

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 H2IL-MBOM: A HIERARCHICAL WORLD MODEL INTEGRATING INTENT AND LATENT STRATEGY FOR OPPONENT MODELING IN MULTI-UAV GAME

Anonymous authors

Paper under double-blind review

ABSTRACT

In mixed cooperative-competitive multi-agent settings, uncertain decisions create non-stationary learning and mutual security threats. Existing opponent modeling methods typically require access to opponents' private information (observations, actions, goals, policy parameters or rewards) or rely solely on local historical observations, neglecting the intrinsic dynamics between mental states and trajectories. Inspired by human hierarchical reasoning, we propose a hierarchical world model that recursively infers opponents' intentions from their historical trajectories and reasons about their latent strategies from teammates' responses, without needing opponents' private information. Coupled with our Mutual Self-Observed Adversary Reasoning PPO (MSOAR-PPO) algorithm, it establishes a co-adaptation loop between the world model and policy. Evaluations demonstrate that our method outperforms all model-free, model-based, and opponent modeling baselines in multi-UAV games, achieving higher rewards and faster convergence while scaling robustly to 10v10 settings with improved win/survival rates. Its ability to reason about complex opponent behaviors is confirmed by cumulative error analysis and t-SNE visualizations. Superior performance generalizes to StarCraft and Google Research Football benchmarks. Videos are provided in supplemental materials.

1 INTRODUCTION

In multi-agent environments, agents interact and learn concurrently, leading to diverse state transitions and mental dynamics, and creating non-stationary dynamics that complicate policy learning. **This challenge is particularly acute in mixed-motive games, where the fundamental tension between cooperation and competition directly amplifies the non-stationarity and strategic uncertainty.** This tension requires agents to cooperate with allies while simultaneously facing opposition from adversaries. In such settings, unknown and evolving opponent policies not only hinder policy improvement but also jeopardize ally safety and curtail overall performance. Therefore, **for effective decision-making in mixed-motive scenarios, it is crucial to move beyond modeling allies and instead develop a sophisticated capacity to model opponent behavior and reason about their mental states**, which is essential for ensuring operational safety and achieving strategic supremacy.

Opponent modeling and intent reasoning are central to Theory of Mind (ToM), enabling agents to infer opponents' preferences, goals, beliefs, and strategies. The cognitive foundations of this capability are well-established: developmental psychology shows that even infants distinguish between enduring goals and situational actions, recognizing that intentions remain stable while strategies adapt contextually Gergely & Csibra (1997). Neuroscientific evidence further supports this dissociation, revealing distinct encodings for high-level goals in prefrontal regions and action execution in inferior frontoparietal circuits De C. Hamilton & Grafton (2008). Computationally, humans engage in hierarchical causal reasoning, first inferring others' goals and then deriving the specific action plans employed to achieve them Baker et al. (2017).

Existing computational approaches to opponent modeling fall into two categories. Some methods reconstruct policy beliefs from known behaviors, while others extrapolate strategies directly from local observations. However, the former relies on unrealistic assumptions about opponent transparency, while the latter often fails to capture the causal interactions among intentions, strategies, and actions.

054 Critically, both are ill-suited for the stochastic and dynamic interest alignments that characterize
 055 mixed-motive games. Specifically, they do not explain how intentions shape strategies, how agents
 056 should react to these inferences, or how mental states co-evolve and influence future trajectories.
 057 This lack of continuous reasoning about evolving intentions and strategies is a primary bottleneck for
 058 robust performance in mixed-motive environments.

059 Developing a human-like opponent model or intent reasoning model inevitably presents challenges.
 060 Maintaining a multi-hypothesis intention and strategy for opponents with advanced cognitive abilities
 061 in dynamic and complex competitive-cooperative scenarios, adapting to a variable number of adver-
 062 saries with changing intentions, and dealing with the resulting uncertainty in strategy estimation are
 063 necessary.

064 **Motivations, Core idea and Contributions:** To address these challenges and bridge the gap in
 065 opponent modeling without relying on private information from the opponents, drawing inspiration
 066 from the brain’s hierarchical information processing and recursive reasoning mechanisms, we intro-
 067 duce a Hierarchical Interactive Intent-Latent-Strategy-Aware World Model-Based Opponent Model
 068 (H2IL-MBOM), in which a Hypernetwork-based Hierarchical Dynamic Dependence Transformer
 069 State Space Model (HyperHD2TSSM), along with a Mutual Self-Observed Adversary Reasoning
 070 PPO (MSOAR-PPO) for real-time reasoning about opponents’ multi-intentions and latent strategies,
 071 all without accessing any private information.

072 In the HyperHD2TSSM, we introduce a hierarchical mental model and action-conditioned transition
 073 models that formalize the interactions between the opponent’s intentions and the team’s actions
 074 in the opponent’s trajectory transitions, as well as the interactions between the opponent’s latent
 075 strategies and the team’s actions in the allied agents’ trajectory transitions. Specifically, we propose
 076 a hierarchical opponent modeling framework, HyperHD2TSSM, comprising three components: 1) High-level Dynamic Intent-aware Representation Fusion (HDIRF): High-level History Transformer
 077 Encoder (H2TE) + Multi-Intention Transformer Decoder (MITD) employs cross-attention and fusion
 078 to aggregate a consensus from teammate inferences, inferring multi-intention queries directly from
 079 opponents’ past trajectories. 2) Low-level Dynamic Latent-Strategy-aware Representation Fusion
 080 (LDLRF): Inspired by our team’s reactions serving as a mirror to opponent strategies, Low-level
 081 History Transformer Encoder (LHTE) + Multi-Latent-Strategy Transformer Decoder (MLTD) utilizes
 082 the same mechanism to predict latent strategy queries based on estimated intentions and historical
 083 responses. 3) Interactive Hypernetwork-based Joint Latent Gated Transformer (HJLGT): This
 084 transition model interactively infers the future mental states of opponents and reconstructs the
 085 trajectories of both opponents and cooperative agents. This design embodies the core philosophy of
 086 “inferring intentions from opponents’ historical trajectories while understanding latent strategies from
 087 teammate responses,” implementing a brain-inspired hierarchical recursive architecture that enables
 088 interactive modeling and interactive reasoning of co-evolving mental states and trajectories.

089 Our contributions are six-fold: 1) We propose a hierarchical world model that interactively infers
 090 multi-intentions, latent strategies, and trajectories of all agents without using opponents’ private
 091 information. 2) We design HyperHD2TSSM, which compresses history into latent weights via a hyper-
 092 network and supports interactive prediction of future mental states for all agents without increasing
 093 parameters 3) Our method enables any-time-step updates, facilitating parallel training, reducing
 094 computational overhead and cumulative error, and offering flexible temporal modeling. 4) We build
 095 a hierarchical architecture to model intent-strategy interactions without predefined candidates, and
 096 incorporate a hyper-network for individualized reasoning along with the cross-attention consensus
 097 mechanism for collaborative and adaptive inference. 5) By integrating MSOAR-PPO with H2IL-
 098 MBOM, our agents perform real-time adversarial reasoning from self-observation and adapt rapidly
 099 to opponent changes. 6) To the best of my knowledge, this is the first work to build world models for
 100 opponent modeling in intense adversarial environments, advancing the development of world models,
 101 opponent modeling techniques, and multi-agent adversarial decision-making.

102 2 RELATED WORK

103 **Opponent modeling.** Opponent modeling aims to infer an opponent’s mental states, such as goals,
 104 actions, and intentions, to address non-stationarity and gain an advantage in dynamic environments.
 105 Existing methods like DPN-BPR+ Zheng et al. (2018) and ToMoP Yang et al. (2018) struggled
 106 with continuously evolving opponents. Approaches like RFM Tacchetti et al. (2018), P-BIT Tian

et al. (2020), ROMMEO Tian et al. (2019), TOM Rabinowitz et al. (2018), GSCU Fu et al. (2022), CSP Wu et al. (2023a), OMIS Jing et al. (2024) and Yu et al. (2022b); Zhang et al. (2021) utilized opponents' private information, such as their actions, policy parameters or rewards, as labels to learn and infer their goals, beliefs or strategy representation. PR2 Wen et al. (2019) and GR2 Wen et al. (2021) focused on probabilistic inference but don't simultaneously learn agent policies. GrAMMI Ye et al. (2023) applied multi-hypothesis beliefs and mutual information theory to predict opponent behaviors but misses time-varying dynamics. Although Busch Busch et al. (2022), Wu et al. (2023b) and Shi et al. (2022) used gaussian model, and graph attention or transformer based VAE to predict adversaries' incentive, intents or trajectories, they neglected underlying environmental dynamics and mutual influence between them. In contrast, our method infers multi-evolving opponents' intentions and latent strategies from historical and current observations, without requiring private information, and accounts for the opponent's same reasoning ability.

World Model. Current single-agent world models include like MBPO Kaiser et al. (2019), DreamerV1-V3 Hafner et al. (2019a; 2020; 2023) based on RSSM Hafner et al. (2019b), TSS-M developed by Chen et al. (2022), and graphical state space model (GSSM) developed by Wang & Van Hoof (2022). Some extend single-agent models to multi-agent models, categorized as centralized Willemsen et al. (2021) or decentralized Xu et al. (2022); Hu et al. (2021). Recently, Egorov & Shpilman (2022) and Liu et al. (2024) proposed new world models based MARL (MBMARL), MAMBA and MAZero, and validated them in StarCraft Multi-Agent Challenge (SMAC). However, these models struggle with scalability, often making independent latent state predictions. Xie et al. (2021) used the world model to only infer latent strategy. Our approach builds an interactive multi-agent world model with hierarchical latent states to infer intent and latent strategy for mixed cooperative-competitive environments. By dynamically adjusting latent weights based on neighboring agents' states, our model enables spatiotemporal forecasting and interactive predictions without increasing parameters, offering greater scalability and adaptability compared to centralized and decentralized models.

3 METHODOLOGY

Problem Statement. We consider mixed cooperative-competitive scenarios involving $N \geq 2$ agents. Each agent infers opponents' intentions and strategies and makes decisions based on local observations while interacting with others without accessing private information of competitive agents, such as opponents' learning algorithms, actions, rewards, goals, and incentives. These private details of opponents, including adversaries and missiles, remain diverse, changeable, and unknown to cooperative agents. In this study, we aim to understand opponents' mental states by constructing H2IL-MBOM models from their perspectives, and using these predictions along with observations to inform decision-makings. Therefore, we have two objectives. The Markov decision process comprises a tuple $\langle N, n, M, m, S, A, O, Z, H, R, \gamma \rangle$ where N and n are numbers of cooperative agents and observable cooperative neighbors, respectively; M and m are numbers of opponents and observable opponents, respectively; S is the state sets, $A = \{A_i\}_{i=1}^N$, $O = \{O_{opp}, O_c\} = \{O_i\}_{i=1}^N = \{O_{opp,i}, O_{c,i}\}_{i=1}^N$ are the action sets and observation sets relative to opponents O_{opp} and cooperative neighbors O_c . $z = \{z_I, z_L\} = \{z_i\}_{i=1}^N = \{z_{I,i}, z_{L,i}\}_{i=1}^N$ are incentive representations, which consist of intentions z_I and latent strategies z_L . $H = \{H_{opp,t}, H_{c,t}\} = \{\{O_{opp,i,t}\}_{t=t_0, \dots, t-1}^{i=1, \dots, N}, \{O_{c,i,t}\}_{t=t_0, \dots, t-1}^{i=1, \dots, N}\}$ signifies the agents' historical observations relative to opponents and teammates; and R, γ are rewards and discount factor, respectively. The first objective is to maximize the expected return $E_\pi \left[\sum_{t=0}^{\infty} \gamma^t R_t(s_t, \{a_{i,t} \sim \pi(|o_{i,t}, z_{I,i,t}, z_{L,i,t}\}_{i=1}^N, s_{t+1})\} \right]$, and the second objective involves updating reasoned intentions and latent strategies based on future ground-truth incentive representations.

3.1 COGNITIVE INTUITION ABOUT HIERARCHICAL WORLD MODEL

Intention: The opponent's high-level tactical objectives, answering **What does the opponent want to achieve?"** (e.g., "Attacking" a specific unit, "Retreating").

Latent Strategy: Contextualized execution methods for implementing intentions, answering "How does the opponent achieve its intention?" (e.g., "Leveraging angular advantage" for an attack intention).

Figure 1: Overview of the H2IL-MBOM, which comprises high-level world model and low-level model. The high-level world model is utilized for reasoning about opponents’ intentions and changes in their trajectories, whereas the low-level world model focuses on inferring opponents’ latent strategies and their impact on allies’ trajectories by taking these intentions into account. By taking as input the estimated mental states of the opponents and local observations, the policy learns to encode opponent behavior in an implicit manner. The inference phase can be found in Figure 5.

Human cognition employs multi-level recursive reasoning in adversarial settings: **Stage one** infers opponent intentions from historical interactions; **Stage two** involves agents acting based on inferred intentions/strategies while opponents dynamically adjust theirs; **Stage three** updates policies through observed trajectories, forming a closed-loop cycle that drives long-term return maximization. This reveals that opponent modeling requires both hierarchical mental state decomposition (Stage One) and dynamic temporal evolution modeling (Stages Two/Three). However, three challenges persist: opponent mental state unobservability prevents supervised learning; existing methods like VAEs Qi & Zhu (2018); Shi et al. (2022); Wu et al. (2023b) cannot capture mental state co-evolution; and current world models Xie et al. (2021) neglect causal hierarchies.

Guided by human hierarchical reasoning, we propose a hierarchical Transformer architecture: **H2TE-MITD** infers opponent goals from past observations, extracting macro-behavioral trends (“what they want to do”). **LHTE-MLTD** employs a cognitive logic that shifts from analyzing “what the opponent has done” to examining “what outcomes their behavior caused us.” The rationale is that an opponent’s intention determines its strategy choice, which in turn elicits distinctive team responses. These collective responses serve as a behavioral mirror, allowing inverse deduction of latent strategies by correlating reaction patterns with inferred intentions, thereby identifying which strategies the opponent employed to produce observed team reactions.

To overcome static model limitations and capture mental state-behavior co-evolution, we introduce transition models that convert mutual reactions into trajectory observation sequences: opponent intention-team action interactions become opponent-relative trajectory transitions, while strategy-action interactions become teammate-relative trajectory transitions. This enables the model to capture how mental states and behavior co-evolve over time. To capture these evolving dynamics, we approximate higher-level and lower-level transition models using p_{ψ_I} and p_{ψ_L} , respectively. The H2TE-MITD module estimates the high-level posterior distribution $q_{\phi_I}(z_{I,i,t} | H_{opp,t}, O_{opp,i,t})$ to infer the opponent’s intention $z_{I,i,t}$ based on historical and current observations relative to opponents $H_{opp,t}$, $O_{opp,i,t}$. The LHTE-MLTD module approximates the low-level posterior $q_{\phi_L}(z_{L,i,t} | H_{c,t}, O_{c,i,t}, z_{I,i,t})$ to estimate multi-latent strategy queries $z_{L,i,t}$ based on historical and current observations relative to teammates $H_{c,i,t}$, $O_{c,i,t}$. The hierarchical evidence lower bound (HELBO) is derived via Jensen’s inequality in Appendix A.4. Comparisons with RSSM, TSSM, and HyperHD2TSSM are given in Appendix A.5. Also, HJLGT and any-time-step update are detailed in Appendix A.6 and A.7.

3.2 DYNAMIC FUSION MECHANISMS OF INTENTIONS AND LATENT STRATEGIES IN OPPONENT MODELING

Intention inference layer estimates $q_{\phi_I}(z_{I,i,t} | H_{opp,t}, O_{opp,i,t})$ by three core mechanisms: First, the temporal consistency modeling mechanism, where H2TE analyzes observations relative to

216 opponents over 512 time steps, extracting macro-behavioral trends that characterize persistent
 217 intentions. Second, the observation-based encoding mechanism, where intention self-attention
 218 module uses our observations for opponents to construct feature representations, thoroughly avoiding
 219 interference from teammate response patterns and ensuring the purity of intention features. Third,
 220 the threat-centric consensus mechanism, where MITD uses team’s collective threat consensus to
 221 refines intention queries around “which ally faces the greatest threat.” This integrated computational
 222 process is mathematically formalized through the Bayesian framework: $P(\text{Intent} | H_{opp}, O_{opp}) \propto$
 223 $\underbrace{P(O_{opp} | \text{Intent})}_{\text{Observation Likelihood}} \cdot \underbrace{P(H_{opp} | O_{opp}, \text{Intent})}_{\text{Historical Consistency}} \cdot \underbrace{P(\text{Intent})}_{\text{Intent Prior}}$.

224
 225 The strategy inference layer estimates $q_{\phi_L}(z_{L,i,t} | H_{c,t}, O_{c,i,t}, z_{I,i,t})$ by building an inverse
 226 reasoning framework based on the behavioral mirror principle: LHTE forms a “behavioral
 227 mirror” by encoding historical team states, comprehensively recording the character-
 228 istic response patterns of the team under various strategic pressures. On this founda-
 229 tion, MLTD implements Bayesian inverse reasoning to establish a complete causal chain
 230 from observed effects back to potential strategies. The core of this process lies in the
 231 concrete computation of the probability formula $P(\text{Strategy} | \text{Response, Intent, } O_c) \propto$
 232 $\underbrace{P(O_c | \text{Intent})}_{\text{Observation Conditioning}} \cdot \underbrace{P(\text{Response} | \text{Strategy, } O_c, \text{Intent})}_{\text{Response Likelihood}} \cdot \underbrace{P(\text{Strategy} | \text{Intent})}_{\text{Prior}}$: The latent strategy
 233 prior is embedded through query initialization, incorporating assumptions about strategy distri-
 234 butions given specific intentions. The intention self-cross attention module computes the observation
 235 conditioning term $P(O_c | \text{Intent})$, evaluating how current situational evidence aligns with inferred
 236 intentions. The likelihood term $P(\text{Response} | \text{Strategy, } O_c, \text{Intent})$ is calculated through the latent
 237 strategy cross-attention module, assessing how well latent strategies explain current team reactions
 238 under the given intent and situational context.

240 This dual-layer architecture preserves the advantages of direct observation in intention recogni-
 241 tion while ensuring the causal rationality of strategy inference, ultimately achieving precise threat
 242 assessment and multi-agent cooperative decision-making through the team consensus mechanism.

244 3.2.1 HIGH-LEVEL DYNAMIC INTENT-AWARE REPRESENTATION FUSION (HDIRF)

245 During each learning stage, historical states in the most recent steps undergo dynamic change. The
 246 intention queries within each MITD layer are derived from the outputs of the previous layer, adapting
 247 as the dynamics evolve. Each agent enhances its intent prediction for a given opponent through the
 248 team’s collective threat consensus, specifically identifying which ally faces the greatest threat from
 249 that intent. This approach is grounded in the principle that intentions manifest as consistent patterns
 250 in how opponents present themselves to our observational systems.

251 **High-level History Transformer Encoder (H2TE)** constructs a team-shared representation of op-
 252 ponent behavior patterns by processing historical observations $H_{opp,t} \in \mathbb{R}^{N \times 512 \times D}$ relative to
 253 opponents from the perspective of our N agents, where 512 denotes temporal steps, and $D = m \times d_m$
 254 indicates observation dimensionality relative to m opponents. The H2TE captures the spatiotem-
 255 poral evolution of opponent behavior patterns by analyzing their historical trajectories, extract-
 256 ing macro-level behavioral trends and consistent patterns. Spatial consensus is achieved through
 257 hypernetwork-based embedded attention (HEA):

$$258 \quad w_{H,i,j,t} = \text{Hyper}(H_{i,j,t}), e^{i,j,t} = \text{Tanh}(H_{i,j,t} @ w_{H,i,j,t}), \quad (1) \\ 259 \quad \alpha^{i,j,t} = \text{softmax}(\text{MLP}([\text{repeat}(e^{i,t}), e^{i,j,t}])), \text{Att}H_{i,t} = \frac{1}{m} \sum_{j=1}^m \alpha^{i,j,t} \varphi_h(e^{i,j,t}) \\ 260$$

261 where $\text{Hyper}()$ operator is defined in A.8.1, $H_{i,j,t}$ are historical observations relative to the j -th
 262 opponent. The hypernetwork generates distinct parameters $w_{H,i,j,t}$ for each agent, enabling non-
 263 shared, individualized reasoning while capturing per-agent spatial dependencies across opponents.
 264 Temporal consensus employs Transformer architecture with multi-head attention:

$$266 \quad q = k = \text{AttHopp}', v = \text{MLP}(k), \text{AHopp} = \text{AttHopp}' + \text{MHA}(q, k, v), \quad (2) \\ 267 \quad \text{AttHopp}' = \text{LayerNorm}(\text{MLP}(\text{LayerNorm}(\text{AHopp})))$$

268 where $\text{AttH}'_{opp} = \text{reshape}(\text{AttH}_{opp}) \in \mathbb{R}^{512, N \times C}$ creates a single computational graph capturing
 269 both temporal dependency and instantaneous agent interactions through dot-product operations.

Figure 2: The structure of HDIRF that comprises H2TE and MITD incorporates given observations regarding opponents and multi-learnable intention queries generated by a hypernetwork for interactive intention feature predictions. The structure of LDLRF that comprises LHTE and MLTD incorporates observations of cooperative neighbors and latent strategy queries initialized by intention queries to capture the dynamic impact of multiple intentions on strategy decisions.

The GTr mechanism constructs a more macroscopic perspective on time series similarity and the development of opponent agent behavior.

Multi Intention Transformer Decoder (MITD) decodes intentions from the entire team’s historical perception through three specialized components. Given the historical feature of opponents $AttH_{opp}$ and current observation $O_{opp} \in \mathbb{R}^{T \times N \times 2m \times d_m}$ regarding opponents, the MITD employs dynamic intention queries $z_I \in \mathbb{R}^{T \times N \times 2m \times d_I}$.

Hypernetwork-based Intention Self-attention Module estimate $P(O_{opp} | Intent)$ by fusing embedding $O_{opp,e} = MLP(O_{opp})$ of O_{opp} and z_I to propagate information among $2m$ dynamic intentions. The self-attention mechanism integrates real-time observations with intent queries, emphasizing spatiotemporal features aligned with tactical hypotheses:

$$w_{I,i,j,t} = \text{Hyper}(z_{I,i,j,t}), q_{Ih,i,j,t} = \text{Tanh}(z_{I,i,j,t} @ w_{I,i,j,t}), \\ q_{I,s} = k_{I,s} = \text{MLP}(O_{opp,e}) + q_{Ih}, v_{I,s} = \text{MLP}(O_{opp,e}) \quad (3)$$

Here, the hypernetwork adaptively generates different opponent intent query weights for each agent. $q_{I,s}$ serves as active reconnaissance signals combining current situational awareness with tactical intent hypotheses, guiding the attention mechanism to purposefully focus on the spatiotemporal regions and behavioral features most relevant to the current hypothesis. The intention cross-attention module estimating $P(H_{opp} | opp, Intent)$ uses its current intent hypothesis to query a “global memory” from historical opponent behavior patterns. This module enables collaborative validation through global memory access:

$$q_{I,c} = \text{MLP}(s_{I,s}) + q_{Ih}, k_{I,c} = \text{MLP}(AttH_{opp}), v_{I,c} = \text{MLP}(AttH_{opp}) \quad (4)$$

The global memory bank $\mathbb{R}^{1 \times (512N) \times C}$ contains encoded historical observations from all N agents, enabling each agent to query: “Given my current intent hypothesis, which past opponent trajectories observed by any teammate are most relevant?” The intention fusion module establishes team-level threat consensus:

$$q_{I,f} = k_{I,f} = [\text{MLP}(q_{I,c}), q_{Ih}], v_{I,f} = [\text{MLP}(q_{I,c}), q_{Ih}] \quad (5)$$

The concatenated features $q_{I,f}, k_{I,f} \in \mathbb{R}^{T \times 2m \times N \times 2C}$ enable cross-agent attention to determine “which ally is most likely to be targeted?” for each opponent intent hypothesis, in which each agent refines its intent prediction based on team’s collaborative threat assessment, guiding subsequent cooperative decisions. Finally, z_I are the updated in each layer of MITD.

3.2.2 LOW-LEVEL DYNAMIC LATENT-STRATEGY-AWARE REPRESENTATION FUSION (LDLRF)

Based on the inferred intention information, the next step is to further deduce latent strategies and understand how strategies respond to intent prediction. The LDLRF module constructs latent

324 strategy queries by integrating cooperative agents' historical observations $H_{c,t}$, current neighbor
 325 observations O_c , and intention features z_I generated by MITD. This process encodes the strategy
 326 prior probability $P(\text{Strategy}|\text{Intent})$ by $z_L = \text{MLP}([\text{Gate}(z_{If}, \text{MLP}(z_I)), z_{If}])$ during query
 327 initialization, embodying the prior knowledge of "conditional probabilities of strategies given specific
 328 intentions." Meanwhile, the current observation embedding $E_c = \text{HEA}(O_c)$ provides real-time
 329 context for strategy inference. The core mechanism of LDLRF lies in the fact that different latent
 330 strategies under the same opponent intention elicit distinct response patterns from teammates. By
 331 analyzing the correlation between these specific response patterns and inferred intentions, the module
 332 achieves a cognitive process of inversely reasoning about the opponent's latent strategies from team
 333 reaction effects. The specific definition of the *Gate* operator can be found in Appendix A.8.2.

334 **Low-level History Transformer Encoder (LHTE)** constructs a behavioral mirror by encoding
 335 historical team states $H_{c,t} \in \mathbb{R}^{N \times 512 \times D}$ using the same HEA and GTr operations as H2TE. This
 336 generates AttH_c representing the team's coordinated reactions under adversarial pressure.

337 **Multi-Latent Strategy Transformer Decoder (MLTD)** implements the Bayesian formulation by
 338 three-component reasoning chain, and performs true inverse reasoning: it takes the effect (team
 339 response) and context (intent) as inputs, and infers the most likely cause (opponent strategy) by team
 340 consensus on the same opponent. The intention self-cross attention module estimating $P(O_c | \text{Intent})$
 341 first links opponent intent to team context:

$$q_{Ls} = \text{MLP}(E_c), k_{Ls} = k_{Ls} = \text{MLP}(E_c), k_{LI} = v_{LI} = \text{MLP}(\text{LayerNorm}(E_c + \text{MHA}(q_{Ls}, k_{Ls}, v_{Ls}))), \quad (6)$$

$$q_{LI} = \text{Tanh}(z_I @ \text{Hyper}(z_I))$$

344 This constructs intent-driven queries q_{LI} that attend to team context k_{LI}, v_{LI} , assessing "how
 345 threatening this intent seems" given current team reactions.

346 The latent strategy cross-attention module is used to estimate $P(\text{Response} | \text{Strategy}, O_c, \text{Intent})$
 347 through attention mechanism between the hybrid query and historical response patterns:

$$q_{Lc} = \text{MLP}(s_{LI}), q_{Lh} = \text{Tanh}(z_L @ \text{Hyper}(z_L)), q_{L,c} = q_{Lc} + q_{Lh} \quad (7)$$

350 where s_{LI} is the output of the previous module, which has integrated the information from O_c .
 351 The hybrid query $q_{L,c} = q_{Lc} + q_{Lh}$ fuses current team context s_{LI} with strategy hypotheses, while
 352 $k_{L,c}, v_{L,c} \in \mathbb{R}^{1 \times (512N) \times C}$ represent historical team response patterns. The attention scores $q_{L,c} \cdot k_{L,c}^\top$
 353 compute the similarity between current context (augmented with strategy hypotheses) and historical
 354 team responses, implementing the abductive reasoning: "Given O_c , what strategies employed by
 355 opponents best explain both the teammates' characteristic responses and opponent's current intent?" In
 356 other words, it identifies the opponent's primary target by detecting which teammate most consistently
 357 triggers reactive behaviors, thereby modeling latent causal relationships between opponent behavior
 358 patterns and team responses.

359 Finally, the latent strategy fusion module establishes team consensus on strategy-threat relationships:

$$q_{L,f} = [\text{MLP}(q_{L,c}), q_{Lh}], k_{L,f} = [\text{MLP}(q_{L,c}), q_{Lh}], v_{L,f} = \text{MLP}(q_{L,c}) \quad (8)$$

360 where $q_{L,f}, k_{L,f} \in \mathbb{R}^{T \times 2m \times N \times 2C}$. It performs team-level threat assessment through cross-agent
 361 attention, enabling each agent to continuously refine its reasoning about strategic focus through
 362 collective intelligence integration, ultimately determining which allied teammate receives the highest
 363 strategy-threat attention weight. This identification facilitates coordinated and precise team support
 364 by determining which allied teammate receives the highest strategy-threat attention weight.

365 3.3 CO-ADAPTIVE LOOP & MSOAR-PPO

366 Two teams engage in independent policy learning, value learning, and world model learning based
 367 on their local observations due to the limitation of imperfect game. During the execution phase, the
 368 policy of each agent relies solely on: (1) local observations relative to cooperative adjacent agents (O_c) and opponents (O_{opp}), and (2) mental states inferred via the hierarchical model. Furthermore,
 369 the world model operates through iterative observation-action-reflection cycles and is updated via
 370 HELBO loss (Eq. 20) using collected interaction data. The world model, in conjunction with the
 371 policy Cheng et al. (2024), generates multi-step imagined trajectory observations. These synthesized
 372 trajectory observations are subsequently combined with real interaction data to compute MARL
 373 policy and value objectives, thereby facilitating training and enhancing policy generalization. The
 374 any-time-step update and pseudocode are provided in Sections A.7 and A.9, respectively.

378

4 EXPERIMENTS

380 We evaluate our method in mixed cooperative-competitive environments: Gym-JSBSim, SMAC,
 381 and Google Research Football (GRF). Gym-JSBSim that serves as a benchmark provides high-
 382 fidelity 6-DOF dynamics for fixed-wing UAV control. In a 4v4 multi-UAV task, we compare against
 383 baselines to assess learning performance, reasoning capabilities, scalability test, and module ablation.
 384 Cumulative errors and t-SNE visualizations of inferred intentions and latent strategies further validate
 385 reasoning accuracy in Appendix A.11. Additional results on environment settings, hyperparameters,
 386 scalability test, and visualizations are in Appendices A.3, A.14, A.12, and A.16, respectively. To
 387 enhance robustness, both teams are trained as independent learners, avoiding built-in AI or self-play
 388 and making ELO inapplicable. In the testing phase, win rate is used as the evaluation criterion
 389 in equal-team scenarios, while survival rate is adopted in unequal-team settings. Also, the agents
 390 compete against opponents equipped with other MARL methods that were never encountered during
 391 training. The visual results, particularly in Appendix A.16, further investigate the impact of height-
 392 related reward components. For SMAC and GRF, we compare with baseline methods, using built-in
 393 AI for the opponent team.

394

4.1 COMPARISON WITH VARIOUS BASELINE METHODS

395 For each algorithm, we use the same network architecture as described in corresponding literature.
 396 To ensure fair comparison, we train these baseline algorithms with 5 random seeds under the same
 397 conditions such as initial conditions, number of simulation steps, observation space, action space,
 398 and reward functions.

400 **Comparison with model-free MARL.** We compare our method with CTDE MARL (MAPPO Yu
 401 et al. (2021), MADDPG Lowe et al. (2017)), decentralized MARL (HAPPO, HADDPG Zhong et al.
 402 (2024)), and a model-free RL baseline where MAPPO/HAPPO act randomly and MADDPG/HAD-
 403 DPG act deterministically. All algorithms share the same network architecture and hyperparameters
 404 from their original papers. As shown in Figure. 3a, other MARLs yield negative rewards. MADDPG
 405 and HADDPG perform poorly because deterministic actions cannot cope with dynamic, evolving
 406 opponents, leaving both sides vulnerable to missile attacks. MAPPO and HAPPO improve sta-
 407 bility but still fluctuate under environmental non-stationarity, keeping rewards below zero. Our
 408 method (Figure. 3b) achieves near-100 rewards due to three factors: (1) hierarchical decomposition
 409 (H2TE-MITD, LHTE-MLTD) enables structured reasoning over intentions and latent strategies; (2)
 410 mental simulation (HJLGT) supports multi-step prediction of adversarial and team trajectories for
 411 proactive decisions; and (3) MSOAR-PPO dynamically couples inference and policy updates, refining
 412 mental states through real interactions. This integration allows real-time adaptation to unseen tactics,
 413 mitigates non-stationarity, and ensures safe, coordinated responses in complex adversarial settings.

414 **Comparison with other opponent modeling methods.** We compared recent opponent-modeling
 415 approaches—ROMMEO Tian et al. (2019), PR2 Wen et al. (2019), TDOM-AC Tian et al. (2023),
 416 and AORPO Zhang et al. (2021). As shown in Figure. 3c, all exhibit negative, fluctuating rewards:
 417 AORPO oscillates around -100 , while PR2 fluctuates more sharply around -203.2 . These results
 418 indicate that none accurately capture opponent behavior, leading to erroneous predictions and
 419 disadvantaged decisions. AORPO further struggles to model environmental dynamics using MBPO’s
 420 world model. A core limitation of prior methods is their reliance on opponent actions as labeled
 421 data—an unrealistic assumption in real adversarial settings. Intentions and strategies are latent and
 422 evolve over time, making action-level modeling inadequate. As discussed in Section 3.1, future
 423 trajectories depend on the temporal evolution of mental states. Yet most methods, including VAE-
 424 based ones, learn static latent representations and directly reconstruct trajectories, failing to capture
 425 the dynamics of evolving intentions and strategies, and thus cannot anticipate future behaviors.

426 **Comparison with other MBMARL.** In recent MB-MARL studies, comparisons mainly focus on
 427 MAMBA Egorov & Shpilman (2022). MAZero Liu et al. (2024) is excluded because its Monte
 428 Carlo Tree Search (MCTS) is designed for discrete action spaces, whereas our UAV game features a
 429 five-dimensional continuous space (aileron, elevator, rudder, thrust, missile launch), which MAZero
 430 cannot effectively handle. Qualitatively, our method converges rapidly to positive rewards and
 431 maintains stable performance with only minor fluctuations. In contrast, MAMBA converges slowly
 432 and shows higher variability, especially early in training. Quantitatively, our approach surpasses
 433 zero reward within 5 million (M) steps and reaches about 100 by $10 M$ steps, sustaining 100–150

Figure 3: Performance comparison of various methods.

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 4: Results for ablation study. (1) Low-level strategy modeling is crucial, as intention-only inference causes mid-game performance degradation due to inability to discern strategy-specific responses; (2) Historical encoding prevents local optima by capturing temporal opponent dynamics; (3) Transformer/HEA components ensure stable convergence through structured reasoning; (4) Hypernetworks enable adaptive agent-specific inference without homogenization, accelerating learning.

between 10 M and 20 M steps. MAMBA stays below zero until roughly 10 M steps and continues to fluctuate around -50 even after 20 M steps, with only marginal late-stage improvement. These results highlight the superiority of our approach in terms of both efficiency and effectiveness.

4.2 ABLATION STUDY

In this ablation study, we study the importance of each module in H2IL-MBOM by removing the low-level world model related to latent strategies (only intentions inference version), all history encoders (vanilla world model), Transformer and HEA, transition model, replacing GTr with local time Transformer, and replacing hypernetwork-add operator with share network-add operator in the Transformer. Figure 4a shows that modeling only intentions degrades mid-game performance, confirming the need for low-level strategy inference and the low-level world model. Figure 4b reveals that using only current observations leads to local optima, as short-sighted inference fails to capture evolving opponent dynamics. This highlights the importance of historical context for long-term reasoning. Figures 4c–4f show that removing Transformer, HEA, GTr, or the hypernetwork slows convergence and destabilizes rewards, validating their role in H2TE-MITD and LHTE-MLTD.

486 Overall, the ablation confirms the critical role of hierarchical modeling, historical encoding, structured
 487 attention, and dynamic transitions.
 488
 489
 490

491 4.3 GENERALIZATION TESTING IN SMAC AND GRF

492
 493 The table 1 presents a comprehensive comparison of test win rates achieved by various state-of-the-art
 494 MARL algorithms, including our proposed method, MAPPO Yu et al. (2022a), QMIX Rashid et al.
 495 (2020), QPLEX Wang et al. (2020), RODE Wang et al. (2021), MAMBA Egorov & Shpilman
 496 (2022), and MAZero Liu et al. (2024). across SMAC scenarios. It's noting that the total interac-
 497 tive steps are aligned with the settings used in MAZero to ensure a fair and valid comparison.
 498

499 Table 1: Comparison of test Win Rate with state-of-the-art MARL in the SMAC scenarios: **the total interactive**
 500 **steps are aligned with the settings used in MAZero** to ensure a fair.

Map	Ours	MAPPO	QMIX	QPLEX	RODE	MAMBA	MAZero	Steps
2s_vs_1sc	100	100	0	50.62	0	100	100	1e5
2m_vs_1z	100	20.75	2.9	45.50	0	90	100	5e4
3m	93.75	60.12	42.75	55.37	0	93	100	5e4
3s_vs_5z	97.14	22.37	85	96.4	78.9	20	/	5e4
5m_vs_6m	71.87	40.14	63.37	65.60	90	40.50	90.12	1e6
10m_vs_11m	93.75	75.12	85.57	90.87	60.37	60.12	89.30	1e6
So_many_baneling	96.87	30.87	6.75	30.62	0	95	99.87	5e4
2c_vs_64zg	78.12	35.27	2.6	0	66.87	35	90	4e5

501
 502 Our method achieves perfect 100% win rates in both “2s_vs_1sc” (matching top-performing MAP-
 503 PO) and asymmetric “2m_vs_1z” scenarios, significantly outperforming QMIX (2.9%), QPLEX
 504 (45.50%), and MAPPO (20.75%). In “3m” environments, it maintains 93.75% win rates, substan-
 505 tially exceeding MAPPO (60.12%) and QMIX (42.75%). The algorithm demonstrates particular
 506 strength in complex scenarios: achieving 97.14% in “3s_vs_5z” (surpassing QPLEX’s 96.4% and
 507 far exceeding MAPPO’s 22.37%) and 93.75% in large-scale “10m_vs_11m” (outperforming MAZe-
 508 ro’s 89.30% and QPLEX’s 90.87%). These results validate our method’s superior coordination
 509 in heterogeneous settings and excellent scalability in high-dimensional multi-agent environments.

510 Additionally, we have conducted GRF experiments in Table 2, our method demonstrates sig-
 511 nificant advantages in dynamic adversarial sce-
 512 narios. In the rPS scenario with randomized ini-
 513 tial positions, our approach achieves a win rate
 514 of 89.94%, substantially outperforming HAPPO
 515 (77.30%) and MAPPO (76.83%). In the CA sce-
 516 nario requiring precise coordination, our method
 517 attains a 93.09% win rate, also exceeding HAP-
 518 PO (92.00%) and MAPPO (87.76%). These two scenarios share the common characteristic of
 519 requiring real-time inference of opponent intentions and dynamic strategy adjustment. Our hierar-
 520 chical intention-strategy representation system plays a crucial role in such tasks, achieving superior
 521 tactical response capabilities compared to traditional methods through online learning of intention
 522 evolution and hypernetwork-based coordination mechanisms.

531 5 CONCLUSIONS

532
 533 This paper introduces a novel opponent modeling method that integrates multi-intention and latent
 534 strategy inference into the world model. Using a hierarchical architecture, we study the impact of
 535 opponents’ intentions on their strategies and predict both teammates’ and opponents’ trajectories. We
 536 also propose MSORA-PPO, enabling teams to independently learn their own H2IL-MBOM, infer
 537 adversarial strategies and intentions from historical observations, and integrate these inferred mental
 538 states with local observations to make decisions.

540
541
ETHICS STATEMENT542
543
We acknowledge the broader societal implications of our work on opponent modeling in multi-agent
adversarial environments.544
545
546
547
On the positive side, our method advances the capability of AI agents to understand and adapt to
complex, dynamic opponents through hierarchical inference of intentions and latent strategies. This
could benefit applications such as autonomous systems requiring safe interaction with unpredictable
agents, where anticipating adversarial behavior can improve safety and coordination.548
549
550
551
552
Our approach does not use real human data or sensitive attributes (e.g., race, gender), and all
experiments are conducted in simulated environments (e.g., SMAC, GRF, Gym-jssim simulator).
Therefore, no personal data is involved, and there is no direct risk of demographic bias in training.
Nevertheless, we caution that any system capable of inferring private mental states should be subject
to strict regulatory oversight before deployment.553
554
REPRODUCIBILITY STATEMENT555
556
557
We have provided detailed designs of transition model, HDIRF, and LDLRF in the Appendix A.6,3.2.1,
558
and 3.2.2, respectively. The training details including environmental settings, hyperparameters are
559
shown in the Appendix A.3, 1, and A.14.560
561
REFERENCES562
563
Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, and Joshua B Tenenbaum. Rational quantitative
564
attribution of beliefs, desires and percepts in human mentalizing. *Nature Human Behaviour*, 1(4):
0064, 2017.565
566
Finn Lukas Busch, Jake Johnson, Edward L Zhu, and Francesco Borrelli. A gaussian process model
567
for opponent prediction in autonomous racing. *arXiv preprint arXiv:2204.12533*, 2022.568
569
Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
570
transformer world models. *arXiv preprint arXiv:2202.09481*, 2022.571
572
Jiaming Cheng, Ni Li, Ban Wang, Shuhui Bu, and Ming Zhou. High-sample-efficient multiagent rein-
forcement learning for navigation and collision avoidance of uav swarms in multitask environments.
573
IEEE Internet of Things Journal, 11(22):36420–36437, 2024. doi: 10.1109/JIOT.2024.3409169.574
575
Antonia F De C. Hamilton and Scott T Grafton. Action outcomes are represented in human inferior
576
frontoparietal cortex. *Cerebral Cortex*, 18(5):1160–1168, 2008.577
578
Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning.
579
In *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
580
Systems*, number 10, pp. 381–390. International Foundation for Autonomous Agents and Multiagent
581
Systems, 2022. ISBN 9781450392136.582
583
Haobo Fu, Ye Tian, Hongxiang Yu, Weiming Liu, Shuang Wu, Jiechao Xiong, Ying Wen, Kai Li,
584
Junliang Xing, Qiang Fu, and Wei Yang. Greedy when sure and conservative when uncertain about
585
the opponents. In *International Conference on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA*, volume 162, pp. 6829–6848. PMLR, 2022.586
587
György Gergely and Gergely Csibra. Teleological reasoning in infancy: The infant’s naive theory of
588
rational action: A reply to premack and premack. *Cognition*, 63(2):227–233, 1997.589
590
Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
591
behaviors by latent imagination. *arXiv preprint arXiv:1912.01603*, 2019a.592
593
Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In *International conference on
machine learning*, pp. 2555–2565. PMLR, 2019b.

594 Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
 595 world models. *arXiv preprint arXiv:2010.02193*, 2020.
 596

597 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 598 through world models. *arXiv preprint arXiv:2301.04104*, 2023.
 599

600 Biyang Hu, Chao Yu, and Zifan Wu. Model-based multi-agent policy optimization with dynamic
 601 dependence modeling. In *International Conference on Parallel and Distributed Computing: Applications and Technologies*, pp. 396–411. Springer, 2021.
 602

603 Yuheng Jing, Bingyun Liu, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng.
 604 Opponent modeling with in-context search. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, NIPS '24, 2024.
 605

606 Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
 607 Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
 608 reinforcement learning for atari. *arXiv preprint arXiv:1903.00374*, 2019.
 609

610 Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, and Chongjie Zhang. Efficient multi-
 611 agent reinforcement learning by planning. In *The Twelfth International Conference on Learning Representations*, 2024.
 612

613 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 614 actor-critic for mixed cooperative-competitive environments. *Advances in neural information processing systems*, 30, 2017.
 615

616 Siyuan Qi and Song-Chun Zhu. Intent-aware multi-agent reinforcement learning. In *2018 IEEE international conference on robotics and automation (ICRA)*, pp. 7533–7540. IEEE, 2018.
 617

618 Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew Botvinick.
 619 Machine theory of mind. In *International conference on machine learning*, pp. 4218–4227. PMLR,
 620 2018.
 621

622 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 623 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 624 learning. *J. Mach. Learn. Res.*, 21(1), 2020. ISSN 1532-4435.
 625

626 Shaoshuai Shi, Li Jiang, Dengxing Dai, and Bernt Schiele. Motion transformer with global intention
 627 localization and local movement refinement. *Advances in Neural Information Processing Systems*,
 628 35:6531–6543, 2022.
 629

630 Andrea Tacchetti, H Francis Song, Pedro AM Mediano, Vinicius Zambaldi, Neil C Rabinowitz, Thore
 631 Graepel, Matthew Botvinick, and Peter W Battaglia. Relational forward models for multi-agent
 632 learning. *arXiv preprint arXiv:1809.11044*, 2018.
 633

634 Yuan Tian, Klaus-Rudolf Kladny, Qin Wang, Zhiwu Huang, and Olga Fink. Multi-agent actor-critic
 635 with time dynamical opponent model. *Neurocomputing*, 517:165–172, 2023.
 636

637 Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, and Jun Wang. A regularized
 638 opponent model with maximum entropy objective. *arXiv preprint arXiv:1905.08087*, 2019.
 639

640 Zheng Tian, Shihao Zou, Ian Davies, Tim Warr, Lisheng Wu, Haitham Bou Ammar, and Jun Wang.
 641 Learning to communicate implicitly by actions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 7261–7268, 2020.
 642

643 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
 644

645 Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
 646 multi-agent q-learning. *ArXiv*, abs/2008.01062, 2020.
 647

648 Qi Wang and Herke Van Hoof. Model-based meta reinforcement learning using graph structured
 649 surrogate models and amortized policy search. In *International Conference on Machine Learning*,
 650 pp. 23055–23077. PMLR, 2022.

648 T Wang, T Gupta, B Peng, A Mahajan, S Whiteson, and C Zhang. Rode: learning roles to decompose
 649 multi- agent tasks. In *Proceedings of the International Conference on Learning Representations*.
 650 OpenReview, 2021.

651

652 Y Wen, Y Yang, R Luo, J Wang, and W Pan. Probabilistic recursive reasoning for multi-agent
 653 reinforcement learning. In *7th International Conference on Learning Representations, ICLR 2019*,
 654 volume 7, 2019.

655 Ying Wen, Yaodong Yang, and Jun Wang. Modelling bounded rationality in multi-agent interactions
 656 by generalized recursive reasoning. In *Proceedings of the Twenty-Ninth International Conference*
 657 *on International Joint Conferences on Artificial Intelligence*, pp. 414–421, 2021.

658 Daniël Willemsen, Mario Coppola, and Guido CHE de Croon. Mambpo: Sample-efficient multi-robot
 659 reinforcement learning using learned world models. In *2021 IEEE/RSJ International Conference*
 660 *on Intelligent Robots and Systems (IROS)*, pp. 5635–5640. IEEE, 2021.

661

662 Chengjie Wu, Pingzhong Tang, Jun Yang, Yujing Hu, Tangjie Lv, Changjie Fan, and Chongjie
 663 Zhang. Conservative offline policy adaptation in multi-agen games. In *Proceedings of the 37th*
 664 *International Conference on Neural Information Processing Systems*, NIPS '23, 2023a.

665 Xiyang Wu, Rohan Chandra, Tianrui Guan, Amrit Bedi, and Dinesh Manocha. Intent-aware planning
 666 in heterogeneous traffic via distributed multi-agent reinforcement learning. In *Conference on Robot*
 667 *Learning*, pp. 446–477. PMLR, 2023b.

668 Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representa-
 669 tions to influence multi-agent interaction. In *Conference on robot learning*, pp. 575–588. PMLR,
 670 2021.

671

672 Zhiwei Xu, Bin Zhang, Yuan Zhan, Yunpeng Baiia, Guoliang Fan, et al. Mingling foresight with
 673 imagination: Model-based cooperative multi-agent reinforcement learning. *Advances in Neural*
 674 *Information Processing Systems*, 35:11327–11340, 2022.

675 Tianpei Yang, Zhaopeng Meng, Jianye Hao, Chongjie Zhang, Yan Zheng, and Ze Zheng. To-
 676 wards efficient detection and optimal response against sophisticated opponents. *arXiv preprint*
 677 *arXiv:1809.04240*, 2018.

678

679 Sean Ye, Manisha Natarajan, Zixuan Wu, Rohan Paleja, Letian Chen, and Matthew C Gombolay.
 680 Learning models of adversarial agent behavior under partial observability. In *2023 IEEE/RSJ*
 681 *International Conference on Intelligent Robots and Systems (IROS)*, pp. 3688–3695. IEEE, 2023.

682 C. Yu, A. Velu, E. Vinitsky, Y. Wang, and Y. Wu. The surprising effectiveness of mappo in cooperative,
 683 multi-agent games. *Advances in Neural Information Processing Systems*, 35:24611–24624, 2021.
 684 doi: 10.48550/arXiv.2103.01955.

685 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 686 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information*
 687 *processing systems*, 35:24611–24624, 2022a.

688

689 Xiaopeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu. Model-based
 690 opponent modeling. *Advances in Neural Information Processing Systems*, 35:28208–28221,
 691 2022b.

692 Weinan Zhang, Xihuai Wang, Jian Shen, and Ming Zhou. Model-based multi-agent policy optimiza-
 693 tion with adaptive opponent-wise rollouts. In *Proceedings of the Thirtieth International Joint*
 694 *Conference on Artificial Intelligence*. International Joint Conferences on Artificial Intelligence
 695 Organization, 2021.

696 Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan. A
 697 deep bayesian policy reuse approach against non-stationary agents. *Advances in neural information*
 698 *processing systems*, 31, 2018.

699

700 Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
 701 Heterogeneous-agent reinforcement learning. *Journal of Machine Learning Research*, 25:1–67,
 2024.

702
703
A APPENDIX704
705
A.1 LIST OF ABBREVIATIONS USED IN THE PAPER706
707
Table 3: List of Abbreviations and Explanations

708 Abbreviation	709 Explanation
709 H2IL-MBOM	Hierarchical Interactive Intent-Latent-Strategy-Aware World Model based Opponent Model
710 MSOAR-PPO	Mutual Self-Observation Adversarial Reasoning with PPO
710 HyperHD2TSSM	Hypernetwork-Based Hierarchical Dynamic Dependency Transformer State Space Model
711 HDIRF	High-Level Dynamic Intent-aware Representation Fusion
712 LDDR	Low-Level Dynamic Latent-Strategy-aware Representation Fusion
712 H2TE-MITD	High-Level History Transformer Encoder - Multi-Intent Transformer Decoder in HDIRF
713 LHTE-MLTD	Low-Level History Transformer Encoder - Multi-Latent Policy Transformer Decoder in LDDR
714 HILGT	Interactive Hypernetwork Joint Latent Gating Transformer
714 HEA	Hypernetwork-Based Embedding Attention Mechanism
715 HELBO	Hierarchical Evidence Lower Bound
716 CTDE	Centralized Training with Decentralized Execution (a paradigm in MARL)
716 SMAC	StarCraft Multi-Agent Challenge (benchmark environment)
717 GRF	Google Research Football (benchmark environment)
718 RSSM	Recurrent State Space Model
718 TSSM	Transformer State Space Model
719 VAE	Variational Autoencoder
720 MHA	Multi-Head Attention
720 KL	Kullback-Leibler Divergence

721
722
A.2 LIMITATIONS

723
724
This study still has some limitations. First, we did not integrate multi-source information, which is
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80

756 azimuth and elevation angles relative to the host aircraft through phase analysis of returning signals.
 757 These sensing methodologies are operationally deployed in modern aerial systems, confirming that
 758 the observational inputs to our model are consistent with real-world capabilities and do not rely on
 759 unrealistic assumptions.

760 **Observation Space.** Each agent’s observation space includes the ego-state O_e , observations relative
 761 to cooperative adjacent agents O_c , observations relative to opponents and encountered missiles O_{opp} .
 762 Concretely, O_e comprises ego altitude, sine and cosine values of ego roll angle, sine and cosine values
 763 of ego pitch angle, and three velocity components in the body coordinate system; the observation
 764 relative to each neighbor includes three components $\{\Delta x_{i,j,t}, \Delta y_{i,j,t}, \Delta z_{i,j,t}\}_{j=1,\dots,2m}$ of relative
 765 position and three components $\{\Delta Vx_{i,j,t}, \Delta Vy_{i,j,t}, \Delta Vz_{i,j,t}\}_{j=1,\dots,2m}$ of relative velocity in the
 766 northeast celestial coordinate system; in addition to the above information, O_{opp} also includes antenna
 767 angle $\{ATA_{i,j,t}\}_{j=1,\dots,2m}$, aspect angle $\{AA_{i,j,t}\}_{j=1,\dots,2m}$, elevation angle $\{EA_{i,j,t}\}_{j=1,\dots,2m}$,
 768 horizontal angle $\{HA_{i,j,t}\}_{j=1,\dots,2m}$, and distance $\{\Delta D_{i,j,t}\}_{j=1,\dots,2m}$ relative to each opponent and
 769 missile.

770 **Action Space.** Each agent in a uav-game scenario has five continuous actions, including aileron
 771 angle, elevator angle, rudder angle, thrust, and sign of launching missiles. A sign value greater than 0
 772 indicates that it can be launched, otherwise it will not be launched. The specific launch also depends
 773 on the attack angle, distance, and enemy survival number on the battlefield.

774 **Rewards.** Rewards primarily consist of distance-angle reward relative to opponents, height-angle
 775 reward relative to opponents, speed-angle reward relative to opponents, penalties for collisions (-5)
 776 and proximity between teammates, altitude safety reward, attack angle reward, crash penalties(-100),
 777 penalties for the number of missiles (-10), penalties for being killed (-100), rewards for killing
 778 opponents (+100), and survival rewards(+1). Some reward functions are given as follows:

779 1. get reward regarding position of planes
 780

$$781 \quad a = \frac{ATA + AA}{2\pi} \\ 782 \quad dd = \frac{\text{target_dist} - \frac{\text{delt_D}}{10000}}{\text{target_dist}} \\ 783 \quad \text{reward} = \begin{cases} e^{0.8+dd} \cdot (8 - 8a), & \text{if } a < 0.55 \\ e^{0.8-dd} \cdot (8 - 8a), & \text{otherwise} \end{cases} \quad (9)$$

789 2. get reward regarding position of missiles
 790

$$793 \quad \text{delt_D} = \frac{\text{delt_D}}{10000} \\ 794 \quad \text{reward} = -\max \left(-\frac{10}{\text{target_dist}} \cdot \text{delt_D} + 10, 0 \right) \quad (10)$$

798 3. get reward regarding potential of planes
 799

$$802 \quad a = \frac{ATA + AA}{2\pi} \\ 803 \quad \text{orientation_reward} = f_{\text{orientation}}(\text{ATA}, \text{AA}) \\ 804 \quad \text{height_range_reward} = f_{\text{range}} \left(\frac{|\text{delta_H}|}{5000} \right) \\ 805 \quad \text{reward} = \text{orientation_reward} \cdot \text{height_range_reward} \quad (11)$$

808 4. get reward regarding potential of missiles
 809

810
 811
 812 $dd = \frac{\text{target_dist} - \frac{\text{delta_H}}{5000}}{\text{target_dist}}$
 813
 814 $\text{reward} = \begin{cases} e^{0.7-dd} \cdot \left(2 - \frac{\text{missile_v}}{\text{ego_v}}\right), & \text{if } 2 - \frac{\text{missile_v}}{\text{ego_v}} > 0 \\ e^{-(0.7-dd)} \cdot \left(2 - \frac{\text{missile_v}}{\text{ego_v}}\right), & \text{otherwise} \end{cases}$ (12)
 815
 816
 817
 818

819 5. get orientation function(v0)

820
 821 $f_{\text{orientation}}(\text{ATA}, \text{AA}) = \frac{1 - \tanh\left(9(\text{ATA} - \frac{\pi}{9})\right)}{3} + \frac{1}{3}$
 822
 823 $+ \min\left(\frac{\tanh^{-1}\left(1 - \max\left(\frac{2\text{AA}}{\pi}, 10^{-4}\right)\right)}{2\pi}, 0\right) + 0.5$ (13)
 824
 825
 826
 827

828 6. get range function (v0)

829
 830 $f_{\text{range}}(R) = \frac{\exp(-0.004(R - \text{target_dist})^2)}{1 + \exp(-2(R - \text{target_dist} + 2))}$ (14)
 831
 832

833 7. get reward regarding velocity of planes

834
 835
 836 $a = \frac{\text{ATA} + \text{AA}}{2\pi}$
 837 $\text{proj_dist} = \delta_x \delta_{Vx} + \delta_y \delta_{Vy} + \delta_z \delta_{Vz}$
 838 $\text{Angle} = \arccos\left(\text{clip}\left(\frac{\text{proj_dist}}{\text{delt_D} \cdot \delta_v + 10^{-8}}, -1, 1\right)\right)$
 839
 840 $a1 = \cos(\text{Angle})$
 841 $dd = \frac{\text{angle_max} - |\text{angle}|}{\text{angle_max}}$
 842
 843 $\delta_v = \frac{\text{enemy_v}}{\text{ego_v}}$
 844
 845 $\text{reward} = \begin{cases} e^{0.8+dd} \cdot (2 - \delta_v), & \text{if } a1 > 0 \wedge \delta_v \leq 1 \\ e^{0.8-dd} \cdot (2 - \delta_v), & \text{if } a1 > 0 \wedge \delta_v > 1 \wedge (2 - \delta_v) > 0 \\ e^{-(0.8-dd)} \cdot (2 - \delta_v), & \text{if } a1 > 0 \wedge \delta_v > 1 \wedge (2 - \delta_v) \leq 0 \\ e^{0.8+dd} \cdot (2 - \delta_v), & \text{if } a1 < 0 \wedge \delta_v > 1 \wedge a \leq 0.25 \wedge (2 - \delta_v) > 0 \\ e^{-(0.8-dd)} \cdot (2 - \delta_v), & \text{if } a1 < 0 \wedge \delta_v > 1 \wedge a \leq 0.25 \wedge (2 - \delta_v) \leq 0 \\ 5\left(1 - \frac{|\text{ATA}|}{\text{angle_max}}\right), & \text{if } a1 < 0 \wedge \delta_v > 1 \wedge a > 0.25 \\ e^{0.8-dd} \cdot (2 - \delta_v), & \text{if } a1 < 0 \wedge \delta_v \leq 1 \wedge a > 0.75 \\ 5\left(1 - \frac{|\text{ATA}|}{\text{angle_max}}\right), & \text{otherwise} \end{cases}$ (15)
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855

856 8. get reward regarding velocity of missiles

857
 858 $v_{\text{decrease}} = \frac{\|\mathbf{v}_{\text{missile}}^{\text{previous}}\| - \|\mathbf{v}_{\text{missile}}\|}{340}$
 859
 860 $\theta = \frac{\mathbf{v}_{\text{missile}} \cdot \mathbf{v}_{\text{aircraft}}}{\|\mathbf{v}_{\text{missile}}\| \cdot \|\mathbf{v}_{\text{aircraft}}\|}$
 861
 862 $\text{reward} = \begin{cases} \theta, & \text{if } \theta < 0 \\ \frac{\max(v_{\text{decrease}}, 0) + 1}{\theta \cdot \max(v_{\text{decrease}}, 0)}, & \text{otherwise} \end{cases}$ (16)
 863

864 9. get reward regarding proximity
 865

$$\begin{aligned}
 866 \quad p &= -\frac{10}{\text{target_dist}} \cdot \delta_D + 10 \\
 867 \quad c &= \begin{cases} 0, & \text{if } p < 0 \\ p, & \text{otherwise} \end{cases} \\
 868 \quad \text{penalty_proximity} &= c \\
 869 \quad \text{reward} &= -c \\
 870 \\
 871 \\
 872
 \end{aligned} \tag{17}$$

873 10. get reward regarding safety altitude
 874

$$\begin{aligned}
 875 \quad P_v &= \begin{cases} -\text{clip}\left(\frac{v_z}{K_v} \cdot \frac{\text{safe_altitude} - z}{\text{safe_altitude}}, 0, 1\right), & \text{if } z \leq \text{safe_altitude} \\ 0, & \text{otherwise} \end{cases} \\
 876 \quad P_H &= \begin{cases} \text{clip}\left(\frac{z}{\text{danger_altitude}}, 0, 1\right) - 2, & \text{if } z \leq \text{danger_altitude} \\ 0, & \text{otherwise} \end{cases} \\
 877 \quad \Delta h &= z - z_{\text{initial}} \\
 878 \quad \Delta H &= \begin{cases} 10 \cdot \frac{\Delta h}{z_{\text{initial}}} - 0.5 \cdot [\text{elevator} < 0] + \\ 1 \cdot [\text{elevator} > 0 \wedge \text{altitude_change} > 0] - 1, & \text{if } \Delta h < 0 \\ 0.8, & \text{otherwise} \end{cases} \\
 879 \quad \text{reward} &= P_v + P_H + \Delta H \\
 880 \\
 881 \\
 882 \\
 883 \\
 884 \\
 885 \\
 886
 \end{aligned} \tag{18}$$

887 11. get reward regarding attack angle
 888

$$\text{reward} = \begin{cases} -1, & \text{if } |\alpha| \geq 30^\circ \\ 0, & \text{otherwise} \end{cases} \tag{19}$$

892 A.4 HIERARCHICAL VARIANCE INFERENCE

893 To capture these evolving dynamics, we approximate higher-level and lower-level transition models using p_{ψ_I} and p_{ψ_L} , respectively. The H2TE-MITD module estimates the high-level posterior distribution $q_{\phi_I}(z_{I,i,t}|H_{opp,t}, O_{opp,i,t})$ to infer the opponent's intention $z_{I,i,t}$ based on historical and current observations relative to opponents $H_{opp,t} = \{O_{opp,i,t}\}_{t=t_0, \dots, t-1}^{i=1, \dots, N}, O_{opp,i,t}$. The LTHE-MLTD module approximates the low-level posterior $q_{\phi_L}(z_{L,i,t}|H_{c,t}, O_{c,i,t}, z_{I,i,t})$ to estimate multi-latent strategy queries $z_{L,i,t}$ based on historical and current observations relative to teammates $H_{c,i,t} = \{O_{c,i,t}\}_{t=t_0, \dots, t-1}^{i=1, \dots, N}, O_{c,i,t} = \{O_{i,l,t}\}_{l=1, \dots, n(l \neq i)}$, and inferred intent queries $z_{I,i,t}$, reflecting how intentions impact strategies. The observation models $p_{\theta_I}(O_{opp,i,t}|z_{I,i,t}, h_{I,i,t})$ and $p_{\theta_L}(O_{c,i,t}|z_{L,i,t}, h_{L,i,t})$ predict observations regarding opponents' trajectories and cooperative agents' trajectories. The hierarchical evidence lower bound (HELBO) is derived via Jensen's inequality as follows:

$$\begin{aligned}
 907 \quad &\log p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T}) \\
 908 \quad &= \log E_{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \left[\frac{p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})}{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \right] \\
 909 \quad &\geq E_{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \log \left[\frac{p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})}{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \right] \\
 910 \quad &\quad E_{q(z_{I,i,1:t}|H_{opp,1:t}, O_{opp,i,1:t})} (\log [p(O_{opp,i,t}|h_{I,i,t}, z_{I,i,t})]) + E_{q(z_{L,i,1:t}|H_{c,i,1:t}, O_{c,i,1:t}, z_{I,i,1:t})} \\
 911 \quad &\quad (\log [p(O_{c,i,t}|h_{L,i,t}, z_{L,i,t})]) + E_{q(z_{I,i,1:t}|H_{opp,1:t}, O_{opp,i,1:t})} q(z_{L,i,1:t}|H_{c,i,1:t}, O_{c,i,1:t}, z_{I,i,1:t}) \\
 912 \quad &= \sum_{t=1}^T \sum_{i=1}^N \log [p(a_{i,t}|O_{opp,i,t}, O_{c,i,t}, z_{I,i,t}, z_{L,i,t})] - E_{q(z_{I,i,1:t}|H_{opp,1:t}, O_{opp,i,1:t})} KL(q(z_{I,i,t}|H_{opp,t}, O_{opp,i,t}) || \\
 913 \quad &\quad p(z_{I,i,t}|z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1})) - E_{q(z_{L,i,1:t}|H_{c,i,1:t}, O_{c,i,1:t}, z_{I,i,1:t})} \\
 914 \quad &\quad KL(q(z_{L,i,t}|H_{c,t}, O_{c,i,t}, z_{I,i,t}) || p(z_{L,i,t}|z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t}, a_{n_i,t-1}, z_{I,i,t})) \\
 915 \\
 916
 \end{aligned} \tag{20}$$

917 Please refer to Appendix A.10 for the full derivation. The third term is omitted because of the joint policy. To reduce cumulative prediction error of opponents' intentions and strategies, we

Figure 5: Inference phase.

minimize two KL divergences between the prior and posterior of the hierarchical world model. The reconstruction loss can be written compactly as: $E_{q(z_I|H_{opp}, O_{opp})}(\log[p(O_{opp}|h_I, z_I)]) + E_{q(z_L|H_c, O_c, z_I)}(\log[p(O_c|h_L, z_L)])$. The priors h_I and h_L play dual roles: guiding trajectory prediction and shaping posterior learning via the reparameterization trick. Thus, reconstructed trajectories and posterior updates remain tightly coupled to evolving opponent mental states, unlike in a standard VAE. Because opponent intentions influence both their own trajectories and the cooperative agents' lower-level strategies, intention variables are updated through two backpropagation rounds within the hierarchical world model. Comparisons with RSSM, TSSM, and HyperHD2TSSM are given in Appendix A.5. Also, the hierarchical intention-strategy decomposition about H2TE-MITD and LHTE-MLTD, and the transition model are detailed in Appendix 3.2.1, 3.2.2, and A.6. And any-time-step update process can be found in Appendix A.7.

Inference Process: As shown in Figure 1, both allies and opponents use the same H2IL-MBOM and HyperHD2TSSM to estimate each other's mental states. For instance, collaborative agents model opponents using historical observations $H_{opp,t}$ and current observations $O_{opp,i,t}$, and vice versa. Here, $O_{opp,i,t} = \{O_{i,j,t}\}_{j=1,\dots,m}$ represents the observations relative to m opponents within agent i 's scope, and $H_{opp,t} = \{O_{opp,i,t}\}_{t=t_0,\dots,t-1}^{i=1,\dots,N}$. The agent i uses the H2TE-MITD to estimate the high-level posterior $q_{\phi_I}(z_{I,i,t}|H_{opp,t}, O_{opp,i,t})$ for multi-intent queries $z_{I,i,t}$ of opponents. It also uses a deterministic model HJLGT and a Gaussian stochastic model to approximate the high-level prior $p_{\psi_I}(z_{I,i,t}|z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1})$, which reflects intent $z_{I,n_i,t-1}$ from the n neighbors $n_i = \{1, \dots, n\} \setminus i$ of agent i , as well as the actions of those neighbors, to infer future multi-intent queries. The observation model $p_{\theta_I}(O_{opp,i,t}|z_{I,i,t}, h_{I,i,t})$ predicts opponents' trajectories, incorporating both current and historical intentions, which reveal how intentions influence trajectories. At the low-level world model, LHTE-MLTD approximates the low-level posterior $q_{\phi_L}(z_{L,i,t}|H_{c,t}, O_{c,i,t}, z_{I,i,t})$ to estimate multi-latent strategy queries $z_{L,i,t}$ from historical observations $H_{c,i,t} = \{O_{c,i,t}\}_{t=t_0,\dots,t-1}^{i=1,\dots,N}$, current observations $O_{c,i,t} = \{O_{i,l,t}\}_{l=1,\dots,n(l \neq i)}$, and current intent queries $z_{I,i,t}$, reflecting how intentions impact strategies. It uses a deterministic model HJLGT and a Gaussian model to approximate the low-level prior $p_{\psi_L}(z_{L,i,t}|z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1}, z_{I,i,t})$ based on latent strategies $z_{L,n_i,t-1}$ from neighbors and their actions, along with predicted intent queries $z_{I,i,t}$. The observation model $p_{\theta_L}(O_{c,i,t}|z_{L,i,t}, h_{L,i,t})$ predicts the trajectories of cooperative agents based on the estimated latent strategies $z_{L,i,t}$ of opponents, revealing how these strategies influence the trajectories of cooperative agents. Once $z_{I,i,t}$ and $z_{L,i,t}$ are estimated at each step, agent i can make decisions $a_{i,t} = \pi(O_{opp,i,t}, O_{c,i,t}, z_{I,i,t}, z_{L,i,t})$ and infer rewards $p_{\theta_I}(r_{i,t}|z_{I,i,t}, h_{I,i,t}, z_{L,i,t}, h_{L,i,t})$.

A.5 HYPERHD2TSSM

In the RSSM, hidden states are sequentially derived to accommodate sequential learning. By contrast, the TSSM deviates from this processing by concurrently computing each hidden state through the utilization of past states and actions, thereby facilitating parallelized training. It is important to

972
973
974 Table 4: Comparison of RSSM, TSSM, and HyperHD2TSSM
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Representation model	Rssm	Tssm	HyperHD2TSSM
Deterministic model	$z_t \sim q(z_t h_t, O_t)$	$z_t \sim q(z_t O_t)$	$z_{I,i,t} \sim q(z_{I,i,t} H_{opp,t}, O_{opp,i,t}),$ $z_{L,i,t} \sim q(z_{L,i,t} H_{c,t}, O_{c,i,t}, z_{I,i,t})$
Stochastic model	$h_{t+1} = gru(h_t, z_t, a_t)$	$h_{t+1} = Transformer(z_{1:t}, a_{1:t})$	$w_{I,i,t+1}, w_{I,n_i,t+1} =$ $Hyper(z_{I,i,t}, a_{i,t}, z_{I,n_i,t}, a_{n_i,t}),$ $h_{I,i,t+1} =$ $HJLGT_{w_{I,n_i,t+1}}(z_{I,i,t}, z_{I,n_i,t}, a_{i,t}, a_{n_i,t})$
Observation model		$\hat{z}_{t+1} \sim p(\hat{z}_{t+1} h_{t+1})$	$w_{L,i,t+1}, w_{L,n_i,t+1} =$ $Hyper(z_{L,i,t}, a_{i,t}, z_{L,n_i,t}, a_{n_i,t}),$ $h_{L,i,t+1} =$ $HJLGT_{w_{L,n_i,t+1}}(z_{L,i,t}, z_{L,n_i,t}, a_{i,t}, a_{n_i,t}, z_{I,i,t})$
Reward model		$p(O_{t+1} z_{t+1}, h_{t+1})$	$\Delta \hat{z}_{I,i,t+1} \sim p(\Delta \hat{z}_{I,i,t+1} h_{I,i,t+1}),$ $\hat{z}_{I,i,t+1} = \Delta \hat{z}_{I,i,t+1} + z_{I,i,t}$ $\Delta \hat{z}_{L,i,t+1} \sim p(\Delta \hat{z}_{L,i,t+1} h_{L,i,t+1}),$ $\hat{z}_{L,i,t+1} = \Delta \hat{z}_{L,i,t+1} + z_{L,i,t}$

acknowledge, however, that as the temporal extent (T) expands, so too does the volume of requisite historical information, consequently escalating the computational demands. In our transition model design, we posit that the historical joint latent state-action of the n adjacent agents is crucial, so we utilize a hypernetwork to interactively generate latent weights across agents based on the estimated state from the last step and further predict the state change at the next step. With reasoning, the latent weights at each step implicitly contain the historical information about neighbors from the beginning of reasoning to the desired time, leading to the $O(1)$ complexity. The comparison with RSSM, TSSM, and HyperHD2TSSM can be found in Table4.

Here, we utilize $HJLGT_I$, $HJLGT_L$, and a Gaussian model to approximate $p(z_{I,i,t} | z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1})$ and $(z_{L,i,t} | z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1}, z_{I,i,t})$. Within this framework, $w_{I,i,t}$, $w_{I,n_i,t}$ are the separate latent neural network weights generated by the hypernetwork for each agent and their corresponding neighbors, which are used for interactively estimating intentions of opponents. Similarly, $w_{L,i,t}$, $w_{L,n_i,t}$ are the neural network weights used for interactively estimating latent strategies of opponents for each agent and their corresponding neighbors. In other words, each agent updates the estimations for these mental states by considering the estimations of their neighbors, in which latent weights are adaptively adjusted based on the specific agent and inference time step, allowing for personalized and temporally sensitive representation learning. In addition, all agents within the same team share a common hierarchical world model. Through a hypernetwork, they can construct transition models $HJLGT$ with distinct latent weights for each agent without increasing neural network parameters. This eliminates the need to for building individual decentralized world models for each agent, which is different from the centralized, shared, and decentralized world models, improving representation ability and scalability.

A.6 HJLGT

As shown in Figure 6, the HJLGT is defined as follow:

$$\begin{aligned}
 & i.e., h_{i,t+1} \leftarrow w_{i,t+1}, w_{n_i,t+1} \leftarrow z_{i,t}, z_{n_i,t}, a_{i,t}, a_{n_i,t}, \\
 & h_{i,t+1} = HJLGT_{w_{n_i,t}}(z_{i,t}, z_{n_i,t}, a_{i,t}, a_{n_i,t}) : \\
 & z_{i+n_i,t} = hstack(z_{i,t}, z_{n_i,t}) \\
 & w_{i,t+1}, w_{n_i,t+1} = Hyper(z_{i,t}, a_{i,t}, z_{n_i,t}, a_{n_i,t}) \\
 & w_{i+n_i,t+1} = hstack(w_{i,t+1}, w_{n_i,t+1}) \\
 & Q_{i,t} = z_{i+n_i,t}, K_{i,t} = \text{Tanh}(z_{i+n_i,t} @ w_{i+n_i,t+1}), V_{i,t} = K_{i,t} W_i^V \\
 & x = MHA(Q_{i,t}, K_{i,t}, V_{i,t}) \\
 & y = \text{Gate1}(x, x) \\
 & z_{i,t} = \text{Gate2}(y, \text{PositionWiseMlp}(\text{LayerNorm}(y))) \\
 & E_{i,t} = \text{Gate3}(x, \text{FCLayer}(z_{i,t})) \\
 & h_{i,t+1} = \text{FCLayer}(\text{Concat}(E_{i,t}, x))
 \end{aligned} \tag{21}$$

where the hstack operation involves stacking elements in a horizontal manner, MHA is the multi-head attention. It can be seen that the proposed transition model is designed for interactive prediction

Figure 6: Architecture of the HJLGT.

Figure 7: Any-time-step update process of model: Our approach allows for updating any state over arbitrary time intervals (with $k = 1, 2, 3$), reducing accumulative errors and eliminating the need to perform inference sequentially from the initial state to the target time step. Furthermore, multiple arbitrary-step updates applied to a single model can be interpreted as an implicit approximation of an ensemble of models with fixed horizons $k = 1, k = 2$, and $k = 3$, effectively reducing model complexity while enabling parallel training.

rather than independent prediction in a multi-agent system and can adaptively establish transition models for each agent without increasing model parameters, which makes it more adaptable and scalable. Most importantly, as inference progresses, each agent interactively updates its latent neural weights and estimates of mental states through continuous interaction with its neighbors.

A.7 ANY-TIME-STEP UPDATE

As shown in Figure 7, we assume that the latent states at any given time can be inferred not only from the latent state and action at the most recent time step but also from a sequence of latent states and actions observed over the preceding interval. Given that the latent weights are capable of compressing historical information, the transition model is able to perform any-time-step updates:

$$J_{prior, z_I, z_L} = \min_{\phi_I, \psi_I, \phi_L, \psi_L} \frac{1}{H} \frac{1}{T} \frac{1}{N} \sum_{k=1}^H \sum_{T=1}^{\infty} \sum_{t=s}^{t+T-k} \sum_{i=1}^N \frac{(q_{\phi_I}(z_{I,i,t_s+k} | H_{opp,t_s+k}, O_{opp,i,t_s+k}) - q_{\phi_I}(z_{I,i,t_s} | H_{opp,t_s}, O_{opp,i,t_s}) - (p_{\psi_I}(\Delta | H_{opp,t_s}, O_{opp,i,t_s}, a_{i,t_s:t_s+k-1}))^2)}{(p_{\psi_I}(\Delta | H_{opp,t_s}, O_{opp,i,t_s}, a_{i,t_s:t_s+k-1}))^2} + \frac{1}{H} \frac{1}{T} \frac{1}{N} \sum_{k=1}^H \sum_{T=1}^{\infty} \sum_{t=s}^{t+T-k} \sum_{i=1}^N \frac{(q_{\phi_L}(z_{L,i,t_s+k} | H_{c,t_s+k}, O_{c,i,t_s+k}, z_{I,i,t_s+k}) - q_{\phi_L}(z_{L,i,t_s} | H_{c,t_s}, O_{c,i,t_s}, z_{I,i,t_s}) - (p_{\psi_L}(\Delta | H_{c,t_s}, O_{c,i,t_s}, a_{i,t_s:t_s+k-1}))^2)}{(p_{\psi_L}(\Delta | H_{c,t_s}, O_{c,i,t_s}, a_{i,t_s:t_s+k-1}))^2} \quad (22)$$

where $\phi_I, \psi_I, \phi_L, \psi_L$ are parameters of high-level world model and low-level world model, respectively. This approach eliminates the necessity of explicitly requiring all previous states up to time T , as is the case with TSSM. Additionally, it avoids the need for sequential inference from the initial state to the target time step, which is characteristic of RSSM. By enabling updates over arbitrary time intervals, our method reduces accumulative errors and computational complexity compared to these models. Moreover, since any state can be updated over arbitrary time spans, it facilitates parallel training. Furthermore, multiple arbitrary-step updates within a single model are equivalent to an implicit averaging over an ensemble of models with different horizons ($k = 1, 2, \dots, H, H \sim \text{random}(\text{maximum horizon})$), thereby further reducing model complexity.

1080 A.8 THE DEFINITIONS OF OPERATORS

1081

1082 A.8.1 HYPER OPERATOR

1083

1084 The Hyper operator is defined as follow:

1085

1086

1087

$$\begin{aligned} x &= za_{i,t} = \text{Concat}(z_{i,t}, a_{i,t}); \\ w_{i,t} &= \text{HyperNet}(x; \theta_{\text{hyper}}); \\ y &= f(x; w_{i,t}) = f(x; \text{HyperNet}(x; \theta_{\text{hyper}})); \end{aligned} \quad (23)$$

1088

1089

1090 where we assume that the dimensions of concatenation $za_{i,t}$ of $z_{i,t}$ and $a_{i,t}$ are $[n, d_z + d_a]$. Initially,
 1091 the hypernetwork with θ_{hyper} is sized as $[d_z + d_a, (d_z + d_a) \times d_h]$, and it is multiplied by $za_{i,t}$ to
 1092 produce weights of size $[n, (d_z + d_a) \times d_h]$. To automate weight assignment and create a reduced
 1093 neural network, $za_{i,t}$ is reshaped to $[n, 1, d_z + d_a]$ using the unsqueeze operator and weights with
 1094 the size of $[n, (d_z + d_a) \times d_h]$ is reshaped to $[n, d_z + d_a, d_h]$. Finally, we multiply and activate them
 1095 to obtain results while the the size of results is transformed into dimensions $[n, d_h]$. This process is
 1096 denoted as $w_{i,t} = \text{Hyper}(z_{i,t}, a_{i,t})$

1097

1098 A.8.2 GATE OPERATOR

1099

1100

1101 The Gate operator is defined as follow:

1102

1103

1104

1105

1106

$$\begin{aligned} \text{Gate}(y, x) &= (1 - z) \odot y + z \odot h; \\ z &= \sigma(W_z x + U_z y - b_g); \\ h &= \tanh(W_g x + U_g(r \odot y)); \\ r &= \sigma(W_r x + U_r y); \end{aligned} \quad (24)$$

1107

1108

1109

where \odot is the hadamard product, which refers to the element-wise multiplication of two matrices of the same size; σ is the sigmoid operation; the linear weights W_z , U_z , W_g , U_g , W_r , and U_r , along with the bias b_g , are components used in the model.

1110

1111

A.9 IMPLEMENTATION OF MSOAR-PPO

1112

1113

A.10 DERIVATION OF THE HIERARCHICAL VARIATIONAL LOWER BOUND

1114

1115

The joint probability and the hierarchical evidence lower bound (HELBO) are derived as follows:

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

$$\begin{aligned} & p(O_{\text{opp},1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T}) \\ &= \prod_{t=1}^T \left[\begin{aligned} & p(h_{I,1:N,t}, z_{I,1:N,t} | z_{I,1:N,t-1}, a_{1:N,t-1}) p(O_{\text{opp},1:N,t} | h_{I,1:N,t}, z_{I,1:N,t}) \\ & p(h_{L,1:N,t}, z_{L,1:N,t} | z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t}) p(O_{c,1:N,t} | h_{L,1:N,t}, z_{L,1:N,t}) \end{aligned} \right] \\ &= \prod_{t=1}^T \left[\begin{aligned} & p(z_{I,1:N,t} | h_{I,1:N,t}) p(h_{I,1:N,t} | z_{I,1:N,t-1}, a_{1:N,t-1}) p(O_{\text{opp},1:N,t} | h_{I,1:N,t}, z_{I,1:N,t}) \\ & p(z_{L,1:N,t} | h_{L,1:N,t}) p(h_{L,1:N,t} | z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t}) p(O_{c,1:N,t} | h_{L,1:N,t}, z_{L,1:N,t}) \end{aligned} \right] \\ &= \prod_{t=1}^T \left[\begin{aligned} & p(z_{I,1:N,t} | z_{I,1:N,t-1}, a_{1:N,t-1}) p(O_{\text{opp},1:N,t} | h_{I,1:N,t}, z_{I,1:N,t}) \\ & p(z_{L,1:N,t} | z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t}) p(O_{c,1:N,t} | h_{L,1:N,t}, z_{L,1:N,t}) \end{aligned} \right] \\ &= \prod_{t=1}^T \left[\begin{aligned} & p(z_{I,1:N,t} | z_{I,1:N,t-1}, a_{1:N,t-1}, a_{1,n_1,t-1}) \dots p(z_{I,N,t} | z_{I,N,t-1}, z_{I,n_N,t-1}, a_{N,t-1}, a_{N,n_N,t-1}) \\ & p(O_{\text{opp},1:N,t} | h_{I,1:N,t}, z_{I,1:N,t}) \dots p(O_{\text{opp},N,t} | h_{I,N,t}, z_{I,N,t}) \end{aligned} \right] \\ &= \prod_{t=1}^T \left[\begin{aligned} & p(z_{L,1:N,t} | z_{L,1:N,t-1}, a_{1,t-1}, a_{1,n_1,t-1}, z_{I,1:N,t}) \dots p(z_{L,N,t} | z_{L,N,t-1}, z_{L,n_N,t-1}, a_{N,t-1}, \\ & a_{N,n_N,t-1}, z_{I,N,t}) \\ & p(O_{c,1:N,t} | h_{L,1:N,t}, z_{L,1:N,t}) \dots p(O_{c,N,t} | h_{L,N,t}, z_{L,N,t}) \end{aligned} \right] \\ &= \prod_{t=1}^T \prod_{i=1}^N \left[\begin{aligned} & p(z_{I,i,t} | z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1}) p(O_{\text{opp},i,t} | h_{I,i,t}, z_{I,i,t}) \\ & p(z_{L,i,t} | z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t}, a_{n_i,t-1}, z_{I,i,t}) p(O_{c,i,t} | h_{L,i,t}, z_{L,i,t}) \\ & p(a_{i,t} | O_{\text{opp},i,t}, O_{c,i,t}, z_{I,i,t}, z_{L,i,t}) \end{aligned} \right] \end{aligned} \quad (25)$$

1134
1135
1136
1137

Algorithm 1 MSOAR-PPO.

1139 Require: $\leq step_{max}$, total numbers N , observable numbers n , and missile numbers n of red team
1140 agents, and total numbers M , observable numbers m , and missile numbers m of blue team agents;
1141 Initialize the network parameters of H2IL-MBOM of two teams: $\{\phi_I, \psi_I, \theta_I, \theta_r, \phi_L, \psi_L, \theta_L\}$,
1142 and $\{\phi_I, \psi_I, \theta_I, \theta_r, \phi_L, \psi_L, \theta_L\}$, actor policies of two teams: π_θ and π_θ , critic networks of two
1143 teams: V_ψ and V_ψ ;
1144 Initialize the opponents' intentions $\{z_{I,i}\}_{i=1}^N$ reasoned by red team, and opponents' intentions
1145 $\{z_{I,j}\}_{j=1}^M$ reasoned by blue team;
1146 Set learning rate α_{rl} of RL for red team and the learning rate α_m of their H2IL-MBOM, and
1147 learning rates α_{rl}, α_m of blue team;
1148 Initialize memory buffers $\{D_{env,t}\}_{t=1}^T$, $\{D_{env,t}\}_{t=1}^T$ and historical buffers $\{H_{opp,t}\}_{t=1}^{512}$,
1149 $\{H_{c,t}\}_{t=1}^{512}$, $\{H_{opp,t}\}_{t=1}^{512}$, $\{H_{c,t}\}_{t=1}^{512}$;
1150 **while** $step \leq step_{max}$ **do**
1151 Reinitialize the environment;
1152 **while** not done **do**
1153 **for** red team agents $i = 1, \dots, N$ **do**
1154 Obtain the current observations $O_{opp,i,t} = \{O_{i,j,t}\}_{j=1}^{2m}$ and $O_{c,i,t} = \{O_{i,l,t}\}_{l=1}^n$ of each
1155 agent, and gather historical observations $H_{opp,t}$ and $H_{c,t}$;
1156 Infer opponents' intentions $\{z_{I,i,j,t}\}_{j=1}^{2m}$ with $q(z_{I,i,t}|H_{opp,t}, O_{opp,i,t})$ by eq.equation 1-
1157 equation 5;
1158 Infer opponents' latent strategies $\{z_{L,i,j,t}\}_{j=1}^{2m}$ with $q(z_{L,i,t}|H_{c,t}, O_{c,i,t}, z_{I,i,t})$ by e-
1159 q.equation 6-equation 8;
1160 Select actions according to the policy $\pi_\theta(\cdot|O_{opp,i,t}, O_{c,i,t}, z_{I,i,t}, z_{L,i,t})$ with HEA;
1161 **end for**
1162 **for** blue team agents $j = 1, \dots, M$ **do**
1163 Obtain the current observations $O_{opp,j,t} = \{O_{j,i,t}\}_{i=1}^{2n}$ and $O_{c,j,t} = \{O_{j,l,t}\}_{l=1}^m$ of each
1164 agent, and gather historical observations $H_{opp,t}$ and $H_{c,t}$;
1165 Infer opponents' intentions $\{z_{I,j,i,t}\}_{i=1}^{2n}$ with $q(z_{I,j,t}|H_{opp,t}, O_{opp,j,t})$ by eq.equation 1-
1166 equation 5;
1167 Infer opponents' latent strategies $\{z_{L,j,i,t}\}_{i=1}^{2n}$ with $q(z_{L,j,t}|H_{c,t}, O_{c,j,t}, z_{I,j,t})$ by e-
1168 q.equation 6-equation 8;
1169 Select actions according to the policy $\pi_\theta(\cdot|O_{opp,j,t}, O_{c,j,t}, z_{I,j,t}, z_{L,j,t})$ with HEA;
1170 **end for**
1171 Execution actions, and obtain rewards and next states;
1172 Add transitions to $D_{env} \leftarrow D_{env} \cup (O_{i,t}, a_{i,t}, r_{i,t}, O_{i,t+1}, z_{I,i,t}, z_{L,i,t})$ and $D_{env} \leftarrow$
1173 $D_{env} \cup (O_{i,t}, a_{i,t}, r_{i,t}, O_{i,t+1}, z_{I,i,t}, z_{L,i,t})$;
1174 **end while**
1175 Train H2IL-MBOM of both teams by eqs.20 and 25, in which $H \sim \text{random}(\text{maximum horizon})$
1176 and $k = 1, \dots, H$;
1177 **for** epoch = 1 to num-epoch **do**
1178 // **Update policy and critic of both teams by PPO, respectively:**
1179 Computer loss J_π, J_c and J_π, J_c of both teams from PPO;
1180 $\theta \leftarrow \theta + \alpha_{rl} \nabla_\theta J_\pi(O_t, z_{I,t}, z_{L,t})$;
1181 $\psi \leftarrow \psi - \alpha_{rl} \nabla_\psi J_c(O_t, z_{I,t}, z_{L,t})$;
1182 $\theta \leftarrow \theta + \alpha_{rl} \nabla_\theta J_\pi(O_t, z_{I,t}, z_{L,t})$;
1183 $\psi \leftarrow \psi - \alpha_{rl} \nabla_\psi J_c(O_t, z_{I,t}, z_{L,t})$;
1184 **end for**
1185 Clear up the respective memories;
1186 **end while**
1187

1188
1189
1190
1191 $\log p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})$
1192 $= \log E_{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \left[\frac{p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})}{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \right]$
1193 $\geq E_{q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T})} \log \left[\frac{p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})}{q(z_{1:N,1:T}|H_{1:T}, O_{1:T})} \right]$
1194 $= \int q(z_{1:N,1:T}|H_{1:T}, O_{1:N,1:T}) \log \left[\frac{p(O_{opp,1:N,1:T}, O_{c,1:N,1:T}, a_{1:N,1:T}, h_{I,1:N,1:T}, z_{I,1:N,1:T}, h_{L,1:N,1:T}, z_{L,1:N,1:T})}{q(z_{1:N,1:T}|H_{1:T}, O_{1:T})} \right] dz_{1:N,1:T}$
1195
1196
1197 $q(z_{I,1:N,1:T}|H_{opp,1:T}, O_{opp,1:N,1:T})q(z_{L,1:N,1:T}|H_{c,1:T}, O_{c,1:N,1:T}, z_{I,1:N,1:T})$
1198 $= \int \sum_{t=1}^T \log \left[\frac{p(z_{I,1:N,t}|z_{I,1:N,t-1}, a_{1:N,t-1})p(O_{opp,1:N,t}|h_{I,1:N,t}, z_{I,1:N,t})}{p(a_{1:N,t}|O_{opp,1:N,t}, O_{c,1:N,t}, z_{I,1:N,t}, z_{L,1:N,t})} \right] dz_{1:N,1:T}$
1199
1200
1201
1202
1203
1204
1205
1206 $\left\{ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log[p(O_{opp,1:N,t}|h_{I,1:N,t}, z_{I,1:N,t})]} dz_{I,1:N,1:t} \right.$
1207 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log[p(O_{c,1:N,t}|h_{L,1:N,t}, z_{L,1:N,t})]} dz_{L,1:N,1:t}$
1208
1209 $= \sum_{t=1}^T \left. + \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log[p(a_{1:N,t}|O_{opp,1:N,t}, O_{c,1:N,t}, z_{I,1:N,t}, z_{L,1:N,t})]} dz_{1:N,1:t} \right.$
1210 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log \left[\frac{p(z_{I,1:N,t}|z_{I,1:N,t-1}, a_{1:N,t-1})}{q(z_{I,1:N,t}|H_{opp,1:N,t}, O_{opp,1:N,t})} \right]} dz_{I,1:N,1:t}$
1211 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log \left[\frac{p(z_{L,1:N,t}|z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t})}{q(z_{L,1:N,t}|H_{c,1:t}, O_{c,1:N,t}, z_{I,1:N,t})} \right]} dz_{L,1:N,1:t}$
1212
1213
1214
1215
1216
1217
1218
1219 $\left\{ \int q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t}) \log[p(O_{opp,1:N,t}|h_{I,1:N,t}, z_{I,1:N,t})] dz_{I,1:N,1:t} \right.$
1220 $+ \int q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t}) \log[p(O_{c,1:N,t}|h_{L,1:N,t}, z_{L,1:N,t})] dz_{L,1:N,1:t}$
1221 $= \sum_{t=1}^T \left. + \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})}{\log[p(a_{1:N,t}|O_{opp,1:N,t}, O_{c,1:N,t}, z_{I,1:N,t}, z_{L,1:N,t})]} dz_{1:N,1:t} \right.$
1222 $+ \int q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t}) \log \left[\frac{p(z_{I,1:N,t}|z_{I,1:N,t-1}, a_{1:N,t-1})}{q(z_{I,1:N,t}|H_{opp,1:N,t}, O_{opp,1:N,t})} \right] dz_{I,1:N,1:t}$
1223 $+ \int q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t}) \log \left[\frac{p(z_{L,1:N,t}|z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t})}{q(z_{L,1:N,t}|H_{c,1:t}, O_{c,1:N,t}, z_{I,1:N,t})} \right] dz_{L,1:N,1:t} \right\}$
1224
1225
1226
1227
1228
1229 $\left\{ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})...q(z_{I,N,1:t}|H_{opp,1:t}, O_{opp,N,1:t}) \log[p(O_{opp,1:t}|h_{I,1:t}, z_{I,1:t})...]}{p(O_{opp,N,t}|h_{I,N,t}, z_{I,N,t})} dz_{I,1:N,1:t} \right.$
1230 $+ \int \frac{q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})...q(z_{L,N,1:t}|H_{c,1:t}, O_{c,N,1:t}, z_{I,N,1:t}) \log[p(O_{c,1:t}|h_{L,1:t}, z_{L,1:t})...]}{p(O_{c,N,t}|h_{L,N,t}, z_{L,N,t})} dz_{L,1:N,1:t}$
1231 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})...q(z_{I,N,1:t}|H_{opp,1:t}, O_{opp,N,1:t})...}{p(O_{opp,N,1:t}|q(z_{L,N,1:t}|H_{c,1:t}, O_{c,N,1:t}, z_{I,N,1:t}) \log[p(a_{1:t}|O_{opp,1:t}, O_{c,1:t}, z_{I,1:t}, z_{L,1:t})...]} dz_{I,1:N,1:t}$
1232 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})...q(z_{I,N,1:t}|H_{opp,1:t}, O_{opp,N,1:t})...}{p(a_{N,t}|O_{opp,N,t}, O_{c,N,t}, z_{I,N,t}, z_{L,N,t})} dz_{1:N,1:t}$
1233 $+ \int \frac{q(z_{I,1:N,1:t}|H_{opp,1:t}, O_{opp,1:N,1:t})...q(z_{I,N,1:t}|H_{opp,1:t}, O_{opp,N,1:t})}{p(z_{I,1:N,t}|z_{I,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t})} dz_{I,1:N,1:t}$
1234 $= \sum_{t=1}^T \left. + \int \frac{\log \left[\frac{p(z_{I,1:N,t}|z_{I,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t})}{q(z_{I,1:N,t}|H_{opp,1:N,t}, O_{opp,1:N,t})} \right]}{p(z_{I,N,t}|z_{I,N,t-1}, a_{N,t-1}, z_{I,N,t})} dz_{I,1:N,1:t} \right.$
1235 $+ \int \frac{q(z_{L,1:N,1:t}|H_{c,1:t}, O_{c,1:N,1:t}, z_{I,1:N,1:t})...q(z_{L,N,1:t}|H_{c,1:t}, O_{c,N,1:t}, z_{I,N,1:t})}{p(z_{L,N,t}|z_{L,N,t-1}, a_{N,t-1}, z_{L,N,t})} dz_{L,1:N,1:t}$
1236 $+ \int \frac{\log \left[\frac{p(z_{L,1:N,t}|z_{L,1:N,t-1}, a_{1:N,t-1}, z_{I,1:N,t})...}{q(z_{L,1:N,t}|H_{c,1:t}, O_{c,1:N,t}, z_{I,1:N,t})} \right]}{p(z_{L,N,t}|z_{L,N,t-1}, a_{N,t-1}, z_{L,N,t})} dz_{L,1:N,1:t} \right\}$
1237
1238
1239
1240
1241

$$\begin{aligned}
& \left\{ \int \sum_{i=1}^N q(z_{I,i,1:t} | H_{opp,1:t}, O_{opp,i,1:t}) \log[p(O_{opp,i,t} | h_{I,i,t}, z_{I,i,t})] dz_{I,i,1:t} \right. \\
& \quad + \int \sum_{i=1}^N q(z_{I,i,1:t} | H_{c,1:t}, O_{c,i,1:t}, z_{I,i,1:t}) \log[p(O_{c,i,t} | h_{L,i,t}, z_{L,i,t})] dz_{L,i,1:t} \\
& = \sum_{t=1}^T \left. + \int \sum_{i=1}^N q(z_{I,i,1:t} | H_{opp,1:t}, O_{opp,i,1:t}) q(z_{L,i,1:t} | H_{c,1:t}, O_{c,i,1:t}, z_{I,i,1:t}) \log[p(a_{i,t} | O_{opp,i,t}, O_{c,i,t}, \right. \\
& \quad \left. + \int \sum_{i=1}^N q(z_{I,i,1:t} | H_{opp,1:t}, O_{opp,i,1:t}) \log \left[\frac{p(z_{I,i,t} | z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1})}{q(z_{I,i,t} | H_{opp,t}, O_{opp,i,t})} \right] dz_{I,i,1:t} \right. \\
& \quad \left. + \int \sum_{i=1}^N q(z_{L,i,1:t} | H_{c,1:t}, O_{c,i,1:t}, z_{I,i,1:t}) \log \left[\frac{p(z_{L,i,t} | z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t}, a_{n_i,t-1}, z_{I,i,t})}{q(z_{L,i,t} | H_{c,t}, O_{c,i,t}, z_{I,i,t})} \right] dz_{L,i,1:t} \right\} \\
& \quad E_{q(z_{I,i,1:t} | H_{opp,1:t}, O_{opp,i,1:t})} (\log[p(O_{opp,i,t} | h_{I,i,t}, z_{I,i,t})]) + E_{q(z_{L,i,1:t} | H_{c,1:t}, O_{c,i,1:t}, z_{I,i,1:t})} \\
& = \sum_{t=1}^T \sum_{i=1}^N \log[p(a_{i,t} | O_{opp,i,t}, O_{c,i,t}, z_{I,i,t}, z_{L,i,t})] - E_{q(z_{I,i,1:t} | H_{opp,t}, O_{opp,i,t})} K L(q(z_{I,i,t} | H_{opp,t}, O_{opp,i,t}) || \\
& \quad p(z_{I,i,t} | z_{I,i,t-1}, z_{I,n_i,t-1}, a_{i,t-1}, a_{n_i,t-1})) - E_{q(z_{L,i,1:t} | H_{c,t}, O_{c,i,t}, z_{I,i,t})} \\
& \quad K L(q(z_{L,i,t} | H_{c,t}, O_{c,i,t}, z_{I,i,t}) || p(z_{L,i,t} | z_{L,i,t-1}, z_{L,n_i,t-1}, a_{i,t}, a_{n_i,t-1}, z_{I,i,t})) \tag{26}
\end{aligned}$$

A.11 ANALYSIS OF OPPONENTS' MULTIPLE INTENTIONS AND LATENT STRATEGIES

We analyze cumulative prediction errors of opponent intentions and strategies for two opposing teams, along with the t-SNE Van der Maaten & Hinton (2008) distributions of each agent's mental-state representations over three episode segments (≤ 500 steps, 1500–2500 steps, 5000–6000 steps). As shown in Figures. 8a and 8b, both teams rapidly infer opponent mental states and exhibit a striking pattern: after reward convergence, sharp error drops occur at 6, 8.1, 11, and 12.5 M steps, signaling sudden recognition of key features. This stems from a prediction challenge in the early stage: the model initially struggles to infer opponent states and is prone to local minima. As training progresses and strategies converge, the explored state space gradually narrows, enabling more stable feature extraction and improved predictions.

The t-SNE visualizations in Figures. 8c and 8d reveal several notable patterns. Using agent 0's predictions as an example, opponent intentions form multiple continuous strip-like distributions across three stages rather than discrete clusters, while predicted strategies remain separable within each stage. This indicates that H2IL effectively captures features of opponents' mental states. Within smaller time intervals, the reduced representations preserve a sequential structure, reflecting the temporal coherence of mental states. The multiple distributions align with key tactical phases (e.g., nose-to-nose approach, tailing, evasion, missile launch), highlighting both diversity and smooth transitions of intentions and strategies. Across the three stages, opponents exhibit 11, 7, and 3 intention transitions, whereas low-level strategies vary more smoothly. Appendix A.16 further shows that the average predicted intention changes (3, 2, 1 per UAV across the three stages) match the actual intention changes. Overall, our method provides both global prediction of opponents' intentions and fine-grained tracking of evolving latent strategies, enhancing interpretability.

A.12 TESTING RESULTS

The win rate (WR) and survival rate (SR) are as evaluation metrics. We first confront the opponents who adopt the baseline strategy that includes straight fly, rectangular trajectory maneuver and evasion of missiles, and pursuing the tail of our aircraft. The results show that our SR is the highest and achieves a 100% WR in 4 vs. 4 scenarios as presented in Table 5. We then test the effectiveness of our method against our method and our method against MAPPO under different numbers of agents as presented in Table 6 and 7. We use SR to evaluate performance because a group with fewer agents may sacrifice less or equal to the other group. In most cases, both teams make equal sacrifices because of the same reasoning ability of both teams, and in a small number of cases (e.g., 4 vs. 6, 4 vs. 8, 6 vs. 8) where the quantity is at a disadvantage, the red team still destroys one more aircraft than the blue team. In situations where the red team has a numerical advantage, it can achieve 100% superiority (e.g., 8 vs. 4, 10 vs. 4, 10 vs. 6). Additionally, the advantage ranges are further expanded when our method against MAPPO. (e.g., 4 vs. 4, 6, 8, 10; 6 vs. 4, 8, 10; 8 vs. 4; 10 vs. 4, 10 vs. 6). The results also demonstrate our method is endowed with good generalization ability. Due to the fixed dimensions of other MARLs, it is not possible to complete adversarial tasks in different quantities.

Figure 8: Accumulate error and t-SNE distribution of opponents’ multiple intentions and latent strategies reasoned by Agent0 across three time periods. The total number of intention transitions observed for all opponents across various stages is 11, 7, and 3, respectively. In contrast, the low-level strategies employed by the opponents exhibit a more consistent and distinguishable performance.

As shown in Figure 8(c), the relevant opponent modeling methods are unable to complete this task, so there is no adversarial testing with these methods.

Table 5: The results of our method against the baseline strategy in 4 vs. 4 scenarios.

SR(WR)	Straight fly	Maneuver	Pursue
Ours	4:1(100 %)	4:2(100 %)	4:0(100 %)

Table 6: The results of the confrontation of Table 7: The results of our method vs. MAP- different number agents of our method. PO under different numbers of agents.

SR (Ours vs. Ours)	SR				SR (Ours vs. MAPPO)	SR			
	4	6	8	10		4	6	8	10
4	2:2	3:4	3:6	3:9	4	3:2	3:4	3:6	3:8
6	3:1	3:3	3:4	3:7	6	3:0	3:3	3:4	3:6
8	8:0	3:1	3:3	3:5	8	8:0	3:1	3:3	3:5
10	10:0	10:0	3:1	3:3	10	10:0	10:0	3:1	3:3

A.13 EXPERIMENTS ABOUT HYPERPARAMETERS

We vary the dimensions of intentions from 4 to 64 and evaluate the impact of different dimensions on the performance of our method, as shown in Figure 9a. We observe that there is an optimal dimensions of intentions, 8, which maximizes the performance of the model. When the dimension of intentions is below 8 or above 32, it takes twice the time to converge, and the convergence speed is significantly reduced. Based on our experiments, the optimal number of attention heads is 8. At this optimal number, the model achieves the highest performance with lowest complexity.

Similarly, we vary the number of attention heads from 2 to 16 and measure the performance using the average rewards. As shown in Figure 1 9b, we observe that there is an optimal number of attention heads, 4, which maximizes the performance of the model. When the number of attention heads is below 4 or above 8, it also takes twice the time to converge, and the convergence speed is significantly

Figure 9: The results on experiments with different hyperparameters: a) different dimensions of the mental states; b) different numbers of attention head

reduced. Based on our experiments, the optimal number of attention heads is 4. At this optimal number, the model achieves the highest performance with lowest complexity.

In summary, the dimensions of the intention space and numbers of attention head are chosen based on the best balance between performance and computational efficiency.

A.14 HYPERPARAMETERS

The hyperparameters are summarized in Tables 8–12.

Table 8: Hyperparameters of Ours

Parameter	Value
Interaction steps	2×10^7 (20M)
Training steps	1.58×10^5
Learning rate	3×10^{-4}
Discount factor	0.99
Policy initialization	Xavier uniform
Optimizer	Adam
Gradient norm clipping	5.0
Rollout Length	128
Batch size	1024
Number of training epochs	1
Number of head	4
Attention size	32
Hidden state dimensions	128

Table 9: Hyperparameters of world models

Parameter	Value
Training steps	1.58×10^5
Learning rate	1×10^{-4}
Discount factor	0.99
Optimizer	Adam
Gradient norm clipping	5.0
Number of head	4
Attention size	32
Intention z_I and latent strategy z_L dimensionality	8
Hidden state dimension	32
Number of layers (N_M and N_H)	4

Table 10: Hyperparameters of HAPPO and MAPPO

Parameter	Value
Interaction steps	2×10^7 (20M)
Training steps	1.58×10^5
Learning rate	2×10^{-4}
Discount factor	0.99
Policy initialization	Xavier uniform
Optimizer	Adam
Gradient norm clipping	10.0
PPO epoch	5
Rollout threads	20
Episode length	1500

Table 11: Hyperparameters of HADDPG and MADDPG

Parameter	Value
Interaction steps	2×10^7 (20M)
Learning rate	1×10^{-4}
Discount factor	0.99
Optimizer	Adam
Gradient norm clipping	5.0
Buffer size	1×10^6
Batch size	1000
Rollout threads	20
Hidden state dimension	128

Table 12: Hyperparameters of opponent modeling baselines

Parameter	Value
Interaction steps	2×10^7 (20M)
Learning rate	3×10^{-4}
Discount factor	0.99
Optimizer	Adam
Gradient norm clipping	5.0
Buffer size	1×10^6
Episode length	1500
Batch size	3000
Rollout threads	20
Hidden state dimension	256

A.15 COMPUTE RESOURCE

In our study, we performed simulations utilizing 36 parallel environments on a computer workstation equipped with dual Intel(R) Xeon(R) 40-core CPUs, 128 GB of RAM, and two NVIDIA RTX A4500 GPUs. Each environment completed 1500 maximum steps per episode at a simulation frequency of 60Hz. In total, there were roughly four days for training the uav-game environment.

A.16 VISUAL RESULTS

We first visualize the engagement scenarios using the full reward function under different adversarial settings: ours (red) vs. MAPPO (blue) and ours (red) vs. ours (blue). Notably, MAPPO is treated as an unseen opponent during testing, as it was not encountered during the training of our red agent. We then present visualizations of our method without height-correlated reward to analyze their impact on the learned policies.

A.16.1 TACTICAL BEHAVIOR VISUALIZATION USING COMPLETE REWARD SETTINGS

As shown in Figures 10 and 11, the visualization of scenarios depicting engagements between our method and MAPPO, as well as engagements between our method and itself, was conducted. The figures illustrate that during combat with MAPPO, our maneuver decisions were more agile and rapid, resulting in achieving a high altitude and angle advantage with a smaller flight radius, ultimately leading to a SR of 3:1. In confrontations with our own method, both sides exhibited similar reasoning capabilities, leading to primarily engaging in double loop motion, which represents a classic tactic in close-range aerial combat.

Combining Figures 10, 8c, and 8d, in the initial stage, the feature distribution range is relatively small, indicating both teams frequently make rapid maneuver transitions in a small space (such as climbing, making large turns to enter angles, and engaging in single-loop maneuvers). In the middle stage, both teams enter the engagement phase, conducting double-loop maneuvers (nose-to-nose approach and departure), and missile launches within a larger range. In the final stage, only alive agents engage in extensive pursuit and escape strategies. This is consistent with the average number of changes in the opponent's intention predicted by each UAV on average across three stages.

As shown in Figure 11, in the initial phase, the red team launches missiles first and rapidly dives downward at an airspeed of Mach 0.73 to gain kinetic energy. Afterward, it quickly climbs and performs a turn. During this phase, one blue aircraft is shot down, while the remaining blue aircraft evade the attack by diving and executing counterclockwise yaw maneuvers.

At this point, the red formation positions itself behind the blue formation, gaining a tactical advantage. The red team then accelerates and launches a second missile. In response to the incoming threat, the blue formation performs a rapid 180° counterclockwise turn to evade the second wave of attack.

The red formation maintains high maneuverability at Mach 0.87, achieves angular superiority for the second time, and launches a third missile. The blue formation again executes a swift 180° counterclockwise turn to avoid the third wave of attack.

Figure 10: Snapshot of our method vs. MAPPO.

Figure 11: Snapshot of ours vs. ours.

While the blue team is turning to evade the missile, the red formation simultaneously performs aggressive turning maneuvers at Mach 0.92. This ensures that as soon as the blue aircraft complete their evasion, the red aircraft are already in a favorable angular position to launch the fourth missile.

Throughout the engagement, both teams perform turning maneuvers near their respective initial positions. The red formation is accompanied by diving and climbing movements, whereas the blue formation generally descends while maneuvering counterclockwise. Importantly, the red team consistently maintains angular superiority throughout the entire engagement.

A.16.2 NO HEIGHT-CORRELATED REWARD

We remove height-correlated reward components and visualize the maneuvering policies and trajectories of both agents, as shown in the Figure 12.

In the initial phase, the red agent rapidly yaws to the right at Mach 0.94 and launches a missile. In response, the blue agent climbs quickly without access to height-correlated rewards; however, one of its aircraft is shot down during this phase. Chai2023A To pursue a joint advantage in range and angle-again without relying on height-correlated rewards, the red agent also initiates a rapid climb while maintaining proximity to the tail of the blue agent.

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

Figure 12: Maneuvering strategies without height-correlated reward.

1532 Subsequently, in an attempt to reverse the joint range-angle advantage, the blue agent dives after
1533 climbing and performs a right yaw maneuver. The red agent promptly launches another missile,
1534 blocks the blue agent’s climb, increases the distance, and then yaws to the right. Notably, each
1535 red aircraft exhibits a distinct pull-away distance and turning radius: those with shorter pull-away
1536 distances execute tighter turns, while those with longer distances perform wider turns. As a result,
1537 the red formation flies in a head-to-tail configuration.

1538 Given that the blue agent attempts to gain angular advantage by diving and yawing to the right after
1539 climbing, the red agent responds with timely maneuvers and downward missile deployment. This
1540 forces the blue agent to perform tight turns for evasion, resulting in a disadvantage in altitude.
1541

1542 Importantly, by delaying the turn until after increasing the distance, the red formation avoids being
1543 exploited by the blue agent’s fast, small-radius maneuvering. Moreover, the diversity in turning radii
1544 ensures that not all red aircraft fall into an angular disadvantage simultaneously. In contrast, the blue
1545 agent ends up in a clear angular disadvantage.
1546

1547 It’s noting that despite the absence of height-based rewards, agents can still adopt strategies such as
1548 climbing to indirectly achieve a combined advantage in position and angular through position-angle
1549 rewards. Overall, the red agent achieves a favorable combined advantage in altitude, position, and
1550 attack angle by the end of the engagement.
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565