
Under review as a conference paper at ICLR 2023

COORDINATION SCHEME PROBING FOR GENERALIZ-
ABLE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Coordinating with previously unknown teammates without joint learning is a
crucial need for real-world multi-agent applications, such as human-AI interaction.
An active research topic on this problem is ad hoc teamwork, which improves
agents’ coordination ability in zero-shot settings. However, previous works can
only solve the problem of a single agent’s coordination with different teams,
which is not in line with arbitrary group-to-group coordination in complex multi-
agent scenarios. Moreover, they commonly suffer from limited adaptation ability
within an episode in a zero-shot setting. To address these problems, we introduce
the Coordination Scheme Probing (CSP) approach that applies a disentangled
scheme probing module to represent and classify the newly arrived teammates
beforehand with limited pre-collected episodic data and makes multi-agent control
accordingly. To achieve generalization, CSP learns a meta-policy with multiple sub-
policies that follow distinguished coordination schemes in an end-to-end fashion
and automatically reuses it to coordinate with unseen teammates. Empirically, we
show that the proposed method achieves remarkable performance compared to
existing ad hoc teamwork and policy generalization methods in various multi-agent
cooperative scenarios.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) (Gronauer & Diepold, 2021) holds promise in numer-
ous cooperative domains, including resource management (Xi et al., 2018), traffic signal control (Du
et al., 2021), and autonomous vehicles (Zhou et al., 2020). A number of methods (Lowe et al.,
2017; Wang et al., 2020b; Papoudakis et al., 2019; Christianos et al., 2021) have been proposed to
deal with joint policy learning and scalability issues. However, previous works commonly assume
a fixed team composition, where agents only need to coordinate with training partners and do not
consider generalization. Such a process is not in line with real-world applications that require agents
to cooperate with unknown teammates whose coordination schemes may not be explicitly available.
When coordinating with distributed teammates, co-trained agents may fail (Gu et al., 2022).

Another research domain dedicated to this need is ad hoc teamwork (Stone et al., 2010), which stands
at a single agent’s perspective to adapt to different teams in a zero-shot fashion. However, current
methods exist three significant limitations: (1) The differences between teammates could be very
subtle and lie in only a few critical decisions. In this case, zero-shot coordination is not always
feasible. As shown in the example in Fig. 1, teammate’s behaviors are indistinguishable before the
final critical action. (2) The information for identifying different teams is collected by the same
policy that aims to maximize coordination performance. Thus, the exploration-exploitation dilemma
will cause adverse effects on both sides. (3) Ad hoc teamwork stands at a single agent’s perspective,
which cannot deal with arbitrary group-to-group generalizations in complex multi-agent scenarios.

To overcome these limits and achieve generalizable coordination, we propose a multi-agent learning
framework called Coordination Scheme Probing (CSP). Instead of doing zero-shot coordination,
CSP tries to capture the unknown teammates’ coordination scheme beforehand with limited pre-
collected episodic data. Concretely, we start with generating a set of teams with high performance
and diversified behaviors to discover different solutions to the task. After that, the scheme probing
module learns to interact with these teams to reveal their behaviors and represents their policies with
dynamics reconstruction (Hospedales et al., 2021) at the team level. Finally, we discover coordination

1

Under review as a conference paper at ICLR 2023

I should go Up!

I should go Down!

Training phase Zero-shot coordination

Indistinguishable segment

What should I do?
Targets

ad hoc agent

diverse teammates

…

Figure 1: An example from Overcooked (Carroll et al., 2019a), where the chef in the blue hat needs
to cooperate with chefs in other colors. Different chefs put the dishes in different positions after
they are done cooking. For example, during training, the chefs in the green and orange hats put their
dishes in the red and blue pentagrams as their last action, respectively. When a chef in the pink hat
comes, how should the chef in the blue hat work with him? Since the first four actions for different
chefs are indistinguishable, how to detect his type and coordinate with him is challenging.

schemes as clusters of the representations and train a multimodal meta-policy to adapt to them, with
each sub-policy dedicated to a unique coordination scheme.

The whole learning framework of CSP learns multiple coordination schemes from a given task
in an end-to-end fashion and automatically reuses the most suitable scheme recognized by the
scheme probing module to coordinate with unknown partners. To validate our method, we conducted
experiments on four challenging multi-agent cooperative scenarios and found that CSP achieves a
more effective and robust generalization to unknown teammates compared to various baselines. Our
visual analysis further confirms that CSP acquires multiple coordination schemes that are clearly
distinguishable and can be precisely recognized. Meanwhile, our ablations show the necessity of
probing unknown teammates in advance as well as using a multimodal policy for adaptation.

2 RELATED WORK

Multi-Agent Reinforcement Learning (MARL). Fully cooperative MARL methods (Foerster et al.,
2018) mainly focus on deploying a fixed team with centralized training and decentralized execution
(CTDE) setting (Oliehoek et al., 2008). Value factorization methods (Sunehag et al., 2018; Rashid
et al., 2018; Wang et al., 2020a) are adopted widely in the CTDE process to solve the instability
of teammates in the training process. Our work also utilizes the CTDE setting to learn policies
collaborating with others. However, such a learning process may converge to a fixed modal and may
not coordinate well with unseen teammates trained elsewhere. To deal with the issue, Tang et al.
(2021) propose a method that could find a hard-to-search optimal policy by reward randomization.
In game-theoretic methods, PSRO (Lanctot et al., 2017) aims at tackling the overfitting problem by
learning meta-strategies, and α-PSRO (Muller et al., 2020) further utilizes α-Rank as an alternative
for Nash solver to avoid equilibrium selection issues and improve efficiency. In this work, we borrow
the idea of breaking local optima to mine diverse coordination behaviors from the environment,
instead of training a single optimal policy.

Ad Hoc Teamwork. Ad hoc teamwork aims to learn a single autonomous agent that cooperates
well with other agents without pre-coordination (Stone et al., 2010; Mirsky et al., 2022). Their
methods include population based training (Strouse et al., 2021; Jaderberg et al., 2017; Carroll
et al., 2019a; Charakorn et al., 2021), Bayesian belief update (Barrett et al., 2017; Albrecht et al.,
2016), experience recognition (Barrett et al., 2017; Grover et al., 2018b; Chen et al., 2020), and
planning (Bowling & McCracken, 2005; Ravula et al., 2019). A recent work ODITS (Gu et al.,
2022) introduces an information based regularizer to automatically approximate the hidden of the
global encoder with the local encoder. However, they are limited to learn a single ad hoc agent and
only makes zero-shot adaptation. We take a step further to develop a framework for more complex
team-to-team coordination under a few-shot setting.

Policy Representation. It is a well studied topic in multi-agent scenarios to anticipating others’
behaviors and weaken the non-stationary issue (Albrecht & Stone, 2018). DRON (He et al., 2016)

2

Under review as a conference paper at ICLR 2023

uses a modeling network to reconstruct the actions of opponents from full history. Grover et al.
(2018b) adopt the concept of interaction graph (Grover et al., 2018a) to learn a contrastive style
representation with prepared policy class. DPIQN (Hong et al., 2018) learns “policy features” of other
agents and incorporates them into the Q-network for better value estimation. LIAM (Papoudakis et al.,
2021a) aims at estimating teammates’ current actions and observations based on learning agent’s
local history alone. Inspired by dynamics-reconstruction (Raileanu et al., 2020) in meta-learning,
we use an architecture that directly reconstructs the policy-dynamics. of a team policy, instead of
predicting their temporal behaviors, to get a compact and precise representation.

3 BACKGROUND AND PROBLEM FORMALIZATION

Cooperative Task. We formalize the problem as a Dec-POMDP (Oliehoek & Amato, 2016) with
a controllable group, defined asM = ⟨N ,S, {Oi}ni=1, {Ai}ni=1,Ω, P,R, γ, d0, G

1⟩, where N =
{1, . . . , n} is the set of agents, S is the set of global states, Oi is agent i’s observation space, Ai is
agent i’s action space, γ ∈ [0, 1) is the discount factor, and d0 denotes the initial state distribution.
At each timestep, agent i ∈ N acquires a local observation oi ∈ Oi with observation function Ω(s, i)
and chooses an action ai ∈ Ai via individual policy πi(ai|τi), where τi denotes input history. The
joint action a = ⟨a1, . . . , an⟩ transitions the system to next global state s′ according to the transition
function P (s′ | s,a), and all agents get a shared reward r = R(s,a). The group describes control
range at test time, where G1 ⊆ N is the subset of controllable agents, and its complementary G−1

contains uncontrollable teammates that G1 should adapt to. We denote join observation, action and
policy for G1 as o1 = ⟨oi⟩,a1 = ⟨ai⟩,π1 = ⟨πi⟩, i ∈ G1, and the corresponding parts for G−1 are
defined similarly. Thus, the (global) joint policy can be written as π = ⟨π1,π−1⟩.
Coordination Scheme. We define this term to better describe generalization. Let Πf be the set of all
joint policies with high coordination performance. Coordination scheme C = {ci} is defined as a
partition of Πf . Each coordination scheme ci is a set of joint policies, where ci ∩ cj = ∅, if i ̸= j and⋃

ci∈C ci = Πf . We assume that the coordination performance can be guaranteed if all the agents are
in the same coordination scheme, even if they have minor differences. Otherwise, no such guarantee
exists generally. Intuitively, C is determined by the coordination task itself, different elements in
which reflect different unique high-level joint behaviors. We may use words like “follows” or “is
under” in this paper to describe the same thing as π ∈ c for ease in expression.

Problem Formalization. Our aim is to control G1 to coordinate with G−1 under any co-
ordination scheme c ∈ C. We assume that G−1 has no adaptation ability and will stick
to a fixed scheme no matter what G1 behaves. With a little abuse of notations, we use
π−1 ∈ c to denote π ∈ c and π−1 is its slice for G−1. Formally, the optimal pol-
icy π1∗

θ parameterized by θ for G1 is to maximize the discounted cumulative reward: θ∗ =

argmaxθ Eπ−1∈c,c∈C

[∑H−1
t=0 γtrt+1

∣∣∣ (a1,a−1) ∼ (π1
θ ,π

−1), P, d0

]
, where rt+1 is the shared

reward at timestep t and H is the episode length. Since we do not have direct access
to the true scheme set C, we create a set of diverse policies Πtrain and directly sample
π−1 from it as a surrogate of the two-factor sampling, and rewrite the objective as: θ∗ =

argmaxθ Eπ−1∈Πtrain

[∑H−1
t=0 γtrt+1

∣∣∣ (a1,a−1) ∼ (π1
θ ,π

−1), P, d0

]
. Another diverse set Πeval

is created to evaluate the generalization performance.

4 METHOD

This section describes how the CSP framework addresses the generalizable coordination problem in
an end-to-end manner (Fig. 2). When given a cooperative task, CSP learns with three stages: (1) It
generates a diverse population of team policies to discover multiple feasible coordination schemes.
(2) It trains a scheme probing module to efficiently represent different teams by self-supervised
team-dynamics reconstruction. (3) It discovers the underlying coordination schemes by clustering the
representations and trains a multimodal meta-policy to adapt to them.

3

Under review as a conference paper at ICLR 2023

Stage 1: Diverse Team Population Stage 2: Scheme Probing Module Stage 3: Multimodal Coordination Policy

⋯

Env Env Env

Diversity Objective
Outer
loop

Inner
loop

Diverse Team
Population

Team policy
population

Sample

𝒛𝒛𝒄𝒄

Coordination Scheme
Embedding SpaceRepresent

𝝉𝝉𝒔𝒔𝒔𝒔
+

Probe

𝒛𝒛𝒄𝒄

Env

Scheme
Probing
Module

𝒛𝒛𝒄𝒄 �𝒂𝒂𝒕𝒕−𝟏𝟏

𝒂𝒂𝒕𝒕−𝟏𝟏

𝑠𝑠𝑡𝑡

Reconstru-
ction Error

𝑠𝑠0

𝝉𝝉𝒔𝒔𝒔𝒔

Break
into

steps

Intrinsic reward

Sample

Classify 𝝅𝝅𝒊𝒊 ⋯𝝅𝝅𝟏𝟏 𝝅𝝅𝒌𝒌

𝝅𝝅𝒊𝒊

𝝅𝝅𝒊𝒊

Select

+

Represent

Meta-policy

Env

k-means

SP Policy

Self-supervised learning

Reinforcement learning

𝑟𝑟𝐞𝐞𝐞𝐞𝐞𝐞

Encoder

⋯

Figure 2: Overall framework of CSP, where SP is short for “scheme probing”.

Algorithm 1 CSP: Brief Training Process

1: Initialize training population Πtrain = {π1, . . . ,πM}, scheme probing module ⟨Ec, Dc⟩, πsp

and multimodal meta-policy πmeta = {π1, ...,πk}.
2: Train each team policy πi ∈ Πtrain for quality and diversity. ▷ (Fig. 2, Stage 1)
3: Train ⟨Ec, Dc⟩ to represent teammates, and πsp to probe teammates. ▷ (Fig. 2, Stage 2)
4: Represent teams in Πtrain and discover coordination schemes as k clusters. ▷ (Fig. 2, Stage 3)
5: Train πmeta for generalization by each sub-policy acquiring a unique scheme.
6: return πmeta

4.1 DIVERSE TEAM POPULATION

We first need to use a set of diverse team policies to simulate the coordination schemes required for
the training and evaluation phases. Instead of letting each team acquire diversity with different initial-
izations (Carroll et al., 2019a; Strouse et al., 2021) alone, we propose the Soft-Value Diversity (SVD)
objective and an alternate optimization process to gain diversity explicitly. We maintain a population
with M independent multi-agent teams, each learning with an MARL method (VDN (Sunehag et al.,
2018) in this work). While each team performs independent “inner loop” learning, the population
periodically performs centralized “outer loop” updates for all teams to maximize SVD:

JSVD({θi}Mi=1) = Eτ ,a

[
M∑
i=1

∥D(τ ,a)−Di(τ ,a)∥22

]
, (1)

where θi denotes the Q-network’s parameters for the i-th team’s policy, τ and a denote indi-

vidual observation and action, Di(τ ,a) =
exp (Qθi

(τ ,a))∑
a′∈A exp (Qθi

(τ ,a′))
is the normalized value esti-

mation obtained by performing the Boltzmann softmax operator (Asadi & Littman, 2017), and
D(τ ,a) = 1

M

∑M
i=1 Di(τ ,a) is the average observation-action value estimation for all policies

in the population Π. We use the Monte Carlo method to estimate the expectation based on recent
collected trajectories in the replay buffer. In this stage, all agents (i.e., N = G1 ∪ G−1) for each
team are trained jointly, but we only store π−1 corresponding to G−1 for further use.

Maximizing SVD encourages teams within the population to have different value estimations of
each observation-action pair by increasing the gap between their current values and the mean. This
diversity in value estimation reflects various local optima caused by different joint decisions in
multi-agent scenarios, where the same action will have different outcomes when teammates’ actions
change. The “inner” and “outer” loops in the framework are designed to improve individual team
performance and diversity among different teams. We set a hyper-parameter to control the learning
frequency of these two loops, which is a trade-off between the quality and diversity of policies in the
population. We obtain Πtrain and Πeval independently via this process.

4

Under review as a conference paper at ICLR 2023

4.2 SCHEME PROBING MODULE

After having a diverse team population Πtrain, we train the scheme probing module upon it to
efficiently reveal and represent different teams’ coordinating policies. It has two main parts. One
is the scheme probing policy πsp which interacts with a team for an entire episode and gathers the
trajectory τsp = {st,at}Ht=0 that reveals the current teammates’ coordination scheme. The other is
the team-dynamics autoencoder ⟨Ec, Dc⟩, which learns a representation zc of team policies based on
τsp in a self-supervised manner. Start from here, we only train policies for G1 and let G−1 switch
within Πtrain. The teammates can thus be viewed as a non-stationary part of the environment.

Team-dynamics Autoencoder. The encoder Ec is parameterized as an LSTM (Hochreiter & Schmid-
huber, 1997) which takes as input τsp and outputs an embedding vector zc. The decoder Dc is a
feed-forward network that takes as input both zc and current state st, and predicts teammates’ next
joint action distribution a−1

t . Formally,

zc = Ec (τsp; θc) , â−1
t = Dc (· | st, zc; ϕc) . (2)

The parameters θc and ϕc are jointly optimized to minimize the cross entropy loss (i.e., reconstruction
error in Fig. 2) of â−1

t and a−1
t averaged over the entire trajectory τsp:

Ltot =
1

H

H∑
t=1

Lpred(t) = −
1

H

H∑
t=1

logDc(a
−1
t | st, zc; ϕc). (3)

We call this approach team-dynamics reconstruction for the following reasons. Firstly, Dc receives
no historical information, so it cannot infer a team’s behaviors based on the temporal ordering of
states and joint actions. In this case, Ec is forced to embed information about this team’s dynamics
into zc to make a good reconstruction. Additionally, since st is already input of Dc, Ec has no motive
to embed any information about states. Thus, the embedding zc contains only information about the
policy and not the environment, making it a compressed and precise representation of a team.

Scheme Probing Policy. Instead of collecting information passively, we expect πsp to actively
guide teammates’ behaviors and reveal their coordination schemes. To this end, we introduce the
reconstruction loss above at each timestep as an intrinsic reward for πsp, which is added to the
original environmental reward renvt :

r′t = renvt + αLpred(t), (4)
where α is an adjustable hyperparameter to achieve a trade-off between coordination performance
and information gain through probing. This additional term encourages πsp to explore states with
the large behavioral uncertainty across different kinds of teammates, which is considered helpful in
determining their identities and representing their coordination policies.

4.3 MULTIMODAL COORDINATION POLICY

When the scheme probing module is well trained, it is fixed and used to guide downstream scheme-
specific control. Common context-based methods (Hausman et al., 2018; Yang et al., 2020) use
embeddings as augmentation of the agent’s input space. However, in scenarios of coordination
generalization, the behaviors under different coordination schemes can vary greatly and conflict with
each other. Such processes require a single network to acquire multimodal behaviors as the context
changes, which increases learning complexity and instability. As a comparison, we use embeddings
to automatically group similar team policies to discover different schemes and solve each distinct
group with an independent sub-policy to avoid conflicts.

Scheme Discovery. We first use the learned scheme probing module to probe and represent all teams
in Πtrain N times, which generates an embedding set Z of size |Z| = NM . Repeating it N times is to
get the distribution of a team’s representation rather than a single sample point when the environment
and policy are stochastic. Then we perform k-means clustering based on Euclidean distances on Z to
get k clusters with centers µ = ⟨µ1, . . . , µk⟩. We use the Silhouette method (Rousseeuw, 1987) to
automatically determine the most suitable k, and details can be found in App. A.2.

These clusters reflect the natural structure of coordination schemes, as behaviors under the same
scheme should not vary too much to ensure coordination. The number of clusters k will be approxi-
mately equal to the number of environmental coordination schemes |C| if Πtrain already covers all
possible schemes. So enlarging the size of Πtrain will not infinitely increase the learning complexity.

5

Under review as a conference paper at ICLR 2023

Meta-Policy Learning. We initialize a multimodal meta-policy with k sub-policies, where each
sub-policy takes local observation history as input:

πmeta = {πi(a | τ) | i = 1, . . . , k}. (5)

During training or deploying, when confronted with a team, we first let the scheme probing policy
πsp interact with it to get trajectory τsp and get the representation zc = Ec(τsp). Then, we classify
the team into one of the k classes (discovered schemes) according to the distance of zc and all cluster
centers µ. Once we have done the classification, we choose the corresponding sub-policy to do the
rest of the control. Formally,

πmeta(a | τ, τsp) = πi∗(a | τ), where i∗ = argmini ∥Ec(τsp)− µi∥22. (6)

This structural design takes advantage of multimodality to be highly expressive, allowing end-to-
end learning of several vastly distinct coordination schemes simultaneously without affecting each
other. Moreover, each sub-policy πi(a|τ) only needs to acquire a unique and stationary coordination
scheme. Compared to common context-based methods that use a single policy π(a | τ, z) to acquire
all schemes, it reduces learning complexity and improves stability.

5 EXPERIMENTS

In the section, we design experiments to answer the following questions: (1) How well does CSP
perform when generalizing to unknown partners in multiple complex scenarios (Sec. 5.1)? (2) Can
the proposed scheme probing process get meaningful and distinguishable representations (Sec. 5.2)?
(3) Does the team population really have multiple coordination schemes (Sec. 5.3)? (4) What is the
impact of each component of CSP (Sec. 5.4)?

We select four multi-agent cooperative environments with six scenarios as benchmarks: Level-based
Foraging (LBF) (Papoudakis et al., 2021b) needs agents to find food randomly distributed on the
map and eat it together. Predator-Prey (PP) (Böhmer et al., 2020) is a more challenging version of
LBF that allows each prey to move randomly at each timestep. Overcooked (Strouse et al., 2021)
requires two players coordinate to cook and deliver food to target locations. We use a standard
layout Coordination Ring and a modified layout Forced Coordination Hard that enhances penalties
for miscoordination. SMAC (Samvelyan et al., 2019) is a commonly used MARL benchmark that
focuses on coordinated micromanagement. We use a standard map 1c3s5z and a customized map
Fork specially designed with multiple coordination schemes.

Six state-of-the-art approaches from three related fields are chosen for comparison. (1) Meta-
learning: PEARL (Rakelly et al., 2019) uses recently collected context to infer a probabilistic variable
describing the task. (2) Policy representation: LIAM (Papoudakis et al., 2021a) is an MARL method
that predicts teammates’ current behaviors based on local observation history, and FIAM (Papoudakis
et al., 2021a) enhances LIAM by replacing local observations with global states. (3) Ad hoc teamwork:
PBT (Carroll et al., 2019b) uses domain randomization to train an ad hoc agent with a population of
pre-trained partners. FCP (Strouse et al., 2021) draws on the practice of FSP (Heinrich et al., 2015) in
games by constructing training sets with teammates’ historical checkpoints. ODITS (Gu et al., 2022)
applies a centralized “teamwork situation encoder” for end-to-end learning.

Notice that PEARL, PBT, FCP, and ODITS are originally designed for single-agent settings. To
make them compatible with multi-agent scenarios, we implement them upon an MARL framework
VDN (Sunehag et al., 2018) that follows the CTDE paradigm to learn team policies for G1. Other
multi-agent methods (i.e., CSP, LIAM, and FIAM) also choose VDN as their base MARL framework
for a fair comparison. In addition, the original versions of LIAM and FIAM did not use populations
and only did self-play during training, while PBT, FCP and ODITS used several teams with different
random seeds and initializations to construct training populations, which may be unstable and difficult
to compare. To standardize comparison, we reuse the same Πtrain generated in CSP’s stage 1 for all
baselines, thus reducing the chance of outcome due to randomness of population generation. More
details of each scenario and baseline are shown in App. B-C.

5.1 EVALUATION OF PERFORMANCE

We first investigate how CSP and other baselines perform when coordinated with unknown diverse
teammates. Fig. 3 shows the average performance of coordinating with all teams in Πeval during

6

Under review as a conference paper at ICLR 2023

0M 2M 4M 6M 8M 10M
timesteps

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 R
et

ur
n

M
ea

n

LBF

0M 2M 4M 6M 8M 10M
timesteps

0

8

16

24

32

40
Overcooked Forced Coord.

0M 1M 2M 3M 4M 5M
timesteps

0.0

1.5

3.0

4.5

6.0

7.5

SMAC Fork

0M 1M 2M 3M 4M 5M
timesteps

0

8

16

24

32

Te
st

 R
et

ur
n

M
ea

n

PP

0M 3M 6M 9M 12M 15M
timesteps

0

50

100

150

200

250
Overcooked Coord. Ring

0.0M 0.6M 1.2M 1.8M 2.4M 3.0M
timesteps

0.0

0.2

0.4

0.6

0.8

1.0
SMAC 1c3s5z

CSP (Ours) LIAM FIAM PBT FCP ODITS PEARL

Figure 3: Mean generalization performance on Πeval of all methods.

training. Since CSP always collects a probing trajectory τsp before adapted coordination, we use
the average score of the two trajectories as CSP’s performance metric for fair comparisons. All
experiments are done with five random seeds, and all curves are marked with 95% confidence intervals
in the shaded area.

In general, CSP outperforms PEARL, PBT, FCP, and LIAM consistently and is better or at least
comparable to FIAM and ODITS according to the tasks. In LBF, where each agent has a strictly
limited observation range, FIAM has a clear advantage because it utilizes global information at each
timestep to help make decisions. The comparable result of CSP shows that it is possible to achieve
near-optimal control with pre-identified coordination scheme information alone, eliminating the need
for global states throughout the entire episode. In PP, Overcooked, and SMAC Fork, the cooperative
tasks are challenging and contain several vastly different coordination schemes, which require the
coordinator to change its behaviors aggressively and precisely. All baselines here have a clear gap
with CSP. We believe the superiority comes from the fact that CSP uses multimodality to isolate
the expression of different coordination schemes to avoid mutual interference. As a comparison,
in SMAC 1c3s5z, CSP and all baselines converge to roughly equivalent performance. The reason
is that without a specially designed symmetry like Fork, the optimal policy in this task is reflected
in focusing fire on the enemy and retreating when its health is low. The optimal decision under
each state is sure with no ambiguity of different coordination schemes, and all methods acquire this
optimal policy after training long enough. Although PEARL uses additional context data, it performs
worse than CSP. We believe it is because PEARL learns to encode context into a meaningful variable
in an end-to-end manner to directly maximize cumulative reward, which is relatively inefficient. It is
worth noting that CSP trains k sub-policies but still has comparable or even better sample efficiency
to baselines, verifying that isolating different schemes stabilizes training and avoids conflict schemes
from affecting each other.

5.2 SCHEME REPRESENTATION ON SMAC

A meaningful and distinguishable representation of coordination schemes is the basis of CSP’s
adaptation ability. To demonstrate this, we visualize the embeddings of our scheme probing module
with experiments on SMAC Fork (Fig. 4). We let our scheme probing module interact with all teams
in Π = Πtrain ∪Πeval for 64 episodes. One of the baselines, LIAM, which does agent modeling at
every timestep, also runs in parallel as a comparison.

Let’s first make a brief understanding of the Fork task. There are two symmetrical points at Up and
Down sides guarded by several enemies. If all the teammates choose to attack the same point, they
will have enough force to eliminate all the enemies there and get a high reward. Otherwise, neither
point will have a firepower advantage, and all the teammates will be destroyed and fail. Therefore,
we can roughly claim that there are two basic coordination schemes C = {Up,Down} in this task.
Screenshots at timesteps 10 and 30 (Fig. 4a-b) indicate the early and middle stages of one episode.
Asynchronous decision makings occur in (a) and (b) for G1 and G−1 respectively to select a direction
(Up or Down) to attack, and coordination succeeds if their choices are the same. Since G−1 may be

7

Under review as a conference paper at ICLR 2023

Different choice of direction
Group -1 (teammate) moves right at the beginning of game

Time to make decision

(c) t-SNE embeddings (LIAM at 10)

(d) t-SNE embeddings (LIAM at 30)

(e) t-SNE embeddings (CSP)

(f) Reconstruction accuracy

(a) Fork at timestep 10

(b) Fork at timestep 30

Figure 4: (a)(b) SMAC Fork at timesteps 10 and 30, when G1 (left) and G−1 (right) make decisions
respectively to attack enemies at point Up (red arrow) or Down (blue arrow). (c)(d) LIAM’s
embeddings of different teams at timesteps 10 and 30. (e) CSP’s embeddings of different teams. (f)
CSP and LIAM’s mean reconstruction accuracy of G−1’s joint action a−1

t throughout one episode.

controlled by various policies in Π, which will make different decisions, G1 has to make the right
choice based on the partners it meets.

The t-SNE projection of CSP’s scheme embeddings is shown in Fig. 4e, where different colors
represent different teams in Π (named by their scheme observed) and each point represents a single
run. There are two main phenomenons: (1) Each color forms a relatively compact cluster. (2) Clusters
with similar colors (lighter or darker) tend to be close together, while deeper and lighter colors are
farther apart. The former indicates that CSP’s representations are highly consistent with low variance,
which is beneficial for stabilizing downstream MARL learning. The latter shows that the embedding
space holds semantically meaningful information, where teams with similar coordination schemes
can be packed together. As a comparison, LIAM’s embeddings at timesteps 10 and 30 are shown
in Fig. 4c-d. We can observe that different teams are mixed up at the early stage, and a few local
clusters emerge as time goes by but still cannot distinguish well between teams. As illustrated in the
screenshots (white arrow), G−1 will always move right in the first few dozen steps, so the trajectories
of different teams during this period are similar and hold insufficient information. It is impossible for
LIAM to distinguish teams based on it, let alone make the right choice in the beginning.

Fig. 4f presents the mean reconstruction accuracy of G−1’s joint actions throughout one episode. We
can observe that CSP has consistently higher accuracy than LIAM, especially at timesteps close to
30. As described above, the observation segment before is not informative enough, in which case
LIAM will fail to predict teammate behaviors when sudden uncertainty occurs. By contrast, CSP has
a comprehensive view of the teammates it coordinates with after the probing phase in advance, so it
can fully guarantee its scheme prediction throughout the coordination phase. More results on other
benchmarks are shown in App. D.1.

5.3 SCHEME DIVERSITY

To verify populations generated in stage 1 do hold multiple coordination schemes, we perform Cross-
Play (Hu et al., 2020) experiments on Overcooked’s Coordination Ring and SMAC Fork (Fig. 5a).
Teams in Π = Πtrain ∪Πeval are paired to play the role of G1 and G−1 for all combinations.

Firstly, we can find that values on the diagonal from the top left to the bottom right corner are
generally larger than others. This indicates that each team coordinates well with itself, as they are
always in the same coordination scheme. As a comparison, the relatively lower performance of other
points indicates the inability to coordinate across different schemes. Interestingly, the performance

8

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

86 81 73 14 79 68 59 55

75 96 92 11 86 54 71 72

49 96 99 62 84 65 28 90

17 15 30 94 9.7 87 0 39

55 99 53 8.6 95 22 49 82

74 62 44 83 31 96 20 71

46 43 30 21 40 11 82 67

61 92 98 14 82 81 77 92

Overcooked Coord. Ring
1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

96 97 17 13 97 96 16 17

98 98 16 13 99 96 15 19

26 19 97 96 20 23 96 95

21 17 96 96 17 19 97 95

95 95 16 12 95 94 13 18

96 97 27 16 96 96 23 23

9.4 4.1 56 80 0 9.6 56 70

23 11 98 95 8.7 12 99 95

SMAC Fork

0

20

40

60

80

100

(a) Cross-Play performance of full population Π, normalized to [0, 100).
SMAC Overcooked

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

CSP UNI POP(z) CSP(z) SP

(b) Ablations.

Figure 5: (a) The scores of cross-play on the Overcooked Coordination Ring and SMAC Fork
benchmarks. (b) Final generalization performance of CSP and ablations for each component.

on SMAC Fork shows that it has two basic coordination schemes, where each team can coordinate
with exactly half of the teams in Π that have the same coordination scheme. This phenomenon is
aligned with our understanding of the task, as described above in Sec. 5.2. More results on other
benchmarks are provided in App. D.2.

5.4 ABLATION STUDY

We perform ablations on SMAC and Overcooked to demonstrate the importance of CSP’s different
components: UNI removes multimodality and only has a single sub-policy π(τ); POP(z) uses a
single context-based policy π(τ, z) instead of sub-policies; CSP(z) extends each sub-policy to be
πi(τ, z); SP does not use Πtrain and learns with self-play alone. We report the mean generalization
performance with Πeval and error bars indicating the 95% confidence interval as shown in Fig. 5b.

Firstly, we can observe that SP generally does the worst and has a large variance. This means
that without being exposed to diverse partners during training, the policy can only find a single
coordination scheme and is hard to generalize. UNI has a lower variance but still performs poorly,
which indicates that using domain randomization helps make the policy robust to partner changes,
but it cannot be specialized to each scheme without a specially designed adaptability module. The
relatively lower performance of POP(z) compared to CSP confirms our claim earlier that it is difficult
to make adaptations within a single network based on different scheme embedding. In complex multi-
agent scenarios, each coordination scheme can imply highly different and even opposite behaviors,
where using multiple sub-policies helps to isolate these schemes and makes each consistent. Finally,
CSP(z) does not outperform the original version. This phenomenon shows that our scheme grouping
process already fully uses the information contained in the embedding. Further use of it as additional
input no longer results in a boost but may increase learning difficulty.

6 CLOSING REMARKS

To achieve generalizable coordination in complex multi-agent scenarios and address limitations of ad
hoc teamwork, this paper considers learning a coordination scheme probing module for teammates
recognition and a meta-policy consisting of multiple sub-policies for few-shot coordination with
unseen diverse teams. With the help of this probing module, we can reduce few-shot coordination
to a multi-task RL problem by clustering the representation space. A multimodal policy is then
end-to-end trained to solve it directly. Sufficient experiments compared against strong baselines on
various benchmarks validate the effectiveness of our proposed method. We point out two limitations
and interesting future work: (1) Co-evolution of the population would be a more general interaction
setting, such as Quality Diversity (Parker-Holder et al., 2020). (2) Effective knowledge transfer
between submodules, such as Soft Modularization (Yang et al., 2020), could be considered to improve
sample efficiency. Finally, instead of training alongside artificial agents, we also hope to study the
human-in-the-loop setting to adapt to people’s dynamic needs and preferences.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. AAAI Conference on Artificial Intelligence (AAAI), 2018.

Stefano V Albrecht, Jacob W Crandall, and Subramanian Ramamoorthy. Belief and truth in hypothe-
sised behaviours. AAAI Conference on Artificial Intelligence (AAAI), 2016.

Kavosh Asadi and Michael L Littman. An alternative softmax operator for reinforcement learning.
In International Conference on Machine Learning (ICML), 2017.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating
with new teammates. AAAI Conference on Artificial Intelligence (AAAI), 2017.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning (ICML), 2020.

Michael H. Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In
AAAI Conference on Artificial Intelligence (AAAI), 2005.

Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter Abbeel, and Anca D.
Dragan. On the utility of learning about humans for human-AI coordination. In Advances in
Neural Information Processing Systems (NeurIPS), 2019a.

Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter Abbeel, and Anca D.
Dragan. On the utility of learning about humans for human-ai coordination. In Advances in Neural
Information Processing Systems (NeurIPS), 2019b.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Learning to cooperate with
unseen agent via meta-reinforcement learning. arXiv preprint arXiv:2111.03431, 2021.

Shuo Chen, Ewa Andrejczuk, Zhiguang Cao, and Jie Zhang. Aateam: Achieving the ad hoc teamwork
by employing the attention mechanism. In AAAI Conference on Artificial Intelligence (AAAI),
2020.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scaling
multi-agent reinforcement learning with selective parameter sharing. In International Conference
on Machine Learning (ICML), 2021.

Xin Du, Jiahai Wang, Siyuan Chen, and Zhiyue Liu. Multi-agent deep reinforcement learning with
spatio-temporal feature fusion for traffic signal control. In European Conference on Machine
Learning (ECML), 2021.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: A survey. AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards. Evaluating
generalization in multiagent systems using agent-interaction graphs. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1944–1946, 2018a.

Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International Conference on Machine Learning
(ICML), pp. 1797–1806, 2018b.

Pengjie Gu, Mengchen Zhao, Jianye Hao, and Bo An. Online ad hoc teamwork under partial
observability. In International Conference on Learning Representations (ICLR), 2022.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations (ICLR), 2018.

10

Under review as a conference paper at ICLR 2023

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé, III. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning (ICML), 2016.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
International Conference on Machine Learning (ICML), 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Advances in Neural Information
Processing Systems (NeurIPS), 1997.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep policy
inference Q-network for multi-agent systems. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2018.

Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J Storkey. Meta-learning in
neural networks: A survey. IEEE International Conference on Soft Robotics (RoboSoft)IEEE
Transactions on Aerospace and Electronic Systems, 2021.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob N. Foerster. "other-play" for zero-shot
coordination. In International Conference on Machine Learning (ICML), 2020.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, and Karen Simonyan. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Marc Lanctot, Vinícius Flores Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent
reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), pp.
4190–4203, 2017.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork: Definitions, methods, and
open problems. arXiv preprint arXiv:2202.10450, 2022.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pérolat, Siqi Liu, Daniel
Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess,
Thore Graepel, and Rémi Munos. A generalized training approach for multiagent learning. In
International Conference on Learning Representations (ICLR), 2020.

Frans A Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer, 2016.

Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos A. Vlassis. Exploiting locality
of interaction in factored dec-pomdps. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2008.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Albrecht. Dealing with
non-stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737,
2019.

Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. Agent modelling under partial
observability for deep reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2021a.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural
Information Processing Systems (NeurIPS), 2021b.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Marcin Choromanski, and Stephen J. Roberts.
Effective diversity in population based reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

11

Under review as a conference paper at ICLR 2023

Roberta Raileanu, Max Goldstein, Arthur Szlam, and Rob Fergus. Fast adaptation to new environ-
ments via policy-dynamics value functions. In International Conference on Machine Learning
(ICML), 2020.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning (ICML), pp. 5331–5340, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Manish Ravula, Shani Alkoby, and Peter Stone. Ad hoc teamwork with behavior switching agents.
In International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Peter J Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
Journal of Aerospace Computing, Information, and Communication, 1987.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The Star-
Craft multi-agent challenge. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2019.

Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In AAAI Conference on Artificial Intelligence
(AAAI), 2010.

DJ Strouse, Kevin R. McKee, Matt M. Botvinick, Edward Hughes, and Richard Everett. Collabo-
rating with humans without human data. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel.
Value-decomposition networks for cooperative multi-agent learning based on team reward. In
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du,
Yu Wang, and Yi Wu. Discovering diverse multi-agent strategic behavior via reward randomization.
In International Conference on Learning Representations (ICLR), 2021.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations (ICLR), 2020a.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: Off-policy multi-
agent decomposed policy gradients. In International Conference on Learning Representations
(ICLR), 2020b.

Lei Xi, Jianfeng Chen, Yuehua Huang, Yanchun Xu, Lang Liu, Yimin Zhou, and Yudan Li. Smart
generation control based on multi-agent reinforcement learning with the idea of the time tunnel.
Energy, 2018.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, and Zheng Chen. Smarts: Scalable multi-agent reinforcement
learning training school for autonomous driving. arXiv preprint arXiv:2010.09776, 2020.

12

Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS OF CSP

A.1 ALGORITHMS

We now give more a detailed pseudocode corresponding to different stages of CSP.

Algorithm 2 CSP: Training Stage 1

1: Initialize teammate policies Π = {π1, . . . ,πM}
2: while not done do
3: for inner loops do
4: for πj ∈ Π parallel do
5: Control G1 ∪G−1 with πj . Train πj with any MARL algorithm
6: end for
7: end for
8: for outer loops do
9: Update all πi ∈ Π to maximize JSVD (Eq. 1)

10: end for
11: end while
12: return Π

Algorithm 3 CSP: Training Stage 2

1: Input: Teammate policy population Πtrain

2: Initialize scheme probing policy πsp, autoencoder ⟨Ec, Dc⟩, and replay buffer B
3: while not done do
4: for πj ∈ Π do
5: Control G1 with πsp and G−1 with πj to generate τsp = {ot, at}Ht=0
6: B ← B ∪ {τsp}
7: Sample trajectories D from B
8: Compute {Lpred(t)}Ht=0 based on D and update ⟨Ec, Dc⟩ (Eq. 3)
9: Train πsp by any MARL algorithm, with r′t = renvt + αLpred(t) (Eq. 4)

10: end for
11: end while
12: return πsp, Ec

Algorithm 4 CSP: Training Stage 3

1: Input: Πtrain, πsp, Ec

2: Initialize team embedding set Z; multimodal meta-policy πmeta = {π1, . . . , πk}
3: for πj ∈ Πtrain do
4: for n in N do
5: Control G1 with πsp and G−1 with πj to generate τsp = {ot, at}Ht=0
6: Get team embedding zc = Ec(τsp), Z ← Z ∪ {zc}
7: end for
8: end for
9: Compute best k with the Silhouette method on Z (Eq. 8)

10: Compute centers µ = ⟨µ1, . . . , µk⟩ with k-means clustering on Z
11: while not done do
12: for πj ∈ Πtrain do
13: Control G1 with πsp and G−1 with πj to generate τsp = {ot, at}Ht=0
14: Get team embedding zc = Ec(τsp)
15: Pick sub-policy πi∗ based on i∗ = argmini ∥zc − µi∥22 (Eq. 6)
16: Control G1 with πi∗ and G−1 with πj . Train πi∗ with any MARL algorithm
17: end for
18: end while
19: return µ = ⟨µ1, . . . , µk⟩, πmeta = {π1, . . . , πk}

13

Under review as a conference paper at ICLR 2023

Algorithm 5 CSP: Deploying

1: Input: πsp, Ec,µ = ⟨µ1, . . . , µk⟩, πmeta = {π1, . . . , πk}, new policy πnew to adapt to
2: Control G1 with πsp and G−1 with πnew to generate τsp = {ot, at}Ht=0
3: Get team embedding zc = Ec(τsp)
4: Pick sub-policy πi∗ based on i∗ = argmini ∥zc − µi∥22 (Eq. 6)
5: Execute πi∗ to coordinate with πnew

A.2 SILHOUETTE METHOD

We use the Silhouette method (Rousseeuw, 1987) to automatically determine the most suitable k for
the embedding set Z. The intuition is that a higher Silhouette value for a data point indicates that this
point is placed in the correct cluster. Therefore, a cluster number k with the highest mean Silhouette
value for all points in a dataset is desirable. Concretely, for the embedding set Z, the Sihouette value
SV (i) for each data point i that belongs to I-th cluster ZI is defined as:

SV (i) =


dout(i)− din(i)

max{dout(i), din(i)}
, if |ZI | > 1,

0 , if |ZI | = 1,

(7)

where din(i) denotes the mean distance between data point i and other points in the same cluster,
and dout(i) denotes the smallest mean distance of data point i to all points in any other cluster.
They are defined as din(i) = 1

|ZI |−1

∑
j∈ZI ,i̸=j d(i, j) and dout(i) = minI ̸=J

1
|ZJ |

∑
j∈ZJ

d(i, j),
where d(i, j) is the Euclidean distance between data points i and j. We implemented an automatic k
selection approach by linear searching for the maximum mean Silhouette value of all data points:

k∗ = argmax
k≤M

1

|Z|
∑

i∈Z
SV (i). (8)

A.3 HYPERPARAMETERS AND ARCHITECTURE

In Stage 1, “inner loops” and “outer loops” are set to 32 and 5, respectively. MARL refers to
any multi-agent reinforcement learning method, and we choose VDN (Sunehag et al., 2018) here.
Population size M = |Πtrain| = |Πeval| is 4 for all scenarios but 1c3s5z, which is set to 5 instead. In
Stage 2, α is set to 1× 10−6 and |D| is set to 32. In Stage 3, N is set to 64.

Details of neural network architectures used by CSP are provided in Fig. 6. Each policy used in CSP
(i.e., teammate policy πi ∈ Π, probing policy πsp, and each sub-policy in {π1, . . . , πk}) is a form of
“GRU policy” with local observation history as input and outputs value estimation across its action
space. The MARL framework VDN adds up all agents’ local utility qi to form Qtot, which is updated
to approximate the global discounted return.

FC: 64 → |𝑜𝑜𝑜𝑜𝑜𝑜|

GRU: 64 → 64

FC: 𝑖𝑖𝑖𝑖 → 64

ReLU

𝜏𝜏𝑖𝑖,𝑡𝑡 = {𝑜𝑜𝑖𝑖,0:𝑡𝑡}

𝑞𝑞𝑖𝑖(⋅ |𝜏𝜏𝑖𝑖,𝑡𝑡)

GRU policyEncoder 𝑬𝑬𝒄𝒄

FC: 64 → 64

LSTM: 64 → 64

FC: 𝑖𝑖𝑖𝑖 → 64

ReLU

FC: 64 → |𝑧𝑧𝑐𝑐|

ReLU

𝜏𝜏𝑡𝑡 = {𝑠𝑠0:𝑡𝑡}

𝑧𝑧𝑐𝑐
ℓ2-normalization

Decoder 𝑫𝑫𝒄𝒄

FC: 256 → |𝑜𝑜𝑜𝑜𝑜𝑜|

FC: 𝑖𝑖𝑖𝑖 → 256

LeakyReLU

(𝑠𝑠𝑡𝑡 , zc)

�𝒂𝒂𝒕𝒕−𝟏𝟏

FC: 256 → 256

LeakyReLU

Local
utility

network

𝑞𝑞1(𝑎𝑎1,𝑡𝑡|𝜏𝜏1,𝑡𝑡)

𝜏𝜏1,𝑡𝑡 = {𝑜𝑜1,0:𝑡𝑡}

Local
utility

network

𝑞𝑞𝑛𝑛(𝑎𝑎𝑛𝑛,𝑡𝑡|𝜏𝜏𝑛𝑛,𝑡𝑡)

𝜏𝜏𝑛𝑛,𝑡𝑡 = {𝑜𝑜𝑛𝑛,0:𝑡𝑡}

…

𝑄𝑄tot(𝒂𝒂𝒕𝒕|𝜏𝜏𝑡𝑡)

VDN framework

Figure 6: Network architectures of CSP, where oi,t and ai,t represent the local observation and action
for agent i at timestep t, and τi,t is the trajectory of agent i’s local observations until timestep t.

14

Under review as a conference paper at ICLR 2023

B DETAILS OF ENVIRONMENTS

Figure 7: All the environments used in this paper. The first row from left to right: Level-based
Foraging (LBF), Overcooked Forced Coordination Hard, SMAC Fork. The second row from left to
right: Predator-Prey (PP), Overcooked Coordination Ring, SMAC 1c3s5z.

Level-based Foraging (LBF) (Papoudakis et al., 2021b). We use an instance of LBF, where the
environment is a 20× 20 grid world with 2 agents and 4 food. Each agent has a self-centered 5× 5
observation range and a discrete action space for moving in four directions and collecting food. The
goal of each agent is to collect all the food on the map. When food is collected, the environment
returns a shared reward proportional to the food level with a total reward normalized to 1. An episode
terminates if all the food is collected or reaches 50 total timesteps. To enhance the requirement
for cooperation, we set the extra constraint that each food can only be collected if both agents are
adjacent and perform the "collect" action simultaneously. We let CSP or baselines control one player
and teammates from Π control another. The variability of coordination schemes in this environment
is reflected in the order of eating all 4 food.

Predator-Prey (PP) (Böhmer et al., 2020). This environment can be considered a more complex
version of LBF, where 2 predators with a 5 × 5 observation range are expected to hunt 4 prey in
a 10 × 10 grid world. An episode ends when all prey is captured, or 200 timesteps have passed.
The extra difficulty comes from the fact that each prey moves randomly throughout the game, so
predators must constantly jointly chase the prey. We simplify the task by removing the “capture”
action, and predators can capture prey with only a siege. Therefore, there will be no miss-capturing
punishment. The coordination schemes in this environment are reflected in the order of chasing prey
and the respective division of labor in the roundup of prey.

Overcooked (Strouse et al., 2021). There are 2 agents in the environment sharing a 6-dimensional
discrete action space: moving in four directions, interacting with the object facing, and doing nothing.
Cooking a dish requires a series of actions and a waiting period. Delivering a dish requires picking it
up, moving to the correct delivery point, and putting it down. The goal of both agents is to complete
as many delivery orders as possible within 400 timesteps. We set CSP or baselines to control the
blue player and teammates from Π to control the green player. In the layout Coordination Ring
(lower), the passage is narrow, and the two agents may clash in their pathfinding. In the layout Forced
Coordination Hard (upper), only the green agent can touch the cookware, and only the blue agent can
reach the delivery point. Coordination is forced in this layout since no agent can finish the task alone,
and they have to adapt to teammates’ preferences.

15

Under review as a conference paper at ICLR 2023

SMAC (Samvelyan et al., 2019). It is widely used as a multi-agent benchmark for its high complexity
of control. Each agent can move in four cardinal directions, stop, do nothing, or select an entity to
interact (heal or attack according to its type) at each timestep. Therefore, if there are na allies and ne

enemies in the map, the action space for each unit contains na + ne + 6 discrete actions, and the
joint action space size is (na + ne + 6)na . The map 1c3s5z is a standard map that requires control of
9 agents. We set CSP or baselines to control the first 4 agents, and teammates in Π control the reset 5
agents.

We specially designed a map called Fork (Fig. 8) for this work which requires strong coordination
and has very different coordination modes. It has 2 ally spawn points on the left and middle left sides
of the map and 2 enemy spawn points on the upper right and lower right corners. At the beginning
of an episode, each ally spawn point generates 4 marines (long-range attack unit), and each enemy
spawn point generates 6. We let CSP or baselines control allies at point 1 and teammates from Π to
control allies at point 2. If both groups choose to attack the same group of enemies, it will be 8 versus
6 and is easy to win. By contrast, if two groups of teammates attack different groups of enemies,
respectively, it will be 4 versus 6, and neither group will be able to defeat. Thus, intuitively there are
two main kinds of cooperation modes, which we refer to as Up and Down in this work, indicating
attack enemies in the corresponding direction first. The population Π is trained with CSP’s stage 1.
In order to make the population unbiased in attacking directions, we manually pick 8 policies from
the original population with 4 Ups and 4 Downs to form the balanced population.

Figure 8: New SMAC map Fork.

C DETAILS OF BASELINES

We compare CSP against six baselines. All of them are implemented with a similar GRU agent and
VDN framework as CSP (Fig. 6), except that the input of GRU agents is τt = {(o, zc)0:t} which has
additional embedding zc at each timestep, so we mainly focus on how they build zc with components
shown in Fig. 9.

PEARL (Rakelly et al., 2019). This baseline comes from single-agent and meta-learning settings. It
aims to represent the environments by hidden representations. It utilizes the history-data as context to
inference the feature of the environment, which is modeled by a product of Gaussians. Since we use
the Dec-POMDP setting, the PEARL module is adopted and optimized on each individual policy.

Population based trainin (PBT). This baseline uses simple domain randomization to train G1

against all the teams in Πtrain. The training set Πtrain is required from CSP’s stage 1. We think fixing
this population increases the fairness of the comparison.

Ficticious co-play (FCP) (Strouse et al., 2021). This baseline uses similar domain randomization
approach like PBT to train G1, except that the training population is an extended version of Πtrain.
Checkpoints at one-third and two-thirds of the total training timesteps are added to Πtrain, indicating
teammates with different levels of ability.

16

Under review as a conference paper at ICLR 2023

Local information agent model (LIAM) (Papoudakis et al., 2021a). This baseline equips each
agent with an encoder-decoder structure to predict other agents’ observations o−1

t and actions a−1
t at

current timestep based on its own local observation history τt = {o0:t}. The encoder and decoder are
optimized to minimize the mean square error of observations plus the cross-entropy error of actions.
The original version of LIAM considers only a single controllable agent, and predictions are made
upon this agent’s local observation. To fit in MARL’s centralized training, we let all controllable
agents make predictions based on their observations and calculate their loss, and use the mean of
their loss as the final loss.

Full information agent model (FIAM) (Papoudakis et al., 2021a). This baseline is a variant of
LIAM by replacing the input trajectory of local observations τt = {o0:t} with the trajectory of global
states τt = {s0:t}.
Online adaptation via inferred teamwork situations (ODITS) (Gu et al., 2022). Unlike the
previous two methods that predict the actual behaviors of teammate agents, ODITS improves zero-
shot coordination performance in an end-to-end fashion. It has two variational autoencoder pairs,
one global and one local. The global encoder takes in state trajectory τt = {s0:t} and outputs the
mean and variance of a Gaussian distribution. A vector ze indicating “global teamwork situation”
is then obtained by sampling from it. The global decoder uses ze to build the parameters zh of a
hyper-network that maps the ad hoc agent’s local utility Qi into global utility Qtot to approach the
global discounted return. The local encoder has a similar structure as the global encoder, except
that its input is replaced with local trajectory τt = {o0:t}. It is updated by maximizing the mutual
information of its output ẑe and the global ze. The local decoder further maps ẑe into a variable zc
used as the ad hoc agent’s input. The whole training is end-to-end by maximizing global return and
mutual information of ze and ẑe. Similar to LIAM, ODITS only considers a single ad hoc agent
setting. We modified the loss to the mean of all controllable agents’ individual loss to make it fit in
MARL.

To ensure fairness in the use of hidden variables, we make CSP and all baselines have the same width
for zc in each environment. Concretely, |zc| is set to 8 for Overcooked, LBF, and PP, and 64 for Fork.

Encoder of
LIAM / FIAM

FC: 64 → 64

LSTM: |𝑖𝑖𝑖𝑖| → 64

FC: 64 → |𝑧𝑧𝑐𝑐|

ReLU

𝜏𝜏𝑡𝑡

𝑧𝑧𝑐𝑐

FC: 64 → |𝑜𝑜𝑜𝑜𝑜𝑜|

FC: 𝑖𝑖𝑖𝑖 → 64

ReLU

𝑧𝑧𝑐𝑐

�𝒂𝒂𝒕𝒕−𝟏𝟏

FC: 64 → 64

ReLU

Softmax

�𝒐𝒐𝒕𝒕−𝟏𝟏

Decoder of
LIAM / FIAM

ODITS’s global /
local encoder

LSTM: 64 → 64

FC: 64 → 2|𝑧𝑧𝑒𝑒|

𝜏𝜏𝑡𝑡

mean

ReLU

FC: 𝑖𝑖𝑖𝑖 → 64

var

Resample

𝑧𝑧𝑒𝑒 or 𝑧̂𝑧𝑒𝑒

FC: 64 → |𝑜𝑜𝑜𝑜𝑜𝑜|

FC: 𝑖𝑖𝑖𝑖 → 64

ReLU

𝑧𝑧𝑒𝑒

𝑧𝑧ℎ

FC: 64 → 64

ReLU

ODITS’s global
decoder

FC: 64 → |𝑜𝑜𝑜𝑜𝑜𝑜|

FC: 𝑖𝑖𝑖𝑖 → 64

ReLU

𝑧̂𝑧𝑒𝑒

𝑧𝑧𝑐𝑐

FC: 64 → 64

ReLU

ODITS’s local
decoder

Figure 9: Network architectures of baselines.

D MORE EXPERIMENT RESULTS

D.1 EMBEDDINGS ON EACH ENVIRONMENT

To measure the quality of our scheme embedding, Fig. 10 adopts t-SNE to visualize the embedding of
distinguished teams. Each color in four t-SNE sub-figures represents the embedding of distinguished
teams. It shows that our scheme embedding can cluster the same coordination scheme and classify the
different schemes, which shows a high quality property for team recognition and sub-policy selection.

17

Under review as a conference paper at ICLR 2023

30 20 10 0 10 20 30
40

30

20

10

0

10

20

LBF

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

40
PP

20 10 0 10 20 30

30

20

10

0

10

20

30

40
Overcooked Forced Coord.

30 20 10 0 10 20 30

40

20

0

20

40

Overcooked Coord. Ring

eval 0 eval 1 eval 2 eval 3 train 0 train 1 train 2 train 3

Figure 10: t-SNE of CSP’s coordination scheme embeddings in different environments.

D.2 CROSS-PLAY OF DIVERSE TEAMMATES

To measure the quality and diversity of our SVD population generation in training stage 1. We
concatenate all the teams in the training set Πtrain and the evaluation set Πeval together and make
cross play with each other. In LBF, Overcooked, PP, and SMAC, Πtrain and Πeval are both 4 while
that of SMAC 1c3s5z is 5. We normalize the score to [0, 100) for each scenario and show them in
heatmaps in Fig. 11. In most benchmarks, agents in the population cannot coordinate with others, as
the values on the diagonal (i.e. self-play) are much higher. Fork mainly contains two coordination
schemes as a comparison. The heatmaps show that our SVD method can generate a diverse population
to simulate the underlying coordination schemes.

1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

86 3.4 86 0 0 44 0 0.68

2.7 86 13 1.4 45 0 0 42

69 2.7 99 0 2.1 43 0.68 0

0 0 0 88 0 0 43 2.7

0.68 44 8.9 0 84 0 0 77

44 0 44 0 0 87 2.7 0.68

0 0 0 44 0 1.4 69 0

2.1 39 3.4 0.68 74 0 0 50

LBF 20x20-2s
1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

70 3.6 0.73 26 22 5.6 0.49 3.3

14 7.4 0.31 17 31 74 0.21 2.1

17 9.5 0.28 16 50 62 0.84 3.4

19 5.9 0.16 13 45 61 0.24 1.3

14 18 0.28 27 30 74 0 3.1

13 16 0.56 17 34 99 0.35 3.4

20 5.4 0.21 14 46 62 0.38 3.4

25 6.6 0.56 21 21 25 0.1 1.9

Overcooked Forced Coord.
1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

96 97 17 13 97 96 16 17

98 98 16 13 99 96 15 19

26 19 97 96 20 23 96 95

21 17 96 96 17 19 97 95

95 95 16 12 95 94 13 18

96 97 27 16 96 96 23 23

9.4 4.1 56 80 0 9.6 56 70

23 11 98 95 8.7 12 99 95

SMAC Fork

1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

35 2.5 0.5 14 0 3 0 3

1 87 50 1 16 65 30 9.5

1.5 60 28 7.5 8 25 9 2

17 5 2.5 51 3.5 28 2 7

2 19 2.5 4 73 1 15 1.5

3 52 24 30 1.5 71 2.5 10

4 36 9 1.5 12 0 99 3.5

1 17 4 9 0 9.5 0.5 82

PP 2p4s
1 2 3 4 5 6 7 8

Agent Group -1

1

2

3

4

5

6

7

8

Ag
en

t G
ro

up
 1

86 81 73 14 79 68 59 55

75 96 92 11 86 54 71 72

49 96 99 62 84 65 28 90

17 15 30 94 9.7 87 0 39

55 99 53 8.6 95 22 49 82

74 62 44 83 31 96 20 71

46 43 30 21 40 11 82 67

61 92 98 14 82 81 77 92

Overcooked Coord. Ring
1 2 3 4 5 6 7 8 9 10

Agent Group -1

1

2

3

4

5

6

7

8

9

10

Ag
en

t G
ro

up
 1

97 56 71 26 62 79 88 85 74 85

65 68 44 0 50 65 26 71 59 44

41 71 82 41 71 99 71 82 74 68

44 59 41 56 26 26 44 65 32 32

71 79 62 91 65 65 82 82 59 47

68 74 24 24 41 99 65 56 88 85

88 74 47 24 56 76 79 74 79 56

74 71 50 50 18 97 71 76 71 79

68 59 59 32 59 99 71 62 91 76

99 56 62 56 79 91 88 85 76 85

SMAC 1c3s5z

0

20

40

60

80

100

Figure 11: Cross-play performance of Π = Πtrain ∪Πeval in all scenarios.

To further support that Πeval trained with SVD is a better benchmark for testing generalization perfor-
mance compared to randomly trained teammates, we train another 10 teams independently without
SVD for PP and SMAC Fork each. Fig. 12a illustrates their cross-play performance. Compared
to the original teams with SVD as shown in Fig. 11, we can find two major phenomenons: (1) It
seems that not only the locations at the diagonal have high values, indicating that each team is able
to coordinate with some other teams apart from itself. As we have claimed in Sec. 3, coordination
performance across different schemes is generally not guaranteed. It is clear that there are multiple
teams following the same coordination scheme in the population, which is redundant and makes the
population less diverse. (2) We can still see the clear 2-scheme structure for SMAC Fork, but the
distribution is biased (7 for one and 3 for the other). An ideal benchmark should be unbiased for
all the underlying coordination schemes to best match our goal. SVD encourages different teams to
behave as differently as possible, which naturally weakens the potential bias for a particular scheme.

18

Under review as a conference paper at ICLR 2023

We also tested the performance of CSP and baselines on these populations trained without SVD as
shown in Fig. 12b. In this case, CSP still performs better, but the relative advantage is less significant.
The result verifies the performance of CSP under random coordination settings, and is also in line
with what we claimed above. Since our goal is to train a policy that can coordinate under any scheme,
using a more diverse and less redundant Πeval trained with SVD makes sense.

1 2 3 4 5 6 7 8 9 10

Agent Group -1

1

2

3

4

5

6

7

8

9

10

Ag
en

t G
ro

up
 1

97 96 20 61 77 4 96 69 26 96

98 99 83 1.8 38 28 98 96 4.4 96

23 87 99 35 21 99 83 94 78 17

56 11 37 98 96 59 7.1 0.88 98 52

81 32 15 97 96 36 33 23 96 79

11 42 97 59 38 99 36 51 92 3.5

97 98 83 5.3 29 42 98 98 8 96

73 98 91 6.2 10 51 97 98 4.9 53

36 3.5 74 99 98 96 0 12 99 38

91 92 27 57 78 9.3 94 64 49 99

PP (without SVD)
1 2 3 4 5 6 7 8 9 10

Agent Group -1

1

2

3

4

5

6

7

8

9

10

Ag
en

t G
ro

up
 1

99 3.1 98 31 29 31 35 99 32 32

24 88 21 85 88 85 86 23 87 87

32 91 39 76 87 83 91 34 91 93

88 0 94 30 25 32 31 89 31 28

36 85 32 80 85 85 86 36 86 86

24 85 23 82 85 85 85 26 85 85

87 8.6 90 20 22 25 9 91 24 26

31 86 32 86 85 85 88 37 87 88

34 88 33 85 91 86 88 34 88 88

34 91 32 82 90 87 89 34 88 89

SMAC Fork (without SVD)

0

20

40

60

80

100

(a)

PP SMAC Fork
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Test Performance (without SVD)

alg
CSP
FIAM
LIAM
ODITS

(b)

Figure 12: (a) The cross-play matrix of populations trained without SVD. (b) Generalization perfor-
mance of CSP and baselines on the two no SVD populations.

D.3 EXTRA COST OF CSP COMPARED TO ZERO-SHOT METHODS

As a newly proposed few-shot framework, CSP takes extra environmental interactions and training
steps in its additional Stage 2 compared to zero-shot baselines. We draw the learning curves of
the self-supervised autoencoder pair ⟨Ec, Dc⟩ in Fig. 13 to show how much extra cost is actually
required. As can be seen from the plots, the cross-entropy loss between reconstructed teammate
actions and the ground truth drops rapidly in the early stage and slowly decreases as training moves
on. This phenomenon indicates that the self-supervised learning process in Stage 2 is much more
sample-efficient than reinforcement learning. Therefore, although we let Stage 2 to interact with
the environment as many timesteps as Stage 3 in our experiments, it actually only requires a small
portion of interactions to make a good representation. We will further investigate how to compress
this additional cost in future work.

0M 2M 4M 6M 8M 10M
timesteps

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
 E

nt
ro

py
 L

os
s

LBF

0M 2M 4M 6M 8M 10M
timesteps

0.0

0.4

0.8

1.2

1.6

2.0
Overcooked Forced Coord.

0M 1M 2M 3M 4M 5M
timesteps

0.0

0.6

1.2

1.8

2.4

3.0
SMAC Fork

0M 1M 2M 3M 4M 5M
timesteps

0.0

0.3

0.6

0.9

1.2

1.5

C
ro

ss
 E

nt
ro

py
 L

os
s

PP

0M 3M 6M 9M 12M 15M
timesteps

0.0

0.4

0.8

1.2

1.6

2.0
Overcooked Coord. Ring

0.0M 0.6M 1.2M 1.8M 2.4M 3.0M
timesteps

0.0

0.6

1.2

1.8

2.4

3.0
SMAC 1c3s5z

CSP Stage 2

Figure 13: Learning curves of ⟨Ec, Dc⟩ in CSP’s Stage 2.

19

	Introduction
	Related Work
	Background and Problem Formalization
	Method
	Diverse Team Population
	Scheme Probing Module
	Multimodal Coordination Policy

	Experiments
	Evaluation of Performance
	Scheme Representation on SMAC
	Scheme Diversity
	Ablation Study

	Closing Remarks
	Implementation Details of CSP
	Algorithms
	Silhouette method
	Hyperparameters and Architecture

	Details of Environments
	Details of Baselines
	More experiment results
	Embeddings on each environment
	Cross-play of diverse teammates
	Extra cost of CSP compared to zero-shot methods

