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ABSTRACT

In mixed cooperative-competitive multi-agent settings, uncertain decisions create
non-stationary learning and mutual security threats. Existing opponent modeling
methods typically require access to opponents’ private information (observations,
actions, goals, policy parameters or rewards) or rely solely on local historical ob-
servations, neglecting the intrinsic dynamics between mental states and trajectories.
Inspired by human hierarchical reasoning, we propose a hierarchical world model
that recursively infers opponents’ intentions from their historical trajectories and
reasons about their latent strategies from teammates’ responses, without needing
opponents’ private information. Coupled with our Mutual Self-Observed Adver-
sary Reasoning PPO (MSOAR-PPO) algorithm, it establishes a co-adaptation loop
between the world model and policy. Evaluations demonstrate that our method
outperforms all model-free, model-based, and opponent modeling baselines in
multi-UAV games, achieving higher rewards and faster convergence while scaling
robustly to 10v10 settings with improved win/survival rates. Its ability to reason
about complex opponent behaviors is confirmed by cumulative error analysis and
t-SNE visualizations. Superior performance generalizes to StarCraft and Google
Research Football benchmarks. Videos are provided in supplemental materials.

1 INTRODUCTION

In multi-agent environments, agents interact and learn concurrently, leading to diverse state transitions
and mental dynamics, and creating non-stationary dynamics that complicate policy learning. This
challenge is particularly acute in mixed-motive games, where the fundamental tension between coop-
eration and competition directly amplifies the non-stationarity and strategic uncertainty. This tension
requires agents to cooperate with allies while simultaneously facing opposition from adversaries. In
such settings, unknown and evolving opponent policies not only hinder policy improvement but also
jeopardize ally safety and curtail overall performance. Therefore, for effective decision-making in
mixed-motive scenarios, it is crucial to move beyond modeling allies and instead develop a sophisti-
cated capacity to model opponent behavior and reason about their mental states, which is essential
for ensuring operational safety and achieving strategic supremacy.

Opponent modeling and intent reasoning are central to Theory of Mind (ToM), enabling agents
to infer opponents’ preferences, goals, beliefs, and strategies. The cognitive foundations of this
capability are well-established: developmental psychology shows that even infants distinguish
between enduring goals and situational actions, recognizing that intentions remain stable while
strategies adapt contextually Gergely & Csibra (1997). Neuroscientific evidence further supports
this dissociation, revealing distinct encodings for high-level goals in prefrontal regions and action
execution in inferior frontoparietal circuits De C. Hamilton & Grafton (2008). Computationally,
humans engage in hierarchical causal reasoning, first inferring others’ goals and then deriving the
specific action plans employed to achieve them Baker et al. (2017).

Existing computational approaches to opponent modeling fall into two categories. Some methods
reconstruct policy beliefs from known behaviors, while others extrapolate strategies directly from local
observations. However, the former relies on unrealistic assumptions about opponent transparency,
while the latter often fails to capture the causal interactions among intentions, strategies, and actions.
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Critically, both are ill-suited for the stochastic and dynamic interest alignments that characterize
mixed-motive games. Specifically, they do not explain how intentions shape strategies, how agents
should react to these inferences, or how mental states co-evolve and influence future trajectories.
This lack of continuous reasoning about evolving intentions and strategies is a primary bottleneck for
robust performance in mixed-motive environments.

Developing a human-like opponent model or intent reasoning model inevitably presents challenges.
Maintaining a multi-hypothesis intention and strategy for opponents with advanced cognitive abilities
in dynamic and complex competitive-cooperative scenarios, adapting to a variable number of adver-
saries with changing intentions, and dealing with the resulting uncertainty in strategy estimation are
necessary.

Motivations, Core idea and Contributions: To address these challenges and bridge the gap in
opponent modeling without relying on private information from the opponents, drawing inspiration
from the brain’s hierarchical information processing and recursive reasoning mechanisms, we intro-
duce a Hierarchical Interactive Intent-Latent-Strategy-Aware World Model-Based Opponent Model
(H2IL-MBOM), in which a Hypernetwork-based Hierarchical Dynamic Dependence Transformer
State Space Model (HyperHD2TSSM), along with a Mutual Self-Observed Adversary Reasoning
PPO (MSOAR-PPO) for real-time reasoning about opponents’ multi-intentions and latent strategies,
all without accessing any private information.

In the HyperHD2TSSM, we introduce a hierarchical mental model and action-conditioned transition
models that formalize the interactions between the opponent’s intentions and the team’s actions
in the opponent’s trajectory transitions, as well as the interactions between the opponent’s latent
strategies and the team’s actions in the allied agents’ trajectory transitions. Specifically, we propose
a hierarchical opponent modeling framework, HyperHD2TSSM, comprising three components: 1)
High-level Dynamic Intent-aware Representation Fusion (HDIRF): High-level History Transformer
Encoder (H2TE) + Multi-Intention Transformer Decoder (MITD) employs cross-attention and fusion
to aggregate a consensus from teammate inferences, inferring multi-intention queries directly from
opponents’ past trajectories. 2) Low-level Dynamic Latent-Strategy-aware Representation Fusion
(LDLRF): Inspired by our team’s reactions serving as a mirror to opponent strategies, Low-level
History Transformer Encoder (LHTE) + Multi-Latent-Strategy Transformer Decoder (MLTD) utilizes
the same mechanism to predict latent strategy queries based on estimated intentions and historical
responses. 3) Interactive Hypernetwork-based Joint Latent Gated Transformer (HJLGT): This
transition model interactively infers the future mental states of opponents and reconstructs the
trajectories of both opponents and cooperative agents. This design embodies the core philosophy of
“inferring intentions from opponents’ historical trajectories while understanding latent strategies from
teammate responses," implementing a brain-inspired hierarchical recursive architecture that enables
interactive modeling and interactive reasoning of co-evolving mental states and trajectories.

Our contributions are six-fold: 1) We propose a hierarchical world model that interactively infers
multi-intentions, latent strategies, and trajectories of all agents without using opponents’ private
information. 2) We design HyperHD2TSSM, which compresses history into latent weights via a hyper-
network and supports interactive prediction of future mental states for all agents without increasing
parameters 3) Our method enables any-time-step updates, facilitating parallel training, reducing
computational overhead and cumulative error, and offering flexible temporal modeling. 4) We build
a hierarchical architecture to model intent-strategy interactions without predefined candidates, and
incorporate a hyper-network for individualized reasoning along with the cross-attention consensus
mechanism for collaborative and adaptive inference. 5) By integrating MSOAR-PPO with H2IL-
MBOM, our agents perform real-time adversarial reasoning from self-observation and adapt rapidly
to opponent changes. 6) To the best of my knowledge, this is the first work to build world models for
opponent modeling in intense adversarial environments, advancing the development of world models,
opponent modeling techniques, and multi-agent adversarial decision-making.

2 RELATED WORK

Opponent modeling. Opponent modeling aims to infer an opponent’s mental states, such as goals,
actions, and intentions, to address non-stationarity and gain an advantage in dynamic environments.
Existing methods like DPN-BPR+ Zheng et al. (2018) and ToMoP Yang et al. (2018) struggled
with continuously evolving opponents. Approaches like RFM Tacchetti et al. (2018), P-BIT Tian
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et al. (2020), ROMMEO Tian et al. (2019), TOM Rabinowitz et al. (2018), GSCU Fu et al. (2022),
CSP Wu et al. (2023a), OMIS Jing et al. (2024) and Yu et al. (2022b); Zhang et al. (2021) utilized
opponents’ private information, such as their actions, policy parameters or rewards, as labels to learn
and infer their goals, beliefs or strategy representation. PR2 Wen et al. (2019) and GR2 Wen et al.
(2021) focused on probabilistic inference but don’t simultaneously learn agent policies. GrAMMI
Ye et al. (2023) applied multi-hypothesis beliefs and mutual information theory to predict opponent
behaviors but misses time-varying dynamics. Although Busch Busch et al. (2022), Wu et al. (2023b)
and Shi et al. (2022) used gaussian model, and graph attention or transformer based VAE to predict
adversaries’ incentive, intents or trajectories, they neglected underlying environmental dynamics and
mutual influence between them. In contrast, our method infers multi-evolving opponents’ intentions
and latent strategies from historical and current observations, without requiring private information,
and accounts for the opponent’s same reasoning ability.

World Model. Current single-agent world models include like MBPO Kaiser et al. (2019),
DreamerV1-V3 Hafner et al. (2019a; 2020; 2023) based on RSSM Hafner et al. (2019b), TSS-
M developed by Chen et al. (2022), and graphical state space model (GSSM) developed by Wang &
Van Hoof (2022). Some extend single-agent models to multi-agent models, categorized as centralized
Willemsen et al. (2021) or decentralized Xu et al. (2022); Hu et al. (2021). Recently, Egorov &
Shpilman (2022) and Liu et al. (2024) proposed new world models based MARL (MBMARL), MAM-
BA and MAZero, and validated them in StarCraft Multi-Agent Challenge (SMAC). However, these
models struggle with scalability, often making independent latent state predictions. Xie et al. (2021)
used the world model to only infer latent strategy. Our approach builds an interactive multi-agent
world model with hierarchical latent states to infer intent and latent strategy for mixed cooperative-
competitive environments. By dynamically adjusting latent weights based on neighboring agents’
states, our model enables spatiotemporal forecasting and interactive predictions without increasing
parameters, offering greater scalability and adaptability compared to centralized and decentralized
models.

3 METHODOLOGY

Problem Statement. We consider mixed cooperative-competitive scenarios involving N >= 2
agents. Each agent infers opponents’ intentions and strategies and makes decisions based on local
observations while interacting with others without accessing private information of competitive
agents, such as opponents’ learning algorithms, actions, rewards, goals, and incentives. These private
details of opponents, including adversaries and missiles, remain diverse, changeable, and unknown to
cooperative agents. In this study, we aim to understand opponents’ mental states by constructing H2IL-
MBOM models from their perspectives, and using these predictions along with observations to inform
decision-makings. Therefore, we have two objectives. The Markov decision process comprises a tuple
〈N,n,M,m, S,A,O,Z,H,R, γ〉 where N and n are numbers of cooperative agents and observable
cooperative neighbors, respectively; M and m are numbers of opponents and observable opponents,
respectively; S is the state sets, A = {Ai}Ni=1, O = {Oopp,Oc} = {Oi}Ni=1 = {Oopp,i, Oc,i}Ni=1
are the action sets and observation sets relative to opponents Oopp and cooperative neighbors Oc.
z = {zI , zL} = {zi}Ni=1 = {zI,i, zL,i}Ni=1 are incentive representations, which consist of inten-
tions zI and latent strategies zL. H = {Hopp,t,Hc,t} = {{Oopp,i,t}i=1,...,N

t=t0,...,t−1, {Oc,i,t}
i=1,...,N
t=t0,...,t−1}

signifies the agents’ historical observations relative to opponents and teammates; and R, γ are
rewards and discount factor, respectively. The first objective is to maximize the expected return

Eπ

[ ∞∑
t=0

γtRt(st, {ai,t ∼ π(|oi,t, zI,i,t, zL,i,t)}Ni=1 , st+1)

]
, and the second objective involves updat-

ing reasoned intentions and latent strategies based on future ground-truth incentive representations.

3.1 COGNITIVE INTUITION ABOUT HIERARCHICAL WORLD MODEL

Intention: The opponent’s high-level tactical objectives, answering What does the opponent want to
achieve?" (e.g.,“Attacking" a specific unit, “Retreating").

Latent Strategy: Contextualized execution methods for implementing intentions, answering “How
does the opponent achieve its intention?" (e.g.,Leveraging angular advantage" for an attack intention).
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Figure 1: Overview of the H2IL-MBOM, which comprises high-level world model and low-level
model. The high-level world model is utilized for reasoning about opponents’ intentions and changes
in their trajectories, whereas the low-level world model focuses on inferring opponents’ latent
strategies and their impact on allies’ trajectories by taking these intentions into account. By taking as
input the estimated mental states of the opponents and local observations, the policy learns to encode
opponent behavior in an implicit manner. The inference phase can be found in Figure5.

Human cognition employs multi-level recursive reasoning in adversarial settings: Stage one
infers opponent intentions from historical interactions; Stage two involves agents acting based on
inferred intentions/strategies while opponents dynamically adjust theirs; Stage three updates policies
through observed trajectories, forming a closed-loop cycle that drives long-term return maximization.
This reveals that opponent modeling requires both hierarchical mental state decomposition (Stage
One) and dynamic temporal evolution modeling (Stages Two/Three). However, three challenges
persist: opponent mental state unobservability prevents supervised learning; existing methods like
VAEs Qi & Zhu (2018); Shi et al. (2022); Wu et al. (2023b) cannot capture mental state co-evolution;
and current world models Xie et al. (2021) neglect causal hierarchies.

Guided by human hierarchical reasoning, we propose a hierarchical Transformer architecture: H2TE-
MITD infers opponent goals from past observations, extracting macro-behavioral trends (“what
they want to do"). LHTE-MLTD employs a cognitive logic that shifts from analyzing “what the
opponent has done" to examining “what outcomes their behavior caused us." The rationale is that an
opponent’s intention determines its strategy choice, which in turn elicits distinctive team responses.
These collective responses serve as a behavioral mirror, allowing inverse deduction of latent strategies
by correlating reaction patterns with inferred intentions, thereby identifying which strategies the
opponent employed to produce observed team reactions.

To overcome static model limitations and capture mental state-behavior co-evolution, we introduce
transition models that convert mutual reactions into trajectory observation sequences: opponent
intention-team action interactions become opponent-relative trajectory transitions, while strategy-
action interactions become teammate-relative trajectory transitions. This enables the model to
capture how mental states and behavior co-evolve over time. To capture these evolving dynamics,
we approximate higher-level and lower-level transition models using pψI

and pψL
, respectively.

The H2TE-MITD module estimates the high-level posterior distribution qφI
(zI,i,t|Hopp,t, Oopp,i,t)

to infer the opponent’s intention zI,i,t based on historical and current observations relative to
opponents Hopp,t, Oopp,i,t. The LHTE-MLTD module approximates the low-level posterior
qφL

(zL,i,t|Hc,t, Oc,i,t, zI,i,t) to estimate multi-latent strategy queries zL,i,t based on historical and
current observations relative to teammates Hc,i,t, Oc,i,t. The hierarchical evidence lower bound
(HELBO) is derived via Jensen’s inequality in Appendix A.4. Comparisons with RSSM, TSSM, and
HyperHD2TSSM are given in Appendix A.5. Also, HJLGT and any-time-step update are detailed in
Appendix A.6 and A.7.

3.2 DYNAMIC FUSION MECHANISMS OF INTENTIONS AND LATENT STRATEGIES IN
OPPONENT MODELING

Intention inference layer estimates qφI
(zI,i,t|Hopp,t, Oopp,i,t) by three core mechanisms: First,

the temporal consistency modeling mechanism, where H2TE analyzes observations relative to
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opponents over 512 time steps, extracting macro-behavioral trends that characterize persistent
intentions. Second, the observation-based encoding mechanism, where intention self-attention
module uses our observations for opponents to construct feature representations, thoroughly avoiding
interference from teammate response patterns and ensuring the purity of intention features. Third,
the threat-centric consensus mechanism, where MITD uses team’s collective threat consensus to
refines intention queries around “which ally faces the greatest threat." This integrated computational
process is mathematically formalized through the Bayesian framework: P (Intent | Hopp, Oopp) ∝
P (Oopp | Intent)︸ ︷︷ ︸
Observation Likelihood

·P (Hopp | Oopp, Intent)︸ ︷︷ ︸
Historical Consistency

·P (Intent)︸ ︷︷ ︸
Intent Prior

.

The strategy inference layer estimates qφL
(zL,i,t|Hc,t, Oc,i,t, zI,i,t) by building an inverse

reasoning framework based on the behavioral mirror principle: LHTE forms a “behav-
ioral mirror" by encoding historical team states, comprehensively recording the character-
istic response patterns of the team under various strategic pressures. On this founda-
tion, MLTD implements Bayesian inverse reasoning to establish a complete causal chain
from observed effects back to potential strategies. The core of this process lies in the
concrete computation of the probability formula P (Strategy | Response, Intent, Oc) ∝
P (Oc | Intent)︸ ︷︷ ︸

(Observation Conditioning)

·P (Response | Strategy, Oc, Intent)︸ ︷︷ ︸
(Response Likelihood)

·P (Strategy | Intent)︸ ︷︷ ︸
Prior

: The latent strategy

prior is embedded through query initialization, incorporating assumptions about strategy distri-
butions given specific intentions. The intention self-cross attention module computes the observation
conditioning term P (Oc | Intent), evaluating how current situational evidence aligns with inferred
intentions. The likelihood term P (Response | Strategy, Oc, Intent) is calculated through the latent
strategy cross-attention module, assessing how well latent strategies explain current team reactions
under the given intent and situational context.

This dual-layer architecture preserves the advantages of direct observation in intention recogni-
tion while ensuring the causal rationality of strategy inference, ultimately achieving precise threat
assessment and multi-agent cooperative decision-making through the team consensus mechanism.

3.2.1 HIGH-LEVEL DYNAMIC INTENT-AWARE REPRESENTATION FUSION (HDIRF)

During each learning stage, historical states in the most recent steps undergo dynamic change. The
intention queries within each MITD layer are derived from the outputs of the previous layer, adapting
as the dynamics evolve. Each agent enhances its intent prediction for a given opponent through the
team’s collective threat consensus, specifically identifying which ally faces the greatest threat from
that intent. This approach is grounded in the principle that intentions manifest as consistent patterns
in how opponents present themselves to our observational systems.

High-level History Transformer Encoder (H2TE) constructs a team-shared representation of op-
ponent behavior patterns by processing historical observations Hopp,t ∈ RN×512×D relative to
opponents from the perspective of ourN agents, where 512 denotes temporal steps, andD = m×dm
indicates observation dimensionality relative to m opponents. The H2TE captures the spatiotem-
poral evolution of opponent behavior patterns by analyzing their historical trajectories, extract-
ing macro-level behavioral trends and consistent patterns. Spatial consensus is achieved through
hypernetwork-based embedded attention (HEA):

wH,i,j,t = Hyper(Hi,j,t), e
i,j,t = Tanh(Hi,j,t@wH,i,j,t),

αi,j,t = softmax(MLP([repeat(ei,t), ei,j,t])), AttHi,t =
1

m

∑m

j=1
αi,j,tϕh(ei,j,t)

(1)

where Hyper() operator is defined in A.8.1, Hi,j,t are historical observations relative to the j − th
opponent. The hypernetwork generates distinct parameters wH,i,j,t for each agent, enabling non-
shared, individualized reasoning while capturing per-agent spatial dependencies across opponents.
Temporal consensus employs Transformer architecture with multi-head attention:

q = k = AttHopp
′
, v = MLP(k), AHopp = AttHopp

′
+ MHA(q, k, v),

AttHopp
′

= LayerNorm(AHopp + MLP(LayerNorm(AHopp)))
(2)

where AttH
′

opp = reshape(AttHopp) ∈ R512,N×C creates a single computational graph capturing
both temporal dependency and instantaneous agent interactions through dot-product operations.
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Figure 2: The structure of HDIRF that comprises H2TE and MITD incorporates given observations
regarding opponents and multi-learnable intention queries generated by a hypernetwork for interactive
intention feature predictions. The structure of LDLRF that comprises LHTE and MLTD incorporates
observations of cooperative neighbors and latent strategy queries initialized by intention queries to
capture the dynamic impact of multiple intentions on strategy decisions.

The GTr mechanism constructs a more macroscopic perspective on time series similarity and the
development of opponent agent behavior.

Multi Intention Transformer Decoder (MITD) decodes intentions from the entire team’s historical
perception through three specialized components. Given the historical feature of opponents AttHopp

and current observation Oopp ∈ RT×N×2m×dm regarding opponents, the MITD employs dynamic
intention queries zI ∈ RT×N×2m×dI .

Hypernetwork-based Intention Self-attention Module estimate P (Oopp | Intent) by fusing embedding
Oopp,e = MLP (Oopp) of Oopp and zI to propagate information among 2m dynamic intentions.
The self-attention mechanism integrates real-time observations with intent queries, emphasizing
spatiotemporal features aligned with tactical hypotheses:

wI,i,j,t = Hyper(zI,i,j,t), qIh,i,j,t = Tanh(zI,i,j,t@wI,i,j,t),

qI,s = kI,s = MLP(Oopp,e) + qIh, vI,s = MLP(Oopp,e)
(3)

Here, the hypernetwork adaptively generates different opponent intent query weights for each agent.
qI,s serves as active reconnaissance signals combining current situational awareness with tactical
intent hypotheses, guiding the attention mechanism to purposefully focus on the spatiotemporal
regions and behavioral features most relevant to the current hypothesis. The intention cross-attention
module estimating P(Hopp | opp, Intent) uses its current intent hypothesis to query a “global memory"
from historical opponent behavior patterns. This module enables collaborative validation through
global memory access:

qI,c = MLP(sI,s) + qIh, kI,c = MLP(AttHopp), vI,c = MLP(AttHopp) (4)

The global memory bank R1×(512N)×C contains encoded historical observations from all N agents,
enabling each agent to query: “Given my current intent hypothesis, which past opponent trajectories
observed by any teammate are most relevant?" The intention fusion module establishes team-level
threat consensus:

qI,f = kI,f = [MLP(qI,c), qIh], vI,f = [MLP(qI,c), qIh] (5)
The concatenated features qI,f , kI,f ∈ RT×2m×N×2C enable cross-agent attention to determine
“which ally is most likely to be targeted?" for each opponent intent hypothesis, in which each agent
refines its intent prediction based on team’s collaborative threat assessment, guiding subsequent
cooperative decisions. Finally, zI are the updated in each layer of MITD.

3.2.2 LOW-LEVEL DYNAMIC LATENT-STRATEGY-AWARE REPRESENTATION FUSION (LDLRF)

Based on the inferred intention information, the next step is to further deduce latent strategies
and understand how strategies respond to intent prediction. The LDLRF module constructs latent
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strategy queries by integrating cooperative agents’ historical observations Hc,t, current neighbor
observations Oc, and intention features zI generated by MITD. This process encodes the strategy
prior probability P (Strategy|Intent) by zL = MLP ([Gate(zIf ,MLP (zI)), zIf ]) during query
initialization, embodying the prior knowledge of “conditional probabilities of strategies given specific
intentions." Meanwhile, the current observation embedding Ec = HEA(Oc) provides real-time
context for strategy inference. The core mechanism of LDLRF lies in the fact that different latent
strategies under the same opponent intention elicit distinct response patterns from teammates. By
analyzing the correlation between these specific response patterns and inferred intentions, the module
achieves a cognitive process of inversely reasoning about the opponent’s latent strategies from team
reaction effects. The specific definition of the Gate operator can be found in Appendix A.8.2.

Low-level History Transformer Encoder (LHTE) constructs a behavioral mirror by encoding
historical team states Hc,t ∈ RN×512×D using the same HEA and GTr operations as H2TE. This
generates AttHc representing the team’s coordinated reactions under adversarial pressure.

Multi-Latent Strategy Transformer Decoder (MLTD) implements the Bayesian formulation by
three-component reasoning chain, and performs true inverse reasoning: it takes the effect (team
response) and context (intent) as inputs, and infers the most likely cause (opponent strategy) by team
consensus on the same opponent. The intention self-cross attention module estimating P (Oc | Intent)
first links opponent intent to team context:

qLs = MLP(Ec), kLs = kLs = MLP(Ec), kLI = vLI = MLP(LayerNorm(Ec + MHA(qLs, kLs, vLs))),

qLI = Tanh(zI@Hyper(zI))
(6)

This constructs intent-driven queries qLI that attend to team context kLI , vLI , assessing “how
threatening this intent seems" given current team reactions.

The latent strategy cross-attention module is used to estimate P (Response | Strategy, Oc, Intent)
through attention mechanism between the hybrid query and historical response patterns:

qLc = MLP(sLI), qLh = Tanh(zL@Hyper(zL)), qL,c = qLc + qLh (7)
where sLI is the output of the previous module, which has integrated the information from Oc.
The hybrid query qL,c = qLc + qLh fuses current team context sLI with strategy hypotheses, while
kL,c, vL,c ∈ R1×(512N)×C represent historical team response patterns. The attention scores qL,c ·k>L,c
compute the similarity between current context (augmented with strategy hypotheses) and historical
team responses, implementing the abductive reasoning: “Given Oc, what strategies employed by
opponents best explain both the teammates’ characteristic responses and opponent’s current intent?" In
other words, it identifies the opponent’s primary target by detecting which teammate most consistently
triggers reactive behaviors, thereby modeling latent causal relationships between opponent behavior
patterns and team responses.

Finally, the latent strategy fusion module establishes team consensus on strategy-threat relationships:
qL,f = [MLP(qL,c), qLh], kL,f = [MLP(qL,c), qLh], vL,f = MLP(qL,c) (8)

where qI,f , kI,f ∈ RT×2m×N×2C . It performs team-level threat assessment through cross-agent
attention, enabling each agent to continuously refine its reasoning about strategic focus through
collective intelligence integration, ultimately determining which allied teammate receives the highest
strategy-threat attention weight. This identification facilitates coordinated and precise team support
by determining which allied teammate receives the highest strategy-threat attention weight.

3.3 CO-ADAPTIVE LOOP & MSOAR-PPO

Two teams engage in independent policy learning, value learning, and world model learning based
on their local observations due to the limitation of imperfect game. During the execution phase, the
policy of each agent relies solely on: (1) local observations relative to cooperative adjacent agents (
Oc ) and opponents ( Oopp), and (2) mental states inferred via the hierarchical model. Furthermore,
the world model operates through iterative observation-action-reflection cycles and is updated via
HELBO loss (Eq. 20) using collected interaction data. The world model, in conjunction with the
policy Cheng et al. (2024), generates multi-step imagined trajectory observations. These synthesized
trajectory observations are subsequently combined with real interaction data to compute MARL
policy and value objectives, thereby facilitating training and enhancing policy generalization. The
any-time-step update and pseudocode are provided in Sections A.7 and A.9, respectively.
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4 EXPERIMENTS

We evaluate our method in mixed cooperative-competitive environments: Gym-JSBSim, SMAC,
and Google Research Football (GRF). Gym-JSBSim that serves as a benchmark provides high-
fidelity 6-DOF dynamics for fixed-wing UAV control. In a 4v4 multi-UAV task, we compare against
baselines to assess learning performance, reasoning capabilities, scalability test, and module ablation.
Cumulative errors and t-SNE visualizations of inferred intentions and latent strategies further validate
reasoning accuracy in Appendice A.11. Additional results on environment settings, hyperparameters,
scalability test, and visualizations are in Appendices A.3, A.14, A.12, and A.16, respectively. To
enhance robustness, both teams are trained as independent learners, avoiding built-in AI or self-play
and making ELO inapplicable. In the testing phase, win rate is used as the evaluation criterion
in equal-team scenarios, while survival rate is adopted in unequal-team settings. Also, the agents
compete against opponents equipped with other MARL methods that were never encountered during
training. The visual results, particularly in Appendix A.16, further investigate the impact of height-
related reward components. For SMAC and GRF, we compare with baseline methods, using built-in
AI for the opponent team.

4.1 COMPARISON WITH VARIOUS BASELINE METHODS

For each algorithm, we use the same network architecture as described in corresponding literature.
To ensure fair comparison, we train these baseline algorithms with 5 random seeds under the same
conditions such as initial conditions, number of simulation steps, observation space, action space,
and reward functions.

Comparison with model-free MARL. We compare our method with CTDE MARL (MAPPO Yu
et al. (2021), MADDPG Lowe et al. (2017)), decentralized MARL (HAPPO, HADDPG Zhong et al.
(2024)), and a model-free RL baseline where MAPPO/HAPPO act randomly and MADDPG/HAD-
DPG act deterministically. All algorithms share the same network architecture and hyperparameters
from their original papers. As shown in Figure. 3a, other MARLs yield negative rewards. MADDPG
and HADDPG perform poorly because deterministic actions cannot cope with dynamic, evolving
opponents, leaving both sides vulnerable to missile attacks. MAPPO and HAPPO improve sta-
bility but still fluctuate under environmental non-stationarity, keeping rewards below zero. Our
method (Figure. 3b) achieves near-100 rewards due to three factors: (1) hierarchical decomposition
(H2TE-MITD, LHTE-MLTD) enables structured reasoning over intentions and latent strategies; (2)
mental simulation (HJLGT) supports multi-step prediction of adversarial and team trajectories for
proactive decisions; and (3) MSOAR-PPO dynamically couples inference and policy updates, refining
mental states through real interactions. This integration allows real-time adaptation to unseen tactics,
mitigates non-stationarity, and ensures safe, coordinated responses in complex adversarial settings.

Comparison with other opponent modeling methods. We compared recent opponent-modeling
approaches—ROMMEO Tian et al. (2019), PR2 Wen et al. (2019), TDOM-AC Tian et al. (2023),
and AORPO Zhang et al. (2021). As shown in Figure. 3c, all exhibit negative, fluctuating rewards:
AORPO oscillates around –100, while PR2 fluctuates more sharply around –203.2. These results
indicate that none accurately capture opponent behavior, leading to erroneous predictions and
disadvantaged decisions. AORPO further struggles to model environmental dynamics using MBPO’s
world model. A core limitation of prior methods is their reliance on opponent actions as labeled
data—an unrealistic assumption in real adversarial settings. Intentions and strategies are latent and
evolve over time, making action-level modeling inadequate. As discussed in Section 3.1, future
trajectories depend on the temporal evolution of mental states. Yet most methods, including VAE-
based ones, learn static latent representations and directly reconstruct trajectories, failing to capture
the dynamics of evolving intentions and strategies, and thus cannot anticipate future behaviors.

Comparison with other MBMARL. In recent MB-MARL studies, comparisons mainly focus on
MAMBA Egorov & Shpilman (2022). MAZero Liu et al. (2024) is excluded because its Monte
Carlo Tree Search (MCTS) is designed for discrete action spaces, whereas our UAV game features a
five-dimensional continuous space (aileron, elevator, rudder, thrust, missile launch), which MAZero
cannot effectively handle. Qualitatively, our method converges rapidly to positive rewards and
maintains stable performance with only minor fluctuations. In contrast, MAMBA converges slowly
and shows higher variability, especially early in training. Quantitatively, our approach surpasses
zero reward within 5 million (M ) steps and reaches about 100 by 10 M steps, sustaining 100–150
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(a) (b) (c) (d)

Figure 3: Performance comparison of various methods.

(a) (b) (c) (d)

(e) (f)

Figure 4: Results for ablation study. (1) Low-level strategy modeling is crucial, as intention-only
inference causes mid-game performance degradation due to inability to discern strategy-specific
responses; (2) Historical encoding prevents local optima by capturing temporal opponent dynam-
ics; (3) Transformer/HEA components ensure stable convergence through structured reasoning;
(4) Hypernetworks enable adaptive agent-specific inference without homogenization, accelerating
learning.

between 10 M and 20 M steps. MAMBA stays below zero until roughly 10 M steps and continues
to fluctuate around –50 even after 20 M steps, with only marginal late-stage improvement. These
results highlight the superiority of our approach in terms of both efficiency and effectiveness.

4.2 ABLATION STUDY

In this ablation study, we study the importance of each module in H2IL-MBOM by removing the
low-level world model related to latent strategies (only intentions inference version), all history
encoders (vanilla world model), Transformer and HEA, transition model, replacing GTr with local
time Transformer, and replacing hypernetwork-add operator with share network-add operator in
the Transformer. Figure 4a shows that modeling only intentions degrades mid-game performance,
confirming the need for low-level strategy inference and the low-level world model. Figure 4b
reveals that using only current observations leads to local optima, as short-sighted inference fails
to capture evolving opponent dynamics. This highlights the importance of historical context for
long-term reasoning. Figures 4c–4f show that removing Transformer, HEA, GTr, or the hypernetwork
slows convergence and destabilizes rewards, validating their role in H2TE-MITD and LHTE-MLTD.
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Overall, the ablation confirms the critical role of hierarchical modeling, historical encoding, structured
attention, and dynamic transitions.

4.3 GENERALIZATION TESTING IN SMAC AND GRF

The table 1 presents a comprehensive comparison of test win rates achieved by various state-of-the-art
MARL algorithms, including our proposed method, MAPPO Yu et al. (2022a), QMIX Rashid et al.
(2020), QPLEX Wang et al. (2020), RODE Wang et al. (2021), MAMBA Egorov & Shpilman
(2022), and MAZero Liu et al. (2024). across SMAC scenarios. It’s noting that the total interac-
tive steps are aligned with the settings used in MAZero to ensure a fair and valid comparison.

Table 1: Comparison of test Win Rate with state-of-the-art MARL in the SMAC scenarios: the total interactive
steps are aligned with the settings used in MAZero to ensure a fair.

Map Ours MAPPO QMIX QPLEX RODE MAMBA MAZero Steps
2s_vs_1sc 100 100 0 50.62 0 100 100 1e5
2m_vs_1z 100 20.75 2.9 45.50 0 90 100 5e4

3m 93.75 60.12 42.75 55.37 0 93 100 5e4
3s_vs_5z 97.14 22.37 85 96.4 78.9 20 / 5e4

5m_vs_6m 71.87 40.14 63.37 65.60 90 40.50 90.12 1e6
10m_vs_11m 93.75 75.12 85.57 90.87 60.37 60.12 89.30 1e6

So_many_baneling 96.87 30.87 6.75 30.62 0 95 99.87 5e4
2c_vs_64zg 78.12 35.27 2.6 0 66.87 35 90 4e5

Our method achieves perfect 100% win rates in both “2s_vs_1sc" (matching top-performing MAP-
PO) and asymmetric “2m_vs_1z" scenarios, significantly outperforming QMIX (2.9%), QPLEX
(45.50%), and MAPPO (20.75%). In “3m" environments, it maintains 93.75% win rates, substan-
tially exceeding MAPPO (60.12%) and QMIX (42.75%). The algorithm demonstrates particular
strength in complex scenarios: achieving 97.14% in “3s_vs_5z" (surpassing QPLEX’s 96.4% and
far exceeding MAPPO’s 22.37%) and 93.75% in large-scale “10m_vs_11m" (outperforming MAZe-
ro’s 89.30% and QPLEX’s 90.87%). These results validate our method’s superior coordination
in heterogeneous settings and excellent scalability in high-dimensional multi-agent environments.

Table 2: Win Rates (%) of Different Methods in Various
Scenarios

Scenario Ours HAPPO MAPPO QMIX
PS 92.27 96.93 94.42 8.05
rPS 89.94 77.30 76.83 8.08
3v1 92.54 94.74 88.03 8.12
CA 93.09 92.00 87.76 15.98

Additionally, we have conducted GRF experi-
ments in Table 2, our method demonstrates sig-
nificant advantages in dynamic adversarial sce-
narios. In the rPS scenario with randomized ini-
tial positions, our approach achieves a win rate
of 89.94%, substantially outperforming HAPPO
(77.30%) and MAPPO (76.83%). In the CA sce-
nario requiring precise coordination, our method
attains a 93.09% win rate, also exceeding HAP-
PO (92.00%) and MAPPO (87.76%). These two scenarios share the common characteristic of
requiring real-time inference of opponent intentions and dynamic strategy adjustment. Our hierar-
chical intention-strategy representation system plays a crucial role in such tasks, achieving superior
tactical response capabilities compared to traditional methods through online learning of intention
evolution and hypernetwork-based coordination mechanisms.

5 CONCLUSIONS

This paper introduces a novel opponent modeling method that integrates multi-intention and latent
strategy inference into the world model. Using a hierarchical architecture, we study the impact of
opponents’ intentions on their strategies and predict both teammates’ and opponents’ trajectories. We
also propose MSORA-PPO, enabling teams to independently learn their own H2IL-MBOM, infer
adversarial strategies and intentions from historical observations, and integrate these inferred mental
states with local observations to make decisions.
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ETHICS STATEMENT

We acknowledge the broader societal implications of our work on opponent modeling in multi-agent
adversarial environments.

On the positive side, our method advances the capability of AI agents to understand and adapt to
complex, dynamic opponents through hierarchical inference of intentions and latent strategies. This
could benefit applications such as autonomous systems requiring safe interaction with unpredictable
agents, where anticipating adversarial behavior can improve safety and coordination.

Our approach does not use real human data or sensitive attributes (e.g., race, gender), and all
experiments are conducted in simulated environments (e.g., SMAC, GRF, Gym-jsbsim simulator).
Therefore, no personal data is involved, and there is no direct risk of demographic bias in training.
Nevertheless, we caution that any system capable of inferring private mental states should be subject
to strict regulatory oversight before deployment.

REPRODUCIBILITY STATEMENT

We have provided detailed designs of transition model, HDIRF, and LDLRF in the Appendix A.6,3.2.1,
and 3.2.2, respectively. The training details including environmental settings, hyperparameters are
shown in the AppendixA.3, 1, and A.14.
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A APPENDIX

A.1 LIST OF ABBREVIATIONS USED IN THE PAPER

Table 3: List of Abbreviations and Explanations

Abbreviation Explanation
H2IL-MBOM Hierarchical Interactive Intent-Latent-Strategy-Aware World Model based Opponent Model
MSOAR-PPO Mutual Self-Observation Adversarial Reasoning with PPO
HyperHD2TSSM Hypernetwork-Based Hierarchical Dynamic Dependency Transformer State Space Model
HDIRF High-Level Dynamic Intent-aware Representation Fusion
LDLRF Low-Level Dynamic Latent-Strategy-aware Representation Fusion
H2TE-MITD High-Level History Transformer Encoder - Multi-Intent Transformer Decoder in HDIRF
LHTE-MLTD Low-Level History Transformer Encoder - Multi-Latent Policy Transformer Decoder in LDLRF
HILGT Interactive Hypernetwork Joint Latent Gating Transformer
HEA Hypernetwork-Based Embedding Attention Mechanism
HELBO Hierarchical Evidence Lower Bound
CTDE Centralized Training with Decentralized Execution (a paradigm in MARL)
SMAC StarCraft Multi-Agent Challenge (benchmark environment)
GRF Google Research Football (benchmark environment)
RSSM Recurrent State Space Model
TSSM Transformer State Space Model
VAE Variational Autoencoder
MHA Multi-Head Attention
KL Kullback-Leibler Divergence

A.2 LIMITATIONS

This study still has some limitations. First, we did not integrate multi-source information, which is
important in practice and requires more representation learning. Second, although we analyzed the
t-SNE distribution of opponent intentions and strategies, we have not yet studied the driving factors
behind these distributions, necessitating further techniques to analyze opponents in detail. Last but
not least, the method has not been validated on physical devices in the real world.

A.3 EXPERIMENT DETAILS

The environmental setup presents significant challenges: In the gym-jsbsim environment, each aircraft
is equipped with four missiles that can autonomously lock onto and pursue targets upon launch, with
an engagement duration of approximately 20 seconds. The aircraft’s maximum speed is limited
to 2 Mach (twice the speed of sound), while the missiles travel at 4 Mach(four times the speed of
sound). The objective is to achieve dominant positioning and optimal missile launch timing in this
highly dynamic setting, maximizing combat effectiveness while minimizing resource expenditure.
This environment differs substantially from conventional benchmarks due to its high dimensionality,
extreme velocities, the substantial speed differential between missiles and aircraft, complex spatial
relationships, and the critical importance of launch timing to prevent premature depletion of limited
munitions.

Two opposing teams, designated as red and blue, initialize their UAV swarms randomly at starting
positions separated by a distance of 16 km, both operating at an altitude of 6 km above sea level.
The central coordinate for the engagement zone is set at 120◦ longitude and 60◦ latitude, with
an elevation of 0 m. The flight altitude for all UAVs is constrained between 2.5 km and 20 km.
Each UAV is limited to a maximum acceleration of 10 m/s2, a maximum attack angle of 4◦,
and an engagement range of up to 14 km. The kinematic states used in our observation space,
specifically relative distance, velocity, and attitude, are grounded in well-established aerospace
sensing technologies, making their acquisition realistic rather than hypothetical: 1) Relative distance
is obtained through active electromagnetic ranging, where onboard radar systems (including primary,
secondary, millimeter-wave, and lidar) measure the round-trip time ∆t of transmitted pulses and
calculate distance using the fundamental equation c·∆t

2 , where c represents the speed of light and
denotes the round-trip time of the electromagnetic pulse. 2) Relative velocity is derived through
inertial and multi-sensor fusion, integrating data from MEMS-based IMUs (accelerometers and
gyroscopes) with supplementary inputs from GPS, barometric sensors, and visual odometry to
construct accurate 3D velocity vectors. 3) Relative attitude and orientation are provided by phased-
array radar systems, which utilize electronic beam steering to lock onto targets and determine their
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azimuth and elevation angles relative to the host aircraft through phase analysis of returning signals.
These sensing methodologies are operationally deployed in modern aerial systems, confirming that
the observational inputs to our model are consistent with real-world capabilities and do not rely on
unrealistic assumptions.

Observation Space. Each agent’s observation space includes the ego-state Oe, observations relative
to cooperative adjacent agents Oc, observations relative to opponents and encountered missiles Oopp.
Concretely, Oe comprises ego altitude, sine and cosine values of ego roll angle, sine and cosine values
of ego pitch angle, and three velocity components in the body coordinate system; the observation
relative to each neighbor includes three components {∆xi,j,t,∆yi,j,t,∆zi,j,t}j=1,...,2m of relative
position and three components {∆V xi,j,t,∆V yi,j,t,∆V zi,j,t}j=1,...,2m of relative velocity in the
northeast celestial coordinate system; in addition to the above information,Oopp also includes antenna
angle {ATAi,j,t}j=1,...,2m, aspect angle {AAi,j,t}j=1,...,2m, elevation angle {EAi,j,t}j=1,...,2m,
horizontal angle {HAi,j,t}j=1,...,2m, and distance {∆Di,j,t}j=1,...,2m relative to each opponent and
missile.

Action Space. Each agent in a uav-game scenario has five continuous actions, including aileron
angle, elevator angle, rudder angle, thrust, and sign of launching missiles. A sign value greater than 0
indicates that it can be launched, otherwise it will not be launched. The specific launch also depends
on the attack angle, distance, and enemy survival number on the battlefield.

Rewards. Rewards primarily consist of distance-angle reward relative to opponents, height-angle
reward relative to opponents, speed-angle reward relative to opponents, penalties for collisions (-5)
and proximity between teammates, altitude safety reward, attack angle reward, crash penalties(-100),
penalties for the number of missiles (-10), penalties for being killed (-100), rewards for killing
opponents (+100), and survival rewards(+1). Some reward functions are given as follows:

1. get reward regarding position of planes

a =
ATA + AA

2π

dd =
target_dist− delt_D

10000
target_dist

reward =

{
e0.8+dd · (8− 8a), if a < 0.55
e0.8−dd · (8− 8a), otherwise

(9)

2. get reward regarding position of missiles

delt_D =
delt_D
10000

reward = −max

(
− 10

target_dist
· delt_D + 10, 0

) (10)

3. get reward regarding potential of planes

a =
ATA + AA

2π
orientation_reward = forientation(ATA,AA)

height_range_reward = frange

(
|delta_H|

5000

)
reward = orientation_reward · height_range_reward

(11)

4. get reward regarding potential of missiles

15
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dd =
target_dist− delta_H

5000
target_dist

reward =


e0.7−dd ·

(
2− missile_v

ego_v

)
, if 2− missile_v

ego_v
> 0

e−(0.7−dd) ·
(

2− missile_v
ego_v

)
, otherwise

(12)

5. get orientation function(v0)

forientation(ATA,AA) =
1− tanh

(
9(ATA− π

9
)
)

3
+

1

3

+ min

 tanh−1

(
1−max

(
2AA
π

, 10−4

))
2π

, 0

+ 0.5

(13)

6. get range function (v0)

frange(R) =
exp

(
−0.004(R− target_dist)2

)
1 + exp (−2(R− target_dist + 2))

(14)

7. get reward regarding velocity of planes

a =
ATA + AA

2π
proj_dist = δxδV x + δyδV y + δzδV z

Angle = arccos

(
clip

(
proj_dist

delt_D · δv + 10−8
, −1, 1

))
a1 = cos(Angle)

dd =
angle_max− |angle|

angle_max
δv =

enemy_v
ego_v

reward =



e0.8+dd · (2− δv), if a1 > 0 ∧ δv ≤ 1
e0.8−dd · (2− δv), if a1 > 0 ∧ δv > 1 ∧ (2− δv) > 0
e−(0.8−dd) · (2− δv), if a1 > 0 ∧ δv > 1 ∧ (2− δv) ≤ 0
e0.8+dd · (2− δv), if a1 < 0 ∧ δv > 1 ∧ a ≤ 0.25 ∧ (2− δv) > 0
e−(0.8−dd) · (2− δv), if a1 < 0 ∧ δv > 1 ∧ a ≤ 0.25 ∧ (2− δv) ≤ 0

5

(
1− |ATA|

angle_max

)
, if a1 < 0 ∧ δv > 1 ∧ a > 0.25

e0.8−dd · (2− δv), if a1 < 0 ∧ δv ≤ 1 ∧ a > 0.75

5

(
1− |ATA|

angle_max

)
, otherwise

(15)

8. get reward regarding velocity of missiles

vdecrease =
‖vprevious

missile ‖ − ‖vmissile‖
340

θ =
vmissile · vaircraft

‖vmissile‖ · ‖vaircraft‖

reward =


θ

max(vdecrease, 0) + 1
, if θ < 0

θ ·max(vdecrease, 0), otherwise

(16)
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9. get reward regarding proximity

p = − 10

target_dist
· δD + 10

c =

{
0, if p < 0
p, otherwise

penalty_proximity = c
reward = −c

(17)

10. get reward regarding safety altitude

Pv =

 −clip
(
vz
Kv
· safe_altitude− z

safe_altitude
, 0, 1

)
, if z ≤ safe_altitude

0, otherwise

PH =

 clip
(

z

danger_altitude
, 0, 1

)
− 2, if z ≤ danger_altitude

0, otherwise
∆h = z − zinitial

∆H =


10 · ∆h

zinitial
− 0.5 · [elevator < 0]+

1 · [elevator > 0 ∧ altitude_change > 0]− 1, if ∆h < 0
0.8, otherwise

reward = Pv + PH + ∆H

(18)

11. get reward regarding attack angle

reward =

{
−1, if |α| ≥ 30◦

0, otherwise (19)

A.4 HIERARCHICAL VARIANCE INFERENCE

To capture these evolving dynamics, we approximate higher-level and lower-level transition mod-
els using pψI

and pψL
, respectively. The H2TE-MITD module estimates the high-level posterior

distribution qφI
(zI,i,t|Hopp,t, Oopp,i,t) to infer the opponent’s intention zI,i,t based on historical

and current observations relative to opponents Hopp,t = {Oopp,i,t}i=1,...,N
t=t0,...,t−1, Oopp,i,t. The LHTE-

MLTD module approximates the low-level posterior qφL
(zL,i,t|Hc,t, Oc,i,t, zI,i,t) to estimate multi-

latent strategy queries zL,i,t based on historical and current observations relative to teammates
Hc,i,t = {Oc,i,t}i=1,...,N

t=t0,...,t−1, Oc,i,t = {Oi,l,t}l=1,...,n(l 6=i), and inferred intent queries zI,i,t, re-
flecting how intentions impact strategies. The observation models pθI (Oopp,i,t|zI,i,t, hI,i,t) and
pθL(Oc,i,t|zL,i,t, hL,i,t) predict observations regarding opponents’ trajectories and cooperative a-
gents’ trajectories. The hierarchical evidence lower bound (HELBO) is derived via Jensen’s inequality
as follows:

log p(Oopp,1:N,1:T , Oc,1:N,1:T , a1:N,1:T , hI,1:N,1:T , zI,1:N,1:T , hL,1:N,1:T , zL,1:N,1:T )

= logEq(z1:N,1:T |H1:T ,O1:N,1:T )

[
p(Oopp,1:N,1:T ,Oc,1:N,1:T ,a1:N,1:T ,hI,1:N,1:T ,zI,1:N,1:T ,hL,1:N,1:T ,zL,1:N,1:T )

q(z1:N,1:T |H1:T ,O1:N,1:T )

]
≥ Eq(z1:N,1:T |H1:T ,O1:N,1:T ) log

[
p(Oopp,1:N,1:T ,Oc,1:N,1:T ,a1:N,1:T ,hI,1:N,1:T ,zI,1:N,1:T ,hL,1:N,1:T ,zL,1:N,1:T )

q(z1:N,1:T |H1:T ,O1:N,1:T )

]

=
T∑
t=1

N∑
i=1

Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)(log[p(Oopp,i,t|hI,i,t, zI,i,t)]) + Eq(zL,i,1:t|Hc,i,1:t,Oc,i,1:t,zI,i,1:t)

(log[p(Oc,i,t|hL,i,t, zL,i,t)]) + Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)q(zL,i,1:t|Hc,1:t,Oc,i,1:t,zI,i,1:t)

log[p(ai,t|Oopp,i,t, Oc,i,t, zI,i,t, zL,i,t)]− Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)KL(q(zI,i,t|Hopp,t, Oopp,i,t)||
p(zI,i,t|zI,i,t−1, zI,ni,t−1, ai,t−1, ani,t−1))− Eq(zL,i,1:t|Hc,1:t,Oc,i,1:t,zI,i,1:t)

KL(q(zL,i,t|Hc,t, Oc,i,t, zI,i,t)||p(zL,i,t|zL,i,t−1, zL,ni,t−1, ai,t, ani,t−1, zI,i,t))
(20)

Please refer to Appendix A.10 for the full derivation. The third term is omitted because of the
joint policy. To reduce cumulative prediction error of opponents’ intentions and strategies, we
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Figure 5: Inference phase.

minimize two KL divergences between the prior and posterior of the hierarchical world mod-
el. The reconstruction loss can be written compactly as:Eq(zI |Hopp,Oopp)(log[p(Oopp|hI , zI)]) +
Eq(zL|Hc,Oc,zI)(log[p(Oc|hL, zL)]). The priors hI and hL play dual roles: guiding trajectory predic-
tion and shaping posterior learning via the reparameterization trick. Thus, reconstructed trajectories
and posterior updates remain tightly coupled to evolving opponent mental states, unlike in a stan-
dard VAE. Because opponent intentions influence both their own trajectories and the cooperative
agents’ lower-level strategies, intention variables are updated through two backpropagation rounds
within the hierarchical world model. Comparisons with RSSM, TSSM, and HyperHD2TSSM are
given in Appendix A.5. Also, the hierarchical intention-strategy decomposition about H2TE-MITD
and LHTE-MLTD, and the transition model are detailed in Appendix 3.2.1, 3.2.2, and A.6. And
any-time-step update process can be found in Appendix A.7.

Inference Process: As shown in Figure 1, both allies and opponents use the same H2IL-MBOM
and HyperHD2TSSM to estimate each other’s mental states. For instance, collaborative agents
model opponents using historical observations Hopp,t and current observations Oopp,i,t, and vice
versa. Here, Oopp,i,t = {Oi,j,t}j=1,...,m represents the observations relative to m opponents
within agent i’s scope, and Hopp,t = {Oopp,i,t}i=1,...,N

t=t0,...,t−1. The agent i uses the H2TE-MITD
to estimate the high-level posterior qφI

(zI,i,t|Hopp,t, Oopp,i,t) for multi-intent queries zI,i,t of
opponents. It also uses a deterministic model HJLGT and a Gaussian stochastic model to ap-
proximate the high-level prior pψI

(zI,i,t|zI,i,t−1, zI,ni,t−1, ai,t−1, ani,t−1), which reflects inten-
t zI,ni,t−1 from the n neighbors ni = {1, .., n}6=i of agent i, as well as the actions of those
neighbors, to infer future multi-intent queries. The observation model pθI (Oopp,i,t|zI,i,t, hI,i,t)
predicts opponents’ trajectories, incorporating both current and historical intentions, which re-
veal how intentions influence trajectories. At the low-level world model, LHTE-MLTD ap-
proximates the low-level posterior qφL

(zL,i,t|Hc,t, Oc,i,t, zI,i,t) to estimate multi-latent strate-
gy queries zL,i,t from historical observations Hc,i,t = {Oc,i,t}i=1,...,N

t=t0,...,t−1, current observations
Oc,i,t = {Oi,l,t}l=1,...,n(l 6=i), and current intent queries zI,i,t, reflecting how intentions impact
strategies. It uses a deterministic model HJLGT and a Gaussian model to approximate the low-
level prior pψL

(zL,i,t|zL,i,t−1, zL,ni,t−1, ai,t−1, ani,t−1, zI,i,t) based on latent strategies zL,ni,t−1

from neighbors and their actions, along with predicted intent queries zI,i,t. The observation mod-
el pθL(Oc,i,t|zL,i,t, hL,i,t) predicts the trajectories of cooperative agents based on the estimated
latent strategies zL,i,t of opponents, revealing how these strategies influence the trajectories of
cooperative agents. Once zI,i,t and zL,i,t are estimated at each step, agent i can make decisions
ai,t = π(Oopp,i,t, Oc,i,t,zI,i,t, zL,i,t) and infer rewards pθr (ri,t|zI,i,t, hI,i,t, zL,i,t, hL,i,t).

A.5 HYPERHD2TSSM

In the RSSM, hidden states are sequentially derived to accommodate sequential learning. By contrast,
the TSSM deviates from this processing by concurrently computing each hidden state through the
utilization of past states and actions, thereby facilitating parallelized training. It is important to
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Table 4: Comparison of RSSM, TSSM, and HyperHD2TSSM

Rssm Tssm HyperHD2TSSM
Representation

model zt ∼ q(zt|ht, Ot) zt ∼ q(zt|Ot)
zI,i,t ∼ q(zI,i,t|Hopp,t, Oopp,i,t),
zL,i,t ∼ q(zL,i,t|Hc,t, Oc,i,t, zI,i,t)

Deterministic
model ht+1=gru(ht,zt, at) ht+1=Transformer(z1:t, a1:t)

wI,i,t+1, wI,ni,t+1 =
Hyper(zI,i,t, ai,t, zI,ni,t, ani,t),

hI,i,t+1 =
HJLGTwI,ni,t+1

(zI,i,t, zI,ni,t, ai,t, ani,t)
wL,i,t+1, wL,ni,t+1 =

Hyper(zL,i,t, ai,t, zL,ni,t, ani,t),
hL,i,t+1 =

HJLGTwL,ni,t+1
(zL,i,t, zL,ni,t, ai,t, ani,t, zI,i,t)

Stochastic
model ẑt+1 ∼ p(ẑt+1|ht+1)

∆ẑI,i,t+1 ∼ p(∆ẑI,i,t+1|hI,i,t+1),
ẑI,i,t+1 = ∆ẑI,i,t+1 + zI,i,t

∆ẑL,i,t+1 ∼ p(∆ẑL,i,t+1|hL,i,t),
ẑL,i,t+1 = ∆ẑL,i,t+1 + zL,i,t

Observation
model p(Ot+1|zt+1, ht+1)

p(Oopp,i,t+1|zI,i,t+1, hI,i,t+1),
p(Oc,i,t+1|zL,i,t+1, hL,i,t+1)

Reward
model p(rt+1|zt+1, ht+1) p(ri,t+1|zI,i,t+1, hI,i,t+1, zL,i,t+1, hL,i,t+1)

acknowledge, however, that as the temporal extent (T) expands, so too does the volume of requisite
historical information, consequently escalating the computational demands. In our transition model
design, we posit that the historical joint latent state-action of the n adjacent agents is crucial, so we
utilize a hypernetwork to interactively generate latent weights across agents based on the estimated
state from the last step and further predict the state change at the next step. With reasoning, the latent
weights at each step implicitly contain the historical information about neighbors from the beginning
of reasoning to the desired time, leading to the O(1) complexity. The comparison with RSSM, TSSM,
and HyperHD2TSSM can be found in Table4.

Here, we utilize HJLGTI , HJLGTL, and a Gaussian model to approximate
p(zI,i,t|zI,i,t−1, zI,ni,t−1, ai,t−1, ani,t−1) and (zL,i,t|zL,i,t−1, zL,ni,t−1, ai,t−1, ani,t−1, zI,i,t).
Within this framework, wI,i,t, wI,ni,t are the separate latent neural network weights generated by the
hypernetwork for each agent and their corresponding neighbors, which are used for interactively
estimating intentions of opponents. Similarly, wL,i,t, wL,ni,t are the neural network weights used
for interactively estimating latent strategies of opponents for each agent and their corresponding
neighbors. In other words, each agent updates the estimations for these mental states by considering
the estimations of their neighbors, in which latent weights are adaptively adjusted based on
the specific agent and inference time step, allowing for personalized and temporally sensitive
representation learning. In addition, all agents within the same team share a common hierarchical
world model. Through a hypernetwork, they can construct transition models HJLGT with distinct
latent weights for each agent without increasing neural network parameters. This eliminates the need
to for building individual decentralized world models for each agent, which is different from the
centralized, shared, and decentralized world models, improving representation ability and scalability.

A.6 HJLGT

As shown in Figure 6, the HJLGT is defined as follow:

i.e., hi,t+1 ← wi,t+1, wni,t+1 ← zi,t, zni,t, ai,t, ani,t

hi,t+1 = HJLGTwni,t
(zi,t, zni,t, ai,t, ani,t) :

zi+ni,t = hstack(zi,t, zni,t)
wi,t+1, wni,t+1 = Hyper(zi,t, ai,t, zni,t, ani,t)
wi+ni,t+1 = hstack(wi,t+1, wni,t+1)
Qi,t = zi+ni,t,Ki,t = Tanh(zi+ni,t@wi+ni,t+1), Vi,t = Ki,tW

V
i

x = MHA(Qi,t,Ki,t, Vi,t)
y = Gate1(x, x)
zi,t = Gate2(y, PositionWiseMlp(LayerNorm(y))
Ei,t = Gate3(x, FCLayer(zi,t))
hi,t+1 = FCLayer(Concat(Ei,t, x))

(21)

where the hstack operation involves stacking elements in a horizontal manner, MHA is the multi-head
attention. It can be seen that the proposed transition model is designed for interactive prediction
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Figure 6: Architecture of the HJLGT.

Figure 7: Any-time-step update process of model: Our approach allows for updating any state over
arbitrary time intervals (with k = 1, 2, 3), reducing accumulative errors and eliminating the need to
perform inference sequentially from the initial state to the target time step. Furthermore, multiple
arbitrary-step updates applied to a single model can be interpreted as an implicit approximation of
an ensemble of models with fixed horizons k = 1, k = 2, and k = 3, effectively reducing model
complexity while enabling parallel training.

rather than independent prediction in a multi-agent system and can adaptively establish transition
models for each agent without increasing model parameters, which makes it more adaptable and
scalable. Most importantly, as inference progresses, each agent interactively updates its latent neural
weights and estimates of mental states through continuous interaction with its neighbors.

A.7 ANY-TIME-STEP UPDATE

As shown in Figure 7, we assume that the latent states at any given time can be inferred not only from
the latent state and action at the most recent time step but also from a sequence of latent states and
actions observed over the preceding interval. Given that the latent weights are capable of compressing
historical information, the transition model is able to perform any-time-step updates:

Jprior,zI ,zL = min
φI ,ψI ,φL,ψL

1
H

1
T

1
N

H∑
k=1

∞∑
T=1

t+T−k∑
ts=t

N∑
i=1

(qφI
(zI,i,ts+k|Hopp,ts+k, Oopp,i,ts+k)−

qφI
(zI,i,ts |Hopp,ts , Oopp,i,ts)−

(pψI
(∆|Hopp,ts , Oopp,i,ts , ai,ts:ts+k−1)))2

+ 1
H

1
T

1
N

H∑
k=1

∞∑
T=1

t+T−k∑
ts=t

N∑
i=1

(qφL
(zL,i,ts+k|Hc,ts+k, Oc,i,ts+k, zI,i,ts+k)− qφL

(zL,i,ts |Hc,ts , Oc,i,ts , zI,i,ts)−
(pψL

(∆|Hc,ts , Oc,i,ts , ai,ts:ts+k−1)))2

(22)
where φI , ψI , φL, ψL are parameters of high-level world model and low-level world model, respec-
tively. This approach eliminates the necessity of explicitly requiring all previous states up to time T ,
as is the case with TSSM. Additionally, it avoids the need for sequential inference from the initial
state to the target time step, which is characteristic of RSSM. By enabling updates over arbitrary
time intervals, our method reduces accumulative errors and computational complexity compared
to these models. Moreover, since any state can be updated over arbitrary time spans, it facilitates
parallel training. Furthermore, multiple arbitrary-step updates within a single model are equivalent
to an implicit averaging over an ensemble of models with different horizons (k = 1, 2, ...,H ,H ∼
random(maximum horizon)), thereby further reducing model complexity.
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A.8 THE DEFINITIONS OF OPERATORS

A.8.1 HYPER OPERATOR

The Hyper operator is defined as follow:

x = zai,t = Concat(zi,t, ai,t);
wi,t = HyperNet(x; θhyper);
y = f(x;wi,t) = f(x;HyperNet(x; θhyper));

(23)

where we assume that the dimensions of concatenation zai,t of zi,t and ai,t are [n, dz + da]. Initially,
the hypernetwork with θhyper is sized as [dz + da, (dz + da)× dh], and it is multiplied by zai,t to
produce weights of size [n, (dz + da)× dh]. To automate weight assignment and create a reduced
neural network, zai,t is reshaped to [n, 1, dz + da] using the unsqueeze operator and weights with
the size of [n, (dz + da)× dh] is reshaped to [n, dz + da, dh]. Finally, we multiply and activate them
to obtain results while the the size of results is transformed into dimensions [n, dh]. This process is
denoted as wi,t = Hyper(zi,t, ai,t)

A.8.2 GATE OPERATOR

The Gate operator is defined as follow:

Gate(y, x) = (1− z)� y + z � h;
z = σ(Wzx+ Uzy − bg);
h = tanh(Wgx+ Ug(r � y));
r = σ(Wrx+ Ury);

(24)

where � is the hadamard product, which refers to the element-wise multiplication of two matrices of
the same size; σ is the sigmoid operation; the linear weights Wz , Uz , Wg, Ug, Wr, and Ur, along
with the bias bg , are components used in the model.

A.9 IMPLEMENTATION OF MSOAR-PPO

A.10 DERIVATION OF THE HIERARCHICAL VARIATIONAL LOWER BOUND

The joint probability and the hierarchical evidence lower bound (HELBO) are derived as follows:

p(Oopp,1:N,1:T , Oc,1:N,1:T , a1:N,1:T , hI,1:N,1:T , zI,1:N,1:T , hL,1:N,1:T , zL,1:N,1:T )

=
T∏
t=1

[
p(hI,1:N,t, zI,1:N,t|zI,1:N,t−1, a1:N,t−1)p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)
p(hL,1:N,t, zL,1:N,t|zL,1:N,t−1, a1:N,t−1, zI,1:N,t)p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)
p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)

]

=
T∏
t=1

[
p(zI,1:N,t|hI,1:N,t)p(hI,1:N,t|zI,1:N,t−1, a1:N,t−1)p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)
p(zL,1:N,t|hL,1:N,t)p(hL,1:N,t|zL,1:N,t−1, a1:N,t−1, zI,1:N,t)p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)
p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)

]

=
T∏
t=1

[
p(zI,1:N,t|zI,1:N,t−1, a1:N,t−1)p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)
p(zL,1:N,t|zL,1:N,t−1, a1:N,t−1, zI,1:N,t)p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)
p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)

]

=
T∏
t=1


p(zI,1,t|zI,1,t−1, zI,n1,t−1, a1,t−1, a1,n1,t−1)...p(zI,N,t|zI,N,t−1, zI,nN ,t−1, aN,t−1, aN,nN ,t−1)
p(Oopp,1,t|hI,1,t, zI,1,t)...p(Oopp,N,t|hI,N,t, zI,N,t)
p(zL,1,t|zL,1,t−1, zL,n1,t−1, a1,t−1, a1,n1,t−1, zI,1,t)...p(zL,N,t|zL,N,t−1, zL,nN ,t−1, aN,t−1,
aN,nN ,t−1, zI,N,t)
p(Oc,1,t|hL,1,t, zL,1,t)...p(Oc,N,t|hL,N,t, zL,N,t)
p(a1,t|Oopp,1,t, Oc,1,t, zI,1,t, zL,1,t)...p(aN,t|Oopp,N,t, Oc,N,t, zI,N,t, zL,N,t)


=

T∏
t=1

N∏
i=1

[
p(zI,i,t|zI,i,t−1, zI,ni,t−1, ai,t−1, ani,t−1)p(Oopp,i,t|hI,i,t, zI,i,t)
p(zL,i,t|zL,i,t−1, zL,ni,t−1, ai,t, ani,t−1, zI,i,t)p(Oc,i,t|hL,i,t, zL,i,t)
p(ai,t|Oopp,i,t, Oc,i,t, zI,i,t, zL,i,t)

]
(25)
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Algorithm 1 MSOAR-PPO.

Require: ≤ stepmax, total numbers N , observable numbers n, and missile numbers n of red team
agents,and total numbers M , observable numbers m, and missile numbers m of blue team agents;
Initialize the network parameters of H2IL-MBOM of two teams: {φI , ψI , θI,, θr, φL, ψL, θL},
and {φI , ψI , θI , θr, φL, ψL, θL}, actor policies of two teams: πθ and πθ, critic networks of two
teams: Vψ and Vψ;
Initialize the opponents’ intentions {zI,i}Ni=1 reasoned by red team, and opponents’ intentions
{zI,j}Mj=1 reasoned by blue team;
Set learning rate αrl of RL for red team and the learning rate αm of their H2IL-MBOM, and
learning rates αrl,αm of blue team;
Initialize memory buffers {Denv,t}Tt=1, {Denv,t}Tt=1 and historical buffers {Hopp,t}512

t=1,
{Hc,t}512

t=1, {Hopp,t}512
t=1, {Hc,t}512

t=1;
while step ≤ stepmax do

Reinitialize the environment;
while not done do

for red team agents i = 1, ..., N do
Obtain the current observations Oopp,i,t = {Oi,j,t}2mj=1 and Oc,i,t = {Oi,l,t}nl=1 of each

agent, and gather historical observations Hopp,t and Hc,t;
Infer opponents’ intentions {zI,i,j,t}2mj=1 with q(zI,i,t|Hopp,t, Oopp,i,t) by eq.equation 1-

equation 5;
Infer opponents’ latent strategies {zL,i,j,t}2mj=1 with q(zL,i,t|Hc,t, Oc,i,t, zI,i,t) by e-

q.equation 6-equation 8;
Select actions according to the policy πθ(·|Oopp,i,t, Oc,i,t, zI,i,t, zL,i,t) with HEA;

end for
for blue team agents j = 1, ...,M do

Obtain the current observations Oopp,j,t = {Oj,i,t}2ni=1 and Oc,j,t = {Oj,l,t}ml=1 of each
agent, and gather historical observations Hopp,t and Hc,t;

Infer opponents’ intentions {zI,j,i,t}2ni=1 with q(zI,j,t|Hopp,t, Oopp,j,t) by eq.equation 1-
equation 5;

Infer opponents’ latent strategies {zL,j,i,t}2ni=1 with q(zL,j,t|Hc,t, Oc,j,t, zI,j,t) by e-
q.equation 6-equation 8;

Select actions according to the policy πθ(·|Oopp,j,t, Oc,j,t, zI,j,t, zL,j,t) with HEA;
end for

Execution actions, and obtain rewards and next states;
Add transitions to Denv ← Denv ∪ (Oi,t, ai,t, ri,t, Oi,t+1, zI,i,t, zL,i,t) and Denv ←

Denv ∪ (Oi,t, ai,t, ri,t, Oi,t+1, zI,i,t, zL,i,t);
end while
Train H2IL-MBOM of both teams by eqs.20 and 25, in which H ∼random(maximum horizon)
and k = 1, ...,H;
for epoch = 1 to num-epoch do

// Update policy and critic of both teams by PPO, respectively:
Computer loss Jπ ,Jc and Jπ ,Jc of both teams from PPO;
θ ← θ + αrl∇θJπ(Ot, zI,t, zL,t);
ψ ← ψ − αrl∇ψJc(Ot, zI,t, zL,t);
θ ← θ + αrl∇θJπ(Ot, zI,t, zL,t);
ψ ← ψ − αrl∇ψJc(Ot, zI,t, zL,t);

end for
Clear up the respective memories;

end while
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log p(Oopp,1:N,1:T , Oc,1:N,1:T , a1:N,1:T , hI,1:N,1:T , zI,1:N,1:T , hL,1:N,1:T , zL,1:N,1:T )

= logEq(z1:N,1:T |H1:T ,O1:N,1:T )

[
p(Oopp,1:N,1:T ,Oc,1:N,1:T ,a1:N,1:T ,hI,1:N,1:T ,zI,1:N,1:T ,hL,1:N,1:T ,zL,1:N,1:T )

q(z1:N,1:T |H1:T ,O1:N,1:T )

]
≥ Eq(z1:N,1:T |H1:T ,O1:N,1:T ) log

[
p(Oopp,1:N,1:T ,Oc,1:N,1:T ,a1:N,1:T ,hI,1:N,1:T ,zI,1:N,1:T ,hL,1:N,1:T ,zL,1:N,1:T )

q(z1:N,1:T |H1:T ,O1:T )

]
=
∫
q(z1:N,1:T |H1:T , O1:N,1:T ) log

[
p(Oopp,1:N,1:T ,Oc,1:N,1:T ,a1:N,1:T ,hI,1:N,1:T ,zI,1:N,1:T ,hL,1:N,1:T ,zL,1:N,1:T )

q(z1:N,1:T |H1:T ,O1:T )

]
dz1:N,1:T

=
∫ T∑
t=1

q(zI,1:N,1:T |Hopp,1:T , Oopp,1:N,1:T )q(zL,1:N,1:T |Hc,1:T , Oc,1:N,1:T , zI,1:N,1:T )

log


p(zI,1:N,t|zI,1:N,t−1, a1:N,t−1)p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)
p(zL,1:N,t|zL,1:N,t−1, a1:N,t−1, zI,1:N,t)p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)
p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)

q(zI,1:N,t|Hopp,t,Oopp,1:N,t)q(zL,1:N,t|Hc,t,Oc,1:N,t,zI,1:N,t)


dz1:N,1:T

=
T∑
t=1

{
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log[p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)]
dzI,1:N,1:t

+
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log[p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)]
dzL,1:N,1:t

+
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log[p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)]
dz1:N,1:t

+
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log
[
p(zI,1:N,t|zI,1:N,t−1,a1:N,t−1)
q(zI,1:N,t|Hopp,t,Oopp,1:N,t)

]
dzI,1:N,1:t

+
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log
[
p(zL,1:N,t|zL,1:N,t−1,a1:N,t−1,zI,1:N,t)

q(zL,1:N,t|Hc,t,Oc,1:N,t,zI,1:N,t)

]
dzL,1:N,1:t}

=
T∑
t=1

{
∫
q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t) log[p(Oopp,1:N,t|hI,1:N,t, zI,1:N,t)]dzI,1:N,1:t

+
∫
q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t) log[p(Oc,1:N,t|hL,1:N,t, zL,1:N,t)]dzL,1:N,1:t

+
∫ q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t)q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t)

log[p(a1:N,t|Oopp,1:N,t, Oc,1:N,t, zI,1:N,t, zL,1:N,t)]
dz1:N,1:t

+
∫
q(zI,1:N,1:t|Hopp,1:t, Oopp,1:N,1:t) log

[
p(zI,1:N,t|zI,1:N,t−1,a1:N,t−1)
q(zI,1:N,t|Hopp,t,Oopp,1:N,t)

]
dzI,1:N,1:t

+
∫
q(zL,1:N,1:t|Hc,1:t, Oc,1:N,1:t, zI,1:N,1:t) log

[
p(zL,1:N,t|zL,1:N,t−1,a1:N,t−1,zI,1:N,t)

q(zL,1:N,t|Hc,t,Oc,1:N,t,zI,1:N,t)

]
dzL,1:N,1:t}

=
T∑
t=1

{
∫ q(zI,1,1:t|Hopp,1:t, Oopp,1,1:t)...q(zI,N,1:t|Hopp,1:t, Oopp,N,1:t) log[p(Oopp,1,t|hI,1,t, zI,1,t)...

p(Oopp,N,t|hI,N,t, zI,N,t)]dzI,1:N,1:t

+
∫ q(zL,1,1:t|Hc,1:t, Oc,1,1:t, zI,1,1:t)...q(zL,N,1:t|Hc,1:t, Oc,N,1:t, zI,N,1:t) log[p(Oc,1,t|hL,1,t,

zL,1,t)...p(Oc,N,t|hL,N,t, zL,N,t)]dzL,1:N,1:t

+
∫ q(zI,1,1:t|Hopp,1:t, Oopp,1,1:t)q(zL,1,1:t|Hc,1:t, Oc,1,1:t, zI,1,1:t)...q(zI,N,1:t|Hopp,1:t,

Oopp,N,1:t)q(zL,N,1:t|Hc,1:t, Oc,N,1:t, zI,N,1:t) log[p(a1,t|Oopp,1,t, Oc,1,t, zI,1,t, zL,1,t)...
p(aN,t|Oopp,N,t, Oc,N,t, zI,N,t, zL,N,t)]dz1:N,1:t

+
∫ q(zI,1,1:t|Hopp,1:t, Oopp,1,1:t)...q(zI,N,1:t|Hopp,1:t, Oopp,N,1:t)

log

 p(zI,1,t|zI,1,t−1, zI,n1,t−1, a1,t−1, an1,t−1)...
p(zI,N,t|zI,N,t−1, zI,nN ,t−1, aN,t−1, anN ,t−1)
q(zI,1,t|Hopp,t,Oopp,1,t)...q(zI,N,t|Hopp,tOopp,N,t)

 dzI,1:N,1:t

+
∫ q(zL,1,1:t|Hc,1:t, Oc,1,1:t, zI,1,1:t)...q(zL,N,1:t|Hc,1:t, Oc,N,1:t, zI,N,1:t)

log

 p(zL,1,t|zL,1,t−1, zL,n1,t−1, a1,t−1, an1,t−1, zI,1,t)...
p(zL,N,t|zL,N,t−1, zL,nN ,t−1, aN,t−1, anN ,t−1, zI,N,t)
q(zL,1,t|Hc,t,Oc,1,t,zI,1,t)...q(zL,N,t|Hc,t,Oc,N,t,zI,N,t)

 dzL,1:N,1:t
}
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=
T∑
t=1

{
∫ N∑
i=1

q(zI,i,1:t|Hopp,1:t, Oopp,i,1:t) log[p(Oopp,i,t|hI,i,t, zI,i,t)]dzI,i,1:t

+
∫ N∑
i=1

q(zL,i,1:t|Hc,1:t, Oc,i,1:t, zI,i,1:t) log[p(Oc,i,t|hL,i,t, zL,i,t)]dzL,i,1:t

+
∫ N∑
i=1

q(zI,i,1:t|Hopp,1:t, Oopp,i,1:t)q(zL,i,1:t|Hc,1:t, Oc,i,1:t, zI,i,1:t) log[p(ai,t|Oopp,i,t, Oc,i,t,
zI,i,t, zL,i,t)]dzi,1:t

+
∫ N∑
i=1

q(zI,i,1:t|Hopp,1:t, Oopp,i,1:t) log
[
p(zI,i,t|zI,i,t−1,zI,ni,t−1,ai,t−1,ani,t−1)

q(zI,i,t|Hopp,t,Oopp,i,t)

]
dzI,i,1:t

+
∫ N∑
i=1

q(zL,i,1:t|Hc,1:t, Oc,i,1:t, zI,i,1:t) log
[
p(zL,i,t|zL,i,t−1,zL,ni,t−1,ai,t,ani,t−1,zI,i,t)

q(zL,i,t|Hc,t,Oc,i,t,zI,i,t)

]
dzL,i,1:t}

=
T∑
t=1

N∑
i=1

Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)(log[p(Oopp,i,t|hI,i,t, zI,i,t)]) + Eq(zL,i,1:t|Hc,i,1:t,Oc,i,1:t,zI,i,1:t)

(log[p(Oc,i,t|hL,i,t, zL,i,t)]) + Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)q(zL,i,1:t|Hc,1:t,Oc,i,1:t,zI,i,1:t)

log[p(ai,t|Oopp,i,t, Oc,i,t, zI,i,t, zL,i,t)]− Eq(zI,i,1:t|Hopp,1:t,Oopp,i,1:t)KL(q(zI,i,t|Hopp,t, Oopp,i,t)||
p(zI,i,t|zI,i,t−1, zI,ni,t−1, ai,t−1, ani,t−1))− Eq(zL,i,1:t|Hc,1:t,Oc,i,1:t,zI,i,1:t)

KL(q(zL,i,t|Hc,t, Oc,i,t, zI,i,t)||p(zL,i,t|zL,i,t−1, zL,ni,t−1, ai,t, ani,t−1, zI,i,t))
(26)

A.11 ANALYSIS OF OPPONENTS’ MULTIPLE INTENTIONS AND LATENT STRATEGIES

We analyze cumulative prediction errors of opponent intentions and strategies for two opposing teams,
along with the t-SNE Van der Maaten & Hinton (2008) distributions of each agent’s mental-state
representations over three episode segments (≤500 steps, 1500–2500 steps, 5000–6000 steps). As
shown in Figures. 8a and 8b, both teams rapidly infer opponent mental states and exhibit a striking
pattern: after reward convergence, sharp error drops occur at 6, 8.1, 11, and 12.5 M steps, signaling
sudden recognition of key features. This stems from a prediction challenge in the early stage: the
model initially struggles to infer opponent states and is prone to local minima. As training progresses
and strategies converge, the explored state space gradually narrows, enabling more stable feature
extraction and improved predictions.

The t-SNE visualizations in Figures. 8c and 8d reveal several notable patterns. Using agent 0’s
predictions as an example, opponent intentions form multiple continuous strip-like distributions
across three stages rather than discrete clusters, while predicted strategies remain separable within
each stage. This indicates that H2IL effectively captures features of opponents’ mental states. Within
smaller time intervals, the reduced representations preserve a sequential structure, reflecting the
temporal coherence of mental states. The multiple distributions align with key tactical phases (e.g.,
nose-to-nose approach, tailing, evasion, missile launch), highlighting both diversity and smooth
transitions of intentions and strategies. Across the three stages, opponents exhibit 11, 7, and 3
intention transitions, whereas low-level strategies vary more smoothly. Appendix A.16 further shows
that the average predicted intention changes (3, 2, 1 per UAV across the three stages) match the actual
intention changes. Overall, our method provides both global prediction of opponents’ intentions and
fine-grained tracking of evolving latent strategies, enhancing interpretability.

A.12 TESTING RESULTS

The win rate (WR) and survival rate (SR) are as evaluation metrics. We first confront the opponents
who adopt the baseline strategy that includes straight fly, rectangular trajectory maneuver and evasion
of missiles, and pursuing the tail of our aircraft. The results show that our SR is the highest and
achieves a 100% WR in 4 vs. 4 scenarios as presented in Table 5. We then test the effectiveness of
our method against our method and our method against MAPPO under different numbers of agents
as presented in Table 6 and 7. We use SR to evaluate performance because a group with fewer agents
may sacrifice less or equal to the other group. In most cases, both teams make equal sacrifices because
of the same reasoning ability of both teams, and in a small number of cases (e.g., 4 vs. 6, 4 vs. 8, 6 vs.
8) where the quantity is at a disadvantage, the red team still destroys one more aircraft than the blue
team. In situations where the red team has a numerical advantage, it can achieve 100% superiority
(e.g., 8 vs. 4, 10 vs. 4, 10 vs. 6). Additionally, the advantage ranges are further expanded when
our method against MAPPO. (e.g., 4 vs.4, 6, 8,10; 6 vs. 4, 8,10; 8 vs. 4; 10 vs. 4, 10 vs. 6). The
results also demonstrate our method is endowed with good generalization ability. Due to the fixed
dimensions of other MARLs, it is not possible to complete adversarial tasks in different quantities.
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(a) (b)

(c) (d)

Figure 8: Accumulate error and t-SNE distribution of opponents’ multiple intentions and latent
strategies reasoned by Agent0 across three time periods. The total number of intention transitions
observed for all opponents across various stages is 11, 7, and 3, respectively. In contrast, the low-level
strategies employed by the opponents exhibit a more consistent and distinguishable performance.

As shown in Figure 8(c), the relevant opponent modeling methods are unable to complete this task,
so there is no adversarial testing with these methods.

Table 5: The results of our method against the baseline strategy in 4 vs. 4 scenarios.

SR(WR) Straight fly Maneuver Pursue
Ours 4:1(100 %) 4:2(100 %) 4:0(100 %)

Table 6: The results of the confrontation of
different number agents of our method.

SR
(Ours vs. Ours) 4 6 8 10

4 2:2 3:4 3:6 3:9
6 3:1 3:3 3:4 3:7
8 8:0 3:1 3:3 3:5

10 10:0 10:0 3:1 3:3

Table 7: The results of our method vs. MAP-
PO under different numbers of agents.

SR
(Ours vs. MAPPO) 4 6 8 10

4 3:2 3:4 3:6 3:8
6 3:0 3:3 3:4 3:6
8 8:0 3:1 3:3 3:5

10 10:0 10:0 3:1 3:3

A.13 EXPERIMENTS ABOUT HYPERPARAMETERS

We vary the dimensions of intentions from 4 to 64 and evaluate the impact of different dimensions
on the performance of our method, as shown in Figure 9a. We observe that there is an optimal
dimensions of intentions, 8, which maximizes the performance of the model. When the dimension of
intentions is below 8 or above 32, it takes twice the time to converge, and the convergence speed is
significantly reduced. Based on our experiments, the optimal number of attention heads is 8. At this
optimal number, the model achieves the highest performance with lowest complexity.

Similarly, we vary the number of attention heads from 2 to 16 and measure the performance using the
average rewards. As shown in Figure 1 9b, we observe that there is an optimal number of attention
heads, 4, which maximizes the performance of the model. When the number of attention heads is
below 4 or above 8, it also takes twice the time to converge, and the convergence speed is significantly
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(a) (b)

Figure 9: The results on experiments with different hyperparameters: a) different dimensions of the
mental states; b) different numbers of attention head

reduced. Based on our experiments, the optimal number of attention heads is 4. At this optimal
number, the model achieves the highest performance with lowest complexity.

In summary, the dimensions of the intention space and numbers of attention head are chosen based
on the best balance between performance and computational efficiency.

A.14 HYPERPARAMETERS

The hyperparameters are summarized in Tables 8–12.

Table 8: Hyperparameters of Ours

Parameter Value

Interaction steps 2× 107 (20M)
Training steps 1.58× 105

Learning rate 3× 10−4

Discount factor 0.99
Policy initialization Xavier uniform
Optimizer Adam
Gradient norm clipping 5.0
Rollout Length 128
Batch size 1024
Number of training epochs 1
Number of head 4
Attention size 32
Hidden state dimensions 128

Table 9: Hyperparameters of world models

Parameter Value

Training steps 1.58× 105

Learning rate 1× 10−4

Discount factor 0.99
Optimizer Adam
Gradient norm clipping 5.0
Number of head 4
Attention size 32
Intention zI and latent strategy zL
dimensionality

8

Hidden state dimension 32
Number of layers (NM and NH ) 4

Table 10: Hyperparameters of HAPPO and
MAPPO

Parameter Value

Interaction steps 2× 107 (20M)
Training steps 1.58× 105

Learning rate 2× 10−4

Discount factor 0.99
Policy initialization Xavier uniform
Optimizer Adam
Gradient norm clipping 10.0
PPO epoch 5
Rollout threads 20
Episode length 1500

Table 11: Hyperparameters of HADDPG and
MADDPG

Parameter Value

Interaction steps 2× 107 (20M)
Learning rate 1× 10−4

Discount factor 0.99
Optimizer Adam
Gradient norm clipping 5.0
Buffer size 1× 106

Batch size 1000
Rollout threads 20
Hidden state dimension 128
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Table 12: Hyperparameters of opponent mod-
eling baselines

Parameter Value

Interaction steps 2× 107 (20M)
Learning rate 3× 10−4

Discount factor 0.99
Optimizer Adam
Gradient norm clipping 5.0
Buffer size 1× 106

Episode length 1500
Batch size 3000
Rollout threads 20
Hidden state dimension 256

A.15 COMPUTE RESOURCE

In our study, we performed simulations utilizing 36 parallel environments on a computer workstation
equipped with dual Intel(R) Xeon(R) 40-core CPUs, 128 GB of RAM, and two NVIDIA RTX A4500
GPUs. Each environment completed 1500 maximum steps per episode at a simulation frequency of
60Hz. In total, there were roughly four days for training the uav-game environment.

A.16 VISUAL RESULTS

We first visualize the engagement scenarios using the full reward function under different adversarial
settings: ours (red) vs. MAPPO (blue) and ours (red) vs. ours (blue). Notably, MAPPO is treated as
an unseen opponent during testing, as it was not encountered during the training of our red agent. We
then present visualizations of our method without height-correlated reward to analyze their impact on
the learned policies.

A.16.1 TACTICAL BEHAVIOR VISUALIZATION USING COMPLETE REWARD SETTINGS

As shown in Figures 10 and 11, the visualization of scenarios depicting engagements between our
method and MAPPO, as well as engagements between our method and itself, was conducted. The
figures illustrate that during combat with MAPPO, our maneuver decisions were more agile and rapid,
resulting in achieving a high altitude and angle advantage with a smaller flight radius, ultimately
leading to a SR of 3:1. In confrontations with our own method, both sides exhibited similar reasoning
capabilities, leading to primarily engaging in double loop motion, which represents a classic tactic in
close-range aerial combat.

Combining Figures 10,8c, and 8d, in the initial stage, the feature distribution range is relatively small,
indicating both teams frequently make rapid maneuver transitions in a small space (such as climbing,
making large turns to enter angles, and engaging in single-loop maneuvers). In the middle stage, both
teams enter the engagement phase, conducting double-loop maneuvers (nose-to-nose approach and
departure), and missile launches within a larger range. In the final stage, only alive agents engage in
extensive pursuit and escape strategies. This is consistent with the average number of changes in the
opponent’s intention predicted by each UAV on average across three stages.

As shown in Figure 11, in the initial phase, the red team launches missiles first and rapidly dives
downward at an airspeed of Mach 0.73 to gain kinetic energy. Afterward, it quickly climbs and
performs a turn. During this phase, one blue aircraft is shot down, while the remaining blue aircraft
evade the attack by diving and executing counterclockwise yaw maneuvers.

At this point, the red formation positions itself behind the blue formation, gaining a tactical advantage.
The red team then accelerates and launches a second missile. In response to the incoming threat, the
blue formation performs a rapid 180◦ counterclockwise turn to evade the second wave of attack.

The red formation maintains high maneuverability at Mach 0.87, achieves angular superiority for
the second time, and launches a third missile. The blue formation again executes a swift 180◦

counterclockwise turn to avoid the third wave of attack.
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Figure 10: Snapshot of our method vs. MAPPO.

Figure 11: Snapshot of ours vs. ours.

While the blue team is turning to evade the missile, the red formation simultaneously performs
aggressive turning maneuvers at Mach 0.92. This ensures that as soon as the blue aircraft complete
their evasion, the red aircraft are already in a favorable angular position to launch the fourth missile.

Throughout the engagement, both teams perform turning maneuvers near their respective initial
positions. The red formation is accompanied by diving and climbing movements, whereas the
blue formation generally descends while maneuvering counterclockwise. Importantly, the red team
consistently maintains angular superiority throughout the entire engagement.

A.16.2 NO HEIGHT-CORRELATED REWARD

We remove height-correlated reward components and visualize the maneuvering policies and trajecto-
ries of both agents, as shown in the Figure 12.

In the initial phase, the red agent rapidly yaws to the right at Mach 0.94 and launches a missile. In
response, the blue agent climbs quickly without access to height-correlated rewards; however, one
of its aircraft is shot down during this phase. Chai2023A To pursue a joint advantage in range and
angle-again without relying on height-correlated rewards, the red agent also initiates a rapid climb
while maintaining proximity to the tail of the blue agent.
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Figure 12: Maneuvering strategies without height-correlated reward.

Subsequently, in an attempt to reverse the joint range-angle advantage, the blue agent dives after
climbing and performs a right yaw maneuver. The red agent promptly launches another missile,
blocks the blue agent’s climb, increases the distance, and then yaws to the right. Notably, each
red aircraft exhibits a distinct pull-away distance and turning radius: those with shorter pull-away
distances execute tighter turns, while those with longer distances perform wider turns. As a result,
the red formation flies in a head-to-tail configuration.

Given that the blue agent attempts to gain angular advantage by diving and yawing to the right after
climbing, the red agent responds with timely maneuvers and downward missile deployment. This
forces the blue agent to perform tight turns for evasion, resulting in a disadvantage in altitude.

Importantly, by delaying the turn until after increasing the distance, the red formation avoids being
exploited by the blue agent’s fast, small-radius maneuvering. Moreover, the diversity in turning radii
ensures that not all red aircraft fall into an angular disadvantage simultaneously. In contrast, the blue
agent ends up in a clear angular disadvantage.

It’s noting that despite the absence of height-based rewards, agents can still adopt strategies such as
climbing to indirectly achieve a combined advantage in position and angular through position-angle
rewards. Overall, the red agent achieves a favorable combined advantage in altitude, position, and
attack angle by the end of the engagement.
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