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ABSTRACT

Deep hashing has emerged as an effective method for large-scale image retrieval,
improving computational efficiency by converting high-dimensional data into
compact binary codes. Despite its success, recent studies reveal that deep hash-
ing methods may exhibit fairness issues, leading to biased or discriminatory re-
trieval results across demographic groups. To jointly improve retrieval accuracy
and group fairness, we introduce Disentangled Information Suppressed Hashing
(DISH), a framework that learns fair and discriminative representations. DISH
employs a disentangled encoder to decompose each image into factor-specific rep-
resentations. To encourage semantic concentration and interpretability, a disen-
tangled consistency objective is introduced to enforce factor-level stability under
augmentation and align semantic evidence with latent factors. Furthermore, an in-
formation suppression module is designed to mitigate sensitive information leak-
age through probability-driven channel masking, channel-wise adversarial learn-
ing, and conditional covariance regularization. These components work collab-
oratively to eliminate sensitive signals both within and between feature channels
while preserving semantic discriminability. Extensive experiments on multiple
benchmarks show that DISH substantially outperforms state-of-the-art deep hash-
ing baselines in retrieval accuracy while achieving better fairness.

1 INTRODUCTION

Deep hashing has emerged as an effective approach for large-scale image retrieval tasks. By lever-
aging deep neural networks, deep hashing methods transform image data into compact binary codes,
substantially reducing storage requirements and enabling rapid retrieval through efficient binary op-
erations(Slaney & Casey), 2008; (Gong et al., [2012; |Liu et al., 2012; Hoe et al.| |2021). Compared
to traditional retrieval methods, hashing-based approaches offer remarkable advantages in retrieval
speed and scalability(Yuan et al.l [2020; Wang et al.l 2023), making them especially valuable for
applications such as search engines(Wang et al., 2012), recommendation systems(Luo et al., 2024).

Despite their success in retrieval accuracy, recent studies have revealed that deep hashing models,
similar to many other representation learning systems, may inherit and even amplify societal biases
present in training data, leading to systematically unfair retrieval results across demographic groups
defined by sensitive attributes such as age, gender or ethnicity(Zhang et al.,2024)). Although fairness
has been extensively explored in general classification tasks(Berk et al.| [2017; |[Hardt et al., 2016
Nabi & Shpitser;, 2018; Zafar et al., 2017} [Sattiger1 et al., 2019)), it remains under-explored in the
context of deep hashing: most existing methods focus solely on maximizing retrieval accuracy(Li
et al., 2015;12017;|Su et al., 2018} |L1 et al.l 2019). Even when fairness is considered, interventions
are often applied post-hoc or confined to the final hash space, where the extreme compression and
discreteness of binary codes severely limit the capacity to disentangle and suppress sensitive signals
without sacrificing semantic utility(Zhang et al., 2024)).

To tackle these issues, we propose Disentangled Information Suppressed Hashing (DISH), a frame-
work that learns fair and discriminative hash representations by intervening in the continuous feature
space prior to binarization. DISH employs a disentangled encoder to decompose each image into
factor-specific representations, these representations are regularized by a disentangled consistency
objective, which promotes semantic concentration and factor-level stability under augmentations.
Built upon this disentangled structure, DISH suppresses sensitive cues through a combination of
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channel-wise adversarial learning and conditional covariance regularization, theoretically minimiz-
ing their recoverability both within and across feature dimensions. A final semantic alignment loss in
Hamming space ensures the binarized codes retain strong discriminative power, striking an effective
balance between fairness and performance.

In summary, our key contributions are as follows: (1) We propose DISH, a fairness-aware hashing
framework that disentangles semantic and sensitive factors in the continuous feature space prior
to binarization, enabling targeted suppression of bias while preserving retrieval semantics; (2) We
introduce a theoretically grounded information-suppression mechanism that combines channel-wise
adversarial learning with conditional covariance regularization, minimizing sensitive leakage both
within and across latent factors with formal guarantees via mutual information bounds; (3) We
conduct comprehensive evaluations on multiple benchmarks, showing that DISH establishes new
state-of-the-art results in balancing retrieval performance and fairness.

2 RELATED WORK

Learning to Hash. Hashing has been widely adopted for large-scale image retrieval due to its com-
putational and storage efficiency. Early work spans data-independent LSH (Slaney & Casey, 2008))
and data-dependent schemes such as ITQ and supervised hashing (Gong et al., 2012} Liu et al., 2012;
Shen et al., 2015). With the rise of deep learning, deep hashing methods have achieved substantial
gains in retrieval accuracy. Deep hashing methods are broadly categorized by their use of data: pair-
wise methods,triplet-based methods, and pointwise methods. Pairwise methods that optimize hash
codes to preserve pairwise similarity relationships (Wang et al., 2010; |Li et al., 2015); Triplet-based
methods that enforce relative ranking constraints among anchor-positive-negative triplets (Wang
et al 2017); and Pointwise methods that directly supervise hash codes using class labels or se-
mantic prototypes (Su et al., 2018} [Yuan et al., [2020; [Hoe et al.l 2021; [Wang et al., 2023). These
approaches have achieved remarkable gains in retrieval accuracy and efficiency, but they neglect the
societal implications of biased or discriminatory outcomes. Recently, FATE (Zhang et al.l 2024)
made the first attempt to incorporate fairness into hashing. However, due to the extreme compres-
sion and discreteness of binary codes, interventions in Hamming space inherently limit the ability
to disentangle and suppress sensitive signals without compromising semantic utility.

Disentangled Representation Learning. Disentangled representation learning(DRL) aims to en-
code underlying factors of variation into separate and interpretable dimensions of the latent space.
Existing DRL methods can be broadly categorized into dimension-wise and vector-wise approaches
based on their granularity of semantic alignment. Dimension-wise methods typically map one se-
mantic factor to one latent dimension, e.g., 8-VAE (Higgins et al.|, 2017), FactorVAE (Kim & Mnih|
2018)), B-TCVAE (Chen et al.| 2018)), and GAN-based InfoGAN (Chen et al., 2016). By contrast,
vector-wise methods represent a factor with a low-dimensional subspace, e.g., DR-GAN (Tran et al.,
2017), DRNET (Denton et al., 2017), and MAP-IVR (Liu et al.,[2021). Recent advancements inte-
grate contrastive learning with disentanglement paradigms to enhance representation quality without
relying heavily on labeled data (Li et al., 2021} Wang et al.,|2024). In the context of fairness, disen-
tanglement has been explored to isolate sensitive attributes from task-relevant features (Zhu et al.,
2024} Zhang et al., |2025)), yielding improved fairness—utility trade-offs.

Fairness in Machine Learning. Fairness in machine learning has been extensively studied, par-
ticularly in classification and recommendation systems (Agarwal & Deshpandel [2022; [Padh et al.,
20215 |Li et al., |[2023). Common fairness notions include demographic parity, equalized odds and
individual fairness(Caton & Haas| 2024). Techniques to mitigate bias can be broadly categorized
into pre-processing (e.g., data reweighting or transformation (Krasanakis et al., [2018; |Gronowski
et al., 2023)), in-processing (e.g., adversarial debiasing (Celis & Keswanil 2019; [Xu et al.| [2019)
or fairness constraints (Donini et al.,|2018)), and post-processing methods (e.g., calibration of out-
puts (Hébert-Johnson et al., 2018))). Despite this progress, fairness in retrieval systems—particularly
hashing-based methods—remains under-explored. Recent work by Zhang et al.| (2024) represents
a notable step toward fair hashing by incorporating adversarial learning and contrastive objectives
directly in the hash space. However, operating solely in the compressed and discrete hash space
limits the flexibility and effectiveness of bias mitigation.
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3  PROBLEM DEFINITION

Let D = {I;,y;, si}i\il denote a dataset, where I; represents an input image, y; € ) is the cor-
responding target attribute label, and s; € S denotes the associated sensitive attribute label. The
objective is to learn a deep hashing function H : I + b € {—1,1}%, which maps images to com-
pact binary hash codes of length L. This function should satisfy two properties: (1) High Retrieval
Accuracy: relevant images (i.e., those sharing label y;) should be ranked above those irrelevant
ones; (2) Group Fairness: retrieval outcomes should be equitable across sensitive groups S.
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Figure 1: Overview of DISH. Here, x; ; and x’ 4,k are the k-th factor features for I; and Il; m; =
[po (K | xi)]é{zl is the assignment mask and X; , = m; X, 1 the weighted feature; Dy, (with GRL)
is the channel discriminator; DISH learns fair and discriminative hash codes through disentangled
consistency learning, information suppressed learning, and semantic alignment.

4 THE PROPOSED FRAMEWORK

This section presents the overall architecture of the proposed DISH framework, which comprises
four primary components: (1) Disentangled Encoder, (2) Disentangled Consistency Learning, (3)
Information-Suppressed Learning, and (4) Semantic Alignment. The first three components operate
in the continuous representation space, whereas the fourth operates in the discrete Hamming space.
A schematic of the full architecture is shown in Figure[T]

4.1 DISENTANGLED ENCODER

The Disentangled Encoder is designed to decompose each input image into K factor-specific repre-
sentations, enabling the inference of underlying latent factors that contribute to the image content.
The encoder comprises a pre-trained feature extractor (e.g., ResNet-50 2016)) to ob-
tain high-level semantic features, followed by K parallel multilayer perceptron (MLP) branches.
Each branch is responsible for modeling a distinct and approximately independent factor of vari-
ation. Given an input image I;, the encoder produces a disentangled feature representation:
X; = [Xi1,Xi2,--,Xi k] € RY where x;; € R¥YK (1 < k < K) corresponds to the k-th
factor-specific component, and d denotes the total feature dimension. Additionally, we apply data
augmentation to I; (e.g., random cropping, flipping, and color jittering) to obtain an augmented view
I]. The encoder processes I through the same network, yielding: X} = [X} 1, X} ,,...,X] x| € R,
which serves as a counterpart for disentangled consistency learning.
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4.2 DISENTANGLED CONSISTENCY LEARNING

We define “consistency” at the factor level: the model’s responses to the same image and its aug-
mented view should remain stable; samples from the same class should cluster while different classes
separate; and the data-driven factor assignment should align with label-based semantic evidence. To
achieve this, we perform supervised contrastive learning within each factor channel, using labels
to shape the similarity structure so that semantic information concentrates in a small number of in-
terpretable factors rather than being mixed in a single representation space. The prototype-based
assignments are then coupled with the contrastive signal, encouraging stable posterior preferences.
Firstly, given x;, we compute the factor assignment probability py(k | x;) using a prototype-based
method. Specifically, we introduce K latent factor prototypes {cj, } 1. The probability that the £
latent factor is reflected in representation x; is parameterized as:

exp (X4, Ck))

po(k [ xi) = =% : e9)
>t exp((xiw, er))
where ¢ is the temperature-scaled cosine similarity and 7 > 0 is the temperature:
a'b
$(a,b) = . )
[al[2[bl27

Then, we define the supervised contrastive learning task under k-th latent factor. Given a minibatch
B, define A(i) = B\ {i} and P(i) = {p € A(%) : yp = yi}. The contrastive softmax likelihood is:

1 exp (¢ (Xi k. Xp, 1))

po(yi | xi, k) = . ) 3)
[P (i) peP i) D acAl) eXP(Qs(Xi’kvX;,k))
We model the label evidence over latent factors as:
K
po(yi | x:) = polk | i) po(yi | xi, k).- )

k=1
However, direct optimization is intractable due to the latent factors. Therefore, we instead optimize
the evidence lower bound (ELBO) of the log-likelihood. For any distribution q(k | x;,v;):

log po(yi | i) = Er~gllogpe(yi | xi, k)] — Dxr(q(- [ xi,5:) [ po(- | x:)) - (5)
Equality is attained by the variational posterior:
po(k | xi) po(yi | xi, k)
S po(k | i) po(wi | xi k)

Apply Jensen’s inequality to log E,[-] to obtain equation [5| Maximization w.r.t. ¢ yields equation @

qo(k | xi,y:) = (6)

Jensen Bound For Contrastive Likelihood. Let s;(a) = exp{d(x;k,x; )} and u, =

#(Sp)k(a) € (0,1). Then, by concavity of log, log ﬁ > per(i) Up > ﬁ > pep(i log up:
1

log po(vi | xi, k) > m Z (IOgSi,k(P)*log Z Si,k(a)) . (7)

peP(i) a€A(i)

Computable Minibatch Lower Bound. Define the per-factor term with a partition function

1
Ziwi= 3 ep(06kin X)) bk = T D (6(xip x) ~l0g Zis ). (®)
acA(i) pEP(1)
Combining equation [5]and equation[7} for any ¢, we get the following inequality:
K
logpe(yi | xi) = > q(k | %i,yi) lir — Dxr(a(- [ xi,5:) || pa(- | %5)). (©))
k=1
Let gy be the variational posterior in equation[6] Define the batch lower bound (to maximize)
K
e =3 (D a0l 1 xi,9:) i = Dicifao [ po) ) (10)
i€B k=1
In practice, we optimize the negative of the bound as the training loss:
Lpcr = — LB (11)
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4.3 INFORMATION-SUPPRESSED LEARNING

To promote invariance to the sensitive attribute without sacrificing semantic discriminability, we
introduce an information-suppressed framework that combines probability-driven channel masking,
channel-wise adversarial learning, and conditional covariance regularization to preserve task seman-
tics while removing both per-channel and cross-channel sensitive cues.

Channel Masking. Building upon the factor assignment probabilities py(k | x;) from equation
we design a probability-driven masking concentrates information into high-assignment factors and
attenuates low-assignment ones, without requiring access to target labels or sensitive attributes. For
each representation x;, we compute a channel-wise mask vector.

m; = [m1,...,mik]| = [po(1]x),...,pe(K | x;)]. (12)
We then obtain an assignment weighted representation via channel-wise scaling:
X =X; Ocmy; = [Xi1 M4 1, Xk M K. (13)

where ©,. denotes multiplication by channel. This multiplication attenuates channels with lower
po(k | x;), concentrating semantics into more informative factors.

Channel Adversarial Learning. Let s; € {1,...,C,} denote the sensitive attribute of I;. From
equation write X; = [X;1,...,%; k] With X;x = m; x;x € RYX the k-th channel feature.

For each channel, we instantiate a discriminator Dy, : RYE s ACs—1 that predicts sensitive label
from x; ;. We define adversarial loss by averaging the per-channel cross-entropy over minibatch:

K
Loar (0, {Yrtiz) = ﬁ ST CE(si, Dy (%ik(6))) - (14)

i€B k=1

where CE denotes cross-entropy. Fairness is enforced via the following saddle-point objective:

. K
wril;g:l max Loar (0, {¥x}r=1)- (15)

In practice, we implement the saddle-point objective in equation [T5] via a gradient-reversal layer
(GRL), which preserves the theoretical min—-max view while yielding a simple training procedure.
The GRL encourages each channel feature X; ;. to be uninformative about s;. This realization is
theoretically consistent with the per-channel min—max scheme and empirically stable in training.

Conditional Covariance Regularization. While the adversarial objective suppresses direct leakage
of S from each channel, it does not prevent channels from jointly encoding complementary sensitive
information. To further mitigate this effect, we introduce a conditional covariance penalty that
encourages approximate conditional independence between channels given S. In practice, for a
minibatch B with representations {X; } ;5 and corresponding sensitive labels {s; };c5, we first group
samples by their sensitive class. For each class s, let By = {i € B : s; = s} denote the subset of
samples with label s. For each pair of channels (k, ), we compute the empirical covariance:

~ ~ 1 _ ~
COV(Xk7Xg ‘ S = S) = ‘B|7—1 Z (X’i,k — )7(]@,5> (Xi’e — X[7S)T. (16)
s i€B;

where X, ; = IZ;SI > ieB. X;.%- The conditional covariance regularization loss is then defined as

Cs
Lcor(9) = Z Z HCOV(X;C,Xg | S = 8) Hi, a7

s=1 k#¢L

This conditional covariance regularizer promotes conditional decorrelation between channels, re-
ducing the possibility that sensitive information is recoverable through higher-order interactions.

Theoretical Properties. We provide an information-theoretic characterization of the channel-wise

adversarial objective in equation Let S be the sensitive attribute with entropy H(.5), and let X,
denote the random variable corresponding to the k-th masked channel feature x; ;.. For fixed encoder
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parameters ¢, minimizing the per-channel cross-entropy yields the Bayes discriminator Dy, (Xig) =
po(si|Xi, k), and the inner optimum equals the average conditional entropy:

min Loar(t, {in}) = 3 ZH(S |X1). (18)
The outer maximization over 6 is equivalent to minimizing the average mutual information.
1 . 1 5
max EE};H(S | Xi) = min K;IQ(S;X;C) . (19)

since Ip(S;Xy) = H(S) — H(S | Xi). Let X = [Xi,...,Xx] be the concatenated masked
representation; by the chain rule of mutual information, Io(S; X) = 3, Is(S; X | X1:(k71)) <
S, I9(S; X},). Under the mild condition that {X} are approximately conditionally uncorrelated
given S (enforced in practice by minimizing >, , |Cov(X, Xy | S)||%), the upper bound be-
comes tight, so minimizing 7 >, Lg(S X,) effectively reduces global leakage I5(S; X). For any
downstream hash mapping B = h(X) € {—1,+1}*, data processing further gives Iy(S;B) <

Ip(S;X) < 32, In(S; X); moreover, for any bounded retrieval score g : {—1,+1}% — [0,1],
Pinsker-type inequalities imply |E[g(B) | S=a] — E[g(B) | S=b]| < 2TV (Pg|s=a, Pp|s=) <

C\/To(S;B) < C\/3,. In(S; X},) for a universal constant C' > 0. Thus, reducing the channel-

averaged leakage tightens an explicit, information-theoretic bound on downstream retrieval.

4.4 SEMANTIC ALIGNMENT

We generate discrete hash codes in the Hamming space from masked representations. Let f;, : R —
R’ be the hash head with parameters 7). Given X; from equation |13, we compute

w, = f,(%;),  b; =sign(u;) € {-1,+1}*. (20)

and use a differentiable relaxation r; = tanh(u;) for backpropagation during training. To inject
class semantics, we maintain C' = |Y| semantic anchors {z.}$_; in the Hamming space, each z,. €
{—1,+1}~. Anchors are initialized by i.i.d. Rademacher sampling (each bit 4-1 with probability
1/2), which yields an expected inter-class Hamming distance of L/2 and thus large initial separation.
The semantic alignment loss is defined as follows, where 7, > 0 is a temperature.

Lsa(6.m, {z.}) = =3 log exp(2,1:/7:) @1

i€eB Zc—l exp (Z rl/T5)

4.5 OVERALL OBJECTIVE

Let 6 denote the encoder and prototype parameters, ¥ = {T/)k}szl the per-channel discriminators,
and 7 the hash head. We adopt a single saddle-point formulation that unifies disentangled consis-
tency, channel adversarial learning, conditional covariance regularization, and semantic alignment:

min max EDCL(G) -\ LCAL(G, {¢k}) + A2 ECCR(H) —|—£SA(9,77, {ZC})} . (22)
0n{ze} {Yr} b — — —_— Y
disentangled consistency channel adversary conditional covariance semantic alignment

(min) (max by 6, min by ) (min) (min)

Here, A\; > 0 controls the strength of channel adversarial learning and A2 > 0 controls the strength
of conditional covariance regularization. LDCL(H) is the disentangled consistency loss (Eq .
encouraging factor assignments. Lcar, (0 {¢r.}) is the channel adversarial loss (Eq. [14), where
each discriminator vy, is trained to minimize sensitive prediction error while the encoder maximizes
it, thus suppressing recoverable sensitive information in masked factors. LCCR(H) is the conditional
covariance regularization loss (Eq.[I7), penalizing cross-channel covariance given sensitive labels
to reduce joint sensitive leakage. Finally, L (6,7, {z.}) is the semantic alignment loss (Eq. [21),
pulling hash logits in Hamming space. We provide an algorithm procedure in the appendix
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5 EXPERIMENT

5.1 DATASET

We evaluated on two facial attribute datasets, UTKFace (Zhang et al.,|2017)) and CelebA (Liu et al.,
2015). UTKFace (~ 20K images with age/gender/ethnicity annotations) is used in two configu-
rations. In the first, Ethnicity is the target label (five categories) and Age serves as the sensitive
attribute, binarized as <35 vs. >35. In the second, Age becomes the target (five bins: 0-20, 20—
40, 40-60, 60-80, 80+) and Ethnicity is the sensitive attribute, binarized as European American vs.
non—European American. CelebA (= 200K images with 40 binary attributes) is used with Attractive
as target and Male as the sensitive attribute. For retrieval evaluation, we randomly draw 100 query
images on UTKFace and 500 on CelebA; all remaining images are used for training and retrieval.

5.2 EVALUATION METRICS

We evaluate two aspects: retrieval accuracy and group fairness.

Retrieval accuracy. Mean Average Precision: MAP = ITIJI 3 L

4€Q o i, Precision@k(q) -
rely(k), where (@ is the query set, mg is the number of relevant items for query g, ng is the list
length, and rel, (k) € {0, 1} indicates relevance at rank k.

Fairness Metrics. We use DP, EOP, and EOD as our fairness measures.

Demographic Parity (DP): DP = ’P(QZ | S;=1) — P(Q | SZ-:())‘
Equal Opportunity (EOP). EOP = ‘P(Qi | Yi=1,5,=1) — P(Qz | V=1, Si:())‘

Equalized Odds (EOD): EOD = ‘P(Q, | Y=y, S;=1) — P(Q; | Yi=y, SZ:O)‘ o)
y€10,

5.3 PERFORMANCE COMPARISON

We conduct extensive experiments on three benchmark datasets (UTKFace with two target—sensitive
configurations and CelebA) under hash code lengths ranging from 16 to 128 bits, and compare
against a diverse set of competitive baselines; the full list is provided in appendix[C| Each experiment
is repeated five times with different random seeds, and we report the mean and standard deviation of
all metrics to ensure statistical robustness. The results consistently show that DISH achieves the best
performance in terms of both retrieval accuracy (MAP) and fairness measures (DP, EOP, and EOD),
thereby representing a clear Pareto improvement over existing baselines. For example, on UTKFace
with ethnicity as the target attribute, DISH reaches a MAP of 72.99 at 16 bits while simultaneously
reducing EOP and EOD to 2.08 and 4.22, respectively. Similar trends hold across longer code
lengths, the alternative UTKFace setting with age as target, and the CelebA dataset. These consistent
gains can be attributed to the design of our framework: disentangled consistency learning ensures
that semantic information is stably concentrated within factor-specific channels; probability-driven
channel masking together with channel-wise adversarial learning effectively suppresses sensitive
leakage at the per-channel level; and conditional covariance regularization further mitigates cross-
channel correlations that could reintroduce bias. Finally, semantic alignment in the Hamming space
preserves inter-class discriminability after binarization.

Table 1: Performance comparison (%) with the state-of-the-art methods on UTKFace with code lengths varying
from 16 to 128. Target Attribute: ethnicity, Sensitive Attribute: age.

Method 16 bits. 32 bits, 64 bits 128 bits
MAP t EOD | EOP | DP | MAP EOD | EOP | DP | MAP 1 EOD | EOP | DP | MAP 1 EOD | EOP | DP |

OrthoHash {57.92 + 1.04 11.03 £ 0.60 6.83 +0.22 7.43 £ 0.95/59.34 + 1.30 11.30 + 1.45 7.08 £ 0.31 7.81 = 1.28|61.90 + 2.45 10.95 + 1.57 6.92 £ 0.47 7.89 + 1.29(62.79 + 3.10 10.57 + 1.01 6.50 £ 0.46 8.18 + 0.41
Bihalf 52.35 + 1.63 13.88 +2.27 9.20 + 0.68 7.24 + 1.19(55.26 + 1.10 11.33 + 1.76 7.36 + 1.04 7.28 + 1.33|56.93 + 1.49 11.00 + 1.76 6.87 + 0.71 7.50 + 1.93(55.94 + 1.10 11.28 + 1.82 7.17 £ 0.86 7.44 + 1.48
CE 55.62 + 2.37 10.48 + 0.80 7.03 £0.42 6.01 + 0.81{58.58 £ 1.38 10.02 £ 1.32 6.76 + 0.58 6.76 + 1.00(59.35 + 1.33 11.19 £ 0.68 7.55 + 0.34 7.37 £ 0.68|60.05 + 0.87 10.57 £ 1.06 7.02 £ 0.55 7.12 4+ 0.42
csQ 63.14 £1.25 9.41 £ 1.50 5.35+£0.37 7.92 +0.44(64.23 £ 1.14 9.01 042 5.19£0.08 7.91 +£0.44/65.27 = 1.02 8.68 £ 0.82 5.16 = 0.29 7.75 £ 0.21|62.14 + 3.89 9.15+ 1.38 5.51 +0.38 7.50 £ 1.03
DFH 46.74 £2.75 14.99 + 1.79 8.23 £ 0.77 9.27 + 1.44(55.07 + 2.59 13.75 £ 3.01 7.97 + 1.23 8.79 + 1.95/59.20 + 3.07 14.12 + 1.23 7.92 + 0.39 9.12 + 1.17|60.64 + 2.87 16.40 + 4.21 10.32 + 1.66 9.60 + 0.85
DPSH 6230 + 1.13 9.47 £ 0.87 541 £0.17 8.11 4+ 0.56(62.99 + 0.59 10.27 + 0.66 6.03 £ 0.25 8.48 + 0.25|64.12 + 0.46 10.50 £ 0.69 6.33 £+ 0.11 8.59 + 0.42|63.71 & 1.24 10.19 £ 1.00 6.09 + 0.23 8.43 £ 0.61
DTSH 60.83 + 1.63 9.09 + 0.40 5.37 +£0.23 7.74 + 0.28(61.53 + 1.97 11.91 + 1.33 7.30 + 0.28 8.89 + 1.02|60.83 + 0.38 11.93 + 1.45 7.63 + 0.19 8.69 + 0.98(60.61 + 1.74 10.94 + 1.12 7.06 + 0.27 8.01 + 0.40
GreedyHash|64.62 + 1.23 10.08 + 1.39 6.51 + 0.50 7.87 + 0.62|64.63 + 1.41 10.42 4+ 0.60 7.22 + 0.40 7.70 + 0.41(63.78 + 0.78 10.63 + 0.66 7.30 + 0.40 7.74 + 0.46|55.92 4+ 9.19 10.60 + 1.22 6.08 + 0.87 8.26 + 0.94
SDH-C 57.48 £ 1.51 10.15 £ 2.17 6.13 £0.13 6.73 + 1.7262.77 £ 0.52 11.78 £ 1.69 7.81 = 0.28 8.29 + 0.78(63.48 + 0.32 11.82 £ 0.38 8.18 + 0.23 7.75 £ 0.35|63.98 + 1.31 12.25 £ 0.83 8.65 +£0.22 7.57 £0.12
DLBD 29.17 +1.26 17.39 + 1.29 10.16 + 0.33 7.79 + 0.51{29.22 + 1.26 17.47 + 1.29 10.35 + 0.33 7.73 £ 0.41|30.59 + 1.18 16.51 & 1.17 9.79 + 0.19 7.31 + 0.44|31.44 + 1.13 17.50 + 1.94 10.31 = 0.93 7.71 + 1.00
MDSHC 62.88 + 1.66 8.64 + 1.13 5.96 + 0.67 7.04 +£0.32(65.75 + 1.65 7.77 + 0.53 5.16 + 0.28 6.69 + 0.31|64.11 + 1.33 8.84 + 0.33 6.69 + 0.89 6.90 + 0.15(62.78 + 0.68 8.62 4+ 1.14 5.39 +0.25 7.76 + 0.41
FATE 70.01 +£1.27 4.47 +1.26 2.57 £0.52 5.09 +0.32(69.98 £ 1.18 537 +0.64 3.96 +0.28 6.60 + 0.33|72.22 + 1.46 6.12 + 0.44 3.39 +0.42 6.03 + 0.75|72.62 + 1.18 6.51 £0.54 3.68 + 0.35 6.42 +0.31
DISH 72.99 + 1.32 4.22+0.75 2.08 +0.75 4.79 £ 0.15|73.20 + 1.64 4.12 + 0.57 2.55 +0.49 6.54 + 0.28(73.67 + 1.83 4.28 + 0.98 2.96 + 0.84 5.63 + 0.37|73.33 + 0.91 3.66 + 0.64 2.37 + 0.45 6.10 + 0.26
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Table 2: Performance comparison (%) with the state-of-the-art methods on UTKFace with code lengths varying
from 16 to 128. Target Attribute: age, Sensitive Attribute: ethnicity.

Method 16 bits 32 bits 64 bits 128 bits
MAP 1 EOD | EOP | DP| MAP?  EOD| EOP | DP | MAP 1 EOD | EOP | DP | MAP 1 EOD | EOP | DP|

OrthoHash [56.41 & 1.48 12.97 4 1.48 4.87 +0.27 11.08 £ 0.65[58.48 & 0.89 1491 + 2.19 5.76 £ 0.14 12,45 + 1.5(59.35 % 0.19 1520 4 1.43 5.93 £ 0.09 12.98 £ 0.70/60.64 + 0.86 14.80 + 0.84 5.60 + 0.3 11.60 £ 0.41
Bihalf 52.55+2.2 19.97 +4.56 7.56 + 037 15.07 + 2.86(53.30 £ 2.33 18.88 £ 3.14 6.78 + 1.45 14.42 % 1315446 £ 1.2 188407 6.59 =035 1446 + 0.55[53.58 + 115 17.53 £ 092 6.60 + 0.38 12.57 + 0.82
CE 57.87+ 1.5 15.66 + 0.58 5.62 + 0.67 12.90 + 0.79(57.08 + 0.86 15.15 + 0.58 5.28 +0.22 12.29 +0.39| 57.93 + 1.6 16.02 + 1.15 5.79 +0.56 12.74 + 0.55(57.67 + 0.61 15.03 + 0.88 5.23 + 0.28 12.37 + 0.51
CSQ 62.11 + 1.37 12.44 + 1.35 4.18 £ 0.79 11.75 + 1.54/64.16 + 1.06 12.87 + 0.78 4.82 +0.48 11.89 + 0.68|64.61 + 1.56 11.82 +0.97 4.48 +0.23 10.93 +0.53(64.73 + 1.22 12.18 £+ 0.5 4.28 +0.3 13.46 +0.56
DFH 56.62 = 1.24 13.72+ 0.94 435+ 0.61 12,43 £0.99|55.91 & 1.66 14.98 + 0.55 5.60 =036 12.38 £ 0.47(57.72 = 1.17 1581 + 2.13 612 =054 12.81 = 1.15[57.60 = 1.39 16.75 + 1.04 643 £0.62 15.29 + 1.00
DPSH 57.64 = 1.51 1637 + 0.48 5.93+0.55 14.18 £0.43(56.84 &+ 1.11 17.27 % 1.4 632036 14.78 £ 0.92(5746 = 1.1 17.15+ 0.44 6.35 =042 14.40 = 0.28|58.15 = 0.41 17.01 £ 0.55 6.11 £0.41 15.17 £ 0.64
DTSH 58.04 2 0.87 15.96 + 1.44 5.75+0.27 13.83 £ 0.7458.08 & 1.15 1633 £ 0.73 579 =026 14.20 £ 0.52(56.73 = 1.17 1637+ 0.52 5.81 =0.17 14.14 = 033[56.76 = 1.27 16.80 + 1.55 5.84 £029 14.22+£0.72
GreedyHash|61.35 & 1.89 14.99 0.7 532+£0.12 1240 +0.2|61.59 & 1.05 15.64 = 1.04 5.91 + 04 1271 £ 0.69/60.68 = 0.56 14.90 & 0.43 5.51 036 12.15 £ 0.28(58.96 = 0.64 1495+ 0.68 5.7 £ 0.15 11.74 £ 0.63
SDH-C (5036 1.13 13.77 4 2.93 4.74 £ 0.92 11.28  135[59.75 & 1.61 16.17 + 0.53 6.04 & 0.12 12.58 £ 0.47(60.44 £ 0.87 16.02 4 0.28 6.10 =021 12.22 £ 0.25/60.69 & 0.75 15.86  0.85 6.31 & 0.32 11.87 + 041
DLBD 35.62 £ 1.92 20.99 4+ 1.20 11.12 £ 1.96 10.70 £ 0.51{39.05 + 1.52 20.83 £ 2.12 11.19 £ 0.05 10.98 £ 2.25{39.00 = 1.21 21.90 £ 1.61 13.15 £ 0.22 9.93 & 1.53 (40.24 £ 0.92 22.69 + 1.44 12.87 £ 0.43 11.24 + 2.19
MDSHC 64.59 + 1.28 14.45 + 0.63 548 +0.57 9.18 £0.35 (60.47 + 1.19 13.10 £ 0.19 5.92 +0.40 9.34 +0.29 |61.08 + 0.41 11.64 £ 0.51 5.35+0.42 11.55+0.13(61.73 + 0.46 11.85 + 0.45 5.11 +0.37 11.26 +0.59
FATE 60.78 = 1.76 7.74£0.73 2.06=0.76 818 £0.18 [69.52+ 1.36 7.26 £033 254+ 031 843 +0.25 |68.61 = 1.74 9.1 £0.56 2.86=0.14 1031 =035[70.17 + 1.13 7922032 232025 935041
DISH 72.08 £ 0.71 6.46+0.49 141+ 038 7.08+£0.39 7185 + 1.82 6.76 £ 024 1.59+0.22 8.1d +0.26 [71.59 + 051 6.03 £ 035 129020 883+ 038 [72.40 + 135 634+ 0.68 2.09+ 032 8.51+0.52

Table 3: Performance comparison (%) with the state-of-the-art methods on CelebA with code lengths varying
from 16 to 128. Target Attribute: attractiveness, Sensitive Attribute: male.

Method 16 bits 32 bits 64 bits 128 bits
MAP 1 EOD | EOP | DP | MAP 1 EOD | EOP | DP | MAP 1 EOD | EOP | DP | MAP 1 EOD | EOP | DP |

OrthoHash |76.82 + 0.52 4.09 + 0.05 2.87 + 0.23 2.99 + 0.22|77.91 + 0.06 4.97 + 0.40 3.59 + 0.38 3.35 £ 0.15(78.25 + 0.90 4.69 + 0.33 3.45 + 0.28 3.38 + 0.14|78.90 £ 0.66 3.52 + 1.38 2.69 + 0.96 3.03 + 0.42
Bihalf 77.87 £ 0.49 3.19 £ 1.09 2.35 4+ 0.78 2.66 + 0.11]78.69 + 0.23 2.91 + 0.63 2.25  0.54 2.71 4+ 0.21{78.09 £ 0.37 3.51 4 0.22 3.40 + 0.15 3.66 = 0.15|78.34 + 0.76 3.19 £ 0.28 2.38 4+ 0.18 2.54 £ 0.15
CE 77.33 £ 0.42 2.98 £ 0.68 2.70 + 0.56 2.40 + 0.13|78.10 + 0.93 3.88 + 0.74 2.88 + 0.56 2.90 + 0.33|77.27 £ 0.13 4.56 + 0.35 3.35 + 0.28 3.13 £ 0.11|77.97 + 0.58 4.76 £ 0.14 3.54 + 0.18 3.18 £ 0.13
csQ 78.66 + 1.02 2.93 £ 0.49 2.45 + 0.34 2.70 + 0.18|78.27 + 1.59 2.98 + 0.55 2.48 £ 0.35 2.71 + 0.23|77.92 £ 0.18 3.76 + 0.45 3.37 £ 0.35 2.62 £ 0.16(77.92 + 2.31 2.91 £ 0.39 2.46 + 0.22 2.70 £ 0.16
DFH 78.71 £ 0.88 2.88 £ 0.11 2.42 £ 0.11 2.66 £ 0.05|78.89 + 0.73 2.94 + 0.11 2.56 + 0.21 2.74 £ 0.11{77.29 = 1.04 3.83 +0.24 2.92 + 0.32 2.63 + 0.22|77.02 £ 0.18 3.47 £ 0.19 2.46 £ 0.19 2.31 £ 0.12
DPSH 78.37 +0.96 4.33 + 1.25 3.22 + 0.79 2.85 + 0.67|79.01 £ 0.86 2.92 + 0.98 2.21 + 0.74 2.46 + 0.16|77.47 + 0.04 5.09 + 1.94 3.80 + 1.23 3.15 4+ 0.72(78.37 + 2.95 4.84 + 1.57 3.59 + 1.42 2.94 + 0.74
DTSH 78.69 + 0.51 3.35 + 0.12 2.52  0.21 2.35 4 0.04|78.28 + 0.88 3.25 + 0.50 2.46 + 0.39 2.48 + 0.15|77.23 + 1.05 3.31 £ 0.59 2.52 4 0.58 2.42 + 0.31{77.70 & 2.01 3.58 + 0.22 2.58 + 0.01 2.46 + 0.06
GreedyHash|78.62 + 0.89 3.18 + 0.31 2.83 + 0.11 2.53 £ 0.14|77.74 + 1.24 3.52 + 0.26 2.57 4 0.11 2.37 + 0.12|77.57 £ 1.19 3.73 + 0.65 2.70 + 0.37 2.54 4 0.16(77.35 £ 0.78 4.06 + 0.43 2.94 + 0.28 2.71 + 0.06
SDH-C 78.79 £ 0.79 3.09 £ 0.19 2.33 + 0.17 2.54 £ 0.17|78.37 + 0.15 3.58 + 0.24 2.55 £ 0.22 2.54 4+ 0.32|78.05 £ 0.26 3.34 + 0.11 2.54 + 0.12 2.41 £ 0.14|77.23 + 0.81 3.37 £ 0.39 2.43 £ 0.23 240 £ 0.18
DLBD 66.91 £ 0.43 5.98 £ 0.16 3.61 £ 0.10 3.16 £ 0.07|68.10 + 0.43 6.68 + 0.29 4.04 + 0.19 3.54 + 0.13|68.76 = 0.46 6.84 & 0.33 4.16 + 0.20 3.64 + 0.15|68.53 £ 0.30 7.06 £ 0.36 4.28 + 0.21 3.74 + 0.16
MDSHC 77.14 + 2,65 3.40 + 0.52 2.42 + 0.30 2.38 4+ 0.21|76.30 + 2.21 3.78 + 0.76 2.63 + 0.46 2.52 + 0.28|75.39 + 1.70 4.35 4+ 0.86 3.04 + 0.56 2.60 + 0.39(75.61 + 1.16 5.37 + 0.48 3.73 + 0.30 3.12 + 0.21
FATE 76.99 +0.76 2.40 + 0.25 2.26 + 0.20 2.07 + 0.07(76.07 £ 2.43 2.52 £ 0.51 1.75 £+ 0.35 2.01 £+ 0.14(74.61 + 1.74 3.71 £ 0.56 2.86 + 0.14 2.31 £ 0.35|75.95 + 0.83 5.31 +0.27 3.93 £ 0.23 3.42 £ 0.12
DISH 78.92 + 0.48 2.08 + 0.22 2.06 + 0.17 1.91 £ 0.06/79.26 + 1.30 2.08 + 0.21 1.68 + 0.12 1.82 + 0.11|78.29 + 0.23 3.23 + 0.18 2.48 + 0.16 1.91 + 0.04/79.10 + 0.29 2.82 + 0.25 2.23 + 0.18 2.16 + 0.13

5.4

ABLATION STUDY

To further validate the effectiveness of different components in the proposed DISH framework, we
conduct a series of ablation studies on the UTKFace dataset with 128-bit hash codes. Each exper-
iment is repeated five times under different random seeds, and we report both mean and standard
deviation to ensure statistical reliability. Specifically, we examine the contribution of each loss func-
tion, compare different masking strategies, and evaluate several model variants to better understand
how the architectural choices affect retrieval accuracy and fairness.

Table 4: Performance comparison (%) with different masking methods with 128bits on UTKFace

TA: ethnicity, SA: age

TA: age, SA: ethnicity

Lpcr  Lcar  Locr ‘
| MAPTt EOD | EOP | DP| | MAPT EOD | EOP | DP |

- - - ‘ 61.57+1.25 1073143 7.71+0.64 7.84+0.83 ‘ 59.10 +1.27 14.01 £0.67 5.89 +0.44 11.06 +0.97
v 62.14+1.21 993+087 7.70+0.61 7.06+0.54 | 61.39+0.73 12.82+1.13 536+0.63 10.64+0.72
v 6437+ 1.78 895+ 0.61 6.62+054 6.77+044 | 64.63 +1.00 10.77+0.93 4.70+0.68 9.41 +0.50

v 6458 +£238 9244184 574+125 853+090 | 67.82+237 11.78 £1.54 3.76 090 11.59 +0.67

v v 68.07+£0.66 7234+0.18 3.10+0.15 843+0.13 | 70.52+1.03 6.84+0.06 236+0.11 892+0.14
v v 67.76 £1.02 624+097 353+0.75 639+0.69 | 68.04+1.79 8.01+127 258+0.68 9.01+0.68
v v 6841 +£1.03 5994057 345+043 649+043 | 6743 +£030 7.374+024 241+021 9.18 + 0.06

v v v ‘ 7333 +£091 3.66 +0.64 2.37+045 6.10+0.26 ‘ 7240 £ 135 6.34+0.68 2.09+0.32 8.51+0.52

Table 5: Performance comparison (%) with different masking methods with 128 bits on UTKFace

Method | TA: ethnicity, SA: age | TA: age, SA: ethnicity

| MAP?t EOD | EOP | DP| | MAP?T EOD | EOP | DP |
No-Mask | 72.10+1.43 435+£090 2.78+0.61 645+035| 71.70£1.62 6.82+0.80 2.36=+0.38 8.74+0.60
Random | 71.34 £ 1.53 441+095 283+0.62 6.79+£0.46 | 70.60+1.55 6.90£0.82 3.01+0.47 8.80=+0.62
1/K 7295+ 1.10 3.88+0.70 249+£050 6.224+0.30 | 72.10£120 6.55+0.75 2.88+0.33 8.60+0.45
DISH | 73.33 £ 0.91 3.66 +0.64 237045 6.10+0.26 | 72.40 + 1.35 6.34 +0.68 2.09+£0.32 8.51+0.52
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Table 6: Performance comparison (%) with different model variants with 128 bits on UTKFace

| TA: ethnicity, SA: age | TA: age, SA: ethnicity
| MAP7 EOD | EOP | DP| | MAP{ EOD | EOP | DP

Variant 1 | 70.40 £2.95 6.35£2.10 328+£1.60 690£095 | 70.70+220 725+1.12 238+0.55 8.85+1.00
Variant 2 | 71.10 £ 1.35 492 +£0.75 2.70£0.50 6.60+0.38 | 71.50 £ 1.18 7.05+0.72 2254042 8.88+0.56
Variant3 | 72.05 £1.12 4.50£0.70 2.62£0.50 635+£034 | 71.90+1.22 680+0.68 2204036 8.65+0.52
Variant4 | 70.95 £1.55 6.15+£0.82 3.18+£0.62 695+042 | 71.05+1.48 7.50+0.80 2454046 9.00=+ 0.60

DISH | 73.33 £ 091 3.66 +0.64 237045 6.10+£0.26 | 7240 £1.35 634 £0.68 2.09+0.32 8.51+0.52

Method

Effect Of Individual Loss Functions. Table [4| shows that removing all fairness-related objectives
leads to a substantial drop in both MAP and fairness metrics. Adding the disentangled consistency
loss alone yields modest MAP gains and small yet consistent reductions in disparities, as it mainly
promotes semantic concentration rather than directly suppressing sensitive leakage. Introducing
channel adversarial loss or conditional covariance regularization independently improves fairness
and also increases MAP, though the improvements are smaller and less balanced than the full model.
Combined with disentangled consistency, each component contributes complementary benefits, and
the full objective achieves the best overall trade-off between accuracy and fairness.

Comparison Of Masking Strategies. Table [5| presents a comparison between the proposed
probability-driven channel masking and several alternative masking schemes. The no-mask and
random baselines achieve reasonable MAP but exhibit higher group disparities, as they fail to lever-
age the learned factor assignment structure and therefore cannot effectively concentrate semantic
evidence. A naive 1/K uniform weighting offers marginal improvements by balancing channel con-
tributions, but it still neglects the semantic concentration property learned through disentanglement.
In contrast, our probability-driven masking adaptively emphasizes channels with higher assignment
probabilities while attenuating those with weaker semantic relevance. Importantly, this process does
not rely on target labels or sensitive attributes; instead, it exploits the intrinsic factor probabilities
to preserve discriminative semantics. As a result, DISH achieves both the highest MAP and the
lowest group disparities, demonstrating that adaptive, data-driven channel weighting is critical to
simultaneously maintaining retrieval accuracy and enhancing fairness.

Evaluation Of Model Variants. Finally, we investigate four structural variants of DISH, as shown
in Table [6] Replacing supervised disentangled consistency learning with unsupervised contrastive
learning (Variant 1) weakens semantic concentration, resulting in significantly lower MAP and un-
stable fairness. Substituting the channel-wise adversary with a single global adversary (Variant 2)
yields better results than Variant 1 but still lags behind DISH, highlighting the importance of sup-
pressing sensitive leakage at a finer granularity. Using a simple decorrelation instead of conditional
covariance regularization (Variant 3) provides modest improvements, but it lacks sensitivity-specific
conditioning and fails to achieve optimal fairness. Constraining fairness only in the Hamming space
(Variant 4) further underperforms, confirming that interventions after binarization are insufficient
due to the loss of representational flexibility. By contrast, the full DISH framework consistently
achieves a better trade-off between accuracy and fairness, validating the necessity of its disentan-
gled, multi-level suppression strategy.

Effects Of Hyperparameters. We assess three factors: ranked samples, channel count K, and loss
weights (A1, \2). For ranked list depth, we compare DISH with FATE, DFH, and CE(Figure .
For K and (A1, \2), we conduct ablations of DISH: an intermediate K and moderate loss weights
provide better fairness-utility trade-off (Figures[3]and ). Full results and details are in appendix [D]

6 CONCLUSION

We introduce DISH, a fairness-aware deep hashing framework that combines disentangled consis-
tency, probability-driven masking, channel-wise adversaries, and conditional covariance regulariza-
tion. Extensive experiments on multiple benchmarks demonstrate that DISH consistently outper-
forms existing methods, achieving state-of-the-art retrieval accuracy together with substantially im-
proved fairness. The ablation studies further validate the necessity of each component and confirm
that their integration yields a clear Pareto improvement.
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7 ETHICS STATEMENT

This research addresses a critical ethical concern in large-scale image retrieval systems: the potential
for algorithmic bias that may lead to discriminatory outcomes across demographic groups defined
by sensitive attributes such as age, gender, and ethnicity. The development and deployment of bi-
ased retrieval systems can perpetuate societal inequalities, reinforce stereotypes, and cause harm to
marginalized communities through unequal access to information and opportunities. In this work,
we explicitly acknowledge the ethical implications of biased representation learning and commit to
developing solutions that promote fairness without compromising utility. Our dataset selection and
annotation processes were conducted with careful consideration of demographic representation, en-
suring balanced coverage across sensitive attribute categories where possible. We strictly adhered to
the ethical guidelines established by the original dataset creators (UTKFace and CelebA), which in-
clude informed consent protocols for image collection and usage. Importantly, our framework DISH
actively works to disentangle and suppress sensitive information while preserving semantic utility,
thereby reducing the risk of discriminatory retrieval results. We recognize that fairness is a com-
plex, context-dependent concept, and our approach focuses on group fairness metrics (demographic
parity, equal opportunity, and equalized odds) as measurable objectives. While our method sig-
nificantly improves fairness outcomes, we acknowledge that no technical solution can fully resolve
deeply rooted societal biases, and we advocate for continued interdisciplinary collaboration between
computer scientists, social scientists, and policymakers to address these challenges holistically.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research findings, we have implemented rigorous experimental
protocols and documentation practices throughout this study. All experiments were conducted using
publicly available datasets (UTKFace and CelebA) with clearly specified preprocessing procedures,
including detailed descriptions of how target and sensitive attributes were defined and binarized for
each experimental configuration. For each experiment, we report results averaged over five inde-
pendent runs with different random seeds, presenting both mean values and standard deviations to
demonstrate statistical reliability. Our complete experimental setup including network architectures
(ResNet-50 backbone with specified modifications), optimization parameters (learning rates, batch
sizes, optimizer configurations), and hyperparameter settings (A1, Ao are explicitly documented in
the methodology section and supplementary materials. The ablation studies systematically evaluate
the contribution of each component in our framework, providing comprehensive evidence for our
design choices. To facilitate comparison with existing methods, we have reimplemented all baseline
approaches following their original publications and verified their performance against reported re-
sults where possible. We welcome replication attempts and are committed to providing support to
researchers seeking to reproduce or build upon our work.
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A THE USE OF LARGE LANGUAGE MODELS

We used a large language model-based assistant solely for linguistic polishing (e.g., grammar, style,
clarity, and minor LaTeX formatting). All technical content, including problem formulation, algo-
rithms, analyses, and conclusions, was conceived and verified by the authors. All references were
selected and checked by the authors. Outputs from the assistant were reviewed and edited for accu-
racy; any remaining errors are the authors’ responsibility.

B ALGORITHM PROCEDURE

Algorithm 1 Algorithm procedure of DISH

Input: Dataset D = {I;,y;, s; }}*, code length L, channel number K, weights (A1, \2)
Output: Encoder & prototypes 6 (incl. {ck.},[f:l), hash head 7, channel discriminators ¥ =
{¢r }_,, semantic anchors {z.}<_,

1: Init: Randomly initialize § (encoder and prototypes {cy}), hash head f,, and discriminators

{Dy, H< |; set anchors {z.} by Rademacher.

2: Main training

3: fore =1to E do

4:  for minibatches B C D do

5: Augment: For each I; € B, sample 1.
6: Encode: x; 1.x, x;,l:K < encoder 6.
7
8

Factor assignments: py(k|x;) by Eq. equation ]
: DCL: compute per-factor ¢; , and go(k|x;,y;) by Eqgs. get Lpcr, by Eq.
9: Masking: m; = [pg(k\xi)]é{:l and X; = x; ®, m; by Eqgs.

10: Channel adversary: for each k, predict Dy, (X; ;) and compute Lcar, by Eq.
11: Conditional covariance: compute Lccr on {X;  } grouped by s; via Eq.

12: Semantic alignment: u; = f,(X;); compute Lga by Eq.

13: Joint objective (saddle point): L = Lpcr, — A1 LoaL + A2 Loor + Lsa (Eq.
14: Update ¥: minimize Lcoar, W.r.t. {¢; } (standard gradient).

15: Update 6,7, {z.}: minimize £ (GRL implements the “—\; Lca1,” effect on 6).
16:  end for

17: end for

18: Inference: given I, compute X and u = f,(X); output b = sign(u).

C BASELINES

To validate the effectiveness of our method, we conduct comprehensive comparisons with state-
of-the-art deep hashing approaches. The selected baselines include: OrthoHash (Hoe et al., |2021),
Bihalf (Li & van Gemert, [2021)), CE (Li et al.,2017), CSQ (Yuan et al.,2020)), DFH (Li et al., 2019)),
DPSH (L1 et al., 2015) , DTSH (Wang et al., 2017) , GreedyHash (Su et al., 2018), SDH-C (Shen
etal.l[2015) , DLBD (Xiao et al.,|2023), MDSHC (Wang et al.,|2023)) and FATE (Zhang et al.,{2024)).

D PARAMETER SENSITIVITY ANALYSIS

We study the sensitivity of DISH to three factors: the number of ranked samples, the channel count
K, and the loss weights A; (channel adversary) and )\, (conditional covariance). Varying the list
depth shows that DISH sustains its fairness advantages over competitive baselines (FATE, DFH, CE)
across a wide range of ranked samples without compromising retrieval accuracy, and the relative
ordering among methods remains stable (Figure [2). Adjusting K yields a robust U-shaped trend
(Figure [3): too few channels under-disentangle factors, while too many fragment semantics and
weaken masking/regularization; an intermediate K delivers the best fairness—utility balance across
code lengths. The (A1, A2) landscape (Figure shows a similar concavity: a moderate-to-strong \;
paired with a moderate Ao forms a stable ridge that maximizes the Pareto frontier.
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Figure 2: Sensitivity analysis of ranked samples with code lengths 128 on UTKFace. Target At-
tribute: age , Sensitive Attribute: ethnicity.
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Figure 3: Sensitivity analysis of channel number K with code lengths 128 on UTKFace. Target
Attribute: ethnicity, Sensitive Attribute: age.
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Figure 4: Sensitivity analysis of A\; and Ay, with code lengths 128 on UTKFace. Target Attribute:
ethnicity, Sensitive Attribute: age.
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E IMPLEMENTATION DETAILS

All experiments were conducted on a single NVIDIA RTX 4090 GPU (24 GB) and, unless other-
wise noted, each configuration was trained for 100 epochs. To ensure strict comparability, DISH and
all baselines use the same ResNet-50 backbone with identical input resolution, normalization, and
augmentation; only method-specific heads and loss terms differ. Data splits and the query/gallery
partitions are fixed and reused across methods. For each dataset and configuration, we run five inde-
pendent trials and report mean =+ std. Within each dataset, all methods share the same training recipe
(batch size, optimizer, learning-rate schedule, weight decay, and augmentation pipeline). We control
randomness with an identical set of random seeds for every method and trial, applied consistently to
Python, NumPy, and PyTorch (including dataloader workers and CUDA determinism);
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