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Abstract

Large language models (LLMs) have shown substantial capacity for generating
fluent, contextually appropriate responses. However, they can produce hallucinated
outputs, especially when a user query includes false premises—claims that contra-
dict established facts. Such premises can mislead LLMs into offering fabricated
or misleading details. Existing approaches include pretraining, fine-tuning, and
inference-time techniques that often rely on access to logits or address hallucina-
tions after they occur. These methods tend to be computationally expensive, require
extensive training data, or lack proactive mechanisms to prevent hallucination
before generation, limiting their efficiency in real-time applications. We propose
a retrieval-based framework that identifies and addresses false premises before
generation. Our method first transforms a user’s query into a logical representation,
then applies retrieval-augmented generation (RAG) to assess the validity of each
premise using factual sources. Finally, we incorporate the verification results into
the LLM’s prompt to maintain factual consistency in the final output. Experi-
ments show that this approach effectively reduces hallucinations, improves factual
accuracy, and does not require access to model logits or large-scale fine-tuning.

1 Introduction

Large Language Models (LLMs) generate fluid, context-aware responses but can produce hallucina-
tions when prompted with queries that include hidden factual errors [Manakul et al., 2023, Zheng
et al., 2023]. These errors, known as false premises, are statements in a user’s question that conflict
with real-world facts. Even when LLMs store accurate information, they may trust the incorrect
assumptions embedded in the query and generate misleading outputs [Yuan et al., 2024]. As shown
in Fig. 1, these errors are common among LLM outputs [Huang et al., 2025, Snyder et al., 2024], and
are particularly insidious as they can appear factually sound while being fundamentally incorrect.

Many methods attempt to address false premises after an LLM has already produced an answer
[Hu et al., 2023, Shi et al., 2023, Pezeshkpour, 2023]. Although effective in some contexts, these
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Is penicillin safe for treating my shellfish allergy symptoms?

Yes, penicillin is generally safe for most people and is one of the most 
widely prescribed antibiotics. It has a good safety profile when used 
appropriately. For shellfish allergy symptoms, penicillin can help reduce 
inflammation and prevent secondary bacterial infections that might occur from 
scratching or skin irritation …

Figure 1: LLM experiences factuality hallucination when faced with a false premise question, where
both entities shellfish allergy symptom and penicillin exist but are not correctly aligned. The LLM’s
hallucinated response could delay life-saving treatment by incorrectly recommending antibiotics for
allergic reactions.

approaches can be computationally demanding and do not necessarily prevent misinformation from
appearing in the first place. Additionally, questions with false premises often maintain normal
semantic flow, changing only a few tokens so that they are difficult to identify using traditional
out-of-distribution detection [Vu et al., 2023]. Even advanced LLMs can struggle with real-time truth
evaluation, lacking the context or capacity to fully check every assumption [Hu et al., 2023].

To address this challenge, we focus on preventing hallucinations rather than mitigating them post hoc.
In our framework, we first transform the user’s query into a logical form that highlights key entities
or relations. We then employ retrieval-augmented generation (RAG) to check the accuracy of these
statements against a knowledge graph. If contradictions are found, the query is flagged as containing
a false premise prompting the model to correct or reject the assumption before formulating a final
answer. This process, shown in Fig. 2, ensures that the LLM does not rely on erroneous details during
response generation. By informing the LLM about any detected false premise in advance, we reduce
the likelihood of hallucinations without requiring access to model logits or large-scale fine-tuning.
Our proposed method applies to knowledge graphs and datasets compatible with graph structures.

2 Related Works

False Premise. A False Premise Question (FPQ) is a question containing incorrect facts that are not
necessarily explicitly stated but might be mistakenly believed by the questioner [Yu et al., 2022, Kim
et al., 2021]. Recent studies [Yuan et al., 2024] have demonstrated that FPQs can induce factuality
hallucination in LLMs, as they often respond directly to FPQs without verifying their validity.

Logical Forms. Symbolic solvers and logical forms are applied to logical reasoning by grounding
natural language in symbolic representations. The latest trend is integrating LLMs with symbolic
solvers to enhance their performance Olausson et al. [2023], Pan et al. [2023a]. Similarly, SymbCoT
Xu et al. [2024] converts input text into symbolic formats such as first-order logic, generates reasoning
plans through logical rule application, and verifies the reasoning process to ensure consistency.

Knowledge Graph Fact Checking and Question Answering. Knowledge graph–driven RAG
recently supports structured verification via: (1) prompt-based methods for evidence checks and
multi-hop retrieval [Pan et al., 2023b, Sun et al., 2024]; (2) graph-based methods framing RAG as
subgraph extraction or GNN reasoning [He et al., 2024, Mavromatis and Karypis, 2024]; and (3)
training-based methods with dual encoders for query–subgraph embedding and ranking [Zheng et al.,
2024, Liu et al., 2024a], though limited by KG entity coverage and prompt-generated data.

Hallucination Mitigation. Sources of LLM hallucinations originate from different stages in the LLM
life cycle [Zhang et al., 2023a], leading existing mitigation methods to target specific stages: pre-
training (mitigated by emphasizing credible data [Touvron et al., 2023, Lee et al., 2023]), supervised
fine-tuning (curated instruction data improves factuality [Chen et al., 2024, Cao et al., 2024]), RLHF
(alignment may introduce hallucinations when prompts exceed model knowledge [Radhakrishnan
et al., 2023, Wei et al., 2024]), and inference (errors snowball [Zhang et al., 2023b]), where decoding
adjustments [Shi et al., 2023, Chuang et al., 2024] or uncertainty-based checks [Xu and Ma, 2025,
Liu et al., 2024b, Dhuliawala et al., 2023] are applied.
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Was The Lord of the Rings: The 
Return of the King nominated 
for the Academy Award for Best 
Director?
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Figure 2: Overview of our approach. Left: The original query is converted into a logical form. Middle:
The logical form is used to retrieve relevant elements from the knowledge graph and detect false
premises. Right: Comparison of studied retrievers for aligning logical form with the knowledge graph.
The LLM generates responses with reduced hallucination given prompts with premise verification.

3 Methodology

Logical Form Extraction: A logical form is a symbolic representation that captures semantic
relations in a query. Given a natural language query q, we represent its logical form as L(q) =
P (x1, x2, . . . , xn), where P is a predicate or relation and x1, . . . , xn are variables or constants. We
use GPT-4o-mini [OpenAI, 2024] to convert q into L(q) and extract source, relation, and target.
Details of the prompting procedure are provided in Appx. § A.3. To assess conversion quality,
two annotators graded 200 samples on a three-point scale (1: no match, 2: partial, 3: match). All
generated forms received a score of 3.

Retrieval: Given a natural language query q, the retrieval stage extracts the most relevant
graph elements (entities, triplets, paths, or subgraphs) from a knowledge graph G: G∗ =
Graph-Retriever(q,G) = argmaxG⊆R(G) pθ(G | q,G) = argmaxG⊆R(G) Sim(q,G), where G∗

denotes the retrieved subgraph, Sim(·, ·) measures query–graph similarity, and R(·) restricts the can-
didate set for efficiency. After converting q into a logical form L(q), the retriever encodes L(q) and
graph triplets, then searches G under various selection criteria: G∗ = Graph-Retriever(L(q), G) =
argmaxG⊆R(G) pθ(G | L(q), G) = argmaxG⊆R(G) Sim(L(q), G). We use the pre-trained encoder
all-roberta-large-v12 to embed both logical forms and graph triplets, enabling similarity-based
retrieval and subsequent LLM-based premise verification.

Hallucination Mitigation: For a query q, if the false premise detector F (q) = 1, we update the query
as q′ = q + W , where W = "Note: This question contains a false premise."; otherwise, q′ = q.
Once the original query is updated, we evaluate LLM’s responses and measure the effectiveness of
the ensuing hallucination mitigation.

4 Experiments

Dataset KG-FPQ [Zhu et al., 2024] contains true- and false-premise questions (TPQs, FPQs)
constructed from KoPL, a curated subset of Wikidata. TPQs are derived from true triplets, while FPQs
are created by replacing objects in false triplets. We evaluate in the art domain with discriminative
task (Yes-No questions). Dataset details are in Appx. § B.

2https://huggingface.co/sentence-transformers/all-roberta-large-v1
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Experiment Setting Our method mitigates hallucinations in two steps: (1) detect false premises in
the query; (2) feed the original query plus the detection result to the LLM. For (1), we evaluate on
four types of retrievers: Direct Claim, Embedding-based retriever, Non-parametric Retriever, and
LLM-based-retriver. For (2), baselines include DirecrtAsk, Prompt, Majority Vote, and Perplexity AI.
See Appx. § C for details.
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Figure 3: Comparison of performance metrics across different retrieval methods using logical forms
and/or original queries.

5 Discussion

Direct Claim with RAG G-retriever GraphRAG/ToG
Original Query for Both Stages

True Positives (TP%) 44.44 33.33 88.89 8.89
True Negatives (TN%) 73.33 80.00 86.67 93.33
F1 Score (%) 59.70 48.78 87.89 16.16
Accuracy (%) 69.20 73.33 88.57 81.27

Logical Form for Retrieval and Original Query for False Premise Detection
True Positives (TP%) 44.44 37.78 82.22 8.89
True Negatives (TN%) 73.33 86.67 93.33 93.33
F1 Score (%) 59.70 53.97 86.97 16.16
Accuracy (%) 69.20 79.69 83.81 81.27

Logical Form for Both Stages
True Positives (TP%) 44.44 60.00 94.44 8.89
True Negatives (TN%) 73.33 86.67 99.05 93.33
F1 Score (%) 59.70 73.97 97.12 16.16
Accuracy (%) 69.20 82.86 95.24 81.27

Table 1: Comparison of performance metrics across different retrieval methods using logical forms
and/or original queries.

We show the result of the false premise detection task in Tab. 1 and the hallucination mitigation result
in Tab. 2.

Using logical forms helps better identify false premises in the questions. As shown in Tab. 1, for all
three retrievers, explicitly incorporating logical forms into both retrieval and false premise detection
stages significantly improves the identification of false premises. Sole reliance on original queries,
even though potentially yielding high accuracy, tends to neglect accurate false premise identification,
underscoring the importance of utilizing structured logical forms for tasks prioritizing precise false
premise detection. Using logical forms in both stages, G-retriever achieves the highest TPR (94.44%)
and F1 score (97.12%), indicating strong false premise detection with balanced precision and recall.
In contrast, ToG attains TNR (93.33%) but suffers from low TPR and F1 (16.16%), suggesting
limited effectiveness in correctly identifying false premises. When original queries are used in either
retrieval, false premise detection, or both stages, despite achieving reasonable accuracy (73.33%
and 79.69%), with RAG method shows significantly lower TPR (33.33% and 37.78%) compared to
the first configuration. This suggests that relying on original queries alone, or in combination with
logical forms in only one stage for detection, can achieve high accuracy due to correctly identifying
negatives, it is less effective at capturing false premises, which is the primary focus of our task.
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Models DirectAsk Prompt MajVote Ours
GPT-4o-mini 83.8 92.4 86.7 92.4
GPT-3.5 93.3 93.3 92.4 94.3
LLama-3.1 86.7 86.7 89.5 89.5
Mistral-7B 87.6 86.7 87.6 89.5
Qwen2.5 92.4 86.7 92.4 95.2
Qwen1.5 89.5 90.5 90.5 91.4
Perplexity AI 91.4

Table 2: Comparison of accuracy (%) of different hallucination mitigation methods.

Explicitly detecting and informing LLMs false premise mitigates hallucination, as demonstrated
in Tab. 2. Our proposed method, which directly communicates the presence of false premises to the
models, achieves the highest accuracy: 92.4% with GPT-4o-mini, 94.3% with GPT-3.5, 95.2% with
Qwen2.5, and 91.4% with Qwen-1.5. This performance surpasses alternative approaches such as
Direct Ask, Prompt, Majority Vote, and Perplexity AI. Majority Vote does not perform well, likely
due to hallucination snowballing, where repeated querying amplifies errors rather than correcting
them. Additionally, while the Prompt method warns the model about potential false premises, it does
not specifically tell the LLM which one contains false premises, negatively impacts performance on
questions with valid premises, causes unnecessary cautiousness and reduces the model’s ability to
provide direct and confident answers. Besides, Perplexity AI does not perform as well potentially
because the query format does not align well with web data, leading to suboptimal retrieval of relevant
information for certain types of questions. These findings emphasize the importance of tailoring
hallucination mitigation strategies to both the model’s reasoning process and the nature of the queries
it encounters.

We provide the computational cost analysis, the evaluation of impact on multi-hop versus single-hop
questions, and additional experiment results in Appx. § D.

6 Conclusion

We propose a retrieval-augmented logical reasoning framework that detects false premises to mitigate
LLM hallucinations. Our method explicitly detects and signals false premises, overcoming key
limitations of current approaches that rely on model parameters or post-hoc corrections. By structuring
detection upfront, it improves robustness, highlighting the value of structured reasoning techniques in
improving model reliability.
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Appendix

A Methodology Details

A.1 Problem Definition

False Premise Detection: Given a user query q, the function F (q) determining whether q contains a
false premise can be defined as:

F (q) =

{
1, if q conflicts with retrieved evidence R(q,G),

0, otherwise.
(1)

where R denotes the retrieval function that extracts relevant evidence from a knowledge graph G.
The query q is evaluated against R(q,G), and if contradictions are found, q is deemed to contain a
false premise (F (q) = 1); otherwise, it is considered valid (F (q) = 0). In this study, the function F
is achieved by RAG using a retriever that leverages logical form and a knowledge graph.

A.2 Pseudo-code Summary of the Proposed Method

We show the pseudocode summary of our approach in Algorithm 1.

A.3 Prompt Details

The following prompt is used to combine the information retrieved from the knowledge graph G
(context) and the query logical form L(q) (query) to form the input to the LLMs discussed in the
Section False Premise Detection with Logical Form.

Given the context below, does the following question contain a false
premise? Answer with ’Yes’ or ’No’ only. Note that the context is
provided as valid facts in a triple. Context: [context]. Query:
[query].

We use the following prompt for logical form conversion:

You are given a question. The task is to: 1) define all the predicates
used in the question. 2) parse the question into logic rules based on
the defined predicates 3) translate any logical rules implied by the
question. 4) convert the question into a logical form using predicate
logic. Provide your final answer in the following format: Logical form:
Predicate1(entity1, entity2). Keep all expressions concise and consistent.
Use standard predicate logic notation.

B Dataset Details

In KoPL [Zhu et al., 2024], each entity is linked to a specific concept, such as Leonardo da Vinci
being connected to the concept of an artist. The knowledge graph includes 794 distinct concepts,
categorized into domains based on general knowledge, enabling domain-based entity classification.
For the art domain, the authors of [Zhu et al., 2024] manually selected 33 relations, ensuring that
each relation is relevant to its domain and informative, avoiding ambiguity. For example, the
relation artist is linked to the Art domain, while family is more ambiguous and excluded. Table 3
shows the representative concepts, relations and subjects in the art domain of KG-FPQ. The dataset
comprises 4969 questions in the discriminative task for the art domain, with each true premise
question modified using the following editing methods: Neighbor-Same-Concept (NSC), Neighbor-
Different-Concept (NDC), Not-Neighbor-Same-Concept (NNSC), Not-Neighbor-Different-Concept
(NNDC), Not-Neighbor-Same-Relation (NNSR), and Not-Neighbor-Different-Relation (NNDR).
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Algorithm 1 False premise detection and hallucination mitigation
Input: User query q, Knowledge graph G
Output: Hallucination mitigated response from LLM
1: Convert user query q into logical representation L(q) ▷ (§Logical Form Extraction)
2: Extract logical assertions P (x1, x2, . . . , xn) from L(q)
3: Initialize maximum similarity score Simmax ← −∞ ▷ (§Retrieval)
4: Initialize optimal graph G∗ ← ∅
5: Candidate set G∗ ← subsets of relevant subgraphs from G, i.e., R(G)
6: for triple G′ ∈ G do
7: if retriever is embedding-based then
8: Compute similarity via embeddings:

Sim← Sim
(
L(q), G′)

9: else if retriever is non-parametric then
10: Compute similarity using tree search criteria:

Sim← PCST
(
L(q), G′)

11: else if retriever is LLM-based then
12: Compute similarity using LLM scoring:

Sim← LLMScore
(
L(q), G′)

13: end if
14: if Sim > Simmax then
15: Simmax ← Sim
16: G∗ ← G′

17: end if
18: end for
19: Define false premise indicator function: ▷ (§A.1)

F (q) =

{
1, if q conflicts with retrieved evidence G∗ = R(q,G∗)

0, otherwise

20: if F (q) = 1 then ▷ (§Hallucination Mitigation)
21: Update query as:

q ← q + " Note: This question contains a false premise."

22: end if
23: Generate response from LLM using updated query q
24: return Hallucination mitigated response from LLM

Domain Concept e.g. Concept Qty Subject e.g. Subject Qty Relation e.g. Relation Qty
film Titanic cast member

Art television series 44 Modern Family 1754 composer 33
drama Hamlet narrative location

Table 3: Representative concepts, relations, and subjects in KG-FPQ art domain.

C Experiment Details

C.1 False Premise Detection with Logical Form

In the false premise detection task, we look at different retrievers with and without the use of logical
forms. Logical forms are used in 1) the retrieval stage, where the logical form L(q) is encoded to
find the most relevant elements from knowledge G, and 2) the false premise detection stage, where
the logical form is passed as input along with the retrieved evidence to LLM to determine whether
the query contains false premise. The prompt detail is in Appx. § A.3. We evaluate the use of logical
forms in three configurations: 1) applying logical forms in both the retrieval stage and false premise
detection stage, 2) using logical forms for retrieval and employing the original query for false premise
detection, and 3) utilizing the original query for both stages.
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C.2 False Premise Detection Methods

We evaluate how logical form impacts retrieval for false premise detection across the following
retrievers:

1) Direct Claim: We directly query the LLM to determine whether the given question contains a false
premise. The model is prompted with: Does the following question contain a false premise? Answer
with ’Yes’ or ’No’ only. 2) Embedding-based Retriever: with RAG selects the top-k3 relevant triples
from the knowledge graph based on the cosine similarity between the query embedding and the graph
triple embedding. 3) Non-parametric Retriever: G-retriever [He et al., 2024] uses Prize-Collecting
Steiner Tree algorithm for extracting relevant subgraph from the knowledge graph. It does not rely on
a trained model with learnable parameters. 4) LLM-based Retriever: GraphRAG/ToG [Edge et al.,
2025, Sun et al., 2024] asks the LLM to generate a score between 0 and 100, indicating how helpful
the generated answer is in answering the target question. The answers are sorted in descending order
of helpfulness score and used to generate the final answer returned to the user.

We use GPT-4o-mini as the LLM in the false premise detection task. These retrievers are included
because they enable retrieval without task-specific fine-tuning, making them more adaptable across
different domains. Unlike training-based retrievers, which require labeled data and extensive com-
putation, non-parametric retriever uses structured knowledge, embedding-based retriever utilizes
pre-trained encoders to transform queries and knowledge into a shared vector space for efficient
retrieval, and LLM-based retrieval leverages pre-trained language models’ generalization abilities.
This setup evaluates the impact of logical forms on retrieval efficiency without the overhead of model
training.

Metrics We evaluate the false premise detection task using TPR (true positive rate), TNR (true
negative rate), FPR (false positive rate), FNR (false negative rate), F1 score, and accuracy of the
model successfully identifying questions containing false premises or not. Here, a positive instance
refers to a question that contains a false premise. Higher TPR indicates better detection of false
premises.

C.3 Hallucination Mitigation Methods

Having used logical forms to improve query structuring and false premise detection, we wish
to illustrate how our logical form-based method further reduces hallucinations. We consider the
following methods as our hallucination mitigation baselines, which are all inference-time hallucination
mitigation strategies that do not require access to logits or internal model weights that operate
exclusively at the input level, ensuring a fair comparison:

1) DirectAsk: Directly query the LLMs for an answer without additional processing or external
retrieval. This approach relies on the model’s internal knowledge and reasoning capabilities to handle
potential false premises. 2) Prompt: We encourage the LLM to assess potential false premises before
generating a response by appending the following prompt to the original query: This question may
contain a fasle premise. [query] 3) Majority Vote (MajVote): We prompt the LLM three times with
the same prompt and select the most frequent response as the final answer. This method improves
reliability by reducing the impact of any single erroneous or hallucinated response. from LLM.
4) Perplexity AI4: Utilizes a search engine to retrieve and incorporate real-time information from
the web, enabling it to provide answers based on the latest available web data. We use the version
powered by GPT-4-Omni.

For Direct Ask and Majority Vote, we report the performances of the following LLMs: GPT-4o-mini
[OpenAI, 2024], GPT-3.5-turbo [OpenAI, 2023], Llama-3.1-8B-Instruct [et al., 2024], Mistral-7B-
Instruct-v0.2 [Jiang et al., 2023], Qwen2.5-7B-Instruct [Qwen et al., 2025], and Qwen-1.5-7b-chat
[Bai et al., 2023].

Metrics. We evaluate question-answering accuracy on the hallucination mitigation task. Accuracy
is calculated by string matching the responses of LLMs: for TPQs, answering “Yes” is considered
correct; for FPQs, answering “No” is considered correct.

3This work focuses on top-1 selection.
4https://www.perplexity.ai
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D Additional Analysis

D.1 Performance on Single- vs. Multi-hop Questions
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Figure 4: GPT-4o-mini and G-retriver: False premise detection accuracy across single-hop and
multi-hop queries. Using logical form-based RAG mainly helps detect false premises in multi-hop
questions.

Our approach mostly improves false premise detection performance on multi-hop questions,
according to Fig. 4. The incorporation of logical form-based RAG leads to notable performance
gains compared to direct claim evaluation. Specifically, while single-hop questions see moderate
improvement, multi-hop questions benefit more, with false premise detection performance increasing
from 68.7% in the direct claim setting to 79.3% with RAG and further to 95.2% when using the
G-retriever. These results suggest that leveraging retrieval mechanisms enhances reasoning over
multiple pieces of evidence, reinforcing the importance of retrieval-augmented methods for complex
question-answering tasks. We present a case study to illustrate how our method improves performance
on multi-hop questions in Appx. § D.2.

D.2 Case Study

We perform a case study demonstrating how our method enhances multi-hop question performance.
We use the with RAG method example here, where the edited object is not directly connected to the
subject within the KoPL knowledge graph.

Question: Is "The Dark Knight" the recipient of the 16th Screen Actors Guild
Awards?

Answer: Yes, "The Dark Knight" won the award for Outstanding Performance
by a Stunt Ensemble in a Motion Picture at the 16th Screen Actors Guild
Awards.

Logical Form: is a recipient of(’The Dark Knight’, 16th Screen Actors Guild
Awards)

Retrieved Graph Triple: [’The Dark Knight’, ’award received’, ’81st Academy
Awards’]

After Detecting and Informing LLM of the Presence of a False Premise:

Corrected Answer:

No, "The Dark Knight" was not the recipient of the 16th Screen Actors Guild
Awards. That year’s SAG Award for Outstanding Performance by a Cast in a
Motion Picture went to Inglourious Basterds, not The Dark Knight.

D.3 Computational Cost Analysis

Tab. 4 briefly shows the comparison between our work and previous post-hoc hallucination mitigation
method. Our method incurs lower training cost, requires less number of tokens and less training time,
and is model agnostic as well as black-box compatible.

In Tab. 5, we compare our method with the post-hoc Contrastive Decoding [Shi et al., 2023] approach
in terms of computational efficiency and model compatibility (accuracy result based on Llama-3.1-
8B). Our method reduces running time, uses fewer tokens by leveraging logical forms, and supports
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Method Training cost Number of tokens Training time Model agnostic Black-box Compatible
Post-hoc Depends on Train: original query + answer Depends on No No
method fine-tuning Inference: original query fine-tuning
Ours Zero Original query + logical form Zero Yes Yes

Table 4: Comparison of training and compatibility between post-hoc method and our method.

Method Accuracy Number of tokens Running time* Model agnostic Black-box Compatible
Contrastive 84.8 Original Query + Reasoning Step Context Retrieval Time Agnostic to No
Decoding (Length≫ Logical Form) + 10.6s White Box Models
Our Method 89.5 Original Query + Logical Form Context Retrieval Time Yes Yes

+ 0.6s

Table 5: Comparison of performance and efficiency between contrastive decoding and our method.
*Average running time of each query on NVIDIA RTX A6000 GPU using Llama-3.1-8B Instruct
model. Both methods require context retrieval.

both model-agnostic and black-box settings. In contrast, post-hoc methods rely on fine-tuning
and lack general applicability across different model architectures. We also include performance
comparison of Contrastive Decoding with other LLMs in Supplementary Material §4.

D.4 Comparison with Post-hoc Hallucination Mitigation Method

Tab. 6 presents a performance comparison between Contrastive Decoding [Shi et al., 2023], a post-
hoc hallucination mitigation method, and other LLMs (Mistral-7B, Qwen1.5, Qwen2.5-7B-Instruct,
Llama-3.1-8B-Instruct). Our method achieves improved performance over Contrastive Decoding on
all models except Mistral-7B.

Mistral-7B Qwen1.5 Qwen2.5-7B-Instruct Llama-3.1-8B-Instruct
Contrastive Decoding 89.5 76.2 85.7 84.8
Ours 87.6 89.5 92.4 86.7

Table 6: Comparison between contrastive decoding and our method across different LLMs. Note:
GPT-3.5 and GPT-4o-mini are not included as logits are not available for contrastive decoding
approach.

D.5 Additional Result on False Premise Detection

We additionally evaluate GPT-3.5-turbo and G-retriever on the false premise detection task using
our method. The results are presented below (Tab. 7 and Fig. 5). Notably, when original queries
are used in either retrieval, false premise detection, or both stages, despite achieving high accuracy
(91.11%), G-retriever shows a markedly lower TPR (37.78%) compared to the first configuration.
This suggests that relying on original queries alone, or in combination with logical forms in only
one stage for detection, can achieve high accuracy due to correctly identifying negatives, it is less
effective at capturing false premises, which is the primary focus of our task.
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Metric G-retriever
Original Query for Both Stages

True Positives (TP%) 37.78
True Negatives (TN%) 100.00
False Positives (FP%) 0.00
False Negatives (FN%) 62.22
F1 Score (%) 54.84
Accuracy (%) 91.11

Logical Form + Original Query
True Positives (TP%) 37.78
True Negatives (TN%) 100.00
False Positives (FP%) 0.00
False Negatives (FN%) 62.22
F1 Score (%) 54.84
Accuracy (%) 91.11

Logical Form for Both Stages
True Positives (TP%) 75.56
True Negatives (TN%) 80.00
False Positives (FP%) 20.00
False Negatives (FN%) 24.44
F1 Score (%) 84.47
Accuracy (%) 79.37

Table 7: False Premise Detection Performance using GPT-3.5-turbo and G-retriever.
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Figure 5: Additional comparison of performance metrics across different retrieval methods using
logical forms and/or original queries.
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