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Effective optimization of root selection towards improved
explanation of deep classifiers

Anonymous Authors

Figure 1: Comparative illustration of heatmaps generated by our proposed and the best baseline (DTD-𝑧+) over ImageNet.
As seen, the advantages achieved by our proposed can be highlighted as: (i) more accurate explanations with less noise; (ii)
stronger hierarchical representation, where different regions of the target object have different colors, reflecting that the
weights assigned by the proposed are closer to optimal; (iii) reflection of object contours and even textures. The visualizations
utilize the Turbo colormap to highlight details and ensure color (i.e. relevance) accessibility for colorblind readers, and mean
cropping is applied to enhance the contrast.

ABSTRACT
Explaining what part of the input images primarily contributed to
the predicted classification results by deep models has been widely
researched over the years and many effective methods have been
reported in the literature, for which deep Taylor decomposition
(DTD) served as the primary foundation due to its advantage in
theoretical explanations brought in by Taylor expansion and ap-
proximation. Recent research, however, has shown that the root
of Taylor decomposition could extend beyond local linearity, and
thus causing DTD to fail in delivering expected performances. In
this paper, we propose a universal root inference method to over-
come the shortfall and strengthen the roles of DTD in explainability
and interpretability of deep classifications. In comparison with the
existing approaches, our proposed features in: (i) theoretical estab-
lishment of the relationship between ideal roots and the propagated
relevances; (ii) exploitation of gradient descents in learning a uni-
versal root inference; and (iii) constrained optimization of its final
root selection. Extensive experiments, including both quantitative
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and qualitative, validate that our proposed root inference is not only
effective, but also delivers significantly improved performances in
explaining a range of deep classifiers.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Deep Taylor decomposition, Relevance propagation, Explanation
of deep classifiers

1 INTRODUCTION
In the realm of high-stakes decision-making, the application of
Deep Learning techniques necessitates the utmost consideration
for transparency, and explainability [8]. This becomes even more
crucial in multimedia-centric domains, such as multimodal medical
datasets analysis [40], Visual Question Answering [19] and Gen-
erative AI (Artificial Intelligence) [9]. Interpretability analysis has
been widely researched over the years for visualizing those parts of
input images that contributed to the predicted results of classifica-
tions [7, 11, 22, 43], where Deep Taylor Decomposition (DTD) [24]
serves as one of the fundamental principles for interpretability and
explainability of classifiers. In general, DTD [23, 24] is a passive
interpretability method [43] that offers the advantage of explaining
pre-trained neural networks without requiring any modifications
to the network architecture or retraining. The essential advantage
of DTD is that its explanations are mathematically proven, which

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is achieved by utilizing the first-order Taylor series to approximate
the propagation mapping of explanatory quantities, known as rele-
vances between neurons. The relevance quantifies the contribution
of each neuron to the overall output of the network.

However, limitations arise here due to the requirement of first-
order Taylor series expansion, where the roots must be within
a locally linear region to ensure its reasonable accuracy of the
approximation, yet the linear region is typically small and numerous
[2, 38, 42]. Further, the ideal roots should be situated at positions
where the output of the network equals zero, in order to sustain that
the network does not favor any specific predicted result. Although
Montavon et al. [23, 24] developed layer-specific root calculation
theories (referd as DTD rules) and derived the rules of Layer-wise
Relevance Propagation (LRP) based on these roots, a recent study
[38] has mathematically proven that these theoretically calculated
roots have actually extended beyond the local linearity. Essentially,
the critical issue lies in the fact that constraints on the roots are
not sufficient, and thus, the selection of the rules solely relies on
those relatively vague attributes without rigorous mathematical
boundaries, raising the concern that human interpretation could
potentially manipulate the selection process [37, 38].

In this paper, we address the above issues by extending the scope
of DTD rules and mathematically establishing the relationship be-
tween roots and relevances across network layers. Correspondingly,
the theoretical establishment enables us to propose an universal
root calculation method for effective interpretability analysis via
relevance supervised inferences. Extensive experiments validate
that our proposed significantly outperforms the representative ex-
isting SoTA baselines. In summary, we highlight our contributions
as follows:

• We mathematically establish the relationship between rele-
vances and ideal roots, based on which we further propose a
universal root inference scheme across layers. In compari-
son with the existing work, our proposed is supervised by
relevances, yet the calculated roots are class-independent so
that the class-related output of networks can be guided to
approach zero, and the root calculation can be conducted
learning with gradient descent.
• We introduce a constraint optimization of the root selection
to ensure that the inferred root conforms to the requirement
of Taylor expansion and the limitation of DTD.
• We carried out extensive experiments and the results validate
that, in comparison with the representative existing state
of the arts, the proposed achieved superior performances
in both quantitative and qualitative assessments including
rigorous tests of adversarial attacks, demonstrating more
accurate explanations, clearer hierarchical representations,
and detailed characterizations.

2 RELATEDWORKS
Among all classification-based interpretability analysis methods
that have been actively researched over the recent years, we inves-
tigate representative existing state of the arts techniques to pave
the way for introducing our proposed. These include: (i) typical gra-
dient based methods [1, 4, 17, 35, 39], such as Integrated Gradient

[41], Grad-CAM [32], and SmoothGrad [27], all of which are devel-
oped out of back-propagation gradients that are initially multiplied
with the input [34]. Utilizing gradients to explain individual clas-
sification decisions is a natural approach since gradients indicate
the direction of fastest change on the loss function. (ii) Attribution-
based methods [14, 20, 25, 26, 29] that attribute the contributions in
a recursive manner from output layer to input layer. Representative
methods include DeepLIFT [33], PatternAttribution [18], LIME [31],
and Layer-wise Relevance Propagation (LRP) [3, 5] which involves
various rules for different layers, and its main idea is to calculate
the proportion (relevance) of the input multiplied by the weights
in relation to the layer output.

Providing a theoretical basis for attribution-based methods [7],
DTD decomposes network classification decisions (logit values of
specific class) into the contributions of the elements inside input im-
ages [23]. LRP partial rules, on the other hand, are derived through
the calculation of roots, and in 2022, Sixt et al. [38] have confirmed
that the computation of these roots goes beyond the local linearity
of first-order Taylor approximation.We have also investigated other
DTD related methods such as those reported in [7, 13, 14, 16, 18, 25],
but these methods adopted techniques that are well beyond DTD,
making it non-comparable with our proposed.

In addition, there exist other methods that are specifically de-
veloped for certain models, such as CoDA Nets [6], DGM [36], and
the recent work [7] specific for self-attention tuning. Accordingly,
these model specific methods are difficult to be applied beyond their
own limitations.

3 PROPOSED METHOD
To pave the way for our proposed research, we briefly overview
the fundamental principle of DTD as follows.

Figure 2: Computational flow of DTD (Deep Taylor Decom-
position) for explanation of deep classifications.

In DTD, as shown in the lower part of Figure 2, the relevance for
class 𝑐 is propagated from the output layer to the input layer via
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the following formulation [24]:

𝑅𝑙+1𝑗,𝑐 =
∑︁
𝑖

𝜕𝑅𝑙+1
𝑗,𝑐

𝜕𝑥𝑙
𝑖

|
𝑥𝑖
( 𝑗 ) (𝑥𝑙𝑖 − 𝑥𝑖

( 𝑗 ) )︸                          ︷︷                          ︸
𝑅𝑖←𝑗,𝑐

, (1)

where 𝑥𝑖 ( 𝑗 ) is the root of neuron 𝑥𝑙𝑖 in layer 𝑙 and chosen for neuron
𝑥𝑙+1
𝑗

in layer 𝑙 +1 that makes it to zero. 𝑅𝑖←𝑗,𝑐 refers to the relevance
for class 𝑐 that is propagated from 𝑥𝑙+1

𝑗
to 𝑥𝑙

𝑖
. To this end, 𝑅𝑙

𝑖,𝑐
can

be expressed as the aggregation of all 𝑅𝑖←𝑗,𝑐 connected to 𝑥𝑙
𝑖
:

𝑅𝑙𝑖,𝑐 =
∑︁
𝑗

𝑅𝑖←𝑗,𝑐 . (2)

In DTD, the propagation of relevances needs to meet:

∀𝑥 : 𝑓 (𝑥) =
∑︁
𝑝𝑖𝑥𝑒𝑙

𝑅𝑝𝑖𝑥𝑒𝑙,𝑐 (3)

and
... =

∑︁
𝑗

𝑅𝑙+1𝑗,𝑐 =
∑︁
𝑖

𝑅𝑙𝑖,𝑐 = ... =
∑︁
𝑝𝑖𝑥𝑒𝑙

𝑅𝑝𝑖𝑥𝑒𝑙,𝑐 . (4)

While Equation (3) ensures that "the total redistributed relevance
corresponds to the extent to which the object in the input image
is detected by the function" –Montavon et al. [24], Equation (4)
describs the layer-wise relevance conservation law that the prop-
agation from one layer to another is conservative in the sense of
Equation (3) and 𝑓 (𝑟𝑜𝑜𝑡) = 0.

Inspired by the existing work that a desirable root is determined
by minimizing the network’s output [22, 36], and ideally, the root
should make the network’s output equal to zero, i.e. zero represents
a state of ambiguity rather than positive affirmation or negative
negation [22], we propose to decompose the input of a given neuron
𝑥𝑙
𝑖
into 𝑆𝑖𝑔𝑛𝑎𝑙 and 𝑁𝑜𝑖𝑠𝑒:

𝑥𝑙𝑖 = 𝑆𝑙𝑖,𝑐 + 𝑁
𝑙
𝑖,𝑐 , 𝑐 ∈ [0, 1, . . . , 𝑐, . . . , 𝑀], (5)

where subscript 𝑐 denotes the index of target class for which the
relevance is being calculated, and 𝑀 represents the total number
of classes. The term 𝑆𝑙

𝑖,𝑐
(𝑆𝑖𝑔𝑛𝑎𝑙) refers an input of neuron 𝑥𝑙

𝑖
that

exclusively contains information pertaining to the target-class 𝑐 .
Conversely, 𝑁 𝑙

𝑖,𝑐
(𝑁𝑜𝑖𝑠𝑒) refers the information unrelated to that

class, including the information from backgrounds and other classes.
Please note that if the class shares certain characteristics with other
classes (e.g. the shared feature of having two ears between dogs
and cats), 𝑆𝑙

𝑖,𝑐
is then used to represent the signal after the shared

characteristics being removed.
Considering the fact that, for a pre-trained robust deep classifier,

noises do not affect the prediction outcome in majority cases, al-
though they may incur interferences in the process of classification,
we have:

𝑓 (𝑆𝑙𝑖,𝑐 + 𝑁
𝑙
𝑖,𝑐 ) ≈ 𝑓 (𝑆𝑙𝑖,𝑐 ) + 𝑓 (𝑁

𝑙
𝑖,𝑐 ). (6)

This can be validated by the references [15, 18], where the
weights of networkmodels are proved to be orthogonal to𝑁 (noises)
when training is terminated. As a result, the trained network can
always maintain significant level of robustness, i.e. the output of
class 𝑐 𝑓 (𝑆𝑙

𝑖,𝑐
) dominates and 𝑓 (𝑁 𝑙

𝑖,𝑐
) is close to zero, i.e.:

𝑓 (𝑁 𝑙
𝑖,𝑐 ) ≈ 0. (7)

Considering Equation (6) and inspired by the fact that the total
relevance is equal to the predicted output for the target class (i.e.
𝑅𝑜𝑢𝑡
𝑘,𝑐

= 𝑥𝑜𝑢𝑡
𝑘

, for the predicted class), we can establish that, for the
𝑖-th neuron at layer-𝑙 𝑥𝑙

𝑖
, its relevance for the target class can be

derived as:

𝑅𝑙𝑖,𝑐 =
∑︁
𝑗

𝑓 𝑙→𝑙+1
𝑖 𝑗 (𝑆𝑙𝑖,𝑐 ) (8)

and ∑︁
𝑖

𝑅𝑙𝑖,𝑐 =
∑︁
𝑖

∑︁
𝑗

𝑓 𝑙→𝑙+1
𝑖 𝑗 (𝑆𝑙𝑖,𝑐 ) = 𝑓 𝑙→𝑙+1 (𝑆𝑙𝑐 ), (9)

where 𝑆𝑙
𝑖,𝑐

represents the 𝑆𝑖𝑔𝑛𝑎𝑙 for class 𝑐 and its associated neuron
𝑥𝑙
𝑖
at layer 𝑙 , and 𝑓 𝑙→𝑙+1

𝑖 𝑗
(.) represents the weighted function from

neuron 𝑥𝑙
𝑖
to neuron 𝑥𝑙+1

𝑗
.

Equation (9) can be understood as a generalization of Equation (3)
for each layer. The results of 𝑓 𝑙→𝑙+1 (𝑆𝑙𝑐 ) accurately defines the de-
gree (extent) to which the target object 𝑆𝑙𝑐 of class 𝑐 is detected by
the layer function. In other words, it represents the sum of the neu-
ron’s relevances, following the same layer relevance conservation
law as described in Equation (4).

In general, Equation (8) establishes a relationship between rel-
evance back-propagation and forward calculation. In the forward
calculation, only the 𝑆𝑖𝑔𝑛𝑎𝑙 of class 𝑐 (𝑆𝑙

𝑖,𝑐
) is present, while the in-

formation related to other classes is close to zero. As 𝑅𝑙+1
𝑗

is known,
we can construct a learning process to infer the unknown variable
𝑆𝑙
𝑖,𝑐
, and thus the noise 𝑁 𝑙

𝑖,𝑐
can be obtained as 𝑁 𝑙

𝑖,𝑐
= 𝑥𝑙

𝑖
− 𝑆𝑙

𝑖,𝑐
. Out

of Equation (7), 𝑁 𝑙
𝑖,𝑐

can be taken as the root we aim to optimize,
as it removes the components from 𝑥𝑙

𝑖
that contribute positively

to the prediction of class 𝑐 (e.g., objects detected in an image or
feature map). To minimize the deviation between the root 𝑁 𝑙

𝑖,𝑐
and

the original point 𝑥𝑙
𝑖
, and ensure the effectiveness of the Taylor

expansion, we utilize gradient descent. This is motivated by the
observation that even small perturbations in adversarial attacks
can lead to changes in the predicted class. Details of its derivation
are described as follows.

Denoting 𝑇 𝑙
𝑖,𝑐

as the initial variable to indicate the target 𝑆𝑙
𝑖,𝑐

to
be obtained, we primarily consider that the input 𝑥𝑙

𝑖
contains the

necessary information for 𝑆𝑙
𝑖,𝑐
, including all patterns of interest.

Correspondingly, the distance between 𝑇 𝑙
𝑖,𝑐

and 𝑆𝑙
𝑖,𝑐

results in a
residual 𝜉 in 𝑅𝑙+1

𝑗,𝑐
, which can be described as:

𝑅𝑙+1𝑗,𝑐 + 𝜉 =
∑︁
𝑖

𝑓 𝑙→𝑙+1
𝑖 𝑗 (𝑇 𝑙

𝑖,𝑐 )︸         ︷︷         ︸
𝑅𝑖←𝑗,𝑐

,𝑇 𝑙
𝑖,𝑐 ⇐ 𝑥𝑙𝑖 . (10)

Tominimize the residual 𝜉 , we propose to construct the following
loss and thus activate a learning process to obtain the best possible
root estimation:

𝑙𝑜𝑠𝑠 (𝑇 𝑙
𝑖,𝑐 ) = 𝜉2 = (

∑︁
𝑖

𝑓 𝑙→𝑙+1
𝑖 𝑗 (𝑇 𝑙

𝑖,𝑐 ) − 𝑅
𝑙+1
𝑗 )

2, (11)

where the square operation 2 ensures the existence of a minimum.
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To minimize the loss, we apply a Taylor expansion around the
poin 𝑇

′𝑙
𝑖,𝑐

in the vicinity of 𝑇 𝑙
𝑖,𝑐
:

𝑙𝑜𝑠𝑠 (𝑇 𝑙
𝑖,𝑐 ) = 𝑙𝑜𝑠𝑠 (𝑇

′𝑙
𝑖,𝑐 ) +

𝜕𝑙𝑜𝑠𝑠

𝜕𝑇 𝑙
𝑖,𝑐

|
𝑇
′𝑙
𝑖,𝑐
·(𝑇 𝑙

𝑖,𝑐 −𝑇
′𝑙
𝑖,𝑐 ) + 𝜀 (12)

and let
△ = 𝑇 𝑙

𝑖,𝑐 −𝑇
′𝑙
𝑖,𝑐 = 𝛾 · 𝜕𝑙𝑜𝑠𝑠

𝜕𝑇 𝑙
𝑖,𝑐

|
𝑇
′𝑙
𝑖,𝑐
, 𝛾 > 0, (13)

where △ is the stride of the gradient descent, while 𝛾 is a user-
initialized parameter used to adjust the stride. Equation (13) ensures
that 𝑙𝑜𝑠𝑠 (𝑇 ′𝑙

𝑖,𝑐
) is always smaller than 𝑙𝑜𝑠𝑠 (𝑇 𝑙

𝑖,𝑐
).

Correspondingly, a new𝑇
′𝑙
𝑖,𝑐

in which the noise is further reduced
can be obtained by:

𝑇
′𝑙
𝑖,𝑐 = 𝑇 𝑙

𝑖,𝑐 − △. (14)
By repeating the above process iteratively, we are able to grad-

ually bring 𝑇
′𝑙
𝑖,𝑐

closer to the desired 𝑆𝑙
𝑖,𝑐
. As a result, when the

iteration concludes, 𝑁 𝑙
𝑖,𝑐

can be obtained by subtracting the final
𝑇
′𝑙
𝑖,𝑐

from 𝑥𝑙
𝑖
, as shown in Equation 5:

𝑁 𝑙
𝑖,𝑐 = 𝑥𝑙𝑖 − 𝑆

𝑙
𝑖,𝑐 , 𝑆

𝑙
𝑖,𝑐 ← 𝑇

′𝑙
𝑖,𝑐 (15)

To achieve the best possible explanation of the deep classification,
it is crucial to determine an appropriate iteration count and stride.
In practical computations, it often requires experience and multiple
attempts to find the optimal values. A simple approach is to start
with a smaller value and gradually increase them until the relevance
heatmaps of our proposed explanation analysis no longer have any
significant changes. In our experiments with the ResNet18 model
on ImageNet, we set 𝛾 = 1 and perform 20 iterations, to follow the
spirit of gradient based methods in adversarial attacks [21].

If it is necessary to impose a domain constraint on the computed
𝑇
′𝑙
𝑖,𝑐
, for example, we can set the following context to avoid the zero

point in ReLU and ensure its differentiability:

𝑇
′𝑙
𝑖,𝑐 ⇐ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑇

′𝑙
𝑖,𝑐 ), (16)

where⇐ is the assignment operation, and 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (.) represents
the activation function or normalization of the previous layer. By
replace 𝑇

′𝑙
𝑖,𝑐

in Equation (12) with Equation (16), we can obtain 𝑇
′𝑙
𝑖,𝑐

within the defined domain.
Consequently, the DTD as described in Equation (2) can now

be implemented in terms of our approximated and optimized root
𝑁 𝑙
𝑖,𝑐
:

𝑅𝑙𝑖,𝑐 =
∑︁
𝑗

𝜕𝑅𝑙+1
𝑗,𝑐

𝜕𝑥𝑙
𝑖

|
𝑁 𝑙
𝑖,𝑐
(𝑥𝑙𝑖 − 𝑁

𝑙
𝑖,𝑐 )︸                       ︷︷                       ︸

𝑅𝑖←𝑗,𝑐

. (17)

For the convenience of implementation, finally, we summarize
our proposed in Algorithm 1.

To ensure that Equation (2) can be accurately operated within
a linear region of 𝑥𝑙

𝑖
, three optimizations are considered, which

include: i) Initialize 𝑆𝑙
𝑖,𝑐

with zero and limit the value of 𝛾 based on
the gradient difference between 𝑥𝑙

𝑖
and 𝑁 𝑙

𝑖,𝑐
in order to prevent 𝑁 𝑙

𝑖,𝑐

from going outside the linear range (short named as Gradient-
constrain); ii) Consider 2nd- even high-order Taylor series; iii)
Consider only the positive output of 𝑓 𝑙→𝑙+1

𝑖 𝑗
(𝑆𝑙
𝑖,𝑐
) (short named

Algorithm 1 Constrained root optimization

Input: 𝑥𝑙
𝑖
, 𝑅𝑙+1

𝑗,𝑐
, 𝑠𝑡𝑒𝑝 > 1, 𝛾 > 0

1: Initialization: 𝑇 𝑙
𝑖,𝑐
← 𝑥𝑙

𝑖
, 𝑝 ← 0, 𝑁 𝑙

𝑖,𝑐

2: 𝑙𝑜𝑠𝑠 (𝑇 𝑙
𝑖,𝑐
) = (∑𝑖 𝑓

𝑙→𝑙+1
𝑖 𝑗

(𝑇 𝑙
𝑖,𝑐
) − 𝑅𝑙+1

𝑗,𝑐
)2 (via Equation (11))

3: repeat
4: Calculate 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 of 𝑙𝑜𝑠𝑠 to 𝑇 𝑙

𝑖,𝑐

5: Calculate 𝛾 ← Linear constrainted gradient clipping
6: Calculate △ ← 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 · 𝛾
7: Update 𝑇 𝑙

𝑖,𝑐
← 𝑇 𝑙

𝑖,𝑐
− △

8: Update 𝑝 ← 𝑝 + 1
9: until 𝑝 ≥ 𝑠𝑡𝑒𝑝

10: 𝑁 𝑙
𝑖,𝑐
← 𝑥𝑙

𝑖
− 𝑆𝑙

𝑖,𝑐

Output: 𝑁 𝑙
𝑖,𝑐

as Positive-constrain) to avoid the nonlinear regions of neurons
like ReLU and GeLU.

4 EXPERIMENTS AND RESULTS
In this section, we primarily focus on evaluating the explanation
performances of our proposed against a number of representative
existing baselines, details of which together with other essential
settings of the experiments are described as follows.
Baselines. To address the limitations of DTD, we select the base-
lines based on mainstream DTD rules [24] and the LRP rules [23]
that can be derived from DTD. The baselines selected include: LRP0,
LRP-𝛾 , LRP-𝜖 , DTD-𝜔2, DTD-𝑧+, and DTD-𝑧𝛽 , among which the
DTD-𝑧+ rule is equivalent to LRP-𝛼𝛽 where 𝛼 = 1, 𝛽 = 0. Be-
sides, Montavon et al. [23] systematically unified the theories of
DTD and LRP, and proposed a combined usage guideline (short
named as Combination) which is also included. In addition, we also
compared with the latest SoTA methods, including: interpretable
Vision-Transformer (short named as I.ViT) [7], AGF (Attribution
Guided Factorization) [14], DGM ( Deep Geometric Moment) [36],
and interpretable CoDA-Net [6]. Among them, I.Vit and AGF use
DTDs as components or bases. Our baseline selection is an inte-
grated outcome of considering all aspects of the existing work and
maintaining an appropriate balance to sustain a comprehensive
coverage of DTD and its variations.
Datasets. ImageNet (ILSVRC2012, consisting of 1000 classes) is
used for quantitative evaluation, pixel masking evaluation, and
adversarial attack evaluation guided by heatmaps. The PASCAL-
VOC 2012 (VOC’12, 20 classes) [10] and ImageNet-Segmentation-
300 (ImageNet-S300, 300 classes) [12] are used for segmentation
evaluation.
Models. To verify the generalizability of our method, we conducted
experiments on different models, including: ResNet, VGG, and ViT,
which are widely utilized in the field of Deep Learning, especially
deep classifications.

To improve public accessibility, the source code will be made
available after the paper is accepted for publication.

4.1 Improvement relative to original DTDs
Positive and negative perturbation. The positive perturbation
experiment involves sequentially masking (setting to zero) pixel
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(a) Positive perturbation. (b) Negative perturbation.

Figure 3: Experimental results in accuracy degradation
curves of positive (a) and negative (b) perturbations.

values based on their relevance rankings, starting from the highest
relevance and proceeding to the lower relevance. The accuracy
drop of the model serves as a validation of the contribution made
by the masked pixels, allowing for assessing whether or not the
key pixels are highlighted by the interpretability methods [7]. The
experimental results are presented in Figure 3(a).

In contrast, negative perturbation experiments are conducted to
verify that the pixels not highlighted by heatmaps are indeed irrel-
evant to the concerned class. Therefore, in negative perturbation
experiments, it is desirable for the model’s accuracy to decrease at
a slower rate as the pixels are masked in an ascending order of their
relevances, indicating that those pixels are indeed unrelated to the
class [7, 14]. The corresponding results are presented in Figure 3(b).

The perturbation is divided into 10 gradients, ranging frommask-
ing 1%, 10%, 20% to 90% of the pixels. Classification tests are con-
ducted for every gradient on the ImageNet test dataset and the
average accuracy is recorded. It shoud be noted that our pre-trained
model, i.e. ResNet18, achieves an original average accuracy of 0.71
on the ImageNet test set.

As seen from Figure 3, our proposed significantly outperforms
the existing baselines on positive perturbation experiments, which
validate that our proposed is indeed capable of capturing the key
pixels relevant to the concerned class. For the negative perturbation
experiment, our proposed also outperforms the selected baselines,
although with less significance. This suggests that our proposed,
like those selected baselines, may have missed some class-relevant
pixels or regions. Compared with the existing SoTA relus, nonethe-
less, our proposed still remains the optimal choice. Among the
numerous LRP rules derived from DTD, the DTD-𝑧+ (LRP-𝛼𝛽 ) rule
exhibits suboptimal results. In addition, the two perturbation exper-
iments further indicate that the LRP0 rule shows the poorest overall
performance, especially in terms of the fastest accuracy decline
during the negative perturbation experiment.
Semantic segmentation. In this section, we focus on quantita-
tively evaluating the quality of generated heatmaps using metrics
and datasets specific to the field of semantic segmentation. It in-
volves comparing the relevance heatmaps with the ground truth
to examine whether or not the heatmaps accurately cover class-
relevant objects.

Table 1: Semantic segmentation metrics in percentage on
ImageNet-S300 and VOC’12 datasets.

LRP0 LRP-𝛾 LRP-𝜖 DTD-𝜔2 DTD-𝑧+ DTD-𝑧𝛽 Combination
[23] Ours

ImageNet-S300

mPA 50.22 49.83 48.39 50.94 52.30 50.04 48.30 68.39
mIoU 45.93 46.49 46.58 47.67 60.83 46.68 46.26 69.44

VOC’12

mPA 48.46 49.54 47.62 49.45 60.15 50.42 49.62 74.12
mIoU 34.40 31.87 30.12 39.47 52.71 33.93 32.43 66.56

To ensure that relevance heatmaps exhibit prominent semantic
contours, we process all the relevance matrices (heatmaps) in the
following steps [7, 14]: (i) the relevance matrices are subjected to
min-max normalization; (ii) the elements in the relevance matrix
that are below the mean value are set to zero to diminish weak
correlations that do not exhibit visually perceptible effects; (iii) the
resulting relevance matrices are compared against the ground truth
segmentation from VOC’12 [10] and ImageNet-S300 [12], enabling
the computation of mIoU (mean Intersection over Union) and mPA
(mean Pixel Accuracy) scores.

For Imagenet-S300, which consists of identical image copies as
ImageNet, we utilize the pre-trained ResNet18 model to generate
class-specific interpretable heatmaps for all assessed models. For
VOC’12, considering that a majority of the classes are already in-
cluded in ImageNet (except for Cow, Horse, and ambiguous), we
did not train a separate model on this dataset. Instead, we directly
employ the pre-trained ResNet18 to assess the cross-dataset capabil-
ities for both the assessed models and our proposed interpretability
methods. We use the training sets of VOC’12 to generate heatmaps
and perform segmentation evaluation.

The results of the semantic segmentation evaluation are pre-
sented in Table 1, which evidence that our proposed achieves the
best performances in terms of segmentation over both datasets. In
terms of mPA, which measures the proportion of correctly high-
lighted class-relevant pixels with respect to the total number of
labeled pixels in the dataset, our proposed exhibits higher pixel-
level accuracy compared to the baselines, highlighting its advantage
in capturing fine-grained details. In terms of mIoU, which provides
a measure of spatial overlap between the heatmap and the ground
truth, our proposed improves the ability to capture the shape and
boundaries of the target objects in comparison with those existing
baselines.

In addition, the experiments also show that the DTD-𝑧+ rule
(LRP-𝛼𝛽) has achieved suboptimal performances, which is consis-
tent with the observation in the positive and negative perturbation
experiments.
Relevance guided adversarial attacks. Inspired by the gradient-
based attack as reported in [21, 28], we carry out further experi-
ments by employing interpretability heatmaps to guide pixel selec-
tion in non-target adversarial attacks. This allows us not only to
quantitatively evaluate the quality of generated heatmaps based
on the Attack Success Rate (ASR) scores, but also enables explo-
ration of the application values of the interpretability research in
adversarial attacks and defenses.
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Table 2: Results of the adversarial attack experiment on Im-
ageNet. The term "Step" refers to the average iterations re-
quired for a successful attack, and "Acc" refers the post-attack
accuracy. A lower value is preferred for both "Step" and "Acc".

LRP0 LRP-𝛾 LRP-𝜖 DTD-𝜔2 DTD-𝑧+ DTD-𝑧𝛽 Combination
[23] Ours

ASR 0.40 0.24 0.31 0.37 0.40 0.40 0.37 0.57
Step 14.54 13.91 14.15 15.33 12.90 14.62 13.87 7.24
Acc 0.42 0.54 0.49 0.45 0.43 0.43 0.45 0.31

Our experiment is based on the traditional PGD (Projected Gra-
dient Descent) [21] and incorporates techniques similar to JSMA
(Jacobian-based Saliency Map Attack) [28] to reduce the perturba-
tion search space of PGD from the entire image to a reduced area
of 0.003 (500 pixels in RGB space 224 × 224 × 3) in accordance with
the corresponding heatmaps.

The experiment consists of three stages, including: (i) computing
the interpretability heatmaps for the pre-trained ResNet18model on
the ImageNet test set; (ii) applying PGD [21] to the 500 pixels with
high rankings in terms of relevances in the heatmaps and generate
adversarial samples; (iii) computing the model’s re-predictions on
the adversarial samples. This is an iterative process that continues
until either the model makes an incorrect prediction or reaches the
iteration limit, which is set as 20 in this work. The corresponding
results are summarized in Table 2.

To minimize the perceptibility of adversarial samples, we em-
ploy the 𝑙∞ norm to constrain the range of pixel perturbations.
Specifically, we set the maximum perturbation level for a single
pixel to be 0.03, which corresponds to 8/255. Additionally, the use
of heatmaps introduces an 𝑙0 norm constraint, which limits the
number of perturbed pixels.

The results in Table 2 demonstrate that our heatmap provides
more accurate guidance for PGD attacks, resulting in the highest
ASR score 0.57 achieved in the experiment, which means more than
half of the samples were misclassified by the model due to a minor
perturbations (smaller than 0.03 in magnitude) on only 0.003 of the
total pixels. In contrast, the highest ASR score for other baselines
does not exceed 0.4, and the average iterations per successful attack
is also twice times more than our proposed, indicating that the
pixels provided to PGD have low correlations with the target class,
resulting in attack failure.

As seen, the score for the LRP-𝛾 rule is the lowest, which aligns
with the results observed in the positive perturbation experiment
(Figure 3(a)).

4.2 Qualitative evaluation
To facilitate the visualization of relevance, we employ Turbo col-
ormap [30] which provides a smooth transition of colors and high-
lights details effectively to facilitate our qualitative evaluations.
As Turbo colormap is primarily designed to be colorblind friendly,
we further apply mean cropping [14] to enhance the contrast for
visualizations. This involves removing the portions of correlated
heatmaps that have values below the mean.

Figure 4: Illustration of heatmap comparison between our
method and the baselines.

The visualization results on ImageNet dataset are illustrated
in Figure 1 and Figure 4. Consistent with the quantitative experi-
ments, as seen, the DTD-𝑧+ rule achieved suboptimal performances.
DTD-𝑧+ and Combination [23] exhibited recognizable patterns. The
heatmaps generated by other rules, however, showed almost no
visually meaningful patterns, and their heatmaps align with the
visualization results conducted in a recent work [7]. Figure 1 high-
lights more comparisons with the suboptimal method DTD-𝑧+, and
it superiority over other rules, as attributed by Sixt et al., is related
to the working principles of convolution, further details of which
are referred to their recent work [38].

It is evident that our method is superior to all baselines as shown
in Figure 1, which demonstrates three distinct advantages of our
approach. Additionally, Figure 4 showcases this kind of advantages
in three typical scenarios: clearer and more comprehensive expla-
nations in multi-object scenes (first row), outstanding ability to
characterize details of the target (second row), and explanations
even in complex backgrounds that are difficult for the human eyes
to discern (third row).

As a matter of fact, our multiple experiments support that the
interpretability advantage of our proposed, which is showcased in
Figure 1 and Figure 4, is not an isolated case, but rather a consistent
pattern that can be observed across the majority of samples for
all categories. More samples are provided in the supplementary
material for further examinations, and our experimental codes are
also made publicly available for further references and verifications.
Layer-wise Interpretability. In principle, the layer-by-layer prop-
agation of relevances in DTD can be exploited to enable a layer-wise
interpretation of the concerned neural networks. To the best of our
knowledge, however, we have not found any attempt of such work
in our latest literature survey.

To facilitate a layer-wise interpretability analysis, we firstly ex-
tract relevances from the 2nd, 4th, 6th, 8th, 10th, and 12th layers
of ResNet18 with equal spacings, respectively. After summing the
values along the channel and then subject them to normalization,
we apply a process of Turbo color mapping to produce the visual-
ization results, as shown in Figure 5. Note that no mean cropping
is applied here, not even for heatmaps.

Out of the visualization results in Figure 5, an interesting anal-
ysis can be conducted. In the first row, as seen, the pixel-level
interpretation of the airplane (i.e. heatmaps) exhibits some noises
and roughly depicts the boundary of the clouds in the upper right
corner. Through comparative examination across layers, however,
conclusive observations can be made that it is not the boundary
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Figure 5: Visualization of the precise layer-wise interpretabil-
ity of airplane images indicate that ResNet18 has learned the
coupling relationship between airplanes and the sky. By ex-
amining the interpretation results at different layers, we can
gain insights into how the network perceives and represents
this coupling.

of the clouds but the boundary of the sky. We speculate that this
might be because the neural network has observed a frequent co-
occurrence of the sky and airplanes, making the sky a useful context
for predicting airplanes. To support this hypothesis, we further in-
vestigated all the explanation heatmaps for this class and confirmed
that this is true. In addition, it can be seen that the upper edges of
the airplane often exhibit significant correlations. This can also be
established for all other visualizations as shown in the remaining
rows of Figure 5.

4.3 Whether f(N) close to 0?
For the 𝑆 trained hence robust network, noises may introduce in-
terference in its output but not able to affect its prediction outcome,
i.e. for a network 𝑓 taking 𝑆 as input matrix, 𝑓 (𝑆 + 𝑁 ) can be ap-
proximated by 𝑓 (𝑆) + 𝑓 (𝑁 ) in Equation (6). A small value of 𝑓 (𝑁 )
close to 0 guarantees that the residuals of the Taylor expansion are
negligible, thus preserving the layer-wise relevance conservation
in Equation (4). Consequently, we evaluated the output of the target
class when the network 𝑓 took the raw image𝑋 , signal 𝑆 , and noise
𝑁 as the input. The results are illustrated in Figure 6, where the
output 𝑓 (𝑁 ) consistently exhibiting a small value near 0.

We further demonstrated the visualization results of roots and
signals from the hidden layers, as shown in Figure 7, we can in-
tuitively observe the visual representations of the root and 𝑆𝑖𝑔𝑛𝑎𝑙
and assess if they align with our expectations or not. Note that a
0-255 normalization and Gaussian smoothing have been applied
for all feature maps, and the colors do not represent their actual nu-
merical values. As seen from Figure 7, 𝑆𝑖𝑔𝑛𝑎𝑙 exhibits a clear visual
structure, depicting the main outline of the object of interest. In
contrast, visualization of roots as shown in Figure 7 can be seen as
highlighting the pixel regions outside the object of interest, which
can be called as class-independent 𝑁𝑜𝑖𝑠𝑒 . These qualitative results
validate the proposed schemes as in section 3. Combined with the
results of quantitative assessment achieved from the experiments in
section 4.2, it can be established that our proposed interpretability
method indeed operates in accordance with the theoretical design.

It is worth noting that the visualization of 𝑆𝑖𝑔𝑛𝑎𝑙 in Figure 7
still contains some noises, which may arise from the failure of loss
function and its optimization as described in section 3.3 in obtaining

Figure 6: Output Values of the target class for different inputs:
original image𝑋 , Noise𝑁 (vertical axis on the left), and Signal
𝑆 (vertical axis on the right). These outputs are obtained from
ResNet18 applied to the ImageNet validation set. To enhance
clarity, all curves have been smoothed using a window size
of 20.

Figure 7: Visualization of signals and roots in the 8-th convo-
lutional layer of ResNet18 for objects of different categories,
where heatmaps of 𝑆𝑖𝑔𝑛𝑎𝑙 and roots are generated with Gauss-
ian smoothing.

the optimal 𝑆𝑖𝑔𝑛𝑎𝑙 . Other possibilities include the residual in Taylor
approximations, or even the noise brought in by network weights.
As a result, there still exist some spaces for further research upon
our proposed, including optimizing loss functions etc., and we will
address these limitations in our future work.

4.4 Compare to SoTAs on different models
To verify that our method can also improve the performance of
existing DTD based methods, and to demonstrate the generalizabil-
ity of our method on different models. We evaluated the heatmaps
on two other models: VGG-19, and ViT. The baseline method of
VGG-19 involves AGF [14], which is an interpretable method based
on DTD, so we can use our method to improve the calculation of
the DTD part. Similarly, the interpretation of ViT utilized the SoTA
method (I.ViT) [7] based on DTD, which is a interpretable approach
specifically optimized for the Transformer architecture. We also
used ImageNet-S and VOC datasets here. The relevant results are
shown in Table 3 and Table 4.

In order to provide a comprehensive coverage of the latest meth-
ods in the field, we also compared our approach with the SoTA
works from the past two years, regardless of whether they were
based on aDTD or not. Our investigation included: DGM [36] (based
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Table 3: Comparison with several existing DTD-based ViT
interpretation methods.

Metrics rollout raw attention I.ViT [7] Ours

ImageNet-S300 mPA 65.15 67.84 70.59 73.26
mIoU 55.42 46.37 81.97 82.51

VOC’12 mPA 62.76 64.97 69.25 71.83
mIoU 49.85 38.46 73.09 75.14

Table 4: Comparison with several existing DTD-based
CNN(VGG-19) interpretation methods.

Metrics GradCAM SmoothGrad AGF [14] Ours

ImageNet-S300 mPA 59.58 62.27 71.41 67.37
mIoU 57.36 54.41 64.25 69.88

VOC’12 mPA 61.85 56.92 63.16 66.52
mIoU 38.04 30.39 68.54 65.95

Table 5: Comparison with two latest XAI.

Metrics CoDA-Net [6] DGM [36] Ours

ImageNet-S300 mPA 62.26 65.41 68.39
mIoU 58.18 69.10 69.44

VOC’12 mPA 64.25 70.41 74.12
mIoU 64.88 73.53 66.56

on ResNet18) and CoDA-Net [6]. The two works are examples of
explainable artificial intelligence (XAI) that incorporate specifically
designed network architectures with self-explanatory capabilities.
We applied our method to interpret the classification of ResNet18
and the comparison with their method can be found in Table 5.

4.5 Ablation study
To assess the effectiveness of the three measures proposed in Sec-
tion 3, namely Gradient-constrain, Positive-constrain, and 2nd-
Taylor, in avoiding the root 𝑁 𝑙

𝑖,𝑐
from exceeding the linear neigh-

borhood of 𝑥𝑙
𝑖
, we conducted ablation experiments for each of these

measures. The aim was to determine whether these measures con-
tribute to improved explanations.

Generally, verifying whether 𝑥𝑙
𝑖
and 𝑁 𝑙

𝑖,𝑐
are within the linear

region requires confirming the equality of their gradients and the
existence of a gradient equality path between them. However, for
the sake of simplicity, in the case of the GeLu activation used in
ViT, we only verify the gradient equality.

The ablation experiments were conducted in three steps: (i) The
relevant measures were individually masked; (ii) The segmentation
evaluation for relevance heatmaps were performed on VOC’12 and
ImageNet-S300 using ResNet18; (iii) The batch-averaged Mean-
Squared Error (MSE) of the gradients of 𝑁 𝑙

𝑖,𝑐
and 𝑥𝑙

𝑖
for all neurons

in the frist fully-connected layer with GeLu activation in ViT was
evaluated. The results are presented in Table 6.

Table 6 have revealed that the gradient difference between the
roots 𝑁 𝑙

𝑖,𝑐
and 𝑥𝑙

𝑖
is very small for most neurons (Gradient-MSE is

a average of batch), indicating that they are likely situated within a

Table 6: Results of Ablation study. Gradient-MSE indicates
the mean-square error of gradients between 𝑥𝑙

𝑖
and the root

𝑁 𝑙
𝑖,𝑐
. In general, a smaller Gradient-MSE indicates that the

root is closer to 𝑥𝑙
𝑖
, resulting in better DTD. Conversely, a

larger MSE value after ablation indicates the importance of
the specific module. The symbol / indicates that the ablation
of this item does not affect the result.

Metrics Posotive
-constrain 2nd-Taylor Gradient

-constrain Before ablation

Gradient-MSE 0.081 / 0.233 0.071
ImageNet-S300 mPA 63.97 68.13 66.23 68.39

mIoU 58.05 69.29 62.60 69.44

Gradient-MSE 0.099 / 0.242 0.095
VOC’12 mPA 69.85 74.04 72.55 74.12

mIoU 60.77 65.39 61.48 66.56

linear region. Table 6 also shows that considering only positive val-
ues in DTD is highly efficient, which could explain the suboptimal
performance of the DTD-𝑧+ rule in Section 4.1.

5 CONCLUSTIONS
Over recent years, DTD has been widely researched to ascertain
its theoretical advantages in providing explanations for neural net-
work based classifications via exploitation of Taylor polynomial
approximations. Recent research, however, has raised concerns
about its interpretability and explainability, primarily due to its lim-
itations of local linearity and its lack of theories to ensure reliable
selection of ideal roots.

In this paper, we address those limitations of DTD by introduc-
ing: a universal root inference and calculation scheme via relevance
supervised learning over gradient descent. In comparison with the
existing approaches, our proposed achieves the advantage that
the constraint optimization allows a class-independent root selec-
tion, and the proposed gradient-based learning makes it optimally
approach its ideal estimation, thereby delivering its expected inter-
pretability performances.

Extensive quantitative experiments and qualitative analysis, in-
cluding evaluations in semantic segmentation and heatmap guided
adversarial attacks, validate that the proposed outperforms the
existing baselines in providing more precise, robust, and compre-
hensive explanations. Future work can be directed to focus on
complexity optimization to further improve the performances on
interpretability analysis.

In summary, our contributions described in this paper provide
a successful solution to the shortfall and limitations of DTD. It
not only improves its practical interpretability performances but
also provides DTD with an essential foundation for its further
application and expansion in developing universal interpretable
methods for all continuously differentiable deep networks.
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