from a single image. Notably, 3D-based world generation like
WonderWorld [44] does not produce equirectangular video but instead reconstructs a 3D world scene
using Gaussian splatting or other representations, which may enable longer exploration paths but
often suffers from artifacts inherent to splatting such as blur and point cloud sparsity. In contrast, our
method generates temporally consistent and spatially coherent dynamic video with a spherical field
of view, offering a more immersive and artifact-free experience. Leveraging the interactive nature
of the panoramic videos, we treat user-specified view rotations as world actions and generate the
corresponding next-step visual evolution, enabling immersive, controllable, and continuable world
generation.
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2.2 Video Generation

Recent advancements in diffusion models [33, 17, 34, 7, 28, 26] have propelled video generation,
with hierarchical U-Net [29] and diffusion vision transformer (DiT) [27] architectures leading the
way in spatiotemporal modeling. Approaches like Imagen Video [16] and Make-A-Video [32] extend
these models with temporal attention, while Sora [3] scales diffusion transformers for video synthesis.
In the open-source landscape, CogVideoX [43] introduces a 3D causal VAE with adaptive LayerNorm
for efficient spatiotemporal modeling , and Hunyuan Video [39] employs a dual-stream transformer
for enhanced text-video alignment . Wan [37] addresses high-resolution generation with dynamic
3D-VAE compression. These models highlight the growing trend toward hybrid architectures and
scaling strategies for balancing fidelity and efficiency.

2.3 Panoramic Video Generation

Recent advances in panoramic video generation explore diverse paradigms [38, 25, 20]. 360DVD [38]
is the first to tackle text-to-panoramic video synthesis by integrating a 360-adapter into early-stage
T2V pipelines. However, it is limited by low-resolution training data and underpowered base models,
yielding suboptimal quality. 4K4DGen [22] proposes a training-free approach for animating 4K
panoramic images by independently rendering perspective views and spatially fusing them, while
OmniDrag [23] enables interactive control via drag-based motion manipulation. DynamicScaler [20]
enhances spatial scalability using an offset-shifting denoiser to synthesize spherical panoramas, fol-
lowed by a learned upscaling stage. Several works address panoramic video generation by outpainting
from nFOV inputs. VideoPanda [42] introduces multi-view attention to maintain spatiotemporal
consistency, whereas [25] reframes the task as video-to-video generation. In driving applications,
Panacea [40] leverages BEV representations for conditional panoramic synthesis. In contrast, our
method directly generates high-fidelity, temporally coherent and continuable panoramic videos from
a single image, achieving both spatial diversity and temporal infinity without auxiliary inputs.

3 Method

3.1 Visual World Model

Figure 3: Multi-view composition used in IaaW-
IM’s MM-DiT blocks in world initialization.

Our visual world model is built on a diffusion-
based video backbone, enhanced with multi-
view composition and 3D Spherical RoPE.
To support different goals, we introduce
two finetuned variants: IaaW-InitialModel
(IaaW-IM) for world initialization and IaaW-
ContinualModel (IaaW-CM) for world continu-
ation. While sharing the same architecture, the
two models are optimized for different stages,
which are scene reconstruction from a single
image vs. temporally coherent extension.

3.1.1 Multi-View Composition

To address the limitations of one-shot condition-
ing in existing video generation models, we pro-
pose a multi-view composition method that sig-
nificantly enhances the quality and diversity in
world initialization. This mechanism takes two
inputs, view masks, which are binary masks that
correspond to user-specified predefined views
(e.g., front, left, top), and view prompts, which
are prompts aligned with each masked region
generated by our IaaW-VLM, providing tex-
tual guidance for content generation from that
specific viewpoint. As depicted in Fig. 3, our
method begins with a single reference image, a
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corresponding video prompt, and a set of auxiliary view prompts, each of which is paired with
spatially aligned masks. These view prompts are semantically and spatially diverse renderings of the
scene, intended to provide additional geometric and contextual priors.

Building on recent powerful video generative models, such as CogVideoX [43], which uses MM-DiT
blocks [8] and concatenate textual (ztext) and visual (zvision) features, we introduce a multi-view
conditioning mechanism for improved world initialization. Here, ztext comes from the main video
prompt, and zvision encodes a padded reference image with noisy frames. We add a parallel attention
path using view-aware features: zview

text from IaaW-VLM is concatenated with zvision and modulated by
view masks for localized 3D full attention. This stream runs in parallel with the base attention and is
adaptively gated to fuse multi-view cues with global context. For clarity, AdaLN and scale-and-shift
components are omitted from Fig. 3.

3.1.2 3D Spherical RoPE

We propose a unified 3D Spherical Rotary Positional Encoding (RoPE) that extends traditional
rotary embeddings [35, 43] to spherical video domains. By embedding positional information in both
spherical space [6, 45, 47] and time, our method aligns with the geometric structure of equirectangular
panoramic video while preserving the rotation-equivariant properties of RoPE.

Let a video V ∈ RH×W×D×T represent a sequence of frames with height H , width W , feature
dimension D, and temporal length T . Each spatial coordinate (x, y) is mapped to spherical angles
via:

θ =
π

2

(
2y

H
− 1

)
, ϕ = π

(
2x

W
− 1

)
, (1)

where θ and ϕ denote latitude and longitude, respectively. We then construct a unified 3D positional
encoding by modulating angular and temporal components in a factorized trigonometric basis:

RoPEx,y,t,d = [cos(2dθ) · cos(2dϕ) · cos(2d · 2πt), sin(2dθ) · cos(2dϕ) · cos(2d · 2πt), . . . ] (2)

which compactly encodes the 3D positional across spatial angles (θ, ϕ), frequency d and normalized
time t. 3D Spherical RoPE captures rotational symmetries on the spherical surface while enabling
temporal phase alignment, resulting in a compact and geometry-aware encoding mechanism for
panoramic video generation.

3.2 IaaW Pipeline

3.2.1 World Initialization

Figure 4: Functionality of IaaW-VLM.

World Initialization serves as the entry point for
visual world synthesis, which establishes the
spatiotemporal foundation for subsequent user-
controlled exploration and continuation. Given
only a single-view image, the model must gen-
erate an initial panoramic video clip that is both
spatially complete and semantically coherent,
despite the severe ambiguity posed by missing
multi-view context.

To enhance semantic suitability and consis-
tency in video generation, we introduce a world
context model IaaW-VLM that generates both
global and view-specific prompts. For each
equirectangular video V , we first employ a cap-
tion model for a global prompt P that summa-
rizes the entire scene. The video is then spatially
segmented into multiple views {Vv} and indi-
vidually captioned to yield prompts {Pv}, cap-
turing the localized context. From each Vv, we
extract a representative frame Iv, which forms
the dataset {V, P, {Vv, Pv}, {Iv}}. This corpus supports training for IaaW-VLM, whose functionality
is shown in Fig. 4. IaaW-VLM can generate {Pv}, P from single view image Iv and P from video V ,
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which supports IaaW-IM and IaaW-CM separately. By grounding generation in this multi-granular
context, IaaW-VLM acquires an enriched understanding of both spatial structure and temporal
coherence.

With visual world model IaaW-IM and above IaaW-VLM, as shown in Fig. 2, we send entire video
prompt and view prompts with corresponding masks into IaaW-IM model. This process generates the
world video as

V1 = IM(I, P1, {Mv, Pv, v ∈ views}) (3)
where P1 and Pv represent initial prompt and view prompts respectively, Mv represents masks.

3.2.2 World Exploration

Panoramic video enables immersive navigation by allowing users to rotate their virtual viewpoint
within a spherical environment. We model this interaction as a transformation in spherical coordinates
applied to the kth equirectangular video Vk ∈ RH×W×D×T , where W = 2H , and D, T denote the
channel and temporal dimensions. Each pixel (x, y) ∈ [0,W ) × [0, H) corresponds to spherical
coordinates (θ, ϕ) following Eq. (1). These angles represent latitude θ ∈ [−π

2 ,
π
2 ] and longitude

ϕ ∈ [−π, π). User-specified pitch and yaw rotations (∆θ,∆ϕ) ∈ R2 simulate view changes by
adjusting the angles:

θ′ = clip(θ +∆θ,−π
2 ,

π
2 ), ϕ′ = ϕ+∆ϕ (4)

Here, clip ensures that the elevation stays within the bounds of the spherical domain. To map back to
image coordinates, we have

x′ =

(
ϕ′

2π
+

1

2

)
W mod W, y′ =

(
θ′

π
+

1

2

)
H (5)

The complete process yields the rotated video V ′
k ∈ RH×W×D×T , which is obtained by sampling

the original video at Vk(x
′, y′, :, t) for each (x, y, t).

3.2.3 World Continuation

View-aware world continuation stage enables the synthesis of temporally extended and visually
coherent video sequences conditioned on a user-defined reference view. Our approach is built
upon the visual world model IaaW-CM, which operates in an autoregressive manner, progressively
generating video segments while maintaining view and content consistency over time in Eq. (6).

Vk+1 = CM(V ′
k, Pk+1) k = 2, . . . , n (6)

Specifically, following the paradigm of IaaW-IM, we substitute the single view image with video V ′
k

from previously rotated video chunk. At step k, the IaaW-VLM produces the next prompt Pk+1 based
on the evolving visual context, guiding the generation of segment Vk+1 towards arbitrary length.
This stage establishes a foundation for open-ended and infinite scene generation, where a coherent
and semantically meaningful world can emerge over extended temporal horizons, grounded in a
user-defined viewpoint trajectory.

4 Experiments

4.1 Experimental Setup

Models In the field of video generation, there are few open-source video diffusion models available
for experimentation. We use CogVideoX1.5-5B-I2V [43], a text-image conditional video generator
that supports arbitrary resolution and is well suited to our 2:1 aspect-ratio video setup. We use
equirectangular videos to finetune IaaW-IM, where the input image is padded before being fed into
the model. IaaW-CM is finetuned on top of IaaW-IM, using the previous video chunk as input and
the next video chunk as output. Finetuning is conducted over two weeks on 4×A100 GPUs, followed
by one week of progressive finetuning. Due to the absence of released code from prior panoramic
methods [20, 25, 22], we implemented two baselines for comparison. One is 360I2V, a panoramic
animation baseline fine-tuned from CogVideoX, which takes panoramic image as input to generate
panoramic videos. Another is FETA (First Expand, Then Animate), a two-stage baseline for world
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Figure 5: The results of reducing distortions of 3D Spherical RoPE in world initialization.

Figure 6: Generation results of multi-view composition for world initialization.

initialization, where we combine Diffusion360 [9] for NFoV-to-panorama expansion with 360I2V for
subsequent animation. We compare our world initialization results with FETA, compare the world
continuation results with 360I2V, and compare our whole IaaW pipeline with FETA+360I2V.

Data We consider several panoramic video datasets, including WEB360 [38] and 360-1M from
ODIN [36]. Due to WEB360’s limited scale and low resolution (2K videos at 1024 × 512), it is
excluded from our study. From 360-1M, we curate a high-resolution, equirectangular subset by
filtering out static scenes and selecting diverse, dynamic content. Captions are generated using
Qwen-VL-2.5 [2], and low-quality samples are removed based on caption quality. Augmented with
an internal collection, our final dataset comprises 120K videos at 2048 × 1024 resolution. An 8K
high-quality subset is further collected for progressive finetuning.

Metrics To evaluate video generation quality, we consider both overall and per-view fidelity and
consistency using metrics from VBench [19] and VideoBench [15]. Subject Consistency measures
temporal coherence via the average cosine similarity of DINO [5] features between each frame
and the first. Motion Smoothness is quantified by the mean absolute error between interpolated
and dropped frames, while Aesthetic Quality is predicted using the LAION aesthetic model [1].
Video-Text Consistency assesses semantic alignment with the prompt, computed as the average score
(1–5) assigned by a vision-language model. To evaluate continuous generation results, we concatenate
videos from preceding steps, rotational transitions, and subsequent generations to evaluate coherence
over extended sequences.

4.2 Qualitative Analysis

World Initialization Results We first demonstrate the effectiveness of our 3D spherical RoPE
in Fig. 5. The figure compares panoramic frame produced by our IaaW-IM. When rendering the
panoramic image from a specified viewpoint, the model with spherical RoPE exhibits fewer distortions.
In particular, it preserves the correct perspective geometry of structures such as the pavilion, whereas
the model without that yields deformed objects with incorrect perspective relationships.

To assess the impact of multi-view composition in our initialization model IaaW-IM, we visualize
generation results under varying view prompts in Fig. 6. Using a fixed video prompt and identical
spatial masks, we observe that distinct view prompts (e.g., wooden buildings vs. flower yards) yield
semantically diverse scene expansions. This demonstrates the fine-grained controllability afforded by
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Figure 7: World initialization results compared with First Expanding Then Animating(FETA).

Figure 8: Long panoramic world video generated by our IaaW.

multi-view composition mechanisms and underscores their ability to guide content-specific scene
synthesis during world initialization.

In Fig. 7, we compare our initialization strategy with a baseline that first performs panoramic
extrapolation then animates the results in two separate stages. This decoupled spatial-temporal
generation often leads to pronounced spatial artifacts and temporal discontinuities. In contrast, our
method jointly models spatial structure and temporal dynamics and delivers coherent expansions that
maintain global scene structure while enabling temporally smooth motion, establishing a superior
world base.

We also include an example of a long panoramic world video generated by our IaaW in Figure Fig. 8.
Our three-stage method successfully converts a single input image into a relatively long panoramic
world. Specifically, our chunk-by-chunk method maintains high-quality results within the first minute
or approximately ten rounds. The results begin to drift during super-long continuations like beyond
minutes, leading to poor and vague content. Addressing this long-range coherence issue is a core
problem across the field and is reserved for future work.

World Continuation Results We evaluate the continuation model IaaW-CM in Fig. 9, where the
initialized world is an aerial view towards a lighthouse. Our model maintains directional consistency
across extended sequences after rotational transformations. Specifically, our generated continuation
video persistently advances toward the lighthouse while remaining both temporally stable and spatially
coherent. In comparison, the baseline, which conditioned solely on the last frame, suffers from abrupt
motion discontinuities and visual degradation, and fails to preserve global motion dynamics. These
findings highlight the efficacy of our IaaW-CM in capturing long-consistent motion trajectories.
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Figure 9: World continuation results of our IaaW-CM compared with baseline 360I2V.

Overall, our IaaW framework demonstrates qualitatively superior results in both initialization and
continuation stages, affirming its effectiveness in generating visually coherent, controllable, and
temporally consistent panoramic video worlds.

4.3 Quantitative Analysis

We present the quantitative results in Table 1, where we evaluate the videos in three setups: world
initialization videos, world continuation videos, and entire world videos. The latter refers to the
concatenated video of initialization video, world exploration video, and world continuation video.
We evaluate the results using two distinct methods: “All”, which assesses the entire video in an
equirectangular format, and “View”, which calculates the average score after cutting the video into
several individual views and evaluating each.

Our IaaW-IM outperforms the baseline FETA across most metrics, demonstrating superior spatial-
temporal quality. Temporal metrics averaged across views are higher than overall due to motion
discontinuities introduced by splits in the equirectangular format. Aesthetic quality is lower when
averaged per view, as certain angles (e.g., top, bottom) naturally lack visual appeal (e.g., sky, floor).
VTC-View scores are lower than VTC-All because some view-specific videos inadequately capture
the full prompt, reducing alignment.

In continuation model comparisons, our IaaW-IM outperforms the baseline models 360I2V and
4K4DGen [22] across most metrics, indicating stronger spatial and temporal modeling. 4K4DGen
is an image animation baseline method capable of processing high-resolution images up to 4K. As
this method does not involve text, the metric for view-text consistency is omitted here. Our IaaW
method surpasses the 4K4DGen baseline by offering view change, world continuation, and language
control, in addition to producing superior video generation effects. This comprehensive set of features
highlights the advanced capabilities of our IaaW framework. Temporal and spatial metrics trends
mirror those in initialization models, but SC-View is lower than SC-All due to reduced uncertainty
when the full panoramic image is available. Temporal metrics surpass those of initialization models
as full panoramic input offers richer context than single-view inputs. Slightly lower spatial scores
stem from decreased diversity and aesthetic richness when multi-view information is provided.

For whole-process comparison, our IaaW-IM+CM surpasses the baseline FETA+360I2V across all
metrics, demonstrating enhanced temporal consistency and spatial quality. Specifically, the overall
results are relatively lower than those of the continuation stage. This difference arises because the
combination of the initialization and continuation stages makes achieving temporal smoothness more
challenging. Since each stage has its own specifications, the overall result evaluates the concatenated
videos to achieve a balanced performance metric. By effectively integrating initialization and
continuation models, our pipeline generates visually consistent results, whereas the baseline exhibits
fragmentation between two stages, leading to inferior performance.
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Model SC-View SC-All MS-View MS-All AQ-View AQ-All VTC-View VTC-All
FETA 89.4 86.8 98.1 98.3 49.9 56.7 3.19 3.93

IaaW-IM 91.8 88.2 99.0 98.9 55.9 59.8 3.72 4.00
360I2V 92.5 94.8 98.9 98.7 49.5 55.0 3.25 3.89

4K4DGen 94.1 95.1 99.2 98.8 46.0 53.4 - -
IaaW-CM 95.8 97.2 99.3 99.2 49.7 55.7 3.26 3.90

FETA+360I2V 81.0 88.7 98.8 98.7 50.1 55.9 3.39 3.93
IaaW-IM+CM 91.0 90.3 99.1 99.1 50.5 57.5 3.50 3.94

Table 1: Analysis of video generation results of our method and several baselines. SC, MS, AQ and
VTC represent subject consistency, motion smoothness, aesthetic quality, and video-text consistency
respectively, and for all of these metrics, higher scores are better. Postfix “View” means the num-
bers are calculated across different views and “All” means the numbers are calculated as a whole.
4K4DGen can generate 4096×2048 resolution video, while for comparison, we include the results
using the 2048× 1024 video resolution here.

Model SC-View SC-All MS-View MS-All AQ-View AQ-All VTC-View VTC-All
IaaW-IM 91.8 88.2 99.0 98.9 55.9 59.8 3.72 4.00

IaaW-IM w.o. 3D SphereRoPE 86.3 83.7 98.1 97.9 48.8 56.8 3.17 3.97
IaaW-IM w.o. MultiViewComp 91.2 86.6 99.0 98.9 49.5 59.9 3.24 3.95

Table 2: Ablation study on our world initialization model IaaW-IM.

4.4 Ablation Study

We conduct an ablation study on world initialization components in Table 2. Removing the 3D
Spherical RoPE consistently degrades performance both in spatial and temporal metrics, especially
for view-based metrics. This degradation is primarily due to spatial distortions, resulting in unsmooth
motion and scene deformation. Excluding the Multi-View Composition module reduces VTC-View
and AQ-View, as it limits the model’s ability to capture view-specific textual cues and leads to a
loss of visual quality in separate views. Temporal metrics remain relatively stable, since this module
mainly enhances diversity rather than motion smoothness. The slight drop in VTC-All suggests the
model still generates prompt-aligned content overall, as neither component directly influences overall
textual understanding in video generation.

5 Limitations and Social Impact

IaaW excels at generating panoramic world from a single image but struggles with maintaining
temporal consistency over very long durations. Specifically, IaaW-CM conditions on the most recent
video chunk rather than the full video history, which can lead to a loss of coherence during super
long-term video continuations. This long-term consistency presents a key challenge not only for
IaaW but also for the broader field of video generation, which we leave as future work.

From a societal perspective, IaaW empowers content creation across VR/AR and gaming, potentially
opening new avenues for immersive interactive experiences. However, it also introduces risks related
to misinformation and visual deception, which may undermine trust in visual media. Implementing
robust safeguards is essential to mitigate potential misuse and ensure responsible use.

6 Conclusion

We introduce Image as a World (IaaW), a novel framework for generating expandable, user-
controllable panoramic world from a single image, which comprises three critical components:
world initialization, world exploration, and world continuation. We design visual world models
equipped with 3D spherical RoPE and multi-view composition, and two variants of which, IaaW-IM
and IaaW-CM, tackle world initialization and continuation, respectively. Extensive experiments
validate the effectiveness of our approach, demonstrating high fidelity, controllability, and scalability
across diverse scenarios. Our work opens new potential for one-shot visual world generation in
applications such as gaming and virtual reality, setting the stage for future research in generating
interactive visual worlds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims stated in the abstract and introduction accurately reflect the paper’s
core contributions and scope. They are aligned with both the theoretical foundations and the
experimental results presented in the main body.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper clearly outlines its limitations, including factors influencing the
method’s performance, demonstrating a responsible and transparent evaluation of its contri-
butions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper’s theoretical result provide the full set of assumptions but we do not
propose any new theorems thus no proof needed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes all necessary implementation details, dataset informa-
tion, and evaluation protocols to ensure reproducibility of the key experimental findings
supporting the main claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are currently considering the possibility of open access to the data and
code, but due to policy constraints, it is not yet feasible to make them publicly available. We
will continue to evaluate this option as the project progresses.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All essential training and testing configurations—including data splits, hyperpa-
rameters, and optimization strategies—are thoroughly documented to support reproducibility
and understanding.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and statistical significance metrics with clarity,
detailing how they were calculated and what variability factors they represent.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed information on hardware used, compute time, and resource require-
ments for experiments is provided, allowing for practical replication of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics in all respects, ensuring
ethical standards are met throughout the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Both the potential benefits and risks of the proposed work are discussed,
including societal impacts and possible unintended consequences, along with considerations
for mitigation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper outlines measures to prevent misuse in section about social impacts.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets are properly cited with explicit mention of licenses and
terms of use, demonstrating respect for intellectual property.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets released as part of the paper are accompanied by comprehensive
documentation detailing usage, licensing, and limitations.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any form of crowdsourcing or research involving
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The study does not involve human subjects and thus does not require IRB or
equivalent review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper clearly describes how LLMs are used as a key, non-standard
component in the proposed methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theory Analysis

Rotation equivariance in this paper means that rotating the spherical coordinates by an angle results in
an identical rotation within the embedding space of the positional encoding—so the model perceives
a consistently "shifted" feature without altering the underlying structure. Therefore, to establish
rotation-equivariance, it suffices to show that any additive shift in longitude ϕ, latitudeθ, or time t (as
defined in E Eqs. (1) and (2)) induces an equivalent orthogonal rotation within the corresponding
subspace of the encoding. We first recall the definitions from Eqs. (1) and (2):

θ =
π

2
(
2y

H
− 1), ϕ = π(

2x

W
− 1), τ = 2πt,

and for each frequency index d = 0, 1, ..., N − 1,

RoPEx,y,t,d =



cos(2dθ) · cos(2dϕ) · cos(2dτ)
sin(2dθ) · cos(2dϕ) · cos(2dτ)
cos(2dθ) · sin(2dϕ) · cos(2dτ)
sin(2dθ) · sin(2dϕ) · cos(2dτ)
cos(2dθ) · cos(2dϕ) · sin(2dτ)
sin(2dθ) · cos(2dϕ) · sin(2dτ)
cos(2dθ) · sin(2dϕ) · sin(2dτ)
sin(2dθ) · sin(2dϕ) · sin(2dτ)


∈ R8

The full positional embedding is the concatenation of all frequencies as

f(x, y, t) = [RoPEx,y,t,0||RoPEx,y,t,1||RoPEx,y,t,2||...] ∈ R8N

To prove that f is equivariant under any rotation R (acting on (x, y) via the induced changes in (θ, ϕ))
and any time shift t → t+∆t, it suffices to show equivariance dimension-wise. For clarity, we use a
rotation in the longitude dimension ϕ as an example. We begin by expressing each 8-dimensional
block RoPEx,y,t,d in terms of complex expoential cθ = ei2

dθ, cϕ = ei2
dϕ, cτ = ei2

dτ , so that each
entry of RoPEx,y,t,d is the real and imaginary part of a product cαθ c

β
ϕc

γ
τ with α, β, γ ∈ {0, 1}. In

the complex domain, an additive shift, i.e.ϕ → ϕ + ∆ϕ, corresponds to multipication by a phase
factor ei2

d∆ϕ. This implies that each sin/cos pair involving ϕ, i.e., (cos(2d∆ϕ), sin(2d∆ϕ)), lies in
a 2-dimensional subspace rotated by a 2×2 orthoganal matrix

Rϕ
d (2

d∆ϕ) = (
cos(2d∆ϕ) − sin(2d∆ϕ)
sin(2d∆ϕ) cos(2d∆ϕ)

)

This rotation leaves the θand tcomponents unaffected expect for being scaled by fixed multiplicative
factors, thus perserving equivariant within the full 8-dimension embedding. There are four such pairs
in RoPEx,y,t,d, which results in an 8x8 block-diagonal orthogonal matrix Tϕ

d . Stacking the matrices
across all the frequencies d = 0, ..., N − 1 yields a global orthogonal matrix

Tϕ = diag(Tϕ
0 , ..., T

ϕ
N−1) ∈ R8N×8N

which satisfies
f(Rϕ · (x, y, t)) = Tϕ · f(x, y, t)

Here Rϕ denotes the rotation applied in longitude. The same reasoning applies to θ and time τ ,
where additive shifts similarly induce orthogonal transformations within their respective subspaces.
Therefore, spatial rotations and temporal shifts are exactly mirrored by orthogonal rotations in the
embedding space, confirming that the 3D spherical RoPE is rotation-equivariant.

B Efficiency Analysis

According to Table A, our method achieves inference times comparable to both the base foundation
model (despite operating at higher resolution) and to prior work such as 4K4DGen (while generating
more frames). Currently, each generation step (covering ∼3–5 seconds of video) takes approxi-
mately 10–20 minutes on a single A100 GPU. This latency stems from the high output resolution
(2048×1024) and the large size of the backbone models.
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Model Resolution Inference Time Inference Memory Usage
CogVideoX1.5-5B-I2V(base) 1360×768×81 ∼ 16 min ≥9 GB

4k4DGen* 2048×1024×14 ∼ 16 min ≥12 GB
IaaW-IM 2048×1024×49 ∼ (17×n) min ≥(12×n) GB

IaaW-CM 2048×1024×49 ∼ 17 min ≥12 GB

Table A: Analysis of video generation efficiency of our method and several baselines.

As with most generative systems, there exists a trade-off between generation quality (e.g., resolution)
and latency. In this work, we prioritize generation quality, though we also discuss various optimization
techniques that could accelerate inference as follow.

• Multi-GPU Deployment: Utilizing FSDP or DeepSpeed Ulysses to parallelize inference
across GPUs.

• Model Compression and Acceleration: Techniques such as increasing the VAE encoding
granularity—e.g., encoding larger spatial chunks as in LTX-Video [12]—can significantly
reduce computational cost.

• Efficient Attention Mechanisms: Incorporating architectural improvements such as Pyramid
Attention Broadcast (PAB) [46] can help accelerate DiT-based video generation.

• Autoregressive Frame Scheduling: Reducing the number of frames generated at each
step and progressively extending sequences in an autoregressive fashion (as explored in
recent work like AAPT [24]) may enable near-real-time inference with minimal quality
compromise.

C Failure Case Analysis

In terms of performance on highly complex scenes, such as urban street views, we find that our model
is less reliable compared to natural or less cluttered environments. For instance, in one case involving
an aerial view of a busy urban street with numerous cars, the generated video exhibited unnatural
behavior: some cars remained static while others moved in inconsistent or physically implausible
directions. There are two main contributing factors:

1. Model Capacity: The base models we built on (including CogVideoX and other comparable
open-source video diffusion models) struggle to robustly handle scenarios with multiple
independently moving objects, which exceeds the temporal modeling capacity of existing
models.

2. Training Data Bias: To ensure visual stability, we filtered out videos with significant
camera shake—many of which were hand-held recordings containing dense motion and
multiple objects. As a result, the training set is less representative of such complex dynamic
environments, which impacts generalization.

We have also conducted a preliminary failure case analysis and identified several common failure
modes

1. Complex Motion or Scene Crowding: Scenes with a high density of independently moving
objects (e.g., vehicles, pedestrians) often lead to degraded performance. The base model’s
capacity to process multiple interacting objects attention is limited, resulting in static or
erratically moving elements.

2. Human Actions: When humans are present in the scene, motion may be unrealistic or static.
This is partly due to the difficulty of modeling articulated human motion in video diffusion
models, and further exacerbated in 360-degree video due to varying perspective motion
distortions across the sphere.

3. Unsuited Input Scenarios: Close-up views of objects, animals, or plants often result in
implausible generations—such as oversized elements or distorted layouts—due to the
egocentric nature of 360-degree video. When the initial view covers a very narrow or zoomed-
in area, the extrapolated scene tends to resemble a “Lilliput effect”, where everything appears
disproportionately large. We find that the IaaW works best for wide-field scenes like indoor
rooms, landscapes, or aerial views, where surrounding context is available.
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Parameters Value
Video Height 1024
Video Width 2048

Video Frames 49
Batch Size 4

Mixed Precision bf16
Optimizer AdamW

Optimizer Betas (0.9, 0.95)
Optimizer Weight Decay 1e-4

Learning Rate 2e-5
Warmup Steps 100

Inference Steps 25
Frame Per Second 16

Masks Number 6

Table B: Hyperparameters setting of our experiments.

Figure A: Different view masks setup in our method.

D Experiments Setup

We present the hyperparameters used in our experiment in Table B. The same hyperparameters are
applied to both IaaW-IM and IaaW-CM, and our pipeline is built upon the CogVideoX codebase.

We also present our masks setup in Fig. A, which contains six perspectives of one panoramic
image/video and these can together seamlessly reconstruct the full panoramic scene.

E More Visualization Results

We present a qualitative visualization comparison between WonderWorld [44] and our IaaW in Fig. B.
The results find that our method generate a panoramic dynamic world instead of a single static 3D
world scene compared with WonderWorld.

We present additional visualization results on complex scenes and indoor scenes in Fig. C, which
demonstrate that our method exhibits significant diversity across various scenarios.

We also present additional visualization results of our world initialization in Fig. D.
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Figure B: Qualitative visualization comparison between WonderWorld and our IaaW.

Figure C: Qualitative visualization on complex scenes and indoor scenes.

Figure D: More visualization results of world initialization.
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