
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Accelerating Inexact HyperGradient Descent for Bilevel Optimization

Haikuo Yang YANGHK22@M.FUDAN.EDU.CN

Luo Luo LUOLUO@FUDAN.EDU.CN

Fudan University

Chris Junchi Li JUNCHILI@BERKELEY.EDU

Michael I. Jordan JORDAN@CS.BERKELEY.EDU

University of California, Berkeley

Maryam Fazel MFAZEL@UW.EDU

University of Washington

Abstract
We present a method for solving general nonconvex-strongly-convex bilevel optimization problems.
Our method—the Restarted Accelerated HyperGradient Descent (RAHGD) method—finds an ϵ-
first-order stationary point of the objective with Õ(κ3.25ϵ−1.75) oracle complexity, where κ is the
condition number of the lower-level objective and ϵ is the desired accuracy. We also propose a
perturbed variant of RAHGD for finding an

(
ϵ,O(κ2.5

√
ϵ)
)
-second-order stationary point within

the same order of oracle complexity. Our results achieve the best-known theoretical guarantees
for finding stationary points in bilevel optimization and also improve upon the existing upper
complexity bound for finding second-order stationary points in nonconvex-strongly-concave minimax
optimization problems, setting a new state-of-the-art benchmark. Empirical studies are conducted to
validate the theoretical results in this paper.

1. Introduction

Bilevel optimization is emerging as a key unifying problem formulation in machine learning, encom-
passing a variety of applications including meta-learning, model-free reinforcement learning and
hyperparameter optimization [16, 46]. Our work focuses on a version of the general problem that
is particularly relevant to machine learning—the nonconvex-strongly-convex bilevel optimization
problem:

min
x∈Rdx

Φ(x) ≜ f(x, y∗(x)), (1a)

s.t y∗(x) = argmin
y∈Rdy

g(x, y), (1b)

where the upper-level function f(x, y) is smooth and possibly nonconvex, and the lower-level
function g(x, y) is smooth and strongly convex with respect to y for any given x.Bilevel optimization
is more expressive but harder to solve than classical single-level optimization since the objective
Φ(x) in (1a) involves the argument input y∗(x) which is the solution of the lower-level problem (1b).
In contradistinction to classical optimization, bilevel optimization problem (1) involves solving an

.∗ Full version available at https://arxiv.org/abs/2307.00126.

© H. Yang, L. Luo, C.J. Li, M.I. Jordan & M. Fazel.

https://arxiv.org/abs/2307.00126

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

optimization problem where the minimization variable is taken as the minimizer of a lower-level
optimization problem.

Most existing work on nonconvex-strongly-convex bilevel optimization [17, 25, 26] focuses on
finding approximate first-order stationary points (FOSP) of the objective. Recently, Huang et al. [23]
extended the scope of work in this area, proposing the (perturbed) approximate implicit differentiation
(AID) algorithm which can find an

(
ϵ,O(κ2.5

√
ϵ)
)
- second-order stationary points (SOSP) within

a Õ(κ4ϵ−2) oracle complexity, where κ ≥ 1 is the condition number of any g(x, ·) and ϵ > 0 is the
desired accuracy. Given this result, a key further challenge is to study whether the ϵ−2-dependency in
the upper complexity bound can be improved under additional Lipschitz assumptions on high-order
derivatives [23].

Given this context, a natural question to ask is: Can we design an algorithm that improves upon
known algorithmic complexities for finding approximate first-order and second-order stationary
points in nonconvex-strongly-convex bilevel optimization? We provide an affirmative answer to
this question, by designing a particular form of acceleration of hypergradient descent and thereby
improving the oracle complexity.

Organization. The rest of this work is organized as follows. Section 2 delineates the assumptions
and specific algorithmic subroutines. Section 3 formally presents the RAHGD algorithm along with
its complexity bound for finding approximation first-order stationary points. Section 4 proposes the
PRAHGD, the perturbed version of RAHGD, along with its complexity bound for finding approximate
second-order stationary points. Further presentation of contributions, related work, technical analysis
and additional experiments are deferred to the supplementary materials.

Notation. We let ∥·∥2 be the spectral norm of matrices and the Euclidean norm of vectors. Given a
real symmetric matrix A, we let λmax(A) (λmin(A)) denote its largest (smallest) eigenvalue. We use
the notation B(r) to present the closed Euclidean ball with radius r centered at the origin. We denote
Gc(f, ϵ), JV (f, ϵ) and HV (f, ϵ) as the oracle complexities of gradients, Jacobian-vector products
and Hessian-vector products, respectively. Finally, we adopt the notation O(·) to hide only absolute
constants which do not depend on any problem parameters, and also Õ(·) for constants that include a
polylogarithmic factor.

2. Preliminaries

In this section, we first proceed to establish convergence of the algorithmic subroutines related to our
algorithm—accelerated gradient descent and the conjugate gradient method. Then, we present the
notations and assumptions necessary for our problem setting. We proceed to establish convergence
of these two algorithmic subroutines in the following paragraphs.

Subroutine 1: Accelerated Gradient Descent. Our first component is Nesterov’s accelerated
gradient descent (AGD), which is an acceleration of the first-order method in smooth convex
optimization. We describe the details of AGD for minimizing a given smooth and strongly convex
function in Algorithm 1, which exhibits the following optimal convergence rate [39]:

Lemma 1 ([39]) Running Algorithm 1 on an ℓh-smooth and µh-strongly convex objective function
h(·) with α = 1/ℓh and β = (

√
κh − 1)/(

√
κh + 1) produces an output zT satisfying

∥zT − z∗∥22 ≤ (1 + κh) (1− 1/
√
κh)

T ∥z0 − z∗∥22,

where z∗ = argminz h(z) and κh = ℓh/µh denotes the condition number of the objective h.

2

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Subroutine 2: Conjugate Gradient Method. The (linear) conjugate gradient (CG) method was
proposed by Hestenes and Stiefel in the 1950s as an iterative method for solving linear systems
with positive definite coefficient matrices. It serves as an alternative to Gaussian elimination that is
well-suited for solving large problems. CG can be formulated as the minimization of the quadratic
objective function

1

2
q⊤Aq − q⊤b, (2)

where A ∈ Rd×d is a positive definite matrix and b ∈ Rd is a fixed vector. We summarize the setup of
CG for minimizing function (2) in Algorithm 2, and record the following convergence property [41]:

Lemma 2 ([41]) Running Algorithm 2 for minimizing quadratic function (2) produces qT satisfying

∥qT − q∗∥2 ≤ 2
√
κA

(√
κA − 1
√
κA + 1

)T

∥q0 − q∗∥2,

where q∗ = A−1b denotes the unique minimizer of Eq. (2), and κA = λmax(A)/λmin(A) denotes
the condition number of (positive definite) matrix A.

In the rest of this section we impose the following assumptions on the upper-level function f and
the lower-level function g. We then turn to the details of our theoretical analysis:

Assumption 3 The upper-level function f(x, y) and lower-level function g(x, y) satisfy the follow-
ing conditions:

(i) Function g(x, y) is three times differentiable and µ-strongly convex with respect to y for any
fixed x;

(ii) Function f(x, y) is twice differentiable and M -Lipschitz continuous with respect to y;

(iii) Gradient∇f(x, y) and ∇g(x, y) are ℓ-Lipschitz continuous with respect to x and y;

(iv) Jacobian ∇2
xyf(x, y), ∇2

xyg(x, y) and Hessians ∇2
xxf(x, y), ∇2

yyf(x, y), ∇2
yyg(x, y) are ρ-

Lipschitz continuous with respect to x and y;

(v) Third-order derivatives ∇3
xyxg(x, y),∇3

yxyg(x, y) and ∇3
yyyg(x, y) are ν-Lipschitz continuous

with respect to x and y.

These assumptions are standard for the bilevel optimization problem we are studying. We also
introduce an appropriate notion of condition number for the lower-level function g(x, y).

Definition 4 Under Assumption 3, we refer to κ ≜ ℓ/µ the condition number of the lower-level
objective g(x, y).

Leveraging such a notion, we can show that the solution to the lower-level optimization problem
y∗(x) = argminy∈Rdy g(x, y) is κ-Lipschitz continuous in x under Assumption 3, as indicated in
the following lemma:

Lemma 5 Suppose Assumption 3 holds, then y∗(x) is κ-Lipschitz continuous, that is, we have
∥y∗(x)− y∗(x′)∥2 ≤ κ ∥x− x′∥2 for any x, x′ ∈ Rdx .

3

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

We also can show that Φ(x) admits Lipschitz continuous gradients and Lipschitz continuous
Hessians, as shown in the following lemmas:

Lemma 6 Suppose Assumption 3 holds, then Φ(x) is L̃-gradient Lipschitz continuous, that is, we
have ∥∇Φ(x)−∇Φ(x′)∥ ≤ L̃∥x− x′∥ for any x, x′ ∈ Rdx , where L̃ = O(κ3).

Lemma 7 Suppose Assumption 3 holds, then Φ(x) is ρ̃-Hessian Lipschitz continuous, that is,
∥∇2Φ(x)−∇2Φ(x′)∥ ≤ ρ̃∥x− x′∥ for any x, x′ ∈ Rdx , where ρ̃ = O(κ5).

The detailed form of L̃ and ρ̃ can be found in Appendix C. Finally, with the definition of ρ̃ in hand,
we give the formal definition of an ϵ-first-order stationary point as well as an (ϵ, τ)-second-order
stationary point, as follows:

Definition 8 (Approximate First-Order Stationary Point) Under Assumption 3, we call x an
ϵ-first-order stationary point of Φ(x) if ∥∇Φ(x)∥2 ≤ ϵ.

Definition 9 (Approximate Second-Order Stationary Point) Under Assumption 3, we call x an
(ϵ, τ)-second-order stationary point of Φ(x) if ∥∇Φ(x)∥2 ≤ ϵ and λmin(∇2Φ(x)) ≥ −τ .

We remark that these concepts are commonly used in the nonconvex optimization literature [40].
The approximate second-order stationary point is sometimes referred to as an “approximate local
minimizer.” With all these preliminaries at hand, we are ready to proceed with the (perturbed)
restarted accelerated hypergradient descent method.

3. Restarted Accelerated HyperGradient Descent Algorithm

In this section, we present our restarted accelerated hypergradient descent (RAHGD) algorithm and
provide corresponding query complexity upper bound results. We present the details of RAHGD in
Algorithm 3, which has a nested loop structure. The outer loop, indexed by k, uses the accelerated
gradient descent method to find the solver of (1a). The AGD step in Line 5 is used to find the inexact
solver of (1b). The CG step is added to compute the Hessian-vector product, as shown in (5). We
note that the iteration numbers of the AGD and CG steps play an important role in the convergence
analysis of Algorithm 3; moreover, at the end of this section we will show that the total iteration
number of AGD and CG can be bounded sharply. Finally, note that there is a restarting step in
Line 12 where the option Perturbation is taken as = 0.

We let subscript t index the times of restarting. We note that the subscript t of epoch number is
added in Algorithm 3 purely for the sake of an easier convergence analysis. The incurred storage of
iterations across all epochs can be avoided when implementing Algorithm 3 in practice.

In accelerated nonconvex optimization, a straightforward application of AGD cannot ensure
consistent decrements of the objective function. Inspired by the work of Li and Lin [33], we
add a restarting step in Line 12—we define K to be the iteration number when the “if condition”
triggers, and hence the iterates from k = 0 to k = K constructs one single epoch, where K =

mink

{
k ≥ 1 : k

∑k−1
t=0 ∥xt+1 − xt∥22 > B2

}
. Then we can have the objective function consistently

decrease with respect to each epoch when we run Algorithm 3. We provide the convergence results
for RAHGD in the rest of this section.

Denote v∗k =
(
∇2

yyg(wk, yk)
)−1∇yf(wk, yk). Due to the bilevel optimization problem we

4

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

are considering the following conditions on the inexact gradient. Recall that the overall objective
function Φ(x) is L̃-gradient Lipschitz continuous, and both the upper-level function f(x, y) and the
lower-level function g(x, y) are ℓ-gradient Lipschitz continuous:

Condition 10 Let w−1 = x−1. Then for some σ > 0, we assume that the estimators yk ∈ Rdy and
vk ∈ Rdy satisfy the conditions

∥yk − y∗(wk)∥2 ≤
σ

2L̃
, for each k = −1, 0, 1, 2, . . . (3)

and
∥vk − v∗k∥ ≤

σ

2ℓ
, for each k = 0, 1, 2, . . . (4)

Remark 11 We will show at the end of this section that Condition 10 is guaranteed to hold after
running AGD and CG for a sufficient number of iterations.

Under Condition 10, the bias of ∇̂Φ(xk) defined in equation (7) can be bounded as shown in the
following lemma:

Lemma 12 (Inexact gradients) Suppose Assumption 3 and Condition 10 hold, then we have
∥∇Φ(wk)− ∇̂Φ(wk)∥2 ≤ σ.

In the following theorem we show that the iteration complexity in the outer loop is bounded.

Theorem 13 (RAHGD finding FOSP) Suppose that Assumptions 3 and Condition 10 hold. Let

η =
1

4L̃
, B =

√
ϵ

ρ̃
, θ = 4(ρ̃ϵη2)1/4, K =

1

θ
, α =

1

ℓ
, β =

√
κ− 1√
κ+ 1

, σ = ϵ2.

Denote ∆ = Φ(xint)−minx Φ(x). Then RAHGD in Algorithm 3 terminates within O(∆L̃0.5ρ̃0.25ϵ−1.75)
iterations, outputting ŵ satisfying ∥∇Φ(ŵ)∥2 ≤ 83ϵ.

Theorem 13 says that Algorithm 3 can find an ϵ-first-order stationary point with O(κ2.75ϵ−1.75)
iterations in the outer loop. The following result indicates that Condition 10 holds if we run AGD
and CG for a sufficient number of iterations. In addition, the total number of iterations in one epoch
is at most O(κ0.5K log(1/ϵ)):

Proposition 14 Suppose Assumption 3 holds. In the t-th epoch, we set the inner loop iteration
number Tt,k and the CG iteration number T ′

t,k. We run Algorithm 3 with the parameter chosen in
Theorem 13. Then all yt,k and vt,k satisfy Condition 10. For each t, we also have the following bounds
for the inner loops

∑K−1
k=−1 Tt,k ≤ O(κ0.5K log(1/ϵ)) and

∑K−1
k=0 T ′

t,k ≤ O(κ0.5K log(1/ϵ)).

The detailed forms of Tt,k and T ′
t,k can be found in Appendix D. Combined with Theorem 13,

we finally obtain the total number of oracle calls as follows:

Corollary 15 (Oracle complexity of RAHGD) Under Assumption 3, we run RAHGD in Algorithm 3
with the parameters set as in Theorem 13 and Proposition 14. The output ŵ is then an ϵ-first-order
stationary point of Φ(x). Additionally, the oracle complexities satisfy Gc(f, ϵ) = Õ(κ2.75ϵ−1.75),
Gc(g, ϵ) = Õ(κ3.25ϵ−1.75), JV (g, ϵ) = Õ(κ2.75ϵ−1.75) and HV (g, ϵ) = Õ(κ3.25ϵ−1.75).

5

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

The algorithm can be adapted to solving the single-level nonconvex minimization problem
where κ reduces to 1, and the given complexity matches the state-of-the-art [1, 6, 7, 28, 33]. The
best known lower bound in this setting is O(ϵ−1.714) [8]. Closing this O(ϵ−0.036)-gap remains open
even in nonconvex minimization settings.

4. Perturbed Restarted Accelerated HyperGradient Descent Algorithm

In this section, we introduce perturbation to our RAHGD algorithm. In many nonconvex problems
encountered in practice in machine learning, most first-order stationary points presented are saddle
points [12, 27, 32]. Recall that the notion of second-order stationary points consists of not only
zero gradient value, but positive semidefinite Hessian matrix as well. Earlier work of Jin et al.
[28], Li and Lin [33] shows that one can obtain an approximate second-order stationary point by
intermittently perturbing the algorithm using random noise. We present the details of our perturbed
restarted accelerated hypergradient descent (PRAHGD) in Algorithm 3. Compared with RAHGD, a
noise-perturbation step is added in Algorithm 3 [Line 12, option Perturbation= 1].

We proceed with the complexity analysis for PRAHGD, where we show that PRAHGD in Algo-
rithm 3 outputs an (ϵ,

√
ρ̃ϵ)-second-order stationary point within Õ(κ3.25ϵ−1.75) oracle queries:

Theorem 16 (PRAHGD finding SOSP) Suppose that Assumption 3 and Condition 10 hold. Let

χ = O
(
log

dx
ζϵ

)
, η =

1

4L̃
, K =

2χ

θ
, B =

1

288χ2

√
ϵ

ρ̃
, θ =

1

2
(ρ̃ϵη2)1/4,

σ = min

{
ρ̃Bζrθ

2
√
dx

, ϵ2
}
, α =

1

ℓ
, β =

√
κ− 1√
κ+ 1

, r = min

{
L̃B2

4C
,
B +B2

√
2

,
θB

20K
,

√
θB2

2K

}

for some positive constant C. Denote ∆ = Φ(xint)−minx∈Rdx Φ(x). Then PRAHGD in Algorithm 3
terminates in at most O

(
∆L̃0.5ρ̃0.25χ6 · ϵ−1.75

)
iterations and the output satisfies ∥∇Φ(ŵ)∥2 ≤ ϵ

and λmin(∇2Φ(ŵ)) ≥ −1.011
√
ρ̃ϵ with probability at least 1− ζ.

Theorem 16 says that PRAHGD in Algorithm 3 can find an (ϵ,
√
ρ̃ϵ)-second-order stationary

point within Õ(κ2.75ϵ−1.75) iterations in the outer loop. The following proposition shows that
Condition 10 holds in this setting. In addition, the total number of iterations in one epoch is at most
O(κ0.5K log(1/ϵ)):

Proposition 17 Suppose Assumption 3 holds. In the t-th epoch, we set the inner loop iteration
number Tt,k and the CG iteration number T ′

t,k. We run Algorithm 3 with the parameters chosen in
Theorem 16. Then all yt,k and vt,k satisfy the Condition 10. For each t, we also have the inner loops∑K−1

k=−1 Tt,k ≤ O
(
κ0.5K log(1/ϵ)

)
and

∑K−1
k=0 T ′

t,k ≤ O
(
κ0.5K log(1/ϵ)

)
holds.

The detailed form of Tt,k and T ′
t,k can be found in Appendix E. Combining this result with

Theorem 16, we finally obtain the total number of gradient oracle calls as follows:

Corollary 18 (Oracle complexity of PRAHGD) Under Assumption 3, we run PRAHGD in Algo-
rithm 3 with all parameters set as in Theorem 16. The output ŵ is then an

(
ϵ,
√
ρ̃ϵ
)
-second-order

stationary point of Φ(x). Additionally, the oracle complexities satisfy that Gc(f, ϵ) = Õ(κ2.75ϵ−1.75),
Gc(g, ϵ) = Õ(κ3.25ϵ−1.75), JV (g, ϵ) = Õ(κ2.75ϵ−1.75) and HV (g, ϵ) = Õ(κ3.25ϵ−1.75).

6

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Acknowledgments and Disclosure of Funding

This work is supported in part by the Mathematical Data Science program of the Office of Naval
Research under grant number N00014-18-1-2764 and also the Vannevar Bush Faculty Fellowship
program under grant number N00014-21-1-2941 and National Science Foundation (NSF) grant
IIS-1901252 to MIJ, and in part by awards NSF TRIPODS II-DMS 2023166, NSF CCF 2007036,
NSF CCF 2212261, NSF AF 2312775 to MF. This work is also supported by the National Natural
Science Foundation of China (No. 62206058) and the Shanghai Sailing Program (22YF1402900) to
LL.

References

[1] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding
approximate local minima faster than gradient descent. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1195–1199, 2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International Conference on Machine Learning, pages 214–223. PMLR, 2017.

[3] Luca Bertinetto, Joao F. Henriques, Philip H.S. Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[4] Rajendra Bhatia. Matrix Analysis, volume 169. Springer, 1997.

[5] Jerome Bracken and James T. McGill. Mathematical programs with optimization problems in
the constraints. Operations Research, 21(1):37–44, 1973.

[6] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Convex until proven guilty:
Dimension-free acceleration of gradient descent on non-convex functions. In International
Conference on Machine Learning, pages 654–663. PMLR, 2017.

[7] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

[8] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points II: first-order methods. Mathematical Programming, 185(1-2):315–355, 2021.

[9] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating
stochastic gradient methods for bilevel problems. Advances in Neural Information Processing
Systems, 34:25294–25307, 2021.

[10] Ziyi Chen, Qunwei Li, and Yi Zhou. Escaping saddle points in nonconvex minimax optimization
via cubic-regularized gradient descent-ascent. arXiv preprint arXiv:2110.07098, 2021.

[11] Frank E. Curtis, Daniel P. Robinson, and Mohammadreza Samadi. A trust region algorithm
with a worst-case iteration complexity of O(ϵ−3/2) for nonconvex optimization. Mathematical
Programming, 162:1–32, 2017.

[12] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. Advances in Neural Information Processing Systems, 27, 2014.

7

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

[13] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated Machine
Learning, pages 3–33. Springer, Cham, 2019.

[14] Tanner Fiez and Lillian Ratliff. Gradient descent-ascent provably converges to strict local
minmax equilibria with a finite timescale separation. In International Conference on Learning
Representations, 2021.

[15] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, pages 1165–1173. PMLR, 2017.

[16] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[17] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572, 2014.

[20] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning,
pages 3748–3758. PMLR, 2020.

[21] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

[22] Minhui Huang, Shiqian Ma, and Lifeng Lai. A Riemannian block coordinate descent method
for computing the projection robust wasserstein distance. In International Conference on
Machine Learning, pages 4446–4455. PMLR, 2021.

[23] Minhui Huang, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle points in
bilevel optimization. arXiv preprint arXiv:2202.03684, 2022.

[24] Kaiyi Ji, Jason D. Lee, Yingbin Liang, and H. Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. Advances in Neural Information Processing
Systems, 33:11490–11500, 2020.

[25] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892. PMLR,
2021.

[26] Kaiyi Ji, Mingrui Liu, Yingbin Liang, and Lei Ying. Will bilevel optimizers benefit from loops.
arXiv preprint arXiv:2205.14224, 2022.

8

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

[27] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
saddle points efficiently. In International conference on machine learning, pages 1724–1732.
PMLR, 2017.

[28] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pages 1042–1085.
PMLR, 2018.

[29] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International Conference on Machine Learning, pages
4880–4889. PMLR, 2020.

[30] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in Neural Information
Processing Systems, 12, 1999.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[32] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, and
Benjamin Recht. First-order methods almost always avoid strict saddle points. Mathematical
Programming, 176:311–337, 2019.

[33] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the O(ϵ−7/4) complexity. In International Conference on Machine
Learning, pages 12901–12916. PMLR, 2022.

[34] Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael I. Jordan. Projection robust
Wasserstein distance and Riemannian optimization. Advances in Neural Information Processing
Systems, 33:9383–9397, 2020.

[35] Tianyi Lin, Chi Jin, and Michael I. Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages 6083–6093.
PMLR, 2020.

[36] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive
approximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020.

[37] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradient descent
ascent for stochastic nonconvex-strongly-concave minimax problems. Advances in Neural
Information Processing Systems, 33:20566–20577, 2020.

[38] Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-
strongly-concave minimax optimization. In Advances in Neural Information Processing Systems,
2022.

[39] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013.

9

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

[40] Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[41] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[42] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, and Meisam Razaviyayn.
Solving a class of non-convex min-max games using iterative first order methods. Advances in
Neural Information Processing Systems, 32, 2019.

[43] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 1976.

[44] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723–1732. PMLR, 2019.

[45] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distribu-
tional robustness with principled adversarial training. In International Conference on Learning
Representations, 2018.

[46] Bradly Stadie, Lunjun Zhang, and Jimmy Ba. Learning intrinsic rewards as a bi-level optimiza-
tion problem. In Conference on Uncertainty in Artificial Intelligence, pages 111–120. PMLR,
2020.

[47] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan. Stochastic cu-
bic regularization for fast nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

[48] Jiawei Zhang, Peijun Xiao, Ruoyu Sun, and Zhi-Quan Luo. A single-loop smoothed gradient
descent-ascent algorithm for nonconvex-concave min-max problems. Advances in Neural
Information Processing Systems, 33:7377–7389, 2020.

10

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Appendix A. Overview and Contributions

We provide the presentation of contributions, related work, technical analysis and additional experi-
ments in this supplementary materials.

A.1. Contributions

Our contributions are four-fold:

(i) We propose a method that we refer to as Restarted Accelerated Hypergradient Descent (RAHGD)
that applies Nesterov’s accelerated gradient descent (AGD) to approximate the solution y∗(x) of
the inner problem (1b) and combines it with the conjugate gradient (CG) method to construct
an inexact hypergradient of the objective. The algorithm makes use of proper restarting and
acceleration to optimize the objective Φ(·) based on the obtained inexact hypergradient. We show
that RAHGD can find an ϵ-FOSP of the objective within O(κ3.25ϵ−1.75) first-order oracle queries
[§3].

(ii) For the task of finding approximate second-order stationary points, we add a perturbation step to
RAHGD and introduce the Perturbed Restarted Accelerated HyperGradient Descent (PRAHGD)
algorithm. We show that PRAHGD can efficiently escape saddle points and find an

(
ϵ,O(κ2.5

√
ϵ)
)
-

second-order stationary point of the objective Φ within Õ
(
κ3.25ϵ−1.75

)
oracle queries. This

improves over the best known complexity in bilevel optimization due to Huang et al. [23] by a
factor of Õ(κ0.75ϵ−0.25) [§4].

(iii) We apply the theoretical framework of PRAHGD to the problem of minimax optimization. Spe-
cially, we propose a PRAHGD variant crafted for nonconvex-strongly-concave minimax optimiza-
tion. We refer to the resulting algorithm as Perturbed Restarted Accelerate Gradient Descent
Ascent (PRAGDA). We show that PRAGDA provably finds anO

(
ϵ,O(κ1.5

√
ϵ)
)
-SOSP with a first-

order oracle query complexity of Õ(κ1.75ϵ−1.75). This improves upon the best known first-order
(including gradient/Hessian-vector/Jacobian-vector-product) oracle query complexity bound of
Õ(κ1.5ϵ−2 + κ2ϵ−1.5) due to Luo et al. [38] [§B].

(iv) We conduct a variety of empirical studies of bilevel optimization. Specifically, we evaluate the
effectiveness of our proposed algorithms (RAHGD / PRAHGD / PRAGDA) by applying them to
three different tasks: data hypercleaning for the MNIST dataset, hyperparameter optimization for
logistic regression and a synthetic minimax problem. Our studies demonstrate that our algorithms
outperform several established baseline algorithms, such as BA, AID-BiO, ITD-BiO, PAID-BiO
and iMCN, with inevitably faster empirical convergence. The results provide empirical evidence
in support of the effectiveness of our proposed algorithmic framework for bilevel and minimax
optimization [§G].

A.2. Overview of Our Algorithm Design and Main Techniques

We overview the algorithm design in this subsection. Inspired by the success of the accelerated
gradient descent method for nonconvex optimization [see, e.g., 28, 33], we propose a novel method
called the restarted accelerated hypergradient descent (RAHGD) algorithm. The gradient of Φ(x),
which we called a hypergradient, can be computed via following equation [17, 25]:

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

(
∇2

yyg(x, y
∗(x))

)−1∇yf(x, y
∗(x)). (5)

11

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Unfortunately, directly applying first-order algorithms by iterating with the exact hypergradient
∇Φ(x) is costly or intractable for large-scale problems, given the need to obtain y∗(x) and particularly
given the need to invert the matrix∇2

yyg(x, y
∗(x)).

For given x = xk ∈ Rdx , we aim to construct an estimate of∇Φ(xk) with reasonable computa-
tional cost and sufficient accuracy. The strong convexity of g(xk, ·) motivates us to apply AGD for
finding yk ≈ y∗(xk). To avoid direct computation of the term

(
∇2

yyg(xk, yk)
)−1∇yf(xk, yk), we

observe that it is the solution of the following quadratic problem:

min
v∈Rdy

1

2
v⊤∇2

yyg(xk, yk)v − v⊤∇yf(xk, yk). (6)

Accordingly, we can estimate vk ≈
(
∇2

yyg(xk, yk)
)−1∇yf(xk, yk) and solve (6) using a conjugate

gradient subroutine. Based on yk and vk, we obtain an expression for an inexact hypergradient:

∇̂Φ(xk) = ∇xf(xk, yk)−∇2
xyg(xk, yk)vk, (7)

which can serve as a surrogate of the true hypergradient∇Φ(xk) in first-order algorithms.
We formally present RAHGD in Algorithm 3. The main issue to address for RAHGD is the

computational cost for achieving sufficient accuracy of ∇̂Φ(xk). Interestingly, our theoretical
analysis shows that all of the cost arises from the computations of yk and vk, and it can thus be
bounded sharply. As a result, our algorithm can find approximate first-order stationary points with
less oracle complexity than existing methods [17, 25]. We also introduce the perturbed RAHGD
(PRAHGD) in Algorithm 3 for escaping saddle points. Adapting the analysis of RAHGD, we show
that PRAHGD can find approximate second-order stationary points more efficiently than existing
methods [23].

A.3. Related Work

The subject of bilevel optimization problem has a long history with early work tracing back to the
1970s [5]. Recent algorithmic advances in this field have driven successful applications in areas such
as meta-learning [3, 16, 24], reinforcement learning [21, 30, 46] and hyperparameter optimization
[13, 20, 44].

There have also been theoretical advances in bilevel optimization in recent years. Ghadimi and
Wang [17] presented a convergence rate for the AID approach when f(x, y) is convex, analyzing the
complexity of an accelerated algorithm that uses gradient descent to approximate y∗(xk) in the inner
loop and uses AGD in the outer loop. Further improvements in dependence on the condition number
and analysis of the convergence were achieved via the iterative differentiation (ITD) approach by Ji
et al. [25, 26], who analyzed the complexity of AID and ITD and also provided a complexicity
analysis for a randomized version. Hong et al. [21] proposed the TTSA algorithm—a provable single-
loop algorithm that updates two variables in an alternating manner—and presented applications to
the problem of reinforcement learning under randomized scenarios. For stochastic bilevel problems,
various methods have been proposed, such as BSA by Ghadimi and Wang [17], TTSA by Hong et al.
[21], stocBiO by Ji et al. [25], and ALSET by Chen et al. [9]. More recent research on this front
has focused on variance reduction and momentum techniques, resulting in cutting-edge stochastic
first-order oracle complexities.

While much of the literature on bilevel optimization has focused on finding first-order stationary
points, the problem of finding second-order stationary points has been largely unadressed. Huang et al.

12

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

[23] recently proposed a perturbed algorithm for finding approximate second-order stationary points.
The algorithm adopts gradient descent (GD) to approximately solve the lower-level minimization
problem and conjugate gradient (CG) to solve for Hessian-vector product with GD used in the
outer loop. For the problem of classical optimization, second-order methods such as those proposed
in Curtis et al. [11], Nesterov and Polyak [40] have been used to obtain ϵ-accurate SOSPs in single-
level optimization with a complexity of O(ϵ−1.5); however, they require expensive operations such
as inverting Hessian matrices. A significant body of recent literature has been focusing on first-order
methods for obtaining an approximate

(
ϵ,O(κ2.5

√
ϵ)
)
-SOSP, with the best-known query complexity

of Õ(ϵ−1.75) of gradient and Hessian-vector products [1, 6, 7, 27, 28, 33].
An important special case of the bilevel optimization problem (1)—the problem of minimax

optimization, where g = −f in Eq. (1b)—has been extensively studied in the literature. Minimax
optimization has been the focus of attention in the machine learning community recently due to its
applications to training GANs [2, 18], to adversarial learning [19, 45] and to optimal transport [22, 34].
On the theoretically font, Jin et al. [29], Nouiehed et al. [42] studied the complexity of Multistep
Gradient Descent Ascent (GDmax), and Lin et al. [35], Lu et al. [36] provided the first convergence
analysis for the single-loop gradient descent ascent (GDA) algorithm. More recently, Luo et al.
[37] applied the stochastic variance reduction technique to the nonconvex-strongly-concave case,
achieving the first optimal complexity upper bound when κ is treated as an O(1)-constant. Zhang
et al. [48] proposed a stabilized smoothed GDA algorithm that achieves a better complexity for the
nonconvex-concave problem. Fiez and Ratliff [14] provided asymptotic results showing that GDA
converges to a local minimax point almost surely. Nevertheless, to the best of our knowledge, all the
previous works targeted finding approximate stationary points of Φ(x), and the theory for finding
the local minimax points is absent in the literature. It was not until very recently that Chen et al.
[10], Luo et al. [38] independently proposed (inexact) cubic-regularized Newton methods for solving
this problem; these are second-order algorithms that provably converge to a local minimax point.
These algorithms are limited, however, to minimax optimization and they cannot be used to solve the
more general bilevel optimization problems.

Appendix B. Improved Convergence for Accelerating Minimax Optimization

This section applies the ideas of PRAHGD to find approximate second-order stationary points in
minimax optimization problem of the form

min
x∈Rdx

{
Φ̄(x) ≜ max

y∈Rdy
f̄(x, y)

}
, (8)

where f̄(x, y) is strongly concave in y but possibly nonconvex in x. Problems of form (8) can
be regarded as a special case of a bilevel optimization problem by taking f(x, y) = f̄(x, y) and
g(x, y) = −f̄(x, y). Danskin’s theorem yields ∇Φ̄(x) = ∇xf̄(x, y

∗(x)), in this case, which is
in fact consistent with hypergradient of form (5) with the optimality condition for the lower-level
problem invoked, that is, ∇yf(x, y

∗(x)) = 0. This implies that when applying PRAHGD to the
minimax optimization problem (8), no CG subroutine is called and no Jacobian-vector or Hessian-
vector product operation is invoked.

We first show in Lemma 19 that the minimax problem enjoys tighter Lipschitz continuouity
parameters than the general bilevel problem:

13

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Lemma 19 Suppose that f̄(x, y) is ℓ-smooth, ρ-Hessian Lipschitz continuous with respect to x and y
and µ-strongly concave in y but possibly nonconvex in x. Then the objective Φ̄(x) is (κ+1)ℓ-smooth
and admits (4

√
2κ3ρ)-Lipschitz continuous Hessians.

We formally introduce the perturbed restarted accelerated gradient descent ascent (PRAGDA)
as in Algorithm 4. Utilizing the PRAHGD complexity result as in Theorems 16 and 17 together
with Lemma 19, we can take L̃ = (κ + 1)ℓ and ρ̃ = 4

√
2κ3ρ to conclude an improved oracle

complexity upper bounds for finding second-order stationary points for this particular problem, as in
the following result:

Theorem 20 (PRAGDA finding SOSP) Under the settings of Lemma 19, Algorithm 4 outputs an(
ϵ,O(κ1.5

√
ϵ)
)
-second-order stationary point of Φ̄(x) in equation (8) within Õ(κ1.75ϵ−1.75) gradi-

ent oracle calls.

Prior to this work, the state-of-the-art algorithm was attained by the inexact minimax cubic New-
ton (iMCN) method [38], which under comparable settings outputs an

(
ϵ,O(κ1.5

√
ϵ)
)
-approximate

SOSP within oracle quries of Õ(κ2ϵ−1.5) gradients, Õ(κ1.5ϵ−2) Hessian-vector products and
Õ(κϵ−2) Jacobian-vector products. We compare the query complexity upper bound of PRAGDA with
iMCN in detail. As can be observed, the total oracle complexity of PRAGDA is no worse than that of
iMCN since Õ(κ1.75ϵ−1.75) ≤ Õ(κ2ϵ−1.5 + κ1.5ϵ−2), a simple application of AM-GM inequality.
Moreover, PRAGDA only requires gradient oracle calls while iMCN additionally requires Hessian-
vector and Jacobian-vector oracle calls. To summarize, PRAGDA enjoys an oracle complexity that
is no inferior than that of iMCN, whereas in both of the regimes κ≫ ϵ−1 and κ≪ ϵ−1 PRAGDA’s
complexity is strictly superior.

Appendix C. Basic Lemmas

In this section, we provide some basic lemmas.

Lemma 21 Suppose Assumption 3 holds, then y∗(x) is κ-Lipschitz continuous, that is,∥∥y∗(x)− y∗(x′)
∥∥
2
≤ κ

∥∥x− x′
∥∥
2

for any x, x′ ∈ Rdx .

Proof Recall that

y∗(x) = arg min
y∈Rdy

g(x, y).

The optimality condition leads to∇yg(x, y
∗(x)) = 0 for each x ∈ Rdx . By taking a further derivative

with respect to x on both sides and applying the chain rule [43], we obtain

∇2
yxg(x, y

∗(x)) +∇2
yyg(x, y

∗(x))
∂y∗(x)

∂x
= 0.

The smoothness and strong convexity of g in y immediately indicate

∂y∗(x)

∂x
= −(∇2

yyg(x, y
∗(x)))−1∇2

yxg(x, y
∗(x)) .

14

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Thus we have ∥∥∥∥∂y∗(x)∂x

∥∥∥∥
2

=
∥∥(∇2

yyg(x, y
∗(x)))−1∇2

yxg(x, y
∗(x))

∥∥
2
≤ ℓ

µ
= κ ,

where the inequality is based on the fact that g(x, y) is ℓ-smooth with respect to x and y and
µ-strongly convex with respect to y for any x.

Therefore, we proved that y∗(x) is κ-Lipschitz continuous.

We also can show that Φ(x) admits Lipschitz continuous gradients and Lipschitz continuous
Hessians, as shown in the following lemmas:

Lemma 22 Suppose Assumption 3 holds, then Φ(x) is L̃-gradient Lipschitz continuous, that is,

∥∇Φ(x)−∇Φ(x′)∥ ≤ L̃∥x− x′∥

for any x, x′ ∈ Rdx , where

L̃ = ℓ+
2ℓ2 + ρM

µ
+

ℓ3 + 2ρℓM

µ2
+

ρℓ2M

µ3
.

Proof Recall that

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

(
∇2

yyg(x, y
∗(x))

)−1∇yf(x, y
∗(x)) .

We denoteH1(x) = ∇xf(x, y
∗(x)),H2(x) = ∇2

xyg(x, y
∗(x)),H3(x) =

(
∇2

yyg(x, y
∗(x))

)−1 and
H4(x) = ∇yf(x, y

∗(x)), then

∇Φ(x) = H1(x)−H2(x)H3(x)H4(x) .

We first considerH1(x), H2(x) andH4(x). For any x, x′ ∈ Rdx , we have

∥H1(x)−H1(x
′)∥ ≤ ℓ(∥x− x′∥+ ∥y∗(x)− y∗(x′)∥)
≤ ℓ(1 + κ)∥x− x′∥ ,

where we use triangle inequality in the first inequality and Lemma 22 in the second one.
We also have

∥H2(x)−H2(x
′)∥ ≤ ρ(∥x− x′∥+ ∥y∗(x)− y∗(x′)∥)
≤ ρ(1 + κ)∥x− x′∥

and

∥H4(x)−H4(x
′)∥ ≤ ℓ(∥x− x′∥+ ∥y∗(x)− y∗(x′)∥)
≤ ℓ(1 + κ)∥x− x′∥.

We then considerH3(x). For any x, x′ ∈ Rdx , we have

∥H3(x)−H3(x
′)∥

15

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

=
∥∥∥(∇2

yyg(x, y
∗(x))

)−1 −
(
∇2

yyg(x
′, y∗(x′))

)−1
∥∥∥

≤
∥∥∥(∇2

yyg(x, y
∗(x))

)−1
∥∥∥∥∥∇2

yyg(x
′, y∗(x′))−∇2

yyg(x, y
∗(x))

∥∥∥∥∥(∇2
yyg(x

′, y∗(x′))
)−1
∥∥∥

≤ 1

µ2
ρ(∥x− x′∥+ ∥y∗(x)− y∗(x′)∥)

≤ ρ(1 + κ)

µ2
∥x− x′∥ .

We also have
∥H2(x)∥ ≤ ℓ, ∥H3(x)∥ ≤

1

µ
and ∥H4(x)∥ ≤M.

for any x ∈ Rdx . Then for any x, x′ ∈ Rdx we have

∥∇Φ(x)−∇Φ(x′)∥
≤ ∥H1(x)−H1(x

′)∥+ ∥H2(x)H3(x)H4(x)−H2(x
′)H3(x

′)H4(x
′)∥

≤ ℓ(1 + κ)∥x− x′∥+ ∥H2(x)H3(x)H4(x)−H2(x)H3(x)H4(x
′)∥

+ ∥H2(x)H3(x)H4(x
′)−H2(x)H3(x

′)H4(x
′)∥

+ ∥H2(x)H3(x
′)H4(x

′)−H2(x
′)H3(x

′)H4(x
′)∥

≤ ℓ(1 + κ)∥x− x′∥+ ∥H2(x)∥∥H3(x)∥∥H4(x)−H4(x
′)∥

+ ∥H2(x)∥∥H4(x
′)∥∥H3(x)−H3(x

′)∥
+ ∥H3(x

′)∥∥H4(x
′)∥∥H2(x)−H2(x

′)∥

≤ ℓ(1 + κ)∥x− x′∥+ ℓ2

µ
(1 + κ)∥x− x′∥+ ℓρM

µ2
(1 + κ)∥x− x′∥+ Mρ

µ
(1 + κ)∥x− x′∥

=

(
ℓ+

2ℓ2 + ρM

µ
+

ℓ3 + 2ρℓM

µ2
+

ρℓ2M

µ3

)
∥x− x′∥ .

Lemma 23 ([23, Lemma 3.4]). Suppose Assumption 3 holds, then Φ(x) is ρ̃-Hessian Lipschitz
continuous, that is, ∥∇2Φ(x)−∇2Φ(x′)∥ ≤ ρ̃∥x− x′∥ for any x, x′ ∈ Rdx , where

ρ̃ =

[(
ρ+

2ℓρ+Mν

µ
+

2Mℓν + ρℓ2

µ2
+

Mℓ2ν

µ3

)(
1 +

ℓ

µ

)
+

(
2ℓρ

µ
+

4Mρ2 + 2ℓ2ρ

µ2
+

2Mℓρ2

µ3

)(
1 +

ℓ

µ

)2

+

(
Mρ2

µ2
+

ρℓ

µ

)(
1 +

ℓ

µ

)3
]
.

Lemma 24 (Inexact gradients) Suppose Assumption 3 and Condition 10 hold, then we have

∥∇Φ(wk)− ∇̂Φ(wk)∥2 ≤ σ .

Proof Recall that

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

(
∇2

yyg(x, y
∗(x))

)−1∇yf(x, y
∗(x))

16

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

and

∇̂Φ(xk) = ∇xf(xk, yk)−∇2
xyg(xk, yk)vk .

We define

∇̄Φ(xk) = ∇xf(xk, yk)−∇2
xyg(xk, yk)

(
∇2

yyg(xk, yk)
)−1∇yf(xk, yk) ,

then we have

||∇Φ(wk)− ∇̂Φ(wk)||2 = ||∇Φ(wk)− ∇̄Φ(wk) + ∇̄Φ(wk)− ∇̂Φ(wk)||2
≤ ||∇Φ(wk)− ∇̄Φ(wk)||2 + ||∇̄Φ(wk)− ∇̂Φ(wk)||2

≤ L̃||yk − y∗(wk)||2 + ℓ
∣∣∣∣∣∣vk − (∇2

yyg(wk, yk)
)−1∇yf(wk, yk)

∣∣∣∣∣∣
2

≤ σ ,

where we use triangle inequality in the first inequality, Lemma 6 and Assumption 3(c) in the second
inequality and Condition 10 in the last one.

Lemma 25 ([38, Lemmas 1 and 3]). Assume that f̄(x, y) is ℓ-smooth, ρ-Hessian Lipschitz contin-
uous with respect to x and y and µ-strongly concave in y but possibly nonconvex in x, then the
objective Φ̄(x) is (κ+ 1)ℓ-smooth and (4

√
2κ3ρ)-Hessian Lipschitz continuous.

Appendix D. Proofs for Section 3

In this section, we provide the proofs for theorems in Section 3. We separate our proof into three
parts. We first prove that Φ(x) decrease at least O(ϵ3/2) in one epoch and thus the total number of
epochs is bounded. Then we show that our RAHGD in Algorithm 3 can output an ϵ-FOSP. Finally, we
provide the oracle calls complexity analysis.

D.1. Proof of Theorem 13

In this section, we mainly consider the progress in one epoch. We omit the subscript t for notation
simplicity. For each epoch except the last one, we have 1 ≤ K ≤ K,

K
K−1∑
i=0

∥xi−1 − xi∥22 > B2, (9)

∥xk − x0∥22 ≤ k

k−1∑
i=0

∥xi+1 − xi∥22 ≤ B2, ∀k < K, (10)

∥wk − x0∥2 ≤ ∥xk − x0∥2 + ∥xk − xk−1∥2 ≤ 2B, ∀k < K, (11)

∥wk − wk−1∥2 ≤ 2B, ∀k < K, (12)

where equation (12) can be proved by induction as follows. For k = 0, we have

∥w0 − w−1∥2 = 0 ≤ 2B.

17

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

For k = 1, we have

∥w1 − w0∥2 = ∥(x1 − x0) + (1− θ)(x1 − x0)∥2 ≤ 2B.

For k ≥ 2, we have

∥wk − wk−1∥2 ≤ (2− θ) ∥xk − xk−1∥2 + (1− θ) ∥xk−1 − xk−2∥2

≤ 2

√
2 ∥xk − xk−1∥22 + 2 ∥xk−1 − xk−2∥22 ≤ 2B.

In the last epoch, the “if condition” does not trigger and the while loop breaks until k = K. Hence,
we have

∥xk − x0∥22 ≤ k
k−1∑
i=0

∥xi+1 − xi∥22 ≤ B2, ∀k ≤ K, (13)

∥wk − x0∥2 ≤ 2B, ∀k ≤ K. (14)

We first consider the case when ∥∇Φ(wK−1)∥2 is large in the following lemma.

Lemma 26 Suppose that Assumption 3 and Condition 10 hold. Let η ≤ 1
4L̃

and 0 ≤ θ ≤ 1. When
the “if condition” triggers and ∥∇Φ(wK−1)∥2 > B

η , we have

Φ(xK)− Φ(x0) ≤ −
B2

4η
+ σB +

5ησ2K
8

.

Proof Since Φ(x) has L̃-Lipschitz continuous gradient, we have

Φ(xk+1) ≤ Φ(wk) + ⟨∇Φ(wk), xk+1 − wk⟩+
L̃

2
∥xk+1 − wk∥22

≤ Φ(wk)− η⟨∇Φ(wk), ∇̂Φ(wk)⟩+
η

8
∥∇̂Φ(wk)∥22 ,

where we use η ≤ L̃
4 . We also have

Φ(xk) ≥ Φ(wk) + ⟨∇Φ(wk), xk − wk⟩ −
L̃

2
∥xk − wk∥22 .

Combining above inequalities leads to

Φ(xk+1)− Φ(xk)

≤ −⟨∇Φ(wk), xk − wk⟩+
L̃

2
∥xk − wk∥22 − η⟨∇Φ(wk), ∇̂Φ(wk)⟩+

η

8
∥∇̂Φ(wk)∥22

=
1

η
⟨xk+1 − wk, xk − wk⟩+ ⟨∇̂Φ(wk)−∇Φ(wk), xk − wk⟩+

L̃

2
∥xk − wk∥22

− η⟨∇Φ(wk), ∇̂Φ(wk)⟩+
η

8
∥∇̂Φ(wk)∥22

=
1

2η

(
∥xk+1 − wk∥22 + ∥xk − wk∥22 − ∥xk+1 − xk∥22

)
+ ⟨∇̂Φ(wk)−∇Φ(wk), xk − wk⟩

18

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

+
L̃

2
∥xk − wk∥22 − η⟨∇Φ(wk), ∇̂Φ(wk)⟩+

η

8
∥∇̂Φ(wk)∥22

(a)

≤ 5

8η
∥xk − wk∥22 −

1

2η
∥xk+1 − xk∥22 + ⟨∇̂Φ(wk)−∇Φ(wk), xk − wk⟩+

5η

8
∥∇̂Φ(wk)∥22

− η⟨∇Φ(wk), ∇̂Φ(wk)⟩
(b)

≤ 5

8η
∥xk − xk−1∥22 −

1

2η
∥xk+1 − xk∥22 + ∥∇̂Φ(wk)−∇Φ(wk)∥2 · ∥xk − xk−1∥2

+
5η

8
∥∇̂Φ(wk)∥22 − η⟨∇Φ(wk), ∇̂Φ(wk)⟩

=
5

8η
∥xk − xk−1∥22 −

1

2η
∥xk+1 − xk∥22 + ∥∇̂Φ(wk)−∇Φ(wk)∥2 · ∥xk − xk−1∥2

+
5η

8
∥∇̂Φ(wk)∥22 −

η

2

(
∥∇Φ(wk)∥22 +

∥∥∥∇̂Φ(wk)
∥∥∥2
2
−
∥∥∥∇Φ(wk)− ∇̂Φ(wk)

∥∥∥2
2

)
(c)

≤ 5

8η
∥xk − xk−1∥22 −

1

2η
∥xk+1 − xk∥22 + ∥∇̂Φ(wk)−∇Φ(wk)∥2 · ∥xk − xk−1∥2

− 3η

8
∥∇Φ(wk)∥22 +

5η

8

∥∥∥∇Φ(wk)− ∇̂Φ(wk)
∥∥∥2
2

(d)

≤ 5

8η
∥xk − xk−1∥22 −

1

2η
∥xk+1 − xk∥22 −

3η

8
∥∇Φ(wk)∥22 + σ∥xk − xk−1∥2 +

5η

8
σ2 ,

where we use L̃ ≤ 1
4η in

(a)

≤ , ∥xk − wk∥2 = (1− θ) ∥xk − xk−1∥2 ≤ ∥xk − xk−1∥2 in
(b)

≤ , triangle

inequality in
(c)

≤ and Lemma 12 in
(d)

≤ .
Summing over above inequality with k = 0, 1, · · · ,K − 1 and using x0 = x−1, we have

Φ(xK)− Φ(x0) (15)

≤ 1

8η

K−2∑
k=0

∥xk+1 − xk∥22 −
3η

8

K−1∑
k=0

∥∇Φ(wk)∥22 + σ
K−1∑
k=0

∥xk − xk−1∥2 +
5ησ2K

8
(16)

(e)

≤ 1

8η

K−2∑
k=0

∥xk+1 − xk∥22 −
3η

8

K−1∑
k=0

∥∇Φ(wk)∥22 + σ
√
K − 1

√√√√K−2∑
k=0

∥xk+1 − xk∥22 +
5ησ2K

8

(17)
(f)

≤ B2

8η
− 3η

8
∥∇Φ(wK−1)∥22 + σB +

5ησ2K
8

(18)

(g)

≤ −B2

4η
+ σB +

5ησ2K
8

, (19)

where we use Cauchy-Schwarz inequality in
(e)

≤ , the “if condition” in
(f)

≤ and ∥∇Φ(wK−1)∥2 > B
η

in
(g)

≤ .

Now we consider the case when ∥∇Φ(wK−1)∥2 is small.

19

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

If ∥∇Φ(wK−1)∥2 ≤
B
η , then equation (11) and Lemma 12 lead to

∥xK − x0∥2 ≤ ∥wK−1 − x0∥2 + η ∥∇Φ(wK−1)∥2 + η
∥∥∥∇̂Φ(wK−1)−∇Φ(wK−1)

∥∥∥
2

≤ 3B + ησ.

For each epoch, we denote H = ∇2Φ(x0) and H = UΛU⊤ to be its eigenvalue decomposition
with orthogonal matrix Λ ∈ Rdx×dx and diagonal matrix U ∈ Rdx×dx . Let λj be the j-th eigenvalue
of H. We denote x̃ = UTx, w̃ = UTw and ∇̃Φ(w) = UT∇Φ(w). Let x̃j and ∇̃jΦ(w) be the j-th
coordinate of x̃ and ∇̃Φ(w), respectively. Since Φ has ρ̃-Lipschitz continuous Hessian, we have

Φ(xK)− Φ(x0) ≤ ⟨∇Φ(x0), xK − x0⟩+
1

2
(xK − x0)

⊤H(xK − x0) +
ρ̃

6
∥xK − x0∥32

= ⟨∇̃Φ(x0), x̃K − x̃0⟩+
1

2
(x̃K − x̃0)

⊤Λ(x̃K − x̃0) +
ρ̃

6
∥xK − x0∥32

≤ ϕ(x̃K)− ϕ(x̃0) +
ρ̃

6
(3B + ησ)3,

(20)

where we denote
ϕ(x) = ⟨∇̃Φ(x0), x− x̃0⟩+

1

2
(x− x̃0)

⊤Λ(x− x̃0)

and
ϕj(x) = ⟨∇̃jΦ(x0), x− x̃j0⟩+

1

2
λj(x− x̃j0)

2.

Let

δ̃jk = (U⊤∇̂Φ(wk))
j −∇ϕj(w̃

j
k) and δ̃k = U⊤∇̂Φ(wk)−∇ϕ(w̃k) ,

then the iteration of the algorithm means

w̃j
k = x̃jk + (1− θ)(x̃jk − x̃jk−1), (21)

and

x̃jk+1 = w̃j
k − η(U⊤∇̂Φ(wk))

j = w̃j
k − η∇ϕj(w̃

j
k)− ηδ̃jk. (22)

For any k < K, we can bound ∥δ̃k∥2 as follows

∥δ̃k∥ =
∥∥∥U⊤∇̂Φ(wk)− ∇̃Φ(wk) + ∇̃Φ(wk)−∇ϕ(w̃k)

∥∥∥
2

≤
∥∥∥∇̃Φ(wk)− ∇̃Φ(x0)−Λ(w̃k − x̃0)

∥∥∥
2
+
∥∥∥U⊤∇̂Φ(wk)− ∇̃Φ(wk)

∥∥∥
2

= ∥∇Φ(wk)−∇Φ(x0)−H(wk − x0)∥2 +
∥∥∥∇̂Φ(wk)−∇Φ(wk)

∥∥∥
2

≤
∥∥∥∥∫ 1

0
⟨∇2Φ(x0 + t(wk − x0))−H, wk − x0⟩dt

∥∥∥∥
2

+ σ

≤ ρ̃

2
∥wk − x0∥22 + σ

≤ 2ρ̃B2 + σ,

20

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

where the first inequality uses triangle inequality; the second one is based on Lemma 12; the third
one is based on the Lipschitz continuity of Hessian and the last one uses equation (11).

Notice that quadratic function ϕ(x) equals to the sum of dx scalar functions ϕj(x
j). Then we

decompose ϕ(x) into
∑

j∈S1
ϕj(x

j) and
∑

j∈S2
ϕj(x

j), where

S1 =

{
j : λj ≥ −

θ

η

}
and S2 =

{
j : λj < −

θ

η

}
.

We first consider the term
∑

j∈S1
ϕj(x

j) in the following lemma.

Lemma 27 Suppose that Assumption 3 and Condition 10 hold. Let η ≤ 1
4L̃

and 0 ≤ θ ≤ 1. When
the “if condition” triggers and ∥∇Φ(wK−1)∥2 ≤ B

η , then we have

∑
j∈S1

ϕj(x̃
j
K)−

∑
j∈S1

ϕj(x̃
j
0) ≤ −

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

2ηK
θ

(2ρ̃B2 + σ)2 . (23)

Proof Since ϕj(x) is quadratic, we have

ϕj(x̃
j
k+1)

= ϕj(x̃
j
k) + ⟨∇ϕj(x̃

j
k), x̃

j
k+1 − x̃jk⟩+

λj

2
|x̃jk+1 − x̃jk|

2

(a)
= ϕj(x̃

j
k)−

1

η
⟨x̃jk+1 − w̃j

k + ηδ̃jk, x̃
j
k+1 − x̃jk⟩+ ⟨∇ϕj(x̃

j
k)−∇ϕj(w̃

j
k), x̃

j
k+1 − x̃jk⟩

+
λj

2
|x̃jk+1 − x̃jk|

2

= ϕj(x̃
j
k)−

1

η
⟨x̃jk+1 − w̃j

k, x̃
j
k+1 − x̃jk⟩ − ⟨δ̃

j
k, x̃

j
k+1 − x̃jk⟩+ λj⟨x̃jk − w̃j

k, x̃
j
k+1 − x̃jk⟩

+
λj

2
|x̃jk+1 − x̃jk|

2

= ϕj(x̃
j
k) +

1

2η

(
|x̃jk − w̃j

k|
2 − |x̃jk+1 − w̃j

k|
2 − |x̃jk+1 − x̃jk|

2
)
− ⟨δ̃jk, x̃

j
k+1 − x̃jk⟩

+
λj

2

(
|x̃jk+1 − w̃j

k|
2 − |x̃jk − w̃j

k|
2
)

≤ ϕj(x̃
j
k) +

1

2η

(
|x̃jk − w̃j

k|
2 − |x̃jk+1 − w̃j

k|
2 − |x̃jk+1 − x̃jk|

2
)
+

1

2α
|δ̃jk|

2 +
α

2
|x̃jk+1 − x̃jk|

2

+
λj

2

(
|x̃jk+1 − w̃j

k|
2 − |x̃jk − w̃j

k|
2
)
,

where we use equation (21) in
(a)
= .

Using the fact L̃ ≥ λj ≥ − θ
η for j ∈ S1 and

(
− 1

2η
+

λj

2

)
|x̃jk+1 − w̃j

k|
2 ≤

(
−2L̃+

L̃

2

)
|x̃jk+1 − w̃j

k|
2 ≤ 0,

21

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

we have

ϕj(x̃
j
k+1)

≤ ϕj(x̃
j
k) +

1

2η

(
|x̃jk − w̃j

k|
2 − |x̃jk+1 − x̃jk|

2
)
+

1

2α
|δ̃jk|

2 +
α

2
|x̃jk+1 − x̃jk|

2 +
θ

2η
|x̃jk − w̃j

k|
2

(b)
= ϕj(x̃

j
k) +

(1− θ)2(1 + θ)

2η
|x̃jk − x̃jk−1|

2 −
(

1

2η
− α

2

)
|x̃jk+1 − x̃jk|

2 +
1

2α
|δ̃jk|

2

= ϕj(x̃
j
k) +

(1− θ)2(1 + θ)

2η

(
|x̃jk − x̃jk−1|

2 − |x̃jk+1 − x̃jk|
2
)

−
(

1

2η
− α

2
− (1− θ)2(1 + θ)

2η

)
|x̃jk+1 − x̃jk|

2 +
1

2α
|δ̃jk|

2

(c)

≤ ϕj(x̃
j
k) +

(1− θ)2(1 + θ)

2η

(
|x̃jk − x̃jk−1|

2 − |x̃jk+1 − x̃jk|
2
)
− 3θ

8η
|x̃jk+1 − x̃jk|

2 +
2η

θ
|δ̃jk|

2

for each j ∈ S1, where we use equation (22) in
(b)
= and let α = θ

4η in
(c)

≤ which leads to

1

2η
− α

2
− (1− θ)2(1 + θ)

2η
=

1

2η
− θ

8η
− (1− θ)2(1 + θ)

2η
=

3θ

8η
+

θ2 − θ3

2η
≥ 3θ

8η
.

Summing over above result with k = 0, 1, · · · ,K − 1 for j ∈ S1 and using x0 = x−1, we have∑
j∈S1

ϕj(x̃
j
K)

≤
∑
j∈S1

ϕj(x̃
j
0)−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

2η

θ

K−1∑
k=0

∥∥∥δ̃k∥∥∥2
2
− (1− θ)2(1 + θ)

2η
|x̃jK − x̃jK−1|

2

≤
∑
j∈S1

ϕj(x̃
j
0)−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃jk+1 − x̃jk|+
2ηK
θ

(2ρ̃B2 + σ)2.

This completes the proof.

Next, we consider the term
∑

j∈S2
ϕj(x

j).

Lemma 28 Suppose that Assumption 3 and Condition 10 hold. Let η ≤ 1
4L̃

and 0 ≤ θ ≤ 1. When
the “if condition” triggers and ∥∇Φ(wK−1)∥2 ≤ B

η , then we have

∑
j∈S2

ϕj(x̃
j
K)−

∑
j∈S2

ϕj(x̃
j
0) ≤ −

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

ηK
2θ

(2ρ̃B2 + σ)2 +
ηK
2θ

σ2 . (24)

Proof We denote νj = x̃j0 − 1
λj
∇̃jΦ(x0), then ϕj(x) can be rewritten as

ϕj(x) =
λj

2

(
x− x̃j0 +

1

λj
∇̃jΦ(x0)

)2

− 1

2λj
|∇̃jΦ(x0)|2 =

λj

2
(x− νj)

2 − 1

2λj
|∇̃jΦ(x0)|2 .

22

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

For each j ∈ S2 = {j : λj < − θ
η}, we have

ϕj(x̃
j
k+1)− ϕj(x̃

j
k) =

λj

2
|x̃jk+1 − νj |2 −

λj

2
|x̃jk − νj |2

=
λj

2
|x̃jk+1 − x̃jk|

2 + λj⟨x̃jk+1 − x̃jk, x̃
j
k − νj⟩

≤ − θ

2η
|x̃jk+1 − x̃jk|

2 + λj⟨x̃jk+1 − x̃jk, x̃
j
k − νj⟩ .

(25)

So we only need to bound the second part. From equation (21) and equation (22), we have

x̃jk+1 − x̃jk = w̃j
k − x̃jk − η∇ϕj(w̃

j
k)− ηδ̃jk

= (1− θ)(x̃jk − x̃jk−1)− ηλj(w̃
j
k − νj)− ηδ̃jk

= (1− θ)(x̃jk − x̃jk−1)− ηλj(x̃
j
k − νj + (1− θ)(x̃jk − x̃jk−1))− ηδ̃jk .

So for each j ∈ S2, we have

⟨x̃j
k+1 − x̃j

k, x̃
j
k − νj⟩

= (1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k − νj⟩ − ηλj |x̃j

k − νj |2 − ηλj(1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k − νj⟩ − η⟨δ̃jk, x̃

j
k − νj⟩

≥ (1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k − νj⟩ − ηλj |x̃j

k − νj |2

+
ηλj(1− θ)

2
(|x̃j

k − x̃j
k−1|

2 + |x̃j
k − νj |2) +

η

2λj(1 + θ)
|δ̃jk|

2 +
ηλj(1 + θ)

2
|x̃j

k − νj |2

= (1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k − νj⟩+

ηλj(1− θ)

2
|x̃j

k − x̃j
k−1|

2 +
η

2λj(1 + θ)
|δ̃jk|

2

= (1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k−1 − νj⟩+ (1− θ)|x̃j

k − x̃j
k−1|

2 +
ηλj(1− θ)

2
|x̃j

k − x̃j
k−1|

2 +
η

2λj(1 + θ)
|δ̃jk|

2

≥ (1− θ)⟨x̃j
k − x̃j

k−1, x̃
j
k−1 − νj⟩+

η

2λj
|δ̃jk|

2 ,

where we use the fact that λj < 0 when j ∈ S2 in the first inequality and the fact(
1 +

ηλj

2

)
(1− θ) ≥

(
1− ηL̃

2

)
(1− θ) ≥ 0

indicates the second inequality. Then we have

⟨x̃j
k+1 − x̃j

k, x̃
j
k − νj⟩

≥ (1− θ)k⟨x̃j
1 − x̃j

0, x̃
j
0 − νj⟩+

η

2λj

k∑
i=1

(1− θ)k−i|δ̃ji |
2

(a)
= − η

2λj
(1− θ)k⟨∇jΦ(x0), ∇̂jΦ(x0)⟩+

η

2λj

k∑
i=1

(1− θ)k−i|δ̃ji |
2

= − η

2λj
(1− θ)k

(
|∇jΦ(x0)|2 + |∇̂jΦ(x0)|2 − |∇jΦ(x0)− ∇̂jΦ(x0)|2

)
+

η

2λj

k∑
i=1

(1− θ)k−i|δ̃ji |
2

(b)

≥ η

2λj
(1− θ)k

(
|∇jΦ(x0)− ∇̂jΦ(x0)|2

)
+

η

2λj

k∑
i=1

(1− θ)k−i|δ̃ji |
2,

23

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

where we use

x̃j1 − x̃j0 = x̃j1 − w̃j
0 = −η

(
U⊤∇̂Φ(x0)

)j
and x̃j0 − νj = −

1

λj
∇̃jΦ(x0)

in
(a)
= and λj < 0 in

(b)

≥ . Plugging above inequality into equation (25) and using λj < 0, we have

ϕj(x̃
j
k+1)− ϕj(x̃

j
k) ≤ −

θ

2η
|x̃j

k+1 − x̃j
k|

2 +
η

2
(1− θ)k

(
|∇jΦ(x0)− ∇̂jΦ(x0)|2

)
+

η

2

k∑
i=1

(1− θ)k−i|δ̃ji |
2.

Summing over above result with k = 0, 1, . . . ,K − 1 for j ∈ S2, we have∑
j∈S2

ϕj(x̃
j
K)−

∑
j∈S2

ϕj(x̃
j
0)

≤ −
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

η

2

∥∥∥∇Φ(x0)− ∇̂Φ(x0)∥∥∥2
2

K−1∑
k=0

(1− θ)k +
η

2

K−1∑
k=0

k∑
i=1

(1− θ)k−i∥δ̃i∥22

≤ −
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

η

2
σ2

K−1∑
k=0

(1− θ)k +
η

2

K−1∑
k=0

k∑
i=1

(1− θ)k−i∥δ̃i∥22

≤ −
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃jk+1 − x̃jk|
2 +

ηK
2θ

σ2 +
ηK
2θ

(2ρ̃B + σ)2,

which completes the proof.

Putting Lemma 27 and 28 together, we can show the decrease of Φ(x) in each epoch.

Lemma 29 Suppose that Assumption 3 and Condition 10 hold. Let η ≤ 1
4L̃

and 0 ≤ θ ≤ 1. When
the “if condition” triggers and ∥∇Φ(wK−1)∥2 ≤ B

η , then we have

Φ(xK)− Φ(x0) ≤ −
ϵ3/2√
ρ̃

.

Proof Summing over equation (23) and equation (24), we have

ϕ(x̃K)− ϕ(x̃0) =
∑

j∈S1∪S2

ϕj(x̃
j
K)− ϕj(x̃

j
0)

≤ 3θ

8η

K−1∑
k=0

∥x̃k+1 − x̃k∥22 +
5ηK
2θ

(2ρ̃B2 + σ)2 +
ηK
2θ

σ2

≤ −3θB2

8ηK
+

5ηK
2θ

(2ρ̃B2 + σ)2 +
ηK
2θ

σ2,

(26)

24

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

where we use equation (9) in the last inequality. Plugging into equation (20) and using K ≤ K, we
have

Φ(xK)− Φ(x0) ≤ −
3θB2

8ηK
+

5ηK
2θ

(2ρ̃B2 + σ)2 +
ρ̃

6
(3B + ησ)3 +

ηK
2θ

σ2

≤ −3θB2

8ηK
+

5ηK

2θ
(2ρ̃B2 + σ)2 +

ρ̃

6
(3B + ησ)3 +

ηK
2θ

σ2

≤ −ϵ3/2√
ρ̃

.

(27)

This completes the proof.

Then we can proof that the number of epochs is bounded as shown in the following lemma.

Lemma 30 Consider the setting of Theorem 13, and we run RAHGD in Algorithm 3, then the
algorithm will terminate in at most ∆

√
ρ̃ϵ−3/2 epochs.

Proof From Lemma 26 and 29, we have

Φ(xK)− Φ(x0) ≤ −min

{
ϵ3/2√
ρ̃
,
ϵL̃

ρ̃

}
. (28)

Notice that in Algorithm 3, we set x0 to be the last iterate xK in the previous epoch. Summing over
all epochs, say N total epochs, we have

min
x∈Rdx

Φ(x)− Φ(xint) ≤ −N min

{
ϵ3/2√
ρ̃
,
ϵL̃

ρ̃

}
. (29)

So the algorithm will terminate in at most ∆
√
ρ̃ϵ−3/2 epochs.

Now we are prepared to prove Theorem 13.
Proof Lemma 30 says that RAHGD will terminate in at most ∆

√
ρ̃ϵ−3/2 epochs. Since each epoch

needs at most K = 1
2

(
L̃2/(ρ̃ϵ)

)1/4 iterations, the total iterations must be less than ∆L̃1/2ρ̃1/4ϵ−7/4.
Recall that we have L̃ = O(κ3) and ρ̃ = O(κ5), thus the total iterations is at most O(κ11/4ϵ−7/4).

Now we consider the last epoch. Denote w̃ = U⊤ŵ = 1
K0+1

∑K0
k=0U

⊤wk = 1
K0+1

∑K0
k=0 w̃k.

Since ϕ is quadratic, we have

∥ϕ(w̃)∥2 =

∥∥∥∥∥ 1

K0 + 1

K0∑
k=0

∇ϕ(w̃k)

∥∥∥∥∥
2

(a)
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − w̃k + ηδ̃k

)∥∥∥∥∥
2

=
1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − x̃k − (1− θ)(x̃k − x̃k−1) + ηδ̃k

)∥∥∥∥∥
2

(b)
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃0 − (1− θ)(x̃K0 − x̃0 + η

K0∑
k=0

δ̃k

∥∥∥∥∥
2

25

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

=
1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃K0 + θ(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
2

≤ 1

η(K0 + 1)

(
∥x̃K0+1 − x̃K0∥2 + θ ∥x̃K0 − x̃0∥2 + η

K0∑
k=0

∥∥∥δ̃k∥∥∥
2

)
(c)

≤ 2

ηK
∥x̃K0+1 − x̃K0∥2 +

2θB

ηK
+ 2ρ̃B2 + σ,

where we use equation (22) in
(a)
= , x−1 = x0 in

(b)
= ; K0 + 1 ≥ K

2 , equation (13) and equation (14)

in
(c)

≤ .
From K0 = argmin⌊K

2
⌋≤k≤K−1 ∥xk+1 − xk∥2, we have

∥xK0+1 − xK0∥
2
2 ≤

1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥xk+1 − xk∥22

≤ 1

K − ⌊K/2⌋

K−1∑
k=0

∥xk+1 − xk∥22

(d)

≤ 1

K − ⌊K/2⌋
B2

K

≤ 2B2

K2
,

where we use equation (13) in
(d)

≤ . On the other hand, we also have

∥∇Φ(ŵ)∥2 =
∥∥∥∇̃Φ(ŵ)∥∥∥

2

≤ ∥∇ϕ(w̃)∥2 +
∥∥∥∇̃Φ(ŵ)−∇ϕ(w̃)∥∥∥

2

= ∥∇ϕ(w̃)∥2
∥∥∥∇̃Φ(ŵ)− ∇̃Φ(x0)−Λ(w̃ − x̃0)

∥∥∥
2

= ∥∇ϕ(w̃)∥2 + ∥∇Φ(ŵ)−∇Φ(x0)−H(ŵ − x0)∥2

≤ ∥∇ϕ(w̃)∥2 +
ρ̃

2
∥ŵ − x0∥22

(e)

≤ ∥∇ϕ(w̃)∥2 + 2ρ̃B2 ,

where we use ∥ŵ − x0∥2 ≤
1

K0+1

∑K0
k=0 ∥wk − x0∥2 ≤ 2B from equation (14) in

(e)

≤ . So we have

∥∇Φ(ŵ)∥2 ≤
2
√
2B

ηK2
+

2θB

ηK
+ 4ρ̃B2 + σ ≤ 83ϵ.

This completes our proof of Theorem 13.

26

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

D.2. Proof of Proposition 14

Proof We first consider the iterations of CG in Algorithm 3 in one epoch. We set T ′
t,k as

T ′
t,k =


⌈√

κ+1
2 log

(
4ℓ
√
κ

σ

(
∥v0,−1∥2 +

M
µ

))⌉
, k = 0,⌈√

κ+1
2 log

(
4ℓ
√
κ

σ

(
σ
2ℓ +

2M
µ

))⌉
, k ≥ 1.

(30)

We denote

v∗(x, y) =
(
∇2

yyg(x, y)
)−1∇yf(x, y),

then

∥v∗(x, y)∥2 ≤
M

µ
, ∀x ∈ Rdx , y ∈ Rdy .

We use induction to show that ∥∥vt,k − v∗t,k
∥∥
2
≤ σ

2ℓ

holds for any k ≥ 0. For k = 0, Lemma 2 straightforwardly implies that

∥∥vt,0 − v∗t,0
∥∥
2
≤
∥∥v0,−1 − v∗t,0

∥∥
2

∥v0,−1∥2 +M/µ
· σ
2ℓ
≤ σ

2ℓ
.

Suppose it holds that
∥∥∥vt,k − v∗t,k

∥∥∥
2
≤ σ

2ℓ for any k = k′ − 1, then we have

∥∥vt,k′ − v∗t,k′
∥∥
2
≤ 2
√
κ

(
1− 2

1 +
√
κ

)T ′
t,k′ ∥∥vt,k′−1 − v∗t,k′

∥∥
2

≤ 2
√
κ

(
1− 2

1 +
√
κ

)T ′
t,k′ (∥∥vt,k′−1 − v∗t,k′−1

∥∥
2
+
∥∥v∗t,k′−1 − v∗t,k′

∥∥
2

)
≤ 2
√
κ

(
1− 2

1 +
√
κ

)T ′
t,k′
(

σ

2ℓ
+

2M

µ

)
≤ σ

2ℓ
,

where the first inequality is based on Lemma 2, the second one uses triangle inequality, the third one
uses the definition of T ′

k. Therefore, equation (4) in Condition 10 can hold.
The total iteration number of CG in Algorithm 3 in one epoch satisfies

K−1∑
k=0

T ′
k

≤ K +

√
κ+ 1

2

(
2T ′

0√
κ+ 1

+

K−1∑
k=1

log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))

= K +

√
κ+ 1

2

(
2T ′

0√
κ+ 1

+ (K − 1) log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))
= K +

√
κ+ 1

2
K
(
1

K
log

(
4ℓ
√
κ

σ

(
∥v0,−1∥2 +

M

µ

))
+

(
1− 1

K

)
log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))
.

Now we consider the iterations of AGD in Algorithm 3.We first show the following lemma.

27

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Lemma 31 Consider the setting of Theorem 13, and we run Algorithm 3, then we have

∥y∗(wt,−1)∥2 ≤ Ĉ

for any t > 0, where Ĉ = ∥y∗(x0,0)∥2 + (2B + ησ + ηC)κ∆
√
ρ̃ϵ−3/2.

Then consider the iteratons of AGD in Algorithm 3. We choose Tt,k as

Tt,k =


⌈
2
√
κ log

(
2L̃

√
κ+1
σ Ĉ

)⌉
, k = −1.⌈

2
√
κ log

(
2L̃

√
κ+1
σ

(
σ
2L̃

+ 2κB
))⌉

, k ≥ 0.
(31)

We will use induction to show that Lemma 31 as well as equation (3) in Condition 10 will hold. For
t = 0, Lemma 31 hold trivially. Then we use induction with respect to k to prove that

∥yt,k − y∗(wt,k)∥2 ≤
σ

2L̃

holds for any k ≥ −1. For k = −1, Lemma 1 directly implies

∥yt,−1 − y∗(wt,−1)∥2 ≤
∥∥y∗(wt,−1)

∥∥
2

Ĉ
· σ

2L̃
≤ σ

2L̃
,

where the second inequality is based on Lemma 31. Suppose it holds that

∥yt,k−1 − y∗(wt,k−1)∥2 ≤
σ

2L̃

for any k ≤ k′ − 1, then we have∥∥yt,k′ − y∗(wt,k′)
∥∥
2

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2 ∥∥yt,k′−1 − y∗(wt,k′)
∥∥
2

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2

(
∥∥yt,k′−1 − y∗(wt,k′−1)

∥∥
2
+
∥∥y∗(wt,k′−1)− y∗(wt,k′)

∥∥
2
)

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2
(

σ

2L̃
+ κ

∥∥wt,k′−1 − wt,k′
∥∥
2

)
≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2
(

σ

2L̃
+ 2κB

)
≤ σ

2L̃
,

where the first inequality is based on Lemma 1, the second one uses triangle inequality, the third one
is based on induction hypothesis and Lemma 5, the fourth one uses equation (12), and the last step
use the definition of Tt,k. Therefore, equation (3) in Condition 10 can hold.

Suppose Lemma 31 and equation (3) in Condition 10 hold for any t ≤ t′ − 1, then we have
shown that when we choose T ′

t,k as defined in equation (30), then equation (4) in Condition 10 can
hold. Thus, from Lemma 12 we obtain that:

∥∇Φ(wt,k)− ∇̂Φ(wt,k)∥2 ≤ σ . (32)

28

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

We claim that for any t, we can find some constant C to satisfy:

∥∇Φ(wt,K−1)∥2 ≤ C . (33)

Otherwise, equation (18) in Lemma 26 shows that Φ(wt,K) can go to −∞ and contradict with the
assumption minx∈Rdx Φ(x) > −∞.

For any epoch t ≤ t′ − 1, we have

∥xt,K − xt,0∥2
= ∥xt,K − xt,K−1 + xt,K−1 − xt,0∥2
=
∥∥∥(1− θ)(xt,K−1 − xt,K−2)− η∇̂Φ(wt,K−1) + xt,K−1 − xt,0

∥∥∥
2

≤ ∥xt,K−1 − xt,K−2∥2 + ∥xt,K−1 − xt,0∥2 + η
∥∥∥∇̂Φ(wt,K−1)

∥∥∥
2

≤ 2B + η
∥∥∥∇̂Φ(wt,K−1)−∇Φ(wt,K−1) +∇Φ(wt,K−1)

∥∥∥
2

≤ 2B + η
∥∥∥∇̂Φ(wt,K−1)−∇Φ(wt,K−1)

∥∥∥
2
+ η ∥∇Φ(wt,K−1)∥2

≤ 2B + ησ + η ∥∇Φ(wt,K−1)∥2
≤ 2B + η(σ + C)

(34)

for some constant C. Here we use triangle inequality in the first inequality; equation (10) in
the second one; triangle inequality again in the third one; equation (32) in the fourth one and
equation (33) in the last one.

Then for t′-th epoch, we have∥∥y∗(wt′,−1)− y∗(x0,0)
∥∥
2
≤ κ

∥∥wt′,−1 − x0,0
∥∥
2

= κ
∥∥xt′,0 − x0,0

∥∥
2

= κ
∥∥xt′−1,K − x0,0

∥∥
2

≤ κ(
∥∥xt′−1,0 − x0,0

∥∥
2
+
∥∥xt′−1,K − xt′−1,0

∥∥
2
)

≤ κ(
∥∥xt′−1,0 − x1,0

∥∥
2
+ (2B + ησ + ηC))

≤ (2B + ησ + ηC)κt ,

where the first inequality is based on the Lipschitz continuous of y∗(x) shown in Lemma 5; the
second one uses triangle inequality; the third one is based on equation (34), and the last one uses
induction. Then we have∥∥y∗(wt′,−1)

∥∥
2
≤ ∥y∗(x0,0)∥2 +Bκt′

≤ ∥y∗(x0,0)∥2 +
(2B + ησ + ηC)κ∆

√
ρ̃

ϵ3/2
,

where we use Lemma 30 in the last inequality.
Similarly with the case t = 0, we use induction with respect to k again, we have that equation (3)

in Condition 10 hold.
This also finishes the proof for Lemma 31.

29

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

The total gradient calls from AGD in Algorithm 3 in one epoch satisfies

K−1∑
k=−1

Tt,k ≤ 2
√
κ

(
T−1

2
√
κ
+

K−1∑
k=0

log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1

= 2
√
κ

(
T−1

2
√
κ
+K log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1

= 2
√
κK

(
1

K
log

(
2L̃
√
κ+ 1

σ
Ĉ

)
+ log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1.

This completes our proof of Proposition 14.

D.3. Proof of Corollary 15

Proof Theorem 13 says that RAHGD can output an ϵ-FOSP within at most O
(
∆L̃1/2ρ̃1/4ϵ−7/4

)
iterations in the outer loop. Then we have

Gc(f, ϵ) = O

(
∆L̃1/2ρ̃1/4

ϵ7/4

)
and JV (g, ϵ) = O

(
∆L̃1/2ρ̃1/4

ϵ7/4

)
.

Recall that L̃ = O(κ3) and ρ̃ = O(κ5), we have

Gc(f, ϵ) = O
(
κ11/4ϵ−7/4

)
and JV (g, ϵ) = O

(
κ11/4ϵ−7/4

)
.

Gradients of g(x, ·) and Hessian-vector products are occurred in AGD and CG respectively. Proposi-
tion 14 shows that we only require O

(√
κK log(1ϵ)

)
iterates of AGD and CG in one epoch to have

Condition 10 hold. From Lemma 30 we know that RAHGD will terminate in at most ∆
√
ρ̃ϵ−3/2

epochs. Recall that K ≤ K = 1
2

(
L̃2/(ρ̃ϵ)

)1/4, we have

Gc(g, ϵ) = O

(
∆L̃1/2ρ̃1/4κ1/2 log(1/ϵ)

ϵ7/4

)
and HV (g, ϵ) = O

(
∆L̃1/2ρ̃1/4κ1/2 log(1/ϵ)

ϵ7/4

)
.

Hiding polylogarithmic factor and pluging L̃ = O(κ3) and ρ̃ = O(κ5) into it, we have

Gc(g, ϵ) = Õ
(
κ13/4ϵ−7/4

)
and HV (g, ϵ) = Õ

(
κ13/4ϵ−7/4

)
.

Appendix E. Proofs for Section 4

In this section, we provide the proofs for theorems in Section 4. We first show that the number of
epochs can be bounded. Then we prove that PRAHGD can output an (ϵ,

√
ρ̃ϵ)-SOSP. Finally, we

provide the oracle complexity analysis.

30

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

E.1. Proof of Theorem 16

Lemma 32 Consider the setting of Theorem 16, and we run Algorithm 3, then the algorithm will
terminate in at most O

(
∆
√
ρ̃χ5ϵ−3/2

)
epochs.

Proof
From the Lipschitz continuity of gradient, we have

Φ(xt+1,0)− Φ(xt,K) ≤ ⟨∇Φ(xt,K), xt+1,0 − xt,K⟩+
L̃

2
∥xt+1,0 − xt,K∥22

= ⟨∇Φ(xt,K), ξt⟩+
L̃

2
∥ξt∥22

≤ ∥∇Φ(xt,K)∥2 r +
L̃r2

2
.

If ∥∇Φ(wK−1)∥2 >
B
η , then Lemma 26 means when the “if condition” triggers, we have

Φ(xK)− Φ(x0) ≤ −
B2

4η
+ σB +

5ησ2K

8
. (35)

We say that ∥∇Φ(xt,K)∥2 is bounded. Otherwise, one gradient descent step z = xt,K − η∇Φ(xt,K)
leads to

Φ(z) ≤ Φ(xt,K) + ⟨∇Φ(xt,K),−η∇Φ(xt,K)⟩+
L̃η2

2
∥∇Φ(xt,K)∥22

= Φ(xt,K)−
7η

8
∥∇Φ(xt,K)∥22 ,

which means Φ(z) ∼ −∞ and contradicts with the assumption minx∈Rdx Φ(x) > −∞. Let
∥∇Φ(xt,K)∥2 ≤ C, then we have

Φ(xt+1,0)− Φ(xt,K) ≤ Cr +
L̃r2

2
≤ B2

8η
, (36)

where we use the definition of r in the second inequality. Summing over equation (35) and equa-
tion (36), we obtain

Φ(xt+1,0)− Φ(xt,0) ≤ −
B2

8η
+ σB +

5ησ2K

8
≤ −B2

8η
= − ϵL̃

165888ρ̃χ4

for all epochs. On the other hand, if ∥∇Φ(wK−1)∥2 ≤
B
η , Lemma 29 means

Φ(xK)− Φ(x0) ≤ −
3θB2

8ηK
+

5ηK

2θ
(2ρ̃B2 + σ)2 +

ρ̃

6
(3B + ησ)3 +

ηK

2θ
σ2.

We also have

∥∇Φ(xK)∥2 ≤ ∥∇Φ(wK−1)∥2 + ∥∇Φ(xK)−∇Φ(wK−1)∥2
≤ ∥∇Φ(wK−1)∥2 + L̃ ∥xK − wK−1∥2

31

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

≤ ∥∇Φ(wK−1)∥2 + L̃η
(
∥∇Φ(wK−1)∥2 +

∥∥∥∇̂Φ(wK−1)−∇Φ(wK−1)
∥∥∥
2

)
≤ B

η
+ L̃B +

σ

4
=

5B

4η
+

σ

4
.

So we obatin

Φ(xt+1,0)− Φ(xt,K) ≤
5Br

4η
+

σr

4
+

L̃r2

2
≤ θB2

8ηK
+

σB2

4
,

and

Φ(xt+1,0)− Φ(xt,0) ≤ −
θB2

4ηK
+

5ηK

2θ
(2ρ̃B2 + σ)2 +

ρ̃

6
(3B + ησ)3 +

ηK

2θ
σ2 +

σB2

4

≤ − ϵ1.5

663552
√
ρ̃χ5

.

Hence, the algorithm will terminate in at most O
(
∆
√
ρ̃χ5ϵ−3/2

)
epochs.

Before proving that PRAHGD can output an (ϵ,
√
ρ̃ϵ)-SOSP, we first show the following lemma.

Lemma 33 Following the setting of Theorem 16, we additionally suppose that λmin(H) < −
√
ϵρ̃,

where H = ∇2Φ(x) for given x ∈ Rdx . We suppose points x′0, x
′′
0 ∈ Rdx satisfy ∥x′0 − x∥2 ≤ r,

∥x′′0 − x∥2 ≤ r and x′0 − x′′0 = r0e1, where e1 is the minimum eigen-direction of H and r0 =
ζr√
dx

.
Running PRAHGD in Algorithm 3 with initialization x0,0 = x′0 and x0,0 = x′′0 , respectively, then at
least one of these two initial points leads to its iterations trigger the “if condition”.

Proof Recall that the update rule of PRAHGD can be written as:

xk+1 = (2− θ)xk − (1− θ)xk−1 − η∇̂Φ((2− θ)xk − (1− θ)xk−1).

We denote zk = x′k − x′′k, then

zk+1 = (2− θ)zk − (1− θ)zk−1 − η(∇̂Φ(w′
k)− ∇̂Φ(w′′

k)))

= (2− θ)(I− ηH− ηΩk)zk − (1− θ)(I− ηH− ηΩk)zk−1 − η(ςk − ς ′k),

where

Ωk =

∫ 1

0

(∇2Φ(twk + (1− t)w′
k)−K) dt, ς ′k = ∇Φ(w′

k)− ∇̂Φ(w′
k) and ς ′′k = ∇Φ(w′′

k)− ∇̂Φ(w′′
k).

In the last step, we use

∇Φ(w′
k)−∇Φ(w′′

k) = (H+Ωk)(w
′
k − w′′

k) = (H+Ωk)((2− θ)zk − (1− θ)zt−1) .

We thus get the update of zk in matrix form as follows(
zk+1

zk

)
=

(
(2− θ)(I− ηH) −(1− θ)(I− ηH)

I 0

)(
wk

wk−1

)
+ η

(
(2− θ)Ωkzk − (1− θ)Ωkzk−1 + ς ′k − ς ′′k

0

)
32

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

= A

(
zk
zk−1

)
− η

(
ωk

0

)
= Ak+1

(
z0
z−1

)
− η

k∑
i=0

Ak−i

(
ωi

0

)
,

where ωk = (2− θ)Ωkzk − (1− θ)Ωkzk−1 + ς ′k − ς ′′k . Then we have

zk =
(
I 0

)
Ak

(
z0
z0

)
− η

(
I 0

) k−1∑
i=0

Ak−i−1

(
ωi

0

)
.

Assume that none of the iteration on (x′0, x
′
1, . . . , x

′
K) and (x′′0, x

′′
1, . . . , x

′′
K) trigger the “if condition”,

then we have ∥∥x′k − x′0
∥∥
2
≤ B,

∥∥w′
k − x′0

∥∥
2
≤ 2B, ∀k ≤ K,∥∥x′′k − x′′0

∥∥
2
≤ B,

∥∥w′′
k − x′′0

∥∥
2
≤ 2B, ∀k ≤ K.

(37)

Then we achieve

∥Ωk∥2 ≤ ρ̃max
(∥∥w′

k − x
∥∥
2
,
∥∥w′′

k − x
∥∥
2

)
≤ ρ̃max

(∥∥w′
k − x′0

∥∥
2
,
∥∥w′′

k − x′′0
∥∥
2

)
+ ρ̃r ≤ 3ρ̃B

and

∥ωk∥2 ≤ 6ρ̃B (∥zk∥2 + ∥zk−1∥2) +
∥∥ς ′k − ς ′′k

∥∥
2

≤ 6ρ̃B (∥zk∥2 + ∥zk−1∥2) + 2σ,

where we use Lemma 12 in the last step. We can show the following inequality for all k ≤ K by
induction: ∥∥∥∥∥η (I 0

) k−1∑
i=0

Ak−1−i

(
ωi

0

)∥∥∥∥∥
2

≤ 1

2

∥∥∥∥(I 0
)
Ak

(
z0
z0

)∥∥∥∥
2

.

It is easy to check the base case holds for k = 0. Assume the inequality holds for all steps equal to or
less than k. Then we have

∥zk∥2 ≤
3

2

∥∥∥∥(I 0
)
Ak

(
z0
z0

)∥∥∥∥
2

and ∥ωk∥2 ≤ 18ρ̃B

∥∥∥∥(I 0
)
Ak

(
z0
z0

)∥∥∥∥
2

+ 2σ,

where we use the monotonicity of
∥∥∥∥(I 0

)
Ak

(
z0
z0

)∥∥∥∥
2

in k (Lemma 38 in [28]) in the last inequality.

We define(
ak −bk

)
=
(
1 0

)
Ak

min and Amin =

(
(2− θ)(1− ηλmin) −(1− θ)(1− ηλmin)

1 0

)
,

then ∥∥∥∥∥η (I 0
) k∑
i=0

Ak−i

(
ωi

0

)∥∥∥∥∥
2

≤ η

k∑
i=0

∥∥∥∥∥(I 0
) k∑
i=0

Ak−i

(
I
0

)∥∥∥∥∥
2

∥ωi∥2

33

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

≤ η

k∑
i=0

∥∥∥∥∥(I 0
) k∑
i=0

Ak−i

(
I
0

)∥∥∥∥∥
2

(
18ρ̃B

∥∥∥∥(I 0
)
Ai

(
z0
z0

)∥∥∥∥
2

+ 2σ

)
(a)
= η

k∑
i=0

|ak−i| (18ρ̃Br0|ai − bi|+ 2σ)

(b)

≤ η

k∑
i=0

|ak−i| (20ρ̃Br0|ai − bi|)

(c)

≤ 20ρ̃Bη

k∑
i=0

(
2

θ
+ k + 1

)
|ak+1 − bk+1|r0

≤ 20ρ̃BηK

(
2

θ
+K

)∥∥∥∥(I 0
)
Ak+1

(
z0
z0

)∥∥∥∥
2

,

where the step
(a)
= uses the fact that z0 = r0e1 is along the minimum eigenvector direction of H; the

step
b
≤ is based on the fact that σ ≤ ρ̃Br0|ai − bi|; the step

c
≤ uses Lemma 36 in [28]. From Lemma

38 in [28], we have

|ai − bi| ≥
θ

2

(
1 +

θ

2

)i

≥ θ

2
,

and thus ρ̃Br0|ai − bi| ≥
ρ̃Bζrθ

2
√
dx
≥ σ. From the parameter settings, we have

20ρ̃BηK

(
2

θ
+K

)
≤ 1

2
.

Therefore, we complete the induction, which yields

∥zK∥2 ≥
∥∥∥∥(I 0

)
AK

(
z0
z0

)∥∥∥∥
2

−

∥∥∥∥∥η (I 0
)K−1∑

i=0

AK−i−1

(
ωi

0

)∥∥∥∥∥
2

≥ 1

2

∥∥∥∥(I 0
)
AK

(
z0
z0

)∥∥∥∥
2

=
r0
2
|aK − bK |

≥ θr0
4

(
1 +

θ

2

)K

≥ 5B,

where we use Lemma 38 in [28] and ηλmin ≤ −θ2 in the third inequality and the last step comes
from K = 2

θ log(
20B
θr0

). However, from equation (37) we can obtain:

∥zK∥2 ≤
∥∥x′K − x′0

∥∥
2
+
∥∥x′′K − x′′0

∥∥
2
+
∥∥x′0 − x′′0

∥∥
2
≤ 2B + 2r ≤ 4B,

which leads to contradiction. Thus we conclude that at least one of the iteration triggers the “if
condition” and we finish the proof.

Now we prove Theorem 16.

34

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Proof From Lemma 32, we know that Algorithm 3 will terminate in at most O
(
∆
√
ρ̃χ5ϵ−3/2

)
epochs. Since each epoch needs at most K = O

(
χ
(
L̃2/(ϵρ̃)

)1/4) gradient evaluations, the total

number of gradient evaluations must be less than O
(
∆L̃1/2ρ̃1/4χ6ϵ−1.75

)
.

Now we consider the last epoch. Similar to the proof of Theorem 13, we also have

∥∇Φ(ŵ)∥2 ≤
2
√
2B

ηK2
+

2θB

ηK
+ 4ρ̃B2 + σ ≤ ϵ

χ3
+ ϵ2 ≤ ϵ .

If λmin(∇2Φ(xt,K)) ≥ −
√
ϵρ̃, then from the perturbation theory of eigenvalues of Bhatia [4], we

have

|λj(∇2Φ(ŵt+1))− λj(∇2Φ(xt,K))| ≤
∥∥∇2Φ(ŵt+1)−∇2Φ(xt,K)

∥∥
2

≤ ρ̃ ∥ŵt+1 − xt,K∥2
≤ ρ̃ ∥ŵt+1 − xt+1,0∥2 + ρ̃r

≤ 3ρ̃B

for any j, where we use ∥ŵt+1 − xt+1,0∥2 ≤
1

K0+1

∑K0
k=0 ∥wt+1,k − xt+1,0∥2 ≤ 2B in the last

inequality. Then we have

λj(∇2Φ(ŵt+1)) ≥ λj(∇2Φ(xt,K))− |λj(∇2Φ(ŵt+1))− λj(∇2Φ(xt,K))|

≥ −
√
ϵρ̃− 3ρ̃B ≥ −1.011

√
ϵρ̃.

Now we consider λmin(∇2Φ(xt,K)) < −
√
ϵρ̃. Define the stuck region in B(r) centered at xt,K to be

the set of points starting from which the “if condition” does not trigger in K iterations, that is, the
algorithm terminates and outputs a saddle point. From Lemma 33, we know that the length along
the minimum eigen-direction of∇2Φ(xt,K) is less than r0. Therefore, the probability of the starting
point xt+1,0 = xt,K + ξt located in the stuck region is less than

r0Vd−1(r)

Vd(r)
≤ r0

√
d

r
≤ ζ,

where we let r0 = ζr√
d
. Thus, the output ŵ satisfies λmin(∇2Φ(ŵ) ≥ −1.011

√
ϵρ̃ with probability

at least 1− ζ. This completes our whole proof of Theorem 16.

E.2. Proof of Proposition 17

The proof of Proposition 17 is similar to that of Proposition 14. We provide the poof for Proposition 17
as follows.
Proof We first consider the iterations of CG in Algorithm 3 in one epoch. We choose T ′

t,k as

T ′
t,k =


⌈√

κ+1
2 log

(
4ℓ
√
κ

σ

(
∥v0,−1∥2 +

M
µ

))⌉
, k = 0,⌈√

κ+1
2 log

(
4ℓ
√
κ

σ

(
σ
2ℓ +

2M
µ

))⌉
, k ≥ 1.

(38)

35

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Following the proof of that in Section D.2 in exact fashions we arrive at that equation (4) in
Condition 10 can hold.

The total iterates of CG when running PRAHGD in Algorithm 3 in one epoch satisfies

K−1∑
k=0

T ′
k

≤ K +

√
κ+ 1

2

(
2T ′

0√
κ+ 1

+

K−1∑
k=1

log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))

= K +

√
κ+ 1

2

(
2T ′

0√
κ+ 1

+ (K − 1) log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))
= K +

√
κ+ 1

2
K
(
1

K
log

(
4ℓ
√
κ

σ

(
∥v0,−1∥2 +

M

µ

))
+

(
1− 1

K

)
log

(
4ℓ
√
κ

σ

(
σ

2ℓ
+

2M

µ

)))
.

Now we consider the iterations of AGD PRAHGD in Algorithm 3 in one epoch.
We first show the following lemma.

Lemma 34 Consider the setting of Theorem 16, and we run PRAHGD in Algorithm 3, then we have

∥y∗(wt,−1)∥2 ≤ C̃

for any t > 0, where C̃ = ∥y∗(x0,0)∥2 + (2B +B2 + ησ + ηC)κ∆
√
ρ̃ϵ−3/2.

Then we choose Tt,k as

Tt,k =


⌈
2
√
κ log

(
2L̃

√
κ+1
σ C̃

)⌉
, k = −1⌈

2
√
κ log

(
2L̃

√
κ+1
σ

(
σ
2L̃

+ 2κB
))⌉

, k ≥ 0
(39)

We will use induction to show that Lemma 34 as well as equation (3) in Condition 10 will hold.
For t = 0, Lemma 34 hold trivially. Then we use induction with respect to k to prove that

∥yt,k − y∗(wt,k)∥2 ≤
σ

2L̃

holds for any k ≥ −1. For k = −1, Lemma 1 directly implies

∥yt,−1 − y∗(wt,−1)∥2 ≤
∥∥y∗(wt,−1)

∥∥
2

C̃
· σ

2L̃
≤ σ

2L̃
,

where the second inequality is based on Lemma 34. Suppose it holds that ∥yt,k−1 − y∗(wt,k−1)∥2 ≤
σ
2L̃

for any k ≤ k′ − 1, then we have∥∥yt,k′ − y∗(wt,k′)
∥∥
2

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2 ∥∥yt,k′−1 − y∗(wt,k′)
∥∥
2

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2

(
∥∥yt,k′−1 − y∗(wt,k′−1)

∥∥
2
+
∥∥y∗(wt,k′−1)− y∗(wt,k′)

∥∥
2
)

36

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2
(

σ

2L̃
+ κ

∥∥wt,k′−1 − wt,k′
∥∥
2

)
≤
√
1 + κ

(
1− 1√

κ

)Tt,k′/2
(

σ

2L̃
+ 2κB

)
≤ σ

2L̃
,

where the first inequality is based on Lemma 1, the second one uses triangle inequality, the third one
is based on induction hypothesis and Lemma 5, the fourth one uses equation (12), and the last step
use the definition of Tt,k. Therefore, equation (3) in Condition 10 can hold.

Suppose Lemma 34 and equation (3) in Condition 10 hold for any t ≤ t′ − 1, then we have
shown that when we choose T ′

t,k as defined in equation (38), then equation (4) in Condition 10 can
hold. Thus, from Lemma 12 we obtain that:

∥∇Φ(wt,k)− ∇̂Φ(wt,k)∥2 ≤ σ . (40)

For any epoch t ≤ t′ − 1, we have

∥xt,K − xt,0∥2
= ∥xt,K − xt,K−1 + xt,K−1 − xt,0∥2
=
∥∥∥(1− θ)(xt,K−1 − xt,K−2)− η∇̂Φ(wt,K−1) + xt,K−1 − xt,0

∥∥∥
2

≤ ∥xt,K−1 − xt,K−2∥2 + ∥xt,K−1 − xt,0∥2 + η
∥∥∥∇̂Φ(wt,K−1)

∥∥∥
2

≤ 2B + η
∥∥∥∇̂Φ(wt,K−1)−∇Φ(wt,K−1) +∇Φ(wt,K−1)

∥∥∥
2

≤ 2B + η
∥∥∥∇̂Φ(wt,K−1)−∇Φ(wt,K−1)

∥∥∥
2
+ η ∥∇Φ(wt,K−1)∥2

≤ 2B + ησ + η ∥∇Φ(wt,K−1)∥2
≤ 2B + η(σ + C)

(41)

for some constant C. Here we use triangle inequality in the first inequality; equation (10) in
the second one; triangle inequality again in the third one; equation (40) in the fourth one and
equation (33) in the last one.

Then for t′-th epoch, we have∥∥y∗(wt′,−1)− y∗(x0,0)
∥∥
2

≤ κ
∥∥wt′,−1 − x0,0

∥∥
2

= κ
∥∥xt′,0 − x0,0

∥∥
2

= κ
∥∥xt′−1,K − x0,0

∥∥
2

≤ κ(
∥∥xt′−1,0 − x0,0

∥∥
2
+
∥∥xt′−1,K − xt′−1,0

∥∥
2
+ r)

≤ κ(
∥∥xt′−1,0 − x1,0

∥∥
2
+ (2B +B2 + ησ + ηC))

≤ (2B +B2 + ησ + ηC)κt ,

where the first inequality is based on the Lipschitz continuous of y∗(x) shown in Lemma 5; the
second one uses triangle inequality; the third one is based on equation (41), and the last one uses

37

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

induction. Then we have∥∥y∗(wt′,−1)
∥∥
2
≤ ∥y∗(x0,0)∥2 +Bκt′ ≤ ∥y∗(x0,0)∥2 +

(2B +B2 + ησ + ηC)κ∆
√
ρ̃

ϵ3/2
,

where we use Lemma 32 in the last inequality.
Similarly with the case t = 0, we use induction with respect to k again, and then we can prove

that equation (3) in Condition 10 hold.
This also completes the proof for Lemma 34.
The total gradient calls from AGD in Algorithm 3 in one epoch satisfies

K−1∑
k=−1

Tt,k ≤ 2
√
κ

(
T−1

2
√
κ
+

K−1∑
k=0

log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1

= 2
√
κ

(
T−1

2
√
κ
+K log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1

= 2
√
κK

(
1

K
log

(
2L̃
√
κ+ 1

σ
C̃

)
+ log

(
√
κ+ 1 +

4L̃κ
√
κ+ 1B

σ

))
+K + 1.

This finishes our whole proof for Proposition 17.

E.3. Proof of Corollary 18

Proof From Theorem 16, we have that PRAHGD in Algorithm 3 can find an (ϵ,
√
ρ̃ϵ) SOSP within

at most O
(
∆L̃1/2ρ̃1/4χ6ϵ−7/4

)
iterations in the outer loop. Then we have

Gc(f, ϵ) = O

(
∆L̃1/2ρ̃1/4χ6

ϵ7/4

)
and JV (g, ϵ) = O

(
∆L̃1/2ρ̃1/4χ6

ϵ7/4

)
.

Omitting polylogarithmic factor and pluging L̃ = O(κ3) and ρ̃ = O(κ5) into it, we have

Gc(f, ϵ) = Õ
(
κ11/4ϵ−7/4

)
and JV (g, ϵ) = Õ

(
κ11/4ϵ−7/4

)
.

Lemma 32 shows that PRAHGD in Algorithm 3 will terminate in at most O
(
∆
√
ρ̃χ5

ϵ3/2

)
epochs. From

Proposition 17 we can obtain that for each epoch t, we have the inner loops

K−1∑
k=−1

Tt,k ≤ O
(
κ1/2K log(1/ϵ)

)
and

K−1∑
k=0

T ′
t,k ≤ O

(
κ1/2K log(1/ϵ)

)
hold. Then we have

Gc(g, ϵ) = O

(
∆L̃1/2ρ̃1/4κ1/2χ6 log(1/ϵ)

ϵ7/4

)
and HV (g, ϵ) = O

(
∆L̃1/2ρ̃1/4κ1/2χ6 log(1/ϵ)

ϵ7/4

)
,

38

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

where we use K ≤ K = O
(
χ
(
L̃2/(ϵρ̃)

)1/4). Omit polylogarithmic factor and plug L̃ = O(κ3)
and ρ̃ = O(κ5) into it, we have

Gc(g, ϵ) = Õ
(
κ13/4ϵ−7/4

)
and HV (g, ϵ) = Õ

(
κ13/4ϵ−7/4

)
.

This completes our proof of Corollary 18.

Appendix F. Proofs for Section B

In this section, we provide the proof of Theorem 20.
Proof Lemma 19 shows that in minimax problem settings, L̃ = (κ+ 1)ℓ and ρ̃ = 4

√
2κ3ρ. Recall

that our PRAGDA evolves directly from PRAHGD —- removing the CG step in PRAHGD because we
do not need to compute the Hessian-vector products when solving the minmax problem. Therefore,
we can straightforwardly apply the theoretical results for PRAHGD.

Applying Theorem 16, we have that Algorithm 4 can find an
(
ϵ,O(κ1.5

√
ϵ)
)
-SOSP.

Now we provide the gradient oracle calls complexities. From Lemma 32, we know that Algo-
rithm 4 will terminate in at most O

(
∆
√
ρ̃χ5ϵ−3/2

)
epochs. Proposition 17 shows that, for each t,

the total iteration number of AGD step satisfies:

K−1∑
k=−1

Tt,k ≤ O(κ1/2K log(1/ϵ)) .

Recall that K ≤ K = O
(
χ
(
L̃2/(ϵρ̃)

)1/4), we have that the total gradient oracle calls is at most:

O

(
∆ρ̃1/4L̃1/2κ1/2χ6 log(1/ϵ)

ϵ7/4

)
.

Hide polylogarithmic factor and plug L̃ and ρ̃ into it, we have the total gradient oracle calls within at
most Õ(κ7/4ϵ−7/4).

Appendix G. Empirical Studies

We conducted a series of experiments to validate the theoretical contributions presented in this paper.
Specifically, we evaluated the effectiveness of our proposed algorithms, RAHGD and PRAHGD, by
applying them to two different tasks: data hyper-cleaning for the MNIST dataset and hyperparameter
optimization of logistic regression for the 20 News Group dataset. Our experiments demonstrate
that our algorithms outperform several established baseline algorithms, such as BA, AID-BiO, ITD-
BiO, and PAID-BiO, with much faster convergence rates. Additionally, we conducted a synthetic
minimax problem experiment, wherein our PRAGDA algorithm exhibits a faster convergence rate
when compared to iMCN.

G.1. Synthetic Minimax Problem

We construct the following nonconvex-strong-concave minimax problem:

min
x∈R3

max
y∈R2

f(x, y) = w(x3)− 10y21 + x1y1 − 5y22 + x2y2,

39

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

0.75 0.50 0.25 0.00 0.25 0.50 0.75

0.004

0.002

0.000

0.002

0.004

0.006

Figure 1: W-shape function designed by Tripuraneni et al. [47]

0 200 400 600 800 1000 1200
of oracle calls

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

lo
g

of
 e

rro
r

PRAGDA
iMCN
GDA

(a) Initial point (x1, y1)

0 200 400 600 800 1000 1200
of oracle calls

10 16

10 13

10 10

10 7

10 4

10 1

lo
g

of
 e

rro
r

PRAGDA
iMCN
GDA

(b) Initial point (x2, y2)
Figure 2: Comparison of various minmax algorithms at different initial points

where x = [x1, x2, x3]
T and y = [y1, y2]

T and

w(x) =



√
ϵ(x+ (L+ 1)

√
ϵ)2 − 1

3(x+ (L+ 1)
√
ϵ)3 − 1

3(3L+ 1)ϵ3/2, x ≤ −L
√
ϵ;

ϵx+ ϵ3/2

3 , −L
√
ϵ < x ≤ −

√
ϵ;

−
√
ϵx2 − x3

3 , −
√
ϵ < x ≤ 0;

−
√
ϵx2 + x3

3 , 0 < x ≤
√
ϵ;

−ϵx+ ϵ3/2

3 ,
√
ϵ < x ≤ L

√
ϵ;√

ϵ(x− (L+ 1)
√
ϵ)2 + 1

3(x− (L+ 1)
√
ϵ)3 − 1

3(3L+ 1)ϵ3/2, L
√
ϵ < x;

is the W-shape-function [47] and we set ϵ = 0.01, L = 5 in our experiment. We visualize the w(·)
in Figure 1. It is easy to verify that (x0, y0) = ([0, 0, 0]⊤, [0, 0]⊤) is a saddle point of f(x, y). We
construct our experiment with two different initial points:

(x1, y1) =
(
[10−3, 10−3, 10−16]⊤, [0, 0]⊤

)
and (x2, y2) =

(
[0, 0, 1]⊤, [0, 0]⊤

)
.

Note that (x1, y1) is close to (x0, y0) while (x2, y2) is far from (x0, y0). We compare our PRAGDA
with iMCN [38] algorithm and classical GDA [35] algorithm. The results are shown in Figure 2.
We use a grid search to choose the learning rate of AGD steps and GDA and outer-loop learning
rate of PRAGDA from {c × 10i : c ∈ {1, 5}, i ∈ {1, 2, 3}} and the momentum parameter from
{c× 0.1 : c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}}.

40

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

0 50 100 150 200 250
running time /s

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

te
st

in
g

lo
ss

PRAHGD
RAHGD
AID-BiO
PAID-BiO
BA-CG
ITD-BiO

(a) Corruption rate p = 0.2

0 50 100 150 200 250
running time /s

2.5

5.0

7.5

10.0

12.5

15.0

17.5

te
st

in
g

lo
ss

PRAHGD
RAHGD
AID-BiO
PAID-BiO
BA-CG
ITD-BiO

(b) Corruption rate p = 0.4
Figure 3: Comparison of various bilevel algorithms for data hypercleaning at different corruption rate
G.2. Data Hypercleaning

Data hypercleaning [15, 44] is an application example of bilevel optimization. In practice, we may
have a dataset with label noise and we could only offer some time or cost to clean-up a subset of the
noise data. To train a model in such a setting, we can treat the cleaned data as the validation set and
the rest data as the training set. Then it can be transferred into a bilevel optimization:

min
λ∈RNtr

f(W ∗(λ), λ) ≜
1

|Dval|
∑

(xi,yi)∈Dval

− log(y⊤i W
∗(λ)xi)

s.t. W ∗(λ) = argmin
W∈Rdy×dx

g(W,λ) ≜
1

|Dtr|
∑

(xi,yi)∈Dtr

−σ(λi) log(y
⊤
i Wxi) + Cr||W ||2 ,

(42)

where Dtr = {(xi, yi)} is the training dataset, Dval = {(xi, yi)} is the validation dataset, W is the
weight of the classifier, λi ∈ R, σ is the sigmoid function and Cr is a regularization parameter.
Following Shaban et al. [44] and Ji et al. [25], we choose Cr = 0.001.

We conducted the experiment on MNIST[31]. We have x ∈ R785, y ∈ R10 and W ∈ R10×785

in equation (42). Training set contains 20,000 images, some of which have their labels randomly
disrupted. We called the ratio of images with disrupted labels as corruption rate p. Validation set
contains 5,000 images with correct labels. The testing set consists 10,000 images. The results are
shown in Figure 3.

For BA algorithm proposed by Ghadimi and Wang [17], we also use conjugate gradient descent
method to compute the Hessian vector since they didn’t specify it and we called it BA-CG in
Figure 3. For all algorithms, We choose the inner-loop learning rate and outer-loop learning rate from
{0.001, 0.01, 0.1, 1, 10} and the iteration number of CG step from {3, 6, 12, 24}. For all algorithms
except BA, we choose the iteration number of GD or AGD steps from {50, 100, 200, 500, 1000}
and for BA algorithm, as adopted by Ghadimi and Wang [17], we choose the iteration number of
GD steps from {⌈c(k + 1)1/4⌉ : c ∈ {0.5, 1, 2, 4}} . We observe that both RAHGD and PRAHGD
converge faster than other algorithms.

G.3. Hyperparameter Optimization

Hyperparameter optimization is a classical bilevel problem. The goal of hyperparameter optimization
is to find the optimal hyperparameter to minimize the loss on the validation dataset. We compare the
performance of our algorithm RAHGD and PRAHGD with the baseline algorithms listed in Table 1
and Table 2 over a logistic regression problem on 20 News group dataset[20]. This dataset consists

41

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

0 20 40 60 80 100 120 140
running time /s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

AID-BiO
PAID-BiO
BA-CG
ITD-BiO
PRAHGD
RAHGD

(a) testing accuracy vs. running time

0 20 40 60 80 100 120 140
running time /s

1.0

1.5

2.0

2.5

3.0

te
st

in
g

lo
se

AID-BiO
PAID-BiO
BA-CG
ITD-BiO
PRAHGD
RAHGD

(b) testing lose vs. running time

0.0 0.5 1.0 1.5 2.0 2.5
of oracle calls 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

AID-BiO
PAID-BiO
BA-CG
ITD-BiO
PRAHGD
RAHGD

(c) testing accuracy vs. # of oracle calls

0.0 0.5 1.0 1.5 2.0 2.5
of oracle calls 1e6

1.0

1.5

2.0

2.5

3.0

te
st

in
g

lo
ss

AID-BiO
PAID-BiO
BA-CG
ITD-BiO
PRAHGD
RAHGD

(d) testing lose vs. # of oracle calls
Figure 4: Comparison of various bilevel algorithms on logistic regression on 20 Newsgroup dataset.
Figure (a) and (b) show the results of testing accuracy and testing lose vs.running time respectively.
Figure (c) and (d) show the results of testing accuracy and testing lose vs. # of oracles calls
respectively.
of 18,846 news items divided into 20 topics, and features include 130,170 tf-idf sparse vectors. We
divided the data into three parts: 5,657 for training, 5,657 for validation, and 7,532 for testing. Then
the objective function of this problem can be written in the following form.

min
λ∈Rp

1

|Dval|
∑

(xi,yi)∈Dval

L(w∗(λ);xi, yi)

s.t. w∗(λ) = argmin
w∈Rc×p

1

|Dtr|
∑

(xi,yi)∈Dtr

L(w;xi, yi) +
1

2cp

c∑
j=1

p∑
k=1

exp(λk)w
2
jk,

where Dtr = {(xi, yi)} is the training dataset, Dval = {(xi, yi)} is the validation dataset, L is the
cross-entropy loss function, c = 20 is the number of topics and p = 130, 170 is the dimension of
features. Same as that in section G.2, we use the conjugate gradient descent method to approximate
the Hessian vector.

For all algorithms listed in Figure 4, we choose the inner-loop learning rate and out-loop
learning rate from {0.001, 0.01, 0.1, 1, 10, 100, 1000}, the iteration number of GD or AGD step from
{5, 10, 30, 50}, and the iteration number of CG step from {5, 10, 30, 50}. For BA-CG, we choose the
iteration number of GD steps from {⌈c(k + 1)1/4⌉ : c ∈ {0.5, 1, 2, 4}} as adopted by Ghadimi and
Wang [17]. The results are shown in Figure 4. We observe that our RAHGD and PRAHGD converge
faster than other algorithms.

42

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Table 1: Comparison of complexities for nonconvex bilevel optimization algorithms of finding
approximate FOSPs.

Algorithm Gc(f, ϵ) Gc(g, ϵ) JV (g, ϵ) HV (g, ϵ)

BA [17] O(κ4ϵ−2) O(κ5ϵ−2.5) O(κ4ϵ−2) Õ(κ4.5ϵ−2)
AID-BiO [25] O(κ3ϵ−2) O(κ4ϵ−2) O(κ3ϵ−2) O(κ3.5ϵ−2)

ITD-BiO [25] O(κ3ϵ−2) Õ(κ4ϵ−2) Õ(κ4ϵ−2) Õ(κ4ϵ−2)

RAHGD (this work) Õ(κ2.75ϵ−1.75) Õ(κ3.25ϵ−1.75) Õ(κ2.75ϵ−1.75) Õ(κ3.25ϵ−1.75)

Table 2: Comparison of complexities for nonconvex bilevel optimization algorithms of finding
approximate SOSPs.

Algorithm Gc(f, ϵ) Gc(g, ϵ) JV (g, ϵ) HV (g, ϵ)

Perturbed AID [23] Õ(κ3ϵ−2) Õ(κ4ϵ−2) Õ(κ3ϵ−2) Õ(κ3.5ϵ−2)

PRAHGD (this work) Õ(κ2.75ϵ−1.75) Õ(κ3.25ϵ−1.75) Õ(κ2.75ϵ−1.75) Õ(κ3.25ϵ−1.75)

— Gc(f, ϵ) and Gc(g, ϵ): number of gradient evaluations w.r.t. f and g. κ: condition number of the lower-level
objective.
— JV (g, ϵ): number of Jacobian-vector products ∇2

xyg(x, y)v. Notation Õ omits a polylogarithmic factor in relevant
parameters.
— HV (g, ϵ): number of Hessian-vector products ∇2

yyg(x, y)v.

Algorithm 1 AGD(h, z0, T, α, β)

1: Input: objective h(·); initialization z0; iteration number T ≥ 1; step-size α > 0; momentum
param. β ∈ (0, 1)

2: z̃0 ← z0
3: for t← 0, . . . , T − 1 do
4: zt+1 ← z̃t − α∇h(z̃t)
5: z̃t+1 ← zt+1 + β(zt+1 − zt)

6: end for
7: Output: zT

43

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Algorithm 2 CG(A, b, T, q0)

1: Input: quadratic objective (as in Eq. (2)); initialization q0; iteration number T ≥ 1
2: r0 ← Aq0 − b , p0 ← −r0
3: for t← 0, . . . , T − 1 do

4: αt ←
rTt rt

pTt Apt
5: qt+1 ← qt + αtpt

6: rt+1 ← rt + αtApt

7: βt+1 ←
rTt+1rt+1

rTt rt
8: pt+1 ← −rt+1 + βt+1pt

9: end for
10: Output: qT

Algorithm 3 (Perturbed) Restarted Accelerated HyperGradient Descent, (P)RAHGD

1: Input: initial vector x0,0; step-size η > 0; momentum parameter θ ∈ (0, 1); parameters
α > 0, β ∈ (0, 1), {Tt,k} of AGD; parameter {T ′

t,k} of CG; iteration threshold K ≥ 1; parameter
B for triggering restarting; perturbation radius r > 0; option Perturbation ∈ {0, 1}

2: k ← 0, t← 0, x0,−1 ← x0,0, y0,−1 ← AGD(g(x1,−1, ·), 0, T0,−1, α, β), v0,−1 ← y0,−1

3: while k < K

4: wt,k ← xt,k + (1− θ)(xt,k − xt,k−1)

5: yt,k ← AGD(g(wt,k, ·), yt,k−1, Tt,k, α, β)

6: vt,k ← CG(∇2
yyg(wt,k, yt,k),∇yf(wt,k, yt,k), T

′
t,k, vt,k−1)

7: ut,k ← ∇xf(wt,k, yt,k)−∇2
xyg(wt,k, yt,k)vt,k

8: xt,k+1 ← wt,k − ηut,k

9: k ← k + 1

10: if k
∑k−1

i=0 ∥xt,i+1 − xt,i∥2 > B2

11: vt+1,−1 ← vt,k

12: xt+1,0 ←
{

xt,k, if Perturbation= 0
xt,k + ξ with ξ ∼ Unif(B(r)), if Perturbation= 1

13: xt+1,−1 ← xt+1,0

14: k ← 0, t← t+ 1

15: yt,−1 ← AGD(g(xt,−1, ·), 0, Tt,−1, α, β)

16: end if
17: end while
18: K0 ← argmin⌊K

2
⌋≤k≤K−1 ∥xt,k+1 − xt,k∥2

19: Output: ŵ ← 1
K0+1

∑K0
k=0wt,k

44

ACCELERATING INEXACT HYPERGRADIENT DESCENT FOR BILEVEL OPTIMIZATION

Algorithm 4 PRAGDA
1: Input: initial vector x0,0; step-size η > 0; momentum param. θ ∈ (0, 1); params. α > 0, β ∈

(0, 1), {Tt,k} of AGD; iteration threshold K ≥ 1; param. B for triggering restarting; perturbation
radius r > 0

2: k ← 0, t← 0, x0,−1 ← x0,0

3: y0,−1 ← AGD(−f̄(x0,−1, ·), 0, T0,−1, α, β)

4: while k < K

5: wt,k ← xt,k + (1− θ)(xt,k − xt,k−1)

6: yt,k ← AGD(−f̄(wt,k, ·), yt,k−1, Tt,k, α, β)

7: xt,k+1 ← wt,k − η∇xf̄(wt,k, yt,k)

8: k ← k + 1

9: if k
∑k−1

i=0 ∥xt,i+1 − xt,i∥2 > B2

10: xt+1,0 ← xt,k + ξ, ξ ∼ Unif(B(r))
11: xt+1,−1 ← xt+1,0

12: k ← 0, t← t+ 1

13: yt,−1 ← AGD(−f̄(xt,−1, ·), 0, Tt,−1, α, β)

14: end if
15: end while
16: K0 ← argmin⌊K

2
⌋≤k≤K−1 ∥xt,k+1 − xt,k∥2

17: Output: ŵ ← 1
K0+1

∑K0
k=0wt,k

45

	Introduction
	Preliminaries
	Restarted Accelerated HyperGradient Descent Algorithm
	Perturbed Restarted Accelerated HyperGradient Descent Algorithm
	Overview and Contributions
	Contributions
	Overview of Our Algorithm Design and Main Techniques
	Related Work

	Improved Convergence for Accelerating Minimax Optimization
	Basic Lemmas
	Proofs for Section 3
	Proof of Theorem 13
	Proof of Proposition 14
	Proof of Corollary 15

	Proofs for Section 4
	Proof of Theorem 16
	Proof of Proposition 17
	Proof of Corollary 18

	Proofs for Section B
	Empirical Studies
	Synthetic Minimax Problem
	Data Hypercleaning
	Hyperparameter Optimization

