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Abstract: Bird’s eye view (BEV) semantic segmentation plays a crucial role
in spatial sensing for autonomous driving. Although recent literature has made
significant progress on BEV map understanding, they are all based on single-
agent camera-based systems. These solutions sometimes have difficulty handling
occlusions or detecting distant objects in complex traffic scenes. Vehicle-to-
Vehicle (V2V) communication technologies have enabled autonomous vehicles
to share sensing information, dramatically improving the perception performance
and range compared to single-agent systems. In this paper, we propose CoBEVT,
the first generic multi-agent multi-camera perception framework that can cooper-
atively generate BEV map predictions. To efficiently fuse camera features from
multi-view and multi-agent data in an underlying Transformer architecture, we
design a fused axial attention module (FAX), which captures sparsely local and
global spatial interactions across views and agents. The extensive experiments on
the V2V perception dataset, OPV2V, demonstrate that CoBEVT achieves state-
of-the-art performance for cooperative BEV semantic segmentation. Moreover,
CoBEVT is shown to be generalizable to other tasks, including 1) BEV segmen-
tation with single-agent multi-camera and 2) 3D object detection with multi-agent
LiDAR systems, achieving state-of-the-art performance with real-time inference
speed. The code is available at https://github.com/DerrickXuNu/CoBEVT.

Keywords: Autonomous driving, BEV map understanding, Vehicle-to-Vehicle
(V2V) application

1 Introduction

Autonomous vehicles (AVs) need accurate surrounding perception and robust online mapping capa-
bilities for robust and safe autonomy [1]. AVs are normally located on the ground plane, so it is nat-
ural to represent semantic and geometric information of surroundings in the bird’s eye view (BEV)
maps. Projecting multi-camera views onto the holistic BEV space brings clear strengths in preserv-
ing the location and scale of road elements both spatially and temporally, which is critical for various
autonomous driving tasks, including scene understanding and planning [2, 3]. It also presents a scal-
able vision-based solution for real-world deployment without relying on costly LiDAR sensors.

Map-view (or BEV) semantic segmentation is a fundamental task that aims to predict road segments
from single- or multi-calibrated camera inputs. Significant efforts have been made toward precise
camera-based BEV semantic segmentation. One of the most popular techniques is to leverage depth
information to infer the correspondences between camera views and the canonical maps [4, 5, 6, 7].
Another family of works directly learns the camera-to-BEV space transformation, either implicitly
or explicitly, using attention-based models [3, 8, 9, 10]. Despite the promising results, vision-based
perception systems have intrinsic limitations – camera sensors are known to be sensitive to object
occlusions and limited depth-of-field, which can lead to inferior performance in areas that are heavily
occluded or far from the camera lens [3, 11].

Recent advancements in Vehicle-to-Vehicle (V2V) communication technologies have made it pos-
sible to overcome the limitations of single-agent line-of-sight sensing. That is, multiple connected
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Figure 1: The overall framework of CoBEVT.

AVs can share their sensory information with each other through broadcasting, thereby providing
multiple viewpoints of the same scene. Several prior works have demonstrated the efficacy of coop-
erative perception utilizing LiDAR sensors [12, 13, 14, 15]. Nevertheless, whether, when, and how
this V2V cooperation can benefit camera-based perception systems has not been explored yet.

In this paper, we present CoBEVT, the first-of-its-kind framework that employs multi-agent multi-
camera sensors to generate BEV segmented maps via sparse vision transformers cooperatively.
Fig. 1 illustrates the proposed framework. Each AV computes its own BEV representation from
its camera rigs with the SinBEVT Transformer and then transmits it to others after compression.
The receiver (i.e. other AVs) transforms the received BEV features onto its coordinate system,
and employs the proposed FuseBEVT for BEV-level aggregation. The core ingredient of these
two transformers is a novel fused axial attention (FAX) module, which can search over the whole
BEV or camera image space across all agents or camera views via local and global spatial sparsity.
FAX contains global attention to model long-distance dependencies, and local attention to aggregate
regional detailed features, with low computational complexity. Our extensive experiments on the
V2V perception dataset [12] show that CoBEVT achieves performance gains of 22.7% and 6.9%
over single-agent baseline and leading multi-agent fusion models, respectively.

Furthermore, we demonstrate the generalizability of the proposed framework in two additional tasks.
First, we evaluate SinBEVT alone for single-agent multi-view BEV segmentation. Second, we
validate the attention fusion on a different sensor modality – multi-agent LiDAR fusion. Our ex-
periments on the nuScenes dataset [16] and the LiDAR-track of OPV2V [12] show that CoBEVT
exhibits outstanding performance and capably generalize to many other tasks. Our contributions are:

• We present the generic Transformer framework (CoBEVT) for cooperative camera-based
BEV semantic segmentation. CoBEVT delivers superior performance and flexibility,
achieving state-of-the-art results on multi-agent camera-based, single-vehicle multi-view
BEV semantic segmentation, and multi-agent LiDAR-based 3D detection.

• We propose a novel sparse attention module called fused axial (FAX) attention, which can
efficiently capture both local and global relationships between different agents or cameras.
We build two instantiations – self-attention (FAX-SA) and cross-attention (FAX-CA) to
accommodate different application scenarios.

• We construct a large-scale benchmark study on the cooperative BEV map segmentation
task with a total of eight strong baseline models. Extensive experimental results and abla-
tion studies show the strong performance and efficiency of the proposed model. All code,
baselines, and pre-trained models will be released.
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2 Related Work

2.1 V2V Perception

V2V perception leverages communication technologies to enable AVs to share their sensing in-
formation to enhance the perception. Previous works mainly focus on cooperative 3D object de-
tection with LiDAR. A straightforward sharing strategy is to transmit raw point cloud (i.e. early
fusion) [17, 18] or detection outputs (i.e. late fusion) [19]. However, they either require a large
bandwidth or ignore the context information. Recently, V2VNet [20] proposes to circulate the in-
termediate features extracted from 3D backbones (i.e. intermediate fusion), then utilize a spatial-
aware graph neural network for multi-agent feature aggregation. Following a similar transmission
paradigm, OPV2V [12] employs a simple agent-wise single-head attention to fuse all features. F-
Cooper [21] uses a simple maxout operation to fuse features. DiscoNet [14] explores knowledge
distillation by constraining intermediate feature maps to match the correspondences in the early-
fusion teacher model.

2.2 BEV Semantic Segmentation

BEV semantic segmentation aims to take camera views as input and predict a rasterized map with
surrounding semantics under the BEV view. A common approach for this task is to use inverse per-
spective mapping (IPM) [22] to learn the homography matrix for view transformation [23, 24, 25].
As camera images lack explicit 3D information, another family of models includes depth estimation
to inject auxiliary 3D information [4, 5, 2, 26]. Recently, researchers start to directly model the
image-to-map correspondence using transformers or MLPs. VPN [27] learns map-view transforma-
tion in a spatial MLP module on flattened camera-view image features. CVT [3] develops positional
embedding for each individual camera depending on their intrinsic and extrinsic calibrations. BEV-
Former [8] exploits the camera intrinsic and extrinsic explicitly to compute the spatial features in
the regions of interest of the BEV grid across camera views using deformable transformer [28].

2.3 Transformers in Vision

Transformers are originally proposed for natural language processing [29]. ViT [30] has demon-
strated for the first time that, a pure Transformer that simply regards image patches as visual words,
is sufficient for vision tasks by large-scale pre-training. Swin Transformer [31] further improves
the generality and flexibility of pure Transformers via restricting attention fields in local (shifted)
windows. For high dimensional data, video Swin Transformer [32] extends the Swin approach
onto shifted 3D space-time windows, achieving high performance with low complexity. Recent
works have been focused on improving the architectures of attention models, including sparse atten-
tion [33, 34, 35, 36, 37, 38, 39], enlarged receptive fields [40, 41], pyramidal designs [42, 43, 44],
efficient alternatives [45, 46, 47], etc.

3 Methodology

We consider a V2V communication system where all AVs can exchange sensing information with
others. Assuming the poses of all the agents are accurate and transmitted messages are synchronized,
we propose a robust cooperative framework that can exploit the shared information across multiple
agents to obtain a holistic BEV segmentation map. The overall architecture of CoBEVT is illustrated
in Fig. 1, which consists of: SinBEVT for BEV feature computation (Sec. 3.2), feature compres-
sion and sharing (Sec. 3.3), and FuseBEVT for multi-agent BEV fusion (Sec. 3.3). We propose a
novel 3D attention mechanism called fused axial attention (FAX, Sec. 3.1) as the core component of
SinBEVT and FuseBEVT that can efficiently aggregate features across agents or camera views both
locally and globally. We will later show that this FAX attention has great generality, showing effi-
cacy on different modalities for multiple perception tasks, including cooperative/single-agent BEV
segmentation based on multi-view cameras and cooperative 3D LiDAR object detection.

3.1 Fused Axial Attention (FAX)

Fusing BEV features from multiple agents requires both local and global interactions across all
agents’ spatial positions. On the one hand, neighboring AVs often have different occlusion levels
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(a) 3D FAX attention for multi-agent BEV fusion. (b) 3D FAX attention for multi-view fusion.

Figure 2: Illustrated examples of fused axial attention (FAX) in two use cases – (a) multi-agent
BEV fusion and (b) multi-view camera fusion. FAX attends to both 3D local windows (red)
and sparse global tokens (blue) to attain location-wise and contextual-aware aggregation. In (b),
for example, the white van is torn apart in three views (front-right, back, and back-left), our sparse
global attention can capture long-distance relationships across parts in different views to attain global
contextual understanding.

on the same object; hence, local attention, which cares more about details, can help construct pixel-
to-pixel correspondence on that object. Take the scene in Fig. 2(a) as an example. The ego vehicle
should aggregate all the BEV features per location from nearby AVs to obtain reliable estimates.
On the other hand, long-term global contextual awareness can also assist in understanding the road
topological semantics or traffic states – the road topology and traffic density ahead of the vehicle are
often highly correlated with the one behind. This global reasoning is also beneficial for multi-camera
views understanding. In Fig. 2(b), for instance, the same vehicle is torn apart into multi-views, and
global attention is highly capable of connecting them for semantic reasoning.

To attain such local-global properties efficiently, we propose a sparse 3D attention model called
fused axial attention (FAX), which performs both local window-based attention and sparse global
interactions, inspired by [32, 48, 49]. Formally, let X ∈ RN×H×W×C be the stacked BEV features
with spatial dimension H ×W from N agents. In the local branch, we partition the feature map
into 3D non-overlapping windows, each of size N × P × P . The partitioned tensor of shape (HP ×
W
P , N × P 2, C) is then fed into the self-attention model, representing mixing information along the
second axis i.e., within local 3D windows [32]. Likewise, in the global branch, feature X is divided
using a uniform 3D grid N×G×G into the shape (N ×G2, HG×

W
G , C). Employing attention on the

first axis of this tensor representing attending to sparsely sampled tokens [48, 49]. Fig. 2 illustrates
the attended regions using red and blue colored boxes for local and global branches, respectively.

Combining this 3D local and global attention with typical designs of Transformers [30, 31, 32],
including Layer Normalization (LN) [50], MLPs [30], and skip-connections, forms our proposed
FAX attention block, as shown in Fig. 3b. Our 3D FAX attention only requires O(2(NP )2HWC)
complexity assuming P ∼ G (typically N <= 5, P,G ∈ {8, 16}), significantly cheaper than
the full attention O((NHW )2C). Still, it enjoys non-local 3D interactions by seeing through all
the agents, which is more expressive than local attention approaches [31, 32]. The 3D FAX self-
attention (FAX-SA) block can be expressed as:

ẑ` = 3DL-Attn(LN(z`−1)) + z`−1, z` = MLP(LN(ẑ`)) + ẑ`, (1)

ẑ`+1 = 3DG-Attn(LN(z`)) + z`, z`+1 = MLP(LN(ẑ`)) + ẑ`, (2)

where ẑ` and z` denote the output features of the 3DL(G)-Attn module and MLP module for block `.
The 3DL-Attn and 3DG-Attn represent the above-defined 3D local and global attention, respectively.

3.2 SinBEVT for Single-agent BEV Feature Computation

Given monocular views from m cameras on the i-th agent (Iik,K
i
k, R

i
k, t

i
k)
m
k=1 denoting input im-

ages Ik ∈ Rh×w×3, camera intrinsic Kk ∈ R3×3, rotation extrinsic Rk ∈ R3×3, and translation
tk ∈ R3, every agent needs to compute a BEV feature representation Fi ∈ RH×W×C (height H ,
width W , and channels C) before any cross-agent collaboration. Fi can be either fed into a decoder
to perform single-agent predictions or shared to the ego vehicle for multi-agent feature fusion.

We take a BEV processing architecture similar to CVT [3], wherein a learnable BEV embedding is
initialized as the query to interact with encoded multi-view camera features, as shown in Fig. 3a. We
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Figure 3: Architectures of (a) SinBEVT and FuseBEVT, and (b) the FAX-SA and FAX-CA block.

have observed that CVT uses a low-resolution BEV query that fully cross-attends to image features,
which leads to degraded performance on small objects, despite being efficient. Thus, CoBEVT
learns a high-resolution BEV embedding instead, then uses a hierarchical structure to refine the
BEV features with reduced resolution. To efficiently query features from camera encoders at high
resolution, the FAX-SA module is further extended to build a FAX cross-attention (FAX-CA) mod-
ule (Fig. 3b), in which the query vector is obtained using the BEV embedding, whereas the key/value
vectors are projected by multi-view camera features. Before applying cross-attention, we add a
camera-aware positional encoding derived from camera intrinsics and extrinsics, to learn implicit
geometric reasoning from individual camera views to a canonical map-view representation, follow-
ing CVT. This rather simple, implicit approach demonstrates a good balance of performance and
efficiency, and our FAX attention allows for global interactions in a hierarchical network, showing
better accuracy against low-resolution isotropic approaches such as CVT.

3.3 FuseBEVT for Multi-agent BEV Feature Fusion

Feature Compression and Sharing. Transmission data size is critical to V2V applications, as large
bandwidth requirements will likely cause severe communication delays. Therefore, it is necessary
to compress the BEV features before broadcasting. Similar to [13, 14], we apply a simple 1x1
convolutional auto-encoder [51] to compress and decompress the BEV features. Once receiving the
broadcasted messages that contain intermediate BEV representations, and the pose of the sender,
the ego vehicle applies a differentiable spatial transformation operator Γξ, to geometrically warp the
received features [52] onto the ego’s coordinate system: Hi = Γξ (Fi) ∈ RH×W×C .

Feature Fusion. We design a customized 3D vision Transformer called FuseBEVT that can atten-
tively fuse information of the received BEV features from multiple agents. The ego vehicle first
stacks the received and projected BEV features Hi, i = 1, ..., N into a high dimensional tensor
h ∈ RN×H×W×C , then feeds them into the FuseBEVT encoder which consists of multiple layers
of FAX-SA blocks (Fig. 3a). Benefiting from the linear complexity of FAX attention (Sec. 3.1), this
agent-wise fusion Transformer is also efficient. Each FAX-SA block conducts a 3D global and local
BEV feature transformation via Eqs. 1-2. As exemplified in Fig. 2(a), the 3D FAX-SA can attend to
the same region of estimations (red boxes) drawn from multiple agents to derive the final aggregated
representations. Moreover, the sparsely sampled tokens (blue boxes) can interact globally to attain
a contextual understanding of the map semantics such as road, traffic, etc.

Decoder. We apply a series of lightweight convolutional layers and bi-linear upsampling operations
on the aggregated BEV representation and generate the final segmentation output.

4 Experiments

We evaluate the effectiveness of the proposed CoBEVT on the camera track of the V2V percep-
tion dataset OPV2V [12]. To show the flexibility and generality of our CoBEVT, we also conduct
experiments on the LiDAR track of OPV2V and the autonomous driving dataset nuScenes [16].
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Table 1: Map-view segmenta-
tion on OPV2V camera-track.
We report IoU for all classes. All
fusion methods employs CVT [3]
backbone, except for CoBEVT
which uses SinBEVT backbone.

Method Veh. Dr.Area Lane

No Fusion 37.7 57.8 43.7
Map Fusion 45.1 60.0 44.1
F-Cooper [21] 52.5 60.4 46.5
AttFuse [12] 51.9 60.5 46.2
V2VNet [20] 53.5 60.2 47.5
DiscoNet [14] 52.9 60.7 45.8
FuseBEVT 59.0 62.1 49.2
CoBEVT 60.4 63.0 53.0

Table 2: 3D detection results
on the OPV2V LiDAR-track.
All methods employ PointPil-
lar [61] backbone. (C) de-
notes using 64× feature com-
pression.

Method AP0.7 AP0.7(C)

No Fusion 60.2 60.2
Late Fusion 78.1 78.1
Early Fusion 80.0 -
F-Cooper 79.0 78.8
AttFuse 81.5 81.0
V2VNet 82.2 81.4
DiscoNet 83.6 83.1
FuseBEVT 85.2 84.9

Table 3: Vehicle map-view
segmentation on nuScenes.
All models use only a sin-
gle time-stamp. ∗ denotes
our reproduced result with
EfficientNet-b4 backbone.

Method Veh. Par(M) FPS

VPN* [27] 29.3 4. 31
OFT [59] 30.1 - -
Lift-Splat 32.1 14 25
FIERY [4] 35.8 7 8
CVT [3] 36.0 1.2 35
SinBEVT 37.1 1.6 35

4.1 Datasets and Evaluations

OPV2V is a large-scale V2V perception dataset that is collected in CARLA [53] and the cooperative
driving automation tool OpenCDA [54]. It contains 73 diverse scenarios, which have an average of
25 seconds duration. In each scenario, various numbers (2 to 7) of AVs show up simultaneously, and
each one is equipped with one LiDAR sensor and 4 cameras towards different directions to cover
360° horizontal field-of-view. Our main experiment only utilizes the camera rigs of the dataset, and
we use Intersection over Union (IoU) between map prediction and ground truth map-view labels as
the performance metric. Since OPV2V has multiple AVs in the same scene, we select a fixed one as
the ego vehicle during testing and evaluate 100m×100m area around it with a 39cm map resolution.

To demonstrate its generality, we also evaluated our proposed CoBEVT on the OPV2V LiDAR-track
3D detection task. We use the same evaluation range in [12, 55], and the detection performance is
measured by Average Precisions (AP) at an IoU threshold of 0.7. For both camera and LiDAR track,
there are 6764/1981/2719 frames for train/validation/test set, respectively.

The nuScenes dataset contains 1000 diverse scenes, each of around 20 seconds long. In total, there
are 40K sampled frames in this dataset, and the dumped data captures a 360◦ view of surroundings
using 6 cameras. We use the groundtruth in [3]. The evaluation ranges are [-50m, 50m] for the X
and Y axis, and the resolution of the BEV grid is 0.5m.

4.2 Experiments Setup

Implementation details. We assume all the AVs have a 70m communication range following [20],
and all the vehicles out of this broadcasting radius of ego vehicle will not have any collaboration.
For the OPV2V camera-track,we choose ResNet34 [56] as the image feature extractor in SinBEVT.
The transmitted BEV intermediate representation has a resolution of 32× 32× 128. For the multi-
agent fusion, our FuseBEVT component has 3 encoded layers and a window size of 8 for both local
and global attention. We train the whole model end-to-end with Adam [57] optimizer and cosine
annealing learning rate scheduler [58]. We use weighted cross entropy loss and train all models with
60 epochs, with a batch size of 1 per GPU. Please refer to the supplementary materials for more
details, as well as the configurations on nuScenes and OPV2V LiDAR-track.

Compared methods. For multi-agent perception task, we consider single-agent perception system
No Fusion as the baseline. We compare with the state-of-the-art multi-agent perception algorithms:
F-Cooper [21], AttFuse [12], V2VNet [20], and DiscoNet [14]. We also implement a straightforward
fusion strategy Map Fusion, which transmits the segmentation map instead of BEV features and
fuses all maps by selecting the closest agent’s prediction for each pixel.

For the nuScenes dataset, we compare against state-of-the-art models including CVT [3], FIERY [4],
View Parsing Network (VPN) [27], Orthographic Feature Transform (OFT) [59], and Lift-Splat-
Shoot [5]. All models only utilize single-step timestamp data for fair comparisons. We intentionally
use the same image feature extractor Efficient-B4 [60] and decoder as CVT and FIERY.
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(a) ego (b) av1 (c) av2 (d) groundtruth (e) prediction
Figure 4: Qualitative results of CoBEVT. From left to right: the front camera image of (a) ego, (b)
av1, (c) av2, (d) groundtruth and (e) prediction. The green bounding boxes represent ego vehicle,
while the white boxes denote the segmented vehicles. CoBEVT demonstrates robust performance
under various traffic situations and road types.

4.3 Quantitative Evaluation

OPV2V camera-track results. To make a fair comparison, we first employ CVT [3] to extract the
BEV feature from camera rigs for all methods and only use the fusion component (i.e. FuseBEVT)
of CoBEVT to compare with other fusion models. Then we compare it with our complete CoBEVT
to show the effectiveness of SinBEVT as well. As shown in Tab. 1, all cooperative methods perform
better than No Fusion, which proves the benefits from multi-agent perception system. Among all
fusion models, our FuseBEVT achieves the best IoU for all classes, outperforming the second-best
method by 5.5%, 1.4%, and 3.4% on vehicle, drivable area, and lane, respectively. More importantly,
by replacing the CVT with our SinBEVT for feature extraction, our CoBEVT can further increase
the accuracy by 1.4%, 0.9%, and 3.8% on the three classes compared to using FuseBEVT only.

OPV2V LiDAR-track results. As Tab. 2 reveals, our FuseBEVT also has the best performance
on the LiDAR-track task, which improves the single-agent system by 25.0% and outperforms the
leading algorithm DiscoNet by 1.7%. Furthermore, our method exhibits great robustness against
LiDAR feature compression, with only a 0.3% drop with the 64× compression rate.

Table 4: Compression ef-
fect on OPV2V Camera.

CPR-rate Size (KB) IoU
0x 524 60.4
8x 66 60.1
16x 33 58.9
32x 16 56.2
64x 8 54.8

nuScenes vehicle map-view segmentation. Our SinBEVT can run
35 FPS on RTX2080 with 37.1 IoU score and 1.6 M parameters,
achieving the best accuracy with real-time performance. Compared
to the SOTA method CVT, we are 1.1% higher with similar parame-
ters and latency.

Effect of compression rate. Data transmission size is a critical factor
in V2V applications. Here we study the effect of different compres-
sion rates on our CoBEVT by adjusting the 1× 1 convolution. Tab. 4
shows that CoBEVT is insensitive to compression, and it can still beat other fusion methods even
with a large compression rate of 64.

4.4 Qualitative Analysis

Fig. 4 shows the qualitative results of CoBEVT on scenes containing 3 AVs. In each row, we draw
the front camera image of each AV along with the ground truth and prediction pairs. Our framework
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Figure 5: Ablation studies. (a) IoU vs. number of dropped cameras (b) IoU vs. number of agents.
(c) FPS vs. number of agents. The channel dimension of BEV feature map is fixed as 128 for (c).

can overcome most of the occlusions and perceive distant objects accurately, benefiting from our
Transformer design that learns from all agents and views.

4.5 Ablation Study

Table 5: Component ablation.
Local Global Veh./Dr.Area/Lane

52.6/57.9/42.0
3 57.8/61.5/49.2

3 57.9/60.8/48.6
3 3 60.4/ 63.0 /53.0

Component analysis. Tab. 5 shows the importance of local and
global attention. Both attention blocks significantly contribute to
the final performance.

Robustness to camera dropout. Sensor failure during driving
can lead to fatal accidents. Therefore, here we investigate how
well our CoBEVT handles it. We random drop n ∈ [1, 4] cam-
eras of the ego vehicle, and demonstrate the performance de-
crease for both SinBEVT (no collaboration) and CoBEVT in Fig. 5a. It can be seen that by intro-
ducing sensing cooperation, driving safety can be significantly improved, as even if all ego cameras
break down, CoBEVT can still reach an IoU score of 44.3.

Number of agents. Here we study the influence brought by the number of collaborators on
CoBEVT. As Fig. 5b describes, increasing the collaborators can generally bring performance im-
provement, whereas such gain will be marginal when the agent number is greater than 4.

Inference speed of FuseBEVT. Real-time multi-agent feature fusion is critical for real-world de-
ployment. Here we examine the inference speed of FuseBEVT with different BEV feature map
spatial resolution (from 16 to 64) and the number of agents on RTX3090. Fig. 5c shows that our
fusion algorithm can achieve real-time performance under distinct collaboration scenarios.

5 Conclusion and Limitations

In this paper, we propose a holistic vision Transformer dubbed CoBEVT for multi-view cooperative
semantic segmentation. We propose a fused axial attention (FAX) mechanism that allows for local
and global interactions across all views and agents. Extensive experiments on both simulated and
real-world datasets show that CoBEVT achieves superior performance on BEV segmentation.

Limitations. The proposed approach does not explicitly model realistic V2V challenges such as
asynchronization and position errors, which may impair its robustness under these noises. Address-
ing these limitations needs future research on real-world, realistic, and diverse cooperative datasets
and benchmarks.
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